线性表的链式存储结构和实现

合集下载

线性表 知识点总结

线性表 知识点总结

线性表知识点总结线性表的特点:1. 有序性:线性表中的元素是有序排列的,每个元素都有唯一的前驱和后继。

2. 可变性:线性表的长度是可变的,可以进行插入、删除操作来改变表的元素数量。

3. 线性关系:线性表中的元素之间存在明确的前驱和后继关系。

4. 存储结构:线性表的存储结构有顺序存储和链式存储两种方式。

线性表的操作:1. 查找操作:根据元素的位置或值来查找线性表中的元素。

2. 插入操作:将一个新元素插入到线性表中的指定位置。

3. 删除操作:将线性表中的某个元素删除。

4. 更新操作:将线性表中的某个元素更新为新的值。

线性表的顺序存储结构:顺序存储结构是将线性表的元素按照其逻辑顺序依次存储在一块连续的存储空间中。

线性表的顺序存储结构通常采用数组来实现。

数组中的每个元素都可以通过下标来访问,因此可以快速的进行查找操作。

但是插入和删除操作会导致元素位置的变动,需要进行大量数据搬移,效率较低。

线性表的链式存储结构:链式存储结构是将线性表的元素通过指针相连,形成一个链式结构。

每个元素包含数据和指向下一个元素的指针。

链式存储结构不需要连续的存储空间,可以动态分配内存,适合插入和删除频繁的场景。

但是链式结构的元素访问不如顺序结构高效,需要通过指针来逐个访问元素。

线性表的应用场景:1. 线性表适用于数据元素之间存在明确的前后关系,有序排列的场景。

2. 顺序存储结构适用于元素的插入和删除操作较少,对元素的随机访问较频繁的场景。

3. 链式存储结构适用于插入和删除操作较频繁的场景,对元素的随机访问较少。

线性表的操作的时间复杂度:1. 查找操作:顺序存储结构的时间复杂度为O(1),链式存储结构的时间复杂度为O(n)。

2. 插入和删除操作:顺序存储结构的时间复杂度为O(n),链式存储结构的时间复杂度为O(1)。

线性表的实现:1. 顺序存储结构的实现:使用数组来存储元素,通过下标来访问元素。

2. 链式存储结构的实现:使用链表来实现,每个元素包含数据和指向下一个元素的指针。

《数据结构与算法(C++语言版)》第2章 线性表

《数据结构与算法(C++语言版)》第2章 线性表
• 以下是一个使用类LinearList的C++程序,它假定之前的程 序均存储在LinearList.h之中,且异常类定义位于文件 exception.h之中。该示例完成以下操作:创建一个大小为5 的整数线性表L;输出该表的长度(为0);在第0个元素之 后插入2;在第一个元素之后插入6和8(至此,线性表为2, 6,8);寻找并输出第一个元素(为2);输出当前表的长 度(为3);删除并输出第一个元素。
数据结构与算法 (C++语言版)
第2章 线性表
线性表的类型定义
• 基本概念 • 线性表是由n(n≥0)个类型相同的数据元素组成的有限序 列,通常表示为L=(a1, …, ai–1, ai, ai+1, …, an)。其中,L为线 性表名称,ai为组成该线性表的数据元素,ai–1领先于ai,ai 领先于ai+1,称ai–1是ai的直接前驱元素,ai+1是ai的直接后继 元素。当i=1, 2, …, n–1时,ai有且仅有一个直接后继;当 i=2, 3, …, n时,ai有且仅有一个直接前驱。 • 线性表的长度就是线性表中元素的个数n(n≥0)。当n=0时, 称为空表。在非空表中的每个数据元素都有一个确定的位 置,如a1是第一个数据元素,an是最后一个数据元素,ai是 第i个数据元素。称i为数据元素ai在线性表中的位序。
线性表的类型定义
Prev_Elem(L, cur_e, &pre_e) //返回当前元素的前一个元素值 输入:线性表L。 输出:若cur_e是线性表L的数据元素,且不是第一个,则用 pre_e返回它的直接前驱元 素;否则操作失败,pre_e无定义。 Next_Elem(L, cur_e, &next_e) //返回当前元素的后一个元素值 输入:线性表L。 输出:若cur_e是线性表L的数据元素,且不是最后一个,则用 next_e返回它的直接后继元素;否则操作失败,next_e无定 义。

编译技术中常用的数据结构

编译技术中常用的数据结构

编译技术中常用的数据结构一、线性表线性表是编译技术中常用的数据结构之一,它是一种能够按照线性顺序存储数据元素的数据结构。

线性表可以通过顺序存储结构或链式存储结构来实现。

1. 顺序存储结构顺序存储结构是将线性表的元素按照顺序存储在一块连续的存储空间中。

在编译技术中,顺序存储结构常用于存储符号表、常量表等数据结构。

通过数组来实现顺序存储结构,可以快速访问线性表的任意位置元素。

2. 链式存储结构链式存储结构是通过节点之间的指针链接来实现线性表的存储。

在编译技术中,链式存储结构常用于存储中间代码、语法树等数据结构。

链式存储结构灵活性较高,可以动态地分配和释放存储空间。

二、栈栈是一种具有后进先出(LIFO)特性的线性表。

在编译技术中,栈常用于处理函数调用、表达式求值等场景。

栈的基本操作包括入栈和出栈。

入栈将元素压入栈顶,出栈将栈顶元素弹出。

编译技术中,栈还常用于处理函数的局部变量、函数的三、队列队列是一种具有先进先出(FIFO)特性的线性表。

在编译技术中,队列常用于处理优化算法、指令调度等场景。

队列的基本操作包括入队和出队。

入队将元素插入队尾,出队将队头元素移除。

编译技术中,队列还常用于处理指令流水线、任务调度等问题。

四、树树是一种非线性的数据结构,它由若干个节点组成,节点之间通过边连接。

在编译技术中,树常用于构建语法树、抽象语法树等数据结构。

树的基本概念包括根节点、叶子节点和内部节点。

树的遍历方式有前序遍历、中序遍历和后序遍历。

编译技术中,树的遍历常用于语法分析、语义分析等阶段。

五、图图是一种由节点和边组成的非线性数据结构。

在编译技术中,图常用于构建控制流图、数据依赖图等数据结构。

图的基本概念包括顶点、边和路径。

图可以分为有向图和无向图,还可以带有权重。

编译技术中,图的遍历常用于寻找程序中的循环、六、哈希表哈希表是一种通过哈希函数将关键字映射到存储位置的数据结构。

在编译技术中,哈希表常用于符号表、常量表等数据结构。

线性表

线性表

举例:
La=(34,89,765,12,90,-34,22) 数据元素类型为int。 Ls=(Hello,World, China, Welcome) 数据元素类型为 string。 Lb=(book1,book2,...,book100) 数据元素类型为下列所示的结 构类型: struct bookinfo { int No; //图书编号 char *name; //图书名称 char *auther; //作者名称 ...; };
素的方法被称为随机存取法,使用这种存取方法的存储结构被
称为随机存储结构。
在C语言中,实现线性表的顺序存储结构的类型定义
typedef int ElemType; //定义顺序表中元素的类型 #define INITSIZE 100 //顺序表存储空间初始分配量 #define LISTINCREMENT 10 //线性表存储空间的分配增量 typedef struct { ElemType *data; int length; //存储空间的基地址 //线性表的当前长度
说明:
1. 某数据结构上的基本运算,不是它的全部运算,而是一些 常用的基本的运算,而每一个基本运算在实现时也可能根据不 同的存储结构派生出一系列相关的运算来, 没有必要全部定义 出它的运算集。掌握了某一数据结构上的基本运算后,其它的 运算可以通过基本运算来实现,也可以直接去实现。 2. 在上面各操作中定义的线性表L仅仅是一个抽象在逻辑结 构层次的线性表,尚未涉及到它的存储结构,因此每个操作在 逻辑结构层次上尚不能用具体的某种程序语言写出具体的算法, 而算法的实现只有在存储结构确立之后。
4. 求顺序表的长度 int getlen(sqlist L) { return (L.length); } 5. 判断顺序表是否为空 int listempty(sqlist L) { if (L.length==0) return 1; else return 0; }

线性表

线性表

2.1 线性表的类型定义
例3:下图为10个个学生的成绩表,它也是一个 线性表,该线性表的数据元素类型为结构体类型。
2.1 线性表的类型定义
从以上例子可看出线性表的逻辑特征是: 在非空的线性表中,有且仅有一个被称作 “第一个”的数据元素a1,它没有直接前趋, 而仅有一个直接后继a2; 有且仅有一个被称作“最后一个”的数据元 素an,它没有直接后继,而仅有一个直接前 趋 a n-1; 其余的数据元素ai(2≦i≦n-1)都有且仅有一个 直接前趋a i-1和一个直接后继a i+1。 线性表是一种典型的线性结构。
2.2 线性表的顺序表示和实现
#define MAXNUM 100 Elemtype List1[MAXNUM] ; /*定义线性表L1*/ int length1;
Elemtype List2[MAXNUM] ; /*定义线性表L1*/ int length2;
Elemtype List3[MAXNUM] ; /*定义线性表L1*/ int length3;
2.2 线性表的顺序表示和实现
而只需要将数组和表长封装在一个结构体中,然 后定义三个结构体变量即可: struct L_list { Elemtype List[MAXNUM]; int length; }; struct L_list L1, L2, L3; /*定义三个线性表L1,L2,L3*/
2.1 线性表的类型定义
例1:26个英文字母组成的字母表 (A,B,C、…、Z) 例2:某公司2000年每月产值表(单位:万元) (400,420,500,…,600,650) 是一个长度为12的线性表。

上述两例中的每一个数据元素都是不可分割的, 在一些复杂的线性表中,每一个数据元素又可 以由若干个数据项组成。

第3章线性表的链式存储

第3章线性表的链式存储
L
(a) 空循环链表
L
a1
a2
...
an
(b) 非空循环链表
3.1.3 双向链表
在单链表结点中只有一个指向其后继结点的next 指针域,而找其前驱则只能从该链表的头指针开始,顺 着各结点的next指针域进行查找,也就是说找后继的时 间复杂度是O(1),找前驱的时间复杂度是O(n)。如果也 希望找前驱像后继那样快,则只能付出空间的代价:每 个结点再加一个指向前驱的指针域prior,结点的结构修 改为下图,这样链表中有两个方向不同的链,用这种结 点组成的链表称为双向链表。
1.带头结点的单链表 2.不带头结点的单链表
3.3.3 单链表插入操作的实现
单链表的插入操作是指在表的第i个位置结点处插入 一个值为data的新结点。插入操作需要从单链表的第一个结 点开始遍历,直到找到第i个位置的结点。插入操作分为在 结点之前插入的前插操作和在结点之后插入的后插操作。
1.前插操作 2.后插操作
2.整数型单链表算法
3.不带头结点的单链表算法
3.2.2 尾插法单链表的创建实现
用头插法实现单链表的创建,比较简单,但读入的 数据元素的顺序与生成的链表中元素的顺序是相反的。若希 望两者次序一致,则用尾插法创建单链表。为了快速找到新 结点插入到链表的尾部位置,所以需加入一个尾指针r用来 始终指向链表中的尾结点。初始状态:头指针L和尾指针r均 为空,把各数据元素按顺序依次读入,申请结点,将新结点 插入到r所指结点的后面,然后r指向新结点,直到读入结束 标志为止。
3.2.2 尾插法单链表的创建实现
L
插入P前的尾指针 插入P后的尾指针
r
3
4
P1
x^
2
3.3 单链表运算的实现

数据结构实验报告

数据结构实验报告

《数据结构》实验报告姓名:学号:班级:学院:实验一单链表实验(一)实验目的1.理解线性表的链式存储结构。

2.熟练掌握动态链表结构及有关算法的设计。

3.根据具体问题的需要,设计出合理的表示数据的链表结构,并设计相关算法。

(二)实验任务编写算法实现下列问题的求解1.求链表中第i个结点的指针(函数),若不存在,则返回NULL。

2.在第i个结点前插入值为x的结点。

3.删除链表中第i个元素结点。

4.在一个递增有序的链表L中插入一个值为x的元素,并保持其递增有序特性。

5.将单链表L中的奇数项和偶数项结点分解开,并分别连成一个带头结点的单链表,然后再将这两个新链表同时输出在屏幕上,并保留原链表的显示结果,以便对照求解结果。

6.求两个递增有序链表L1和L2中的公共元素,并以同样方式连接成链表L3。

(三)主要仪器设备PC机,Windows操作平台,Visual C++(四)实验分析顺序表操作:定义一个顺序表类,该类包括顺序表的存储空间、存储容量和长度,以及构造、插入、删除、遍历等操作的方法(五)源程序头文件文件名:linklist.h#include<iostream>using namespace std;struct node{int data;node *next;};class list{public:list();int length()const{return count; //求链表长度}~list();void create(); //链表构建,以0为结束标志void output(); //链表输出int get_element(const int i)const; //按序号取元素node *locate(const int x) const; //搜索对应元素int insert(const int i,const int x); //插入对应元素int delete_element(const int i); //删除对应元素node *get_head(){return head; //读取头指针}void insert2(const int x);friend void SplitList(list L1, list&L2, list &L3);friend void get_public(list L1, list L2, list &L3);private:int count;node *head;};list::list(){head=new node;head->next=NULL;count=0;}void list::create() //链表构建,以0为结束标志{int x;cout<<"请输入当前链表,以0为结束符。

线性表的链式存储结构实验报告

线性表的链式存储结构实验报告

实验一:线性表的链式存储结构【问题描述】某项比赛中,评委们给某参赛者的评分信息存储在一个带头结点的单向链表中,编写程序:(1)显示在评分中给出最高分和最低分的评委的有关信息(姓名、年龄、所给分数等)。

(2)在链表中删除一个最高分和一个最低分的结点。

(3)计算该参赛者去掉一个最高分和一个最低分后的平均成绩。

【基本要求】(1)建立一个评委打分的单向链表;(2)显示删除相关结点后的链表信息。

(3)显示要求的结果。

【实验步骤;】(1)运行PC中的Microsoft Visual C++ 6.0程序,(2)点击“文件”→“新建”→对话窗口中“文件”→“c++ Source File”→在“文件名”中输入“X1.cpp”→在“位置”中选择储存路径为“桌面”→“确定”,(3)输入程序代码,程序代码如下:head=create(PWRS);printf("所有评委打分信息如下:\n");print(head);//显示当前评委打分calc(head);//计算成绩printf("该选手去掉 1 最高分和 1 最低分后的有效评委成绩:\n");print(head);//显示去掉极限分后的评委打分}void input(NODE *s) #include <stdio.h>#include <stdlib.h>#include <malloc.h>#include <iostream.h>#include <conio.h>#define NULL 0#define PWRS 5 //定义评委人数struct pw //定义评委信息{ char name[6];float score;int age;};typedef struct pw PW;struct node //定义链表结点{struct pw data;struct node * next;};typedef struct node NODE;//自定义函数的声明NODE *create(int m); //创建单链表int calc(NODE *h); //计算、数据处理void print(NODE *h); //输出所有评委打分数据void input(NODE *s);//输入评委打分数据void output(NODE *s);//输出评委打分数据void main(){NODE *head;float ave=0;float sum=0;{printf("请输入评委的姓名: ");scanf("%S",&s->);printf("年龄: ");scanf("%d",&s->data.age);printf("打分: ");scanf("%f",&s->data.score);printf("\n");}void output(NODE *s){printf("评委姓名: %8s ,年龄: %d,打分: %2.2f\n",s->,s->data.age,s->data.score);}NODE *create(int m){NODE *head,*p,*q;int i;p=(NODE*)malloc(sizeof(NODE));head=p;q=p;p->next=NULL;for(i=1;i<=m;i++){p=(NODE*)malloc(sizeof(NODE));input(p);p->next=NULL;q->next=p;q=p;}return (head);}void print(NODE *h){ for(int i=1;((i<=PWRS)&&(h->next!=NULL));i++){h=h->next;output(h); }printf("\n");}int calc(NODE *h){NODE *q,*p,*pmin,*pmax;float sum=0;float ave=0;p=h->next; //指向首元结点pmin=pmax=p; //设置初始值sum+=p->data.score;p=p->next;for(;p!=NULL;p=p->next){if(p->data.score>pmax->data.score) pmax=p;if(p->data.score<pmin->data.score) pmin=p;sum+=p->data.score;}cout<<"给出最高分的评委姓名:"<<pmax-><<"年龄: "<<pmax->data.age<<"分值:"<<pmax->data.score<<endl;cout<<"给出最低分的评委姓名:"<<pmin-><<"年龄: "<<pmin->data.age<<"分值:"<<pmin->data.score<<endl;printf("\n");sum-=pmin->data.score;sum-=pmax->data.score;for (q=h,p=h->next;p!=NULL;q=p,p=p->next){if(p==pmin){q->next=p->next; p=q;}//删除最低分结点if(p==pmax) {q->next=p->next; p=q;}//删除最高分结点}ave=sum/(PWRS-2);cout<<"该选手的最后得分是:"<<ave<<endl;return 1;}实验结束。

实验五__线性表的链式表示和实现

实验五__线性表的链式表示和实现

浙江大学城市学院实验报告课程名称数据结构基础实验项目名称实验五线性表的链式表示和实现学生姓名专业班级学号实验成绩指导老师(签名)日期一.实验目的和要求1、了解线性表的链式存储结构,学会定义线性表的链式存储结构。

2、掌握单链表、循环单链表的一些基本操作实现函数。

二.实验内容1、设线性表采用带表头附加结点的单链表存储结构,请编写线性表抽象数据类型各基本操作的实现函数,并存放在头文件LinkList.h中(注:教材上为不带表头附加结点)。

同时建立一个验证操作实现的主函数文件test5.cpp,编译并调试程序,直到正确运行。

提示:⑴单向链表的存储结构可定义如下:struct LNode { // 定义单链表节点类型ElemType data; // 存放结点中的数据信息LNode *next; // 指示下一个结点地址的指针}⑵线性表基本操作可包括如下一些:①void InitList (LNode *&H) //初始化单链表②void ClearList(LNode *&H) //清除单链表③int LengthList (LNode *H) //求单链表长度④bool EmptyList (LNode *H) //判断单链表是否为空表⑤ElemType GetList (LNode *H, int pos)//取单链表第pos 位置上的元素⑥void TraverseList(LNode *H) //遍历单链表⑦bool InsertList ( LNode *&H, ElemType item, int pos)//向单链表插入一个元素⑧bool DeleteList ( LNode *&H, ElemType &item, int pos)//从单链表中删除一个元素⑶带表头附加结点的单链表初始化操作的实现可参考如下:void InitList(LNode *&H){ //构造一个空的线性链表H,即为链表设置一个头结点,//头结点的data数据域不赋任何值,头结点的指针域next则为空H=(LNode *)malloc(sizeof(LNode)); // 产生头结点Hif (!H) exit(0); // 存储分配失败,退出系统H->next=NULL; // 指针域为空}2、选做部分:编写一个函数void MergeList(LNode *&La, LNode *&Lb, LNode *&Lc),实现将两个有序单链表La和Lb合并成一个新的有序单链表Lc,同时销毁原有单链表La和Lb。

数据结构(二):线性表的链式存储结构

数据结构(二):线性表的链式存储结构

数据结构(⼆):线性表的链式存储结构1、为什么要使⽤链式存储结构?因为我们前⾯讲的线性表的顺序存储结构,他是有缺点的。

最⼤的缺点就是插⼊和删除时需要移动⼤量元素,这显然就需要耗费时间。

要解决这个问题,我们就需要分析⼀下为什么当插⼊和删除时,就要移动⼤量元素,因为相邻两元素的存储位置也具有相邻关系,它们在内存中的位置也是挨着的,中间没有空隙,当然就⽆法快速介⼊,⽽删除之后。

当中就会留出空隙,⾃然就需要弥补。

问题就出在这⾥。

为了解决这个问题,⾃然⽽然的就出现了链式存储结构。

2、线性表链式存储结构的特点:线性表的链式存储结构不考虑元素的存储位置,⽽是⽤⼀组任意的存储单元存储线性表的数据元素,这组存储单元可以是连续的,也可以是不连续的,这就意味着,这些数据元素可以存在内存未被占⽤的任意位置。

顺序存储结构:只需要存储数据元素信息。

链式存储结构:除了要存储数据元素信息之外,还要存储⼀个指⽰其直接后继元素的存储地址。

3、关键词:数据域:存储数据元素信息的域。

指针域:存储直接后继位置的域。

指针或链:指针域中存储的信息。

结点(Node):指针域+数据域组成数据元素的存储映像。

头指针:链表中第⼀个结点的存储位置。

头节点:在单链表的第⼀个结点前附设⼀个结点,成为头结点。

头结点的数据域不可以存储任何信息,可以存储线性表的长度等附加信息,头结点的指针域存储指向第⼀个结点的指针。

4、单链表:定义:n个结点链成⼀个链表,即为线性表的链式存储结构,因此此链表的每个结点中只包含⼀个指针域,所以叫做单链表。

PS:线性链表的最后⼀个结点指针为“空”,通常⽤NILL或“^”符号表⽰。

头节点:在单链表的第⼀个结点前附设⼀个结点,成为头结点。

头结点的数据域不可以存储任何信息,可以存储线性表的长度等附加信息,头结点的指针域存储指向第⼀个结点的指针。

5、头结点与头指针的异同(1)头结点头结点是为了操作的统⼀和⽅便⽽设⽴的,放在第⼀个元素的结点之前,其数据域⼀般⽆意义(也可存放链表的长度)有了头结点,对第⼀元素结点前插⼊和删除第⼀结点,其操作就统⼀了头结点不⼀定是链表的必要素(2)头指针头指针式指向第⼀个结点的指针,若链表有头结点,则是指向头结点的指针。

线性表的链式存储结构

线性表的链式存储结构
1
线性表的链式存储结构
线性表的链式存储结构是指用一组任意的存储单 元(可以连续,也可以不连续)存储线性表中的数据 元素。为了反映数据元素之间的逻辑关系,对于每个 数据元素不仅要表示它的具体内容,还要附加一个表 示它的直接后继元素存储位置的信息。假设有一个线 性表(a,b,c,d),可用下图2所示的形式存储:
27
p
s
图 2-9
28
完整的算法:
int DuListInsert(DuLinkList *L,int i,EntryType e)
if (L.head->next==NULL) return TRUE; else return FALSE; }
12
6. 通过e返回链表L中第i个数据元素的内容 void GetElem(LinkList L,int i,EntryType *e) {
LNode *p; int j; //j为计数器,记载所经过的结点数目 if (i<1||i>ListLength(L)) exit ERROR; //检测i值的合理性 for (p=L.head,j=0; j!=i;p=p->next,j++); //找到第i个结点 *e=p->data; //将第i个结点的内容赋给e指针所指向的存储单元中 }
10
4. 求链表L的长度
int ListLength(LinkList L)
{
LNode *p;
int len;
for(p=L.head, len=0;p->next==NULL; p=p->next,len++);
return(len);
循环条件表达式 重复执行的语句

数据结构线性表实验报告

数据结构线性表实验报告

数据结构线性表实验报告数据结构线性表实验报告实验目的:本次实验主要是为了学习和掌握线性表的基本操作和实现方式。

通过实验,我们可以加深对线性表的理解,并能够熟悉线性表的基本操作。

实验设备与环境:本次实验所需的设备包括计算机和编程环境。

我们选择使用C语言来实现线性表的操作,并在Visual Studio Code编程软件中进行编写和调试。

实验内容:1.线性表的定义和基本操作1.1 线性表的定义:线性表是一种有序的数据结构,其中的元素按照一定的顺序存储,可以插入、删除和访问元素。

1.2 线性表的基本操作:1.2.1 初始化线性表:创建一个空的线性表。

1.2.2 判断线性表是否为空:判断线性表是否不含有任何元素。

1.2.3 获取线性表的长度:返回线性表中元素的个数。

1.2.4 在线性表的指定位置插入元素:在线性表的第i个位置插入元素x,原第i个及其之后的元素依次后移。

1.2.5 删除线性表中指定位置的元素:删除线性表中第i个位置的元素,原第i+1个及其之后的元素依次前移。

1.2.6 获取线性表中指定位置的元素:返回线性表中第i个位置的元素的值。

1.2.7 清空线性表:将线性表中的元素全部删除,使其变为空表。

2.线性表的顺序存储结构实现2.1 线性表的顺序存储结构:使用数组来实现线性表的存储方式。

2.2 线性表的顺序存储结构的基本操作:2.2.1 初始化线性表:创建一个指定长度的数组,并将数组中的每个元素初始化为空值。

2.2.2 判断线性表是否为空:判断线性表的长度是否为0。

2.2.3 获取线性表的长度:返回线性表数组的长度。

2.2.4 在线性表的指定位置插入元素:将要插入的元素放入指定位置,并将原位置及其之后的元素依次后移。

2.2.5 删除线性表中指定位置的元素:将指定位置的元素删除,并将原位置之后的元素依次前移。

2.2.6 获取线性表中指定位置的元素:返回指定位置的元素的值。

2.2.7 清空线性表:将线性表数组中的每个元素赋空值。

Python数据结构之链表详解

Python数据结构之链表详解

Python数据结构之链表详解⽬录0.学习⽬标1.线性表的链式存储结构1.1指针相关概念1.2指针结构1.3结点1.4结点类2.单链表的实现2.1单链表的初始化2.2获取单链表长度2.3读取指定位置元素2.4查找指定元素2.5在指定位置插⼊新元素2.6删除指定位置元素2.7其它⼀些有⽤的操作3.单链表应⽤3.1单链表应⽤⽰例3.2利⽤单链表基本操作实现复杂操作0. 学习⽬标在顺序存储⽅式中,根据数据元素的序号就可随机存取表中任何⼀个元素,但同时在插⼊和删除运算需要移动⼤量的元素,造成算法效率较低。

解决此缺陷的⼀个办法是:对线性表采⽤链式存储⽅式。

在链表存储⽅式中,在逻辑上相邻的数据元素在存储空间中不⼀定相邻,数据元素的逻辑次序是通过链表中指针链接实现的。

本节将介绍链式存储结构的特点以及各种基本操作的实现。

通过本节学习,应掌握以下内容:线性表的链式存储及实现⽅法链表基本操作的实现利⽤链表的基本操作实现复杂算法1. 线性表的链式存储结构链式存储结构⽤于存放线性表中的元素的存储单元在内存中可以是连续的,也可以是零散分布的。

由于线性表中各元素间存在着线性关系,为了表⽰元素间的这种线性关系,链式存储结构中不仅要存储线性表中的元素,还要存储表⽰元素之间逻辑关系的信息。

所以⽤链式存储结构表⽰线性表中的⼀个元素时⾄少需要两部分信息,除了存储每⼀个数据元素值以外,还需存储其后继或前驱元素所在内存的地址。

采⽤链式存储结构表⽰的线性表简称链表 (Linked List)。

1.1 指针相关概念在继续进⾏讲解前,我们⾸先来了解指针的相关概念,以便更好的理解链表。

假设我们需要处理⼀个⼤型数据⽂件,这⼀⽂件已经被读取保持在内存中,当我们在函数间传递⽂件时,并不会直接传递整个⽂件,我们需要创建变量来保存⽂件在内存中的位置,这些变量很⼩,很容易在不同的函数之间传递。

使⽤指针的好处之⼀就是可以⽤⼀个简单的内存地址就可以指向⼀个更⼤的内存地址段。

数据结构论文--关于线性表的链式结构

数据结构论文--关于线性表的链式结构

数据结构课程小论文题目:线性表的链式表示学号:090510126姓名:叶妍莉班级:090510学院:经济管理学院2011年12月8日一.引言: --------------------------------------------------------------------- 2 - 二.链表的概述 --------------------------------------------------------------- 2 -1.线性链表里的一些概念: ------------------------------------------ 3 -2.链表的有关概述: --------------------------------------------------- 3 -3.链表的存储方法: --------------------------------------------------- 4 -4.链表的分类: --------------------------------------------------------- 4 - 三.线性表的链式实现 ------------------------------------------------------ 4 -1.“插入”和“删除”操作的实现: ------------------------------ 5 -2.“合并链表”操作的实现: --------------------------------------- 6 - 四.链表的优点与缺点 ------------------------------------------------------ 6 - 五.总结 ------------------------------------------------------------------------ 7 -线性表的链式表示姓名:叶妍莉班级:090510 学号:090510126摘要:线性表对于学过数据结构的人来说都是再熟悉不过了,它是数据结构的一个基本内容,是最常用且最简单的一种数据结构。

数据结构教学课件:线性表链表

数据结构教学课件:线性表链表

头结点好处
a、由于开始结点的位置被存放在头结点的指针域中, 所以在链表的第一个位置上的操作(如插入、删 除等)就和在表的其它位置上的操作一致,无需 进行特殊处理; b、无论链表是否为空,其头指针是指向头结点的非 空指针(空表中头结点的指针域为空),头指针 始终不为空,因此空表和非空表的处理也就统一 了
}
带头结点的单链表 H
# a1 a2

an NULL
头结点
H
# NULL
头结点
linklist * initList() linklist * initList() { { linknode* pHead = (linknode*) linknode* pHead = 0; // pHead、 malloc( sizeof(linknode)); pRail分别为头、尾指针 linknode* pRail = pHead; linknode* pRail = pHead; // pHead、 char c; pRail分别为头、尾指针 char c; while( (c = getchar()) != ‘\n’) { linknode* pNode = while( (c = getchar()) != ‘\n’) { (linknode*)malloc( sizeof(linknod linknode* pNode = e )); (linknode*)malloc( sizeof( linknode scanf( "%c", &pNode->data ); )); scanf( "%c", &pNode->data ); pNode->next = 0; //新结点指 针域为空 pNode->next = 0; //新结点指针 pRail->next = pNode; 域为空 pRail = node; if( !pHead) pHead = pNode; } else pRail->next = pNode; return pHead; pRail = node; } } return pHead; }

线性表的链式存储结构实验报告

线性表的链式存储结构实验报告

线性表的链式存储结构实验报告文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)实验报告课程名称:数据结构与算法分析实验名称:链表的实现与应用实验日期:班级:数媒1401 姓名:范业嘉学号 08一、实验目的掌握线性表的链式存储结构设计与基本操作的实现。

二、实验内容与要求⑴定义线性表的链式存储表示;⑵基于所设计的存储结构实现线性表的基本操作;⑶编写一个主程序对所实现的线性表进行测试;⑷线性表的应用:①设线性表L1和L2分别代表集合A和B,试设计算法求A和B的并集C,并用线性表L3代表集合C;②(选做)设线性表L1和L2中的数据元素为整数,且均已按值非递减有序排列,试设计算法对L1和L2进行合并,用线性表L3保存合并结果,要求L3中的数据元素也按值非递减有序排列。

⑸设计一个一元多项式计算器,要求能够:①输入并建立多项式;②输出多项式;③执行两个多项式相加;④执行两个多项式相减;⑤(选做)执行两个多项式相乘。

三、数据结构设计1.按所用指针的类型、个数、方法等的不同,又可分为:线性链表(单链表)静态链表循环链表双向链表双向循环链表2.用一组任意的存储单元存储线性表中数据元素,用指针来表示数据元素间的逻辑关系。

四、算法设计1.定义一个链表void creatlist(Linklist &L,int n){int i;Linklist p,s;L=(Linklist)malloc(sizeof(Lnode));p=L;L->next=NULL;for(i=0;i<n;i++){s=(Linklist)malloc(sizeof(Lnode));scanf("%d",&s->data);s->next=NULL;p->next=s; p=s;}}2.(1)两个链表的合并void Mergelist(Linklist &La,Linklist &Lb,Linklist &Lc) {Linklist pa,pb,pc;pa=La->next;pb=Lb->next;Lc=pc=La;while(pa&&pb){if(pa->data<=pb->data){pc->next=pa;pc=pa;pa=pa->next;}else {pc->next=pb;pc=pb;pb=pb->next;} }pc->next=papa:pb;free(Lb);}(2)两个链表的并集Linklist unionlist(Linklist &La,Linklist &Lb){Linklist p1,p2,head,q,s;int flag;head=q=(Linklist)malloc(sizeof(Lnode));p1=La->next;while(p1){flag=0;p2=Lb->next;while(p2){if(p1->data==p2->data){flag=1;break;}p2=p2->next;}if(flag==0){s=(Linklist)malloc(sizeof(Lnode));s->data=p1->data;q->next=s;q=s;}p1=p1->next;}q->next=Lb->next;return head;}3.(1)一元多项式的加法List addpoly(List pa,List pb)3.六、心得体会(包括对于本次实验的小结,实验过程中碰到的问题等)1.首先书上给的链表输入是倒序的,写的时候想都没想就抄上去了,结果运行时发现问题,可是上网百度依然没有把问题解决,导致最后输出链表倒序的,并且链表的合并并集依旧是倒序的。

数据结构实验报告三线性表的链式存储

数据结构实验报告三线性表的链式存储

实验报告三线性表的链式存储班级: 2010XXX 姓名: HoogLe 学号: 2010XXXX 专业: XXXX*****************(1)实验目的:(2)掌握单链表的基本操作的实现方法。

(3)掌握循环单链表的基本操作实现。

(4)掌握两有序链表的归并操作算法。

实验内容: (请采用模板类及模板函数实现)1.线性表链式存储结构及基本操作算法实现[实现提示] (同时可参见教材p64-p73页的ADT描述及算法实现及ppt)函数、类名称等可自定义, 部分变量请加上学号后3位。

也可自行对类中所定义的操作进行扩展。

所加载的库函数或常量定义:#include <iostream>using namespace std;(1)单链表存储结构类的定义:template<class T>class LinkList{public:LinkList(); //初始化带头结点空单链表构造函数实现LinkList(T a[],int n);//利用数组初始化带头结点的单链表构造函数实现~LinkList();int length(); //求单链表表长算法T get(int i); //获得单链表中第i个结点的值算法int locate(T temp);void insert(int i,T temp); //在带头结点单链表的第i个位置前插入元素e算法T Delete(int i); //在带头结点单链表中删除第i个元素算法void print(); //遍历单链表元素算法bool isEmpty(); //判单链表表空算法void deleleAll(); //删除链表中所有结点算法(这里不是析构函数, 但功能相同)private:Node<T> *head;};(2)初始化带头结点空单链表构造函数实现输入:无前置条件: 无动作: 初始化一个带头结点的空链表输出:无后置条件: 头指针指向头结点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

经济学院实验报告学院:专业: 计算机班级:学号:姓名:信息工程学院计算机实验中心制实验题目:线性表的链式存储结构和实现实验室:机房4 设备编号: 09 完成日期: 2012.04.09一、实验容1.会定义线性表的链式存储结构。

2.熟悉对单链表的一些基本操作(建表、插入、删除等)和具体的函数定义。

二、实验目的掌握链式存储结构的特点,掌握并实现单链表的常用的基本算法。

三、实验的容及完成情况1. 需求分析(1)线性表的抽象数据类型ADT的描述及实现。

本实验实现使用Visual c++6.0实现线性表链式存储结构的表示及操作。

具体实现要求:(2)完成对线性表链式存储结构的表示和实现。

(3)实现对单链表的创建。

(4)实现对单链表的插入和删除操作。

2.概要设计抽象数据类型线性表的定义:ADT LIST{抽象对象:D={ai|ai<-Elemset,i=1,2,…,n,n>=0}数据关系:R1={<ai-1,ai<-D,i=2,…,n}基本操作:InitList(&L)操作结果:构造一个空的线性表L。

DestoryList(&L)初始条件:线性表L已存在。

操作结果:销毁线性表LCLearList(&L)初始条件:线性表L已存在。

操作结果:将L重置为空表。

ListEmpty(L)初始条件:线性表L已存在。

操作结果:若L为空表,则返回TRUE,否则返回FALSE。

ListLength(L)初始条件:线性表L已存在。

操作结果:返回L中数据元素个数。

GetElem(L,I,&e)初始条件:线性表L已存在,1<=i<=ListLength(L)。

操作结果:用e返回L中第i个数据元素的值。

LocateElem(L,e,compare())初始条件:线性表L已存在,compare()是数据元素判定的函数。

操作结果:返回L中第1个与e满足关系compare()的数据元素的位序。

若这样的数据元素不存在,则返回值为0。

PriorElem(L,cur_e,&pre_e)初始条件:线性表L已存在。

操作结果:若cur_e是L的数据元素,且不是第一个,则用pre_e返回它的前驱,否则操作失败,pre_e无定义。

NextElem(L,cur_e,&next_e)初始条件:线性表L已存在。

操作结果:若cur_e是L的数据元素,且不是最后一个,则用pre_e返回它的后继,否则操作失败,pre_e无定义。

ListInsert(&L,I,e)初始条件:线性表L已存在,1<=i<=ListLength(L)+1。

操作结果:在L中第i个位置之前插入新的数据元素e,L的长度加1。

ListDelete(&L,I,&e)初始条件:线性表L已存在且非空,1<=i<=ListLength(L)。

操作结果:删除L中第i个数据元素,并用e返回其值,L的长度减1。

ListTraverse(L,visit())初始条件:线性表L已存在。

操作结果:依次对L的每个数据元素调用函数visit()。

一旦visit()失败,则操作失败。

}ADT List3.详细设计(1)抽象数据类型线性表链式存储结构的表示和实现c1.h:#include<stdio.h>#include<stdlib.h>#define TRUE 1#define FALSE 0#define OK 1#define ERROR 0#define INFEASIBLE -1#define OVERFLOW -2typedef int Status;c2.h:typedef int ElemType;typedef struct LNode{ElemType data;struct LNode *next;}LNode,*Linklist; ;b02-1.h:int Createlist_L(Linklist &L,int n){Linklist p;int i;L=(Linklist)malloc(sizeof(LNode));L->next=NULL;for(i=n;i>0;--i){p=(Linklist)malloc(sizeof(LNode));scanf("%d",&p->data);p->next=L->next;L->next=p;}return OK;}Status GetElem_L(Linklist L,int i,ElemType &e){Linklist p;int j;p=L->next;j=1;while(p&&j<i){p=p->next;++j;}if(!p||j>i)return ERROR;e=p->data;return OK;}Status ListInsert_L(Linklist &L,int i,ElemType e) {Linklist p,s;int j;p=L;j=0;while(p&&j<i-1){p=p->next;++j;}if(!p||j>i-1)return ERROR;s=(Linklist)malloc(sizeof(LNode));s->data=e;s->next=p->next;p->next=s;return OK;}Status ListDelete_L(Linklist &L,int i,ElemType &e) {Linklist p,q;int j;p=L;j=0;while(p->next&&j<i-1){p=p->next;++j;}if(!(p->next)||j>i-1)return ERROR;q=p->next;p->next=q->next;e=q->data;free(q);return OK;}(2)主函数的伪码算法#include "c1.h"#include "c2.h"#include "b02-1.h"void main(){Linklist a;ElemType b,c;Createlist_L(a,10);ListInsert_L(a,3,50);ListInsert_L(a,5,65);ListDelete_L(a,7,c);GetElem_L(a,2,b);printf("%d\n",b);printf("%d\n",c);}4. 调试分析无定义,字母错误,标点符号不对5.用户使用说明打开可执行程序,即Visual c++6.0环境下,参照用户选择界面提示即可使用本程序6.测试结果程序具体执行如下:7.附录源程序如下:c1.h:#include<stdio.h>#include<stdlib.h>#define TRUE 1#define FALSE 0#define OK 1#define ERROR 0#define INFEASIBLE -1#define OVERFLOW -2typedef int Status;c2.h:typedef int ElemType;typedef struct LNode{ElemType data;struct LNode *next;}LNode,*Linklist; ;b02-1.h:int Createlist_L(Linklist &L,int n){Linklist p;int i;L=(Linklist)malloc(sizeof(LNode));L->next=NULL;for(i=n;i>0;--i){p=(Linklist)malloc(sizeof(LNode));scanf("%d",&p->data);p->next=L->next;L->next=p;}return OK;}Status GetElem_L(Linklist L,int i,ElemType &e) {Linklist p;int j;p=L->next;j=1;while(p&&j<i){p=p->next;++j;}if(!p||j>i)return ERROR;e=p->data;return OK;}Status ListInsert_L(Linklist &L,int i,ElemType e) {Linklist p,s;int j;p=L;j=0;while(p&&j<i-1){p=p->next;++j;}if(!p||j>i-1)return ERROR;s=(Linklist)malloc(sizeof(LNode));s->data=e;s->next=p->next;p->next=s;return OK;}Status ListDelete_L(Linklist &L,int i,ElemType &e) {Linklist p,q;int j;p=L;j=0;while(p->next&&j<i-1){p=p->next;++j;}if(!(p->next)||j>i-1)return ERROR;q=p->next;p->next=q->next;e=q->data;free(q);return OK;}main.cpp:#include "c1.h"#include "c2.h"#include "b02-1.h"void main(){Linklist a;ElemType b,c;Createlist_L(a,10);ListInsert_L(a,3,50);ListInsert_L(a,5,65);ListDelete_L(a,7,c);GetElem_L(a,2,b);printf("%d\n",b);printf("%d\n",c);}四、实验总结熟悉对单链表的一些基本操作(建表、插入、删除等)和具体的函数定义。

相关文档
最新文档