自考-概率论与数理统计课件(经管类)04183

合集下载

04183概率论与数理统计(经管类)基础知识

04183概率论与数理统计(经管类)基础知识

D(aX b) a2 D( X )
,
D(Y ) [ x j E(Y )]2 p j
j
D( X ) [ x E( X )]2 f X ( x)dx


协方差与 相关系数
3、二维随机变量关系特征 协方差 cov(x,y) 相关系数 cov(X,Y)=E((X-E(X))(Y-E(Y)))=E(XY)-E(X)E(Y)

p j , i 1,2,

5、分布函数 F(x,y)的基本性质: ⑴ 0 F ( x, y) 1; 其中 x=h(y)为 y=g(x)的反函数 ⑵F(x,y)分别对 x 和 y 是非减的,即当 x2>x1,F(x2,y)≥F(x1,y);当 y2>y1,有 F(x,y2) ≥F(x,y1); ⑶F(x,y)分别对 x 和 y 右连续,即 F ( x, y) F ( x 0, y), F ( x, y) F ( x, y 0); ⑷ F (,) F (, y) F ( x,) 0, F (,) 1. ⑸当 x
i 1 i i
k
n
f ( x) 0 ;




f ( x)dx 1。
xk x
③ P(a ;
X b) F (b) F (a) =
F ( x)
Pn(k ) Cn p k q nk
二、随机变量及其分布
④对于离散型随机变量,
F ( x)
p
⑤对于连续型随机变量,
2 2 N (, 2 ) ,则①aX+b~N(aµ+b,a σ ), ②(X-µ)/σ~N(0,1)
X X
b(n, p) P( )

2022年自考04183概率论与数理统计(经管类)核心考点资料

2022年自考04183概率论与数理统计(经管类)核心考点资料

(2) =φ,φ=Ω.
(3)A-B=
=A-AB.
在进行事件运算时,经常要用到下述运算律,设 A,B,C 为事件,则有: 交换律:A∪B=B∪A,A∩B=B∩A. 结合律:A∪(B∪C)=(A∪B) ∪C,
A∩(B∩C)=(A∩B)∩C. 分配律:A∪(B∩C)=(A∪B)∩(A∪C),
A∩(B∪C)=(A∩B)∪(A∩C). 对偶律:
, 其中 0<p<1,p+q=1,则称 X 服从参数为 n,p 的二项分布,简记为 X~B(n,p). 泊松分布: 设随机变量 X 的可能取值为 0,1,2,…,n,…,而 X 的分布律为
其中λ>0,则称 X 服从参数为λ的泊松分布,简记为 X~P(λ). 泊松( Poisson)定理设λ>0 是常数,n 是任意正整数,且 npn=λ,则对于任意取定的非负整 数 k,有
当 g(x1),g(x2),…,g(xk),…有相等的情况时,应把使 g(xk)相等的那些 xi 所对应的概率相 加,作为 Y 取 g(xk)时的概率,这样才能得到 Y 的分布律. 设 X 为连续型随机变量,其概率密度为 fx(x).设 g(x)是一严格单调的可导函数,其值域为[α, β]且 g’(x)≠0.记 x=h(y)为 y=g(x)的反函数,则 Y=g(X)的概率密度
.
即当 n 很大很小时,有近似公式
,其中λ=np.
二、随机变量的分布函数 设 X 为随机变量,称函数
F(x)=P{X≤x},x∈(-∞,+∞) 为 X 的分布函数. 当 X 为离散型随机变量时,设 X 的分布律为
pk=P{X=k},k=0,1,2,…
由于
,由概率性质知,



其中求和是对所有满足 xk≤x 时,xk 相应的概率 pk 求和. 分布函数有以下基本性质:

自考-概率论与数理统计课件(经管类)04183

自考-概率论与数理统计课件(经管类)04183

第七章 参数估计(重点)
第八章 假设检验(重点) 第九章 回归分析
第一章 随机事件与概率
• §1.1 • §1.2 • §1.3 随机事件 概率 条件概率
• §1.4
事件的独立性
§1.1 随机事件
1.1.1 随机现象
现象按照必然性分为两类: 一类是确定性现象; 一类是随机现象。 在一定条件下,可能出现这样的结果,也可能出现那 样的结果,我们预先无法断言,这类现象成为随机现象。
r 3 1 P(A)= n 6 2
例1-8 抛一枚均匀硬币3次,设事件A为“恰有1次出现
面”, B为“恰有2次出现正面”,C为“至少一次出现正面”,试 求 解1:试出现正面用H表示,出现反面用T表示,则样本空间 P(A),P(B),P(C).
={HHH,HHT,HTH,THH,HTT,TTH,THT,TTT},
r A中样本点数 P ( A) n 中样本点总数 也即 r A所包含的基本事件数 P ( A) . n 基本事件总数
例1-7 掷一枚质地均匀的骰子,求出现奇数点的概率。
解: 显然样本空间Ω={1,2,3,4,5,6}, 样本点总数n=6, 事件“出现奇数点”用A表示,则A={1,3,5},所含样 本 点数r=3,从而
——
(2)ABC
(3)ABC
(4) ABC
(5)ABC ABC ABC
例1-5 某射手向一目标射击3次,Ai表示“第i次射击命中目标”,
用 i=1,2,3.Bj表示“三次射击恰命中目标j次”,j=0,1,2,3.试 A1,A2,A3的运算表示Bj,j=0,1,2,3.

B0 A1 A2 A3;

P(A)=r∕n= 9*8∕92=8∕9

自考04183概率论与数理统计(经管类)总结2-数理统计部分

自考04183概率论与数理统计(经管类)总结2-数理统计部分

高等教育自学考试辅导《概率论与数理统计(经管类)》第二部分数理统计部分专题一统计量及抽样的分布I.考点分析近几年试题的考点分布和分数分布II.内容总结一、总体与样本1.总体:所考察对象的全体称为总体;组成总体的每个基本元素称为个体。

2.样本:从总体中随机抽取n个个体x1,x2…,x n称为总体的一个样本,个数n称为样本容量。

3.简单随机样本如果总体X的样本x1,x2…,x n满足:(1)x1与X有相同分布,i=1,2,…,n;(2)x1,x2…,x n相互独立,则称该样本为简单随机样本,简称样本。

得到简单随机样本的方法称为简单随机抽样方法。

4.样本的分布(1)联合分布函数:设总体X的分布函数为F(x),x1,x2…,x n为该总体的一个样本,则联合分布函数为二、统计量及其分布1.统计量、抽样分布:设x1,x2…,x n为取自某总体的样本,若样本函数T=T(x1,x2…,x n)不含任何未知参数,则称T为统计量;统计量的分布称为抽样分布。

2.样本的数字特征及其抽样分布:设x1,x2…,x n为取自某总体X的样本,(2)样本均值的性质:①若称样本的数据与样本均值的差为偏差,则样本偏差之和为零,即②偏差平方和最小,即对任意常数C,函数时取得最小值. (5)样本矩(7)正态分布的抽样分布A.应用于小样本的三种统计量的分布的为自由度为n的X2分布的α分位点.求法:反查X 2分布表.III.典型例题[答疑编号918020101]答案:D[答疑编号918020102]答案:[答疑编号918020103]答案:B[答疑编号918020104]答案:1[答疑编号918020105]答案:B[答疑编号918020106]故填20.[答疑编号918020107]解析:[答疑编号918020108]答案:解析:本题考核正态分布的叠加原理和x2-分布的概念。

根据课本P82,例题3-28的结果,若X~N(0,1),Y~N(0,1),且X与Y相互独立,则X+Y~N(0+0,1+1)=N(0,2)。

自考概率论与数理统计(经管类)教学大纲

自考概率论与数理统计(经管类)教学大纲

自考《概率论与数理统计》(经管类)课程教学大纲课程代码:04183 总学时:33学时一、课程性质与目标概率论与数理统计是高等院校经济和管理类学生必修的一门基础理论课。

概率论与数理统计是研究不确定性现象的数量规律性的一门学科,是对随机现象进行定量分析的重要工具,它具有广泛的实用性和应用性。

通过本课程的学习,使学生比较系统地了解概率论和数理统计等方面的基本知识,掌握概率论和数理统计的基本概念,了解它的基本理论和基本方法,从而使学生初步掌握处理随机现象的基本思想和方法,培养学生独特的概率论与数理统计思维模式和分析解决实际问题的能力,同时使学生了解概率论与数理统计在经济方面的简单应用,并为学生学习后继专业课程奠定必要的数学基础。

二、课程基本要求本课程分两个部分:概率论和数理统计。

概率论部分包括随机事件与概率、随机变量与概率分布、多维随机变量与概率分布、随机变量的数字特征、大数定律与中心极限定理初步等内容。

数理统计部分包括统计量与抽样分布、参数估计、假设检验以及回归分析等内容。

三.教学内容第一章随机事件的概率【教学目的与要求】1、理解事件,概率等概念2、了解事件的基本运算规则3、掌握概率基本运算,条件概率及独立性【教学重点和难点】重点:概率运算,条件概率难点:全概率公式,贝叶斯公式【教学学时】7学时【教学内容】第一节随机事件1、随机现象2、随机实验和样本空间3、随机事件的概念4、随机事件的关系和运算第二节概率1、频率与概率2、古典概率3、概率的定义与性质第三节条件概率1、条件概率与乘法公式2、全概率公式与贝叶斯公式第四节事件的独立性1、事件的独立性2、n重贝努力实验第二章随机事件及其概率分布【教学目的与要求】1、理解随机变量的划分2、了解离散型随机变量,连续型随机变量3、掌握离散型随机变量,连续型随机变量及其分布【教学重点和难点】重点:离散型随机变量,连续型随机变量及其分布难点:离散型随机变量,连续型随机变量及其分布【教学学时】6学时【教学内容】第一节离散型随机变量1、随机变量的概念2、离散型随机变量及其分布律3、0-1分布与二项分布4、泊松分布第二节随机变量的分布函数1、分布函数的概念2、分布函数的性质第三节连续型随机变量及其概率密度1、连续型随机变量及其概率密度2、均匀分布与指数分布3、正态分布第四节随机函数的概率分布1、离散型随机变量函数的概率分布2、连续型随机变量函数的概率分布第三章多维随机变量及其概率分布【教学目的与要求】1、理解二维随机变量的概念2、了解边缘分布,条件分布律3、掌握边缘分布与条件分布的确定【教学重点和难点】重点:边缘分布,条件分布的计算难点:两个随机变量的函数的分布【教学学时】3学时【教学内容】第一节多维随机变量的概念1、二维随机变量及其分布函数2、二维离散型随机变量3、二维连续型随机变量的概率密度和边缘概率密度第二节随机变量的独立性1、两个随机变量的独立性2、二维离散型随机变量的独立性3、二维连续型随机变量的独立性4、n维随机变量第三节两个随机变量的函数的分布1、离散型随机变量的函数的分布2、两个独立连续型随机变量之和的概率分布第四章随机变量的数字特征【教学目的与要求】1、理解各种数字特征的概念2、了解期望与方差的本质意义3、掌握期望与方差的计算【教学重点和难点】重点:期望,方差难点:协方差,相关系数【教学学时】6学时【教学内容】第一节随机变量的期望1、离散型随机变量的期望2、连续型随机变量的期望3、二维随机变量函数的期望4、期望的性质第二节方差1、方差的概念2、常见随机变量的方差3、方差的性质第三节协方差与相关系数1、协方差2、相关系数3、矩、协方差矩阵第五章大数定律及中心极限定理【教学目的与要求】1、理解大数定律相关内容2、了解中心极限定理3、掌握独立同分布的中心极限定理【教学重点和难点】重点:中心极限定理难点:中心极限定理【教学学时】2学时【教学内容】第一节切比雪夫不等式第二节大数定律1、贝努力大数定律2、独立同分布随机变量序列的切比雪夫大数定律第三节中心极限定理1、独立同分布序列的中心极限定理2、棣莫弗-拉普拉斯中心极限定理第六章统计量及其抽样分布【教学目的与要求】1、理解统计抽样的概念2、了解统计推断的资料收集,整理3、掌握统计推断的基本方法【教学重点和难点】重点:样本分布函数难点:正态分布【教学学时】2学时【教学内容】第一节引言第二节总体与样本1、总体与个体2、样本3、样本数据的整理与显示第三节统计量及其分布1、统计量与抽样分布2、经验分布函数3、样本均值及其抽样分布4、样本方差与样本标准差5、样本矩及其函数6、极大顺序统计量和极小顺序统计量7、正态总体的抽样分布第七章参数估计【教学目的与要求】1、理解参数估计的基本方法2、了解点估计与区间估计3、掌握点估计与正态总体参数的区间估计【教学重点和难点】重点:点估计,区间估计难点:正态总体参数的区间估计【教学学时】3学时【教学内容】第一节点估计的几种方法1、替换原理和矩法估计2、极大似然估计第二节点估计的评价标准1、相合性2、无偏性3、有效性第三节参数的区间估计1、置信区间概念2、单个正态总体参数的置信区间3、两个正态总体下的置信区间4、非正态总体参数的区间估计第八章假设检验【教学目的与要求】1、理解假设检验的基本概念2、了解假设检验的基本方法3、掌握【教学重点和难点】重点:正态总体均值,方差的假设检验难点:正态总体均值,方差的假设检验【教学学时】3学时【教学内容】第一节假设检验的基本思想和概念1、基本思想2、统计假设的概念3、两类错误4、假设检验的基本步骤第二节总体均值的假设检验1、u检验2、T检验3、大样本情况总体均值检验第三节正态总体方差的检验1、χ2检验2、F检验第四节单边检验第九章回归分析【教学目的与要求】1、理解回归分析的基本思路2、了解线性回归模型的参数估计3、掌握一元线性回归分析【教学重点和难点】重点:一元线性回归分析难点:线性回归的显著性检验【教学学时】1学时【教学内容】第一节回归直线方程的建立第二节回归方程的显著性检验第三节预测与控制。

自考4183概率论与数理统计(经管系)大纲

自考4183概率论与数理统计(经管系)大纲

概率论与数理统计(经管系)自考大纲代码4183第一章随机事件与概率(一)考核的知识点1.随机事件的关系及其运算2.概率的定义与性质3.古典概型4.条件概率、乘法公式、全概率公式、贝叶斯公式5.事件的独立性、贝努利概型(二)自学要求本章总的要求是:掌握随机事件之间的关系及其运算;理解概率的定义,掌握概率的基本性质,会用这些性质进行概率的基本计算;理解古典概型的定义,会计算简单的古典概型问题;理解条件概率的概念,会用乘法公式、全概率公式和贝叶斯公式进行概率计算;理解事件独立性的概念,会用事件独立性进行概率计算.重点:随机事件的关系与运算,概率的概念、性质;条件概率,事件独立性的概念,乘法公式、全概率公式,贝叶斯公式。

难点:古典概型的概率计算,全概率公式,贝叶斯公式,事件独立性的概念.(三)考核要求1随机事件的关系与运算1.1随机事件的概念及表示,要求达到“识记”层次1.2事件的包含与相等、和事件、积事件、互不相容、对立事件的概念1.3和事件、积事件、对立事件的基本运算规律,要求达到简单应用层次2率的定义与性质2.1频率的定义,要求达到“领会”层次2.2概率的定义,要求要求达到“领会”层次2.3概率的性质,要求达到“简单应用”层次3古典概型3.1古典概型的定义,要求达到“领会”层次3.2简单古典概型的概率运算,要求达到“简单应用”层次4条件概率4.1条件概率的概念,要求达到“领会”层次4.2乘法公式.会用乘法公式进行有关概率的计算,要求达到“简单应用’’层次4.3 全概率公式与贝叶斯公式,会用这两个公式进行计算,要求达到“综合应用’’层次5事件的独立性5.1 事件独立性的概念,要求达到“领会”层次5.2用事件的独立性计算概率,要求达到“简单应用”层次5.3 贝努利概型,要求达到“简单应用”层次第二章随机变量及其概率分布(一)考核的知识点1.随机变量的概念2.分布函数的概念和性质3.离散型随机变量及其分布律4.连续型随机变量概率密度函数5.随机变量函数的分布(二)自学要求本章总的要求是:理解随机变量及其分布函数的概念;理解离散型随机变量及其分布律的概念;掌握较简单的离散型随机变量的分布律的计算;掌握两点分布、二项分布与泊松分布;掌握连续型随机变量及其概率密度函数的概念、性质及有关计算;掌握均匀分布、指数分布及计算;熟练掌握正态分布及其计算;了解随机变量函数的概念,会求简单随机变量函数的概率分布.重点:随机变量的分布律与概率密度函数的概念、性质和计算,随机变量函数的分布,几种常用分布.难点:随机变量的分布律、概率密度函数,随机变量的函数的分布律、分布函数、概率密度函数.(三)考核要求1.随机变量的概念随机变量的概念及其分类,要求达到“识记”层次2.离散型随机变量的分布律2.1 离散型随机变量的概念,要求达到“识记’’层次2.2求较简单的离散型随机变量的概率分布律,要求达到“简单应用’’层次2.3两点分布,二项分布、泊松分布、要求达到“简单应用’’层次3.随机变量的分布函数3.1随机变量分布函数的定义、性质,要求达到“领会”层次3.2求简单离散型随机变量的分布函数,要求达到。

04183-概率论与数理统计(经管类)

04183-概率论与数理统计(经管类)

04183概率论与数理统计(经管类) 1.若E (XY)=E (X))(Y E ⋅,则必:D(X+Y )=D(X )+D(Y)2.一批产品共有18个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回,则第二次抽出的是次品的概率为 0。

1 。

3.设随机变量X 的分布函数为)(x F ,下列结论错误的是:)(x F 连续4.当X 服从参数为n,p 的二项分布时,P (X=k )=k n k k n qp C -5.设X 服从正态分布)4,2(N ,Y 服从参数为21的指数分布,且X 与Y 相互独立,则(23)D X Y ++= 20 6.设nX X X 21独立同分布,且1EX μ=及2DXσ=都存在,则当n 充分大时,用中心极限定理得()1n i i P X a a =⎧⎫≥⎨⎬⎩⎭∑为常数的近似值为1-Φ7.设二维随机变量),(Y X 的联合分布函数为),(y x F ,其联合分布律为则(0,1)F = 0.6 .8.设kX X X ,,,21 是来自正态总体)1,0(N 的样本,则统计量22221k X X X ++服从(2χ分布 )分布9.设两个相互独立的随机变量X 与Y 分别服从)1,0(N 和)1,1(N ,则:21)1(=≤+Y X P10.设总体X~N (2,σμ),2σ为未知,通过样本n x x x 21,检验00:μμ=H 时,需要用统计量:ns x t /0μ-=12.设A 、B 表示三个事件,则AB 表示 :A 、B 都不发生;13.设随机变量X 的概率密度为⎪⎩⎪⎨⎧<≥=-,0,0;0,e )(5x x c x f x则常数c 等于( 0.2 )14。

设随机变量X 的概率密度为其他10,,0)(3≤≤⎩⎨⎧=x ax x f ,则常数a= ( 4 ).15.设21)(=A P ,31)(=B P ,61)(=A B P ,则=)(AB P 11216. 随机变量F~F (n1 ,n2),则F1~ ( F(n2,n1) )18.设()~0,2X N ,()~0,1Y N ,且X 与Y 相互独立,则随机变量~Z X Y =- (0,3)N19.抛一枚不均匀硬币,正面朝上的概率为32,将此硬币连抛4次,则恰好3次正面朝上的概率是:81820、设C B A ,,为三事件,则=⋃B C A )(B C A ⋃)(21.已知)(A P =0.7,)(B P =0.6,3.0)(=-B A P ,则=)(B A P 0.1 。

2021年4月自考04183概率论与数理统计真题及答案

2021年4月自考04183概率论与数理统计真题及答案

2021年4月高等教育自学考试概率论与数理统计(经管类)试题(课程代码04183)一、单项选择题:本大题共10小题,每小题2分共20分。

在每小题列出的备选项中只有一项是最符合题目要求的,请将其选出。

1.某人打靶时连续射击两次,事件“至少有一次中靶”的对立事件是A.“两次都不中靶”B.“两次都中靶”C.“只有一次中靶”D.“至多有一次中靶”2.设事件A与B互不相容,且P(A)=0.5,P(B)=0.3,则P(A-B)=A.0.2B.0.3C.0.5D.0.83.甲、乙两人对弈一局,两人下成和棋的概率是1/2,乙获胜的概率是1/3,则甲获胜的概率是A.1/6B.1/3C.1/2D.2/34.设随机变量X~N(3,2²),且P{X>c}=P{x≤c},则常数c=A.0B.2C.3D.45.对于任意参数,随机变量X均可满足E(X)=D(X),则X服从的分布一定是A.均匀分布B.指数分布C.二项分布D.泊松分布6.设随机变量X~N(1,4²),Y~N(0,2²),X与Y相互独立,则D(X-Y)=A.2B.6C.12D.207.设X1,X2,X3,X4是来自总体X~N(0,4)的样本, Y=a(X1-2X2)²+b(3X3-4X4)²,如果Y~x ²(2),则常数a,b的值分别为A. BC.a=20,b=100D.a=12,b=288.设总体X~N(0,σ²),X1,X2,…,X n (n>1)为来自X的样本, 为样本均值,则未知参数σ²的无偏估计是A. B.C. D.9.设总体已知,μ的置信度为1-α的置信区间长度为l,则当α增大时,l的变化为A.增大B.减小C.不变D.不确定10.在线性回归模型中,总的偏差平方和为SST,剩余平方和为SSE,回归平方和为SSR,三者之间的关系是A. SSE= SST +SSRB. SSR=SST+SSEC. SST=SSE+SSRD. SST+SSE+SSR=0二、填空题:本大题共15小题,每小题2分,共30分。

概率论与数理统计课件(完整版)

概率论与数理统计课件(完整版)
例1. 两架飞机依次轮番对同一目标投弹, 每次投下一颗炸弹, 每架飞机各带3颗炸弹, 第1架扔一颗炸弹击中目标的概率为0.3, 第2架的概率为0.4, 求炸弹未完全耗尽而击中目标的概率。
1. 计算相互独立的积事件的概率: 若已知n个事件A1, A2, …, An相互独立,则 P(A1A2…An)=P(A1)P(A2)…P(An)
系统一:先串联后并联
A1
B1
A2
B2
A3
B3
A4
B4
*
例3. 100件乐器,验收方案是从中任 取3件测试(相互独立的), 3件测试后都认为音色纯则接收这批 乐器,测试情况如下: 经测试认为音色纯 认为音色不纯 乐器音色纯 0.99 0.01 乐器音色不纯 0.05 0.95
*
1. 公式法:
当A=S时, P(B|S)=P(B), 条件概率化为无条件概率, 因此无条件概率可看成条件概率.

计算条件概率有两种方法:
*
2.缩减样本空间法:
在A发生的前提下, 确定B的缩减样本空间, 并在其中计算B发生的概率, 从而得到P(B|A). 例2. 在1, 2, 3, 4, 5这5个数码中, 每次取一个数码, 取后不放回, 连取两次, 求在第1次取到偶数的条件下, 第2次取到奇数的概率.
*
随机试验: (1) 可在相同的条件下重复试验; (2) 每次试验的结果不止一个,且能事先明确所有可能的结果; (3) 一次试验前不能确定会出现哪个结果.
*
2. 样本空间与随机事件
样本空间的分类:
离散样本空间:样本点为有限个或可列个. 例 E1,E2等. 无穷样本空间:样本点在区间或区域内取值. 例 灯泡的寿命{t|t≥0}.
空集φ不包含任何样本点, 它在每次试验中都不发生,称为不可能事件。

全国自学考试04183概率论与数理统计(经管类)-考试复习速记宝典

全国自学考试04183概率论与数理统计(经管类)-考试复习速记宝典

概率论与数理统计(经管类)(04183适用全国)速记宝典命题来源:围绕学科的基本概念、原理、特点、内容。

答题攻略:(1)不能像名词解释那样简单,也不能像论述题那样长篇大论,但需要加以简要扩展。

(2)答案内容要简明、概括、准确,即得分的关键内容一定要写清楚。

(3)答案表述要有层次性,列出要点,分点分条作答,不要写成一段;(4)如果对于考题内容完全不知道,利用选择题找灵感,找到相近的内容,联系起来进行作答。

如果没有,随意发挥,不放弃。

考点1:随机事件。

在随机试验中,产生的各种结果叫做随机事件(random Events),简称事件(Events).随机事件通常用大写英文字母A、B、C等表示.如观察马路交叉口可能遇上的各种颜色交通灯,这是随机试验,而“遇上红灯”则是一个随机事件。

例:投掷一个骰子,观察其朝上的点数。

A={朝上的点数为2}B={朝上的点数为偶数点}都是随机事件。

必然事件Certainty Events必然事件——样本空间Ω本身也是事件,它包含了所有可能的试验结果,因此不论在哪一次试验它都发生,称为必然事件。

也将它记为Ω。

如:“抛掷一颗骰子,出现的点数不大于6”不可能事件Impossible Event不可能事件——不包含任何样本点的事件,记为φ,每次试验必定不发生的事件.如:“抛掷一颗骰子,出现的点数大于6”考点2:古典概型。

设某随机试验具有如下特征:(1)试验的可能结果只有有限个;(2)各个可能结果出现是等可能的。

则称此试验为古典(等可能)概型。

古典概型中概率的计算:n=进行试验的样本点总数ΩK=所考察的事件A含的样本点数P(A)=k/n=A的样本点数/样本点总数P(A)具有如下性质:(1)0≤P(A)≤1;(2)P(Ω)=1;P(φ)=0(3)AB=φ,则P(A∪B)=P(A)+P(B)考点3:乘法公式。

若抽取是不放回地,求以上三问?设A、B∈Ω,P(A)>0,则P(AB)=P(A)P(B|A).(1)式(1)就称为事件A、B的概率乘法公式。

全国2019年10月自学考试04183概率论与数理统计(经管类)试题答案

全国2019年10月自学考试04183概率论与数理统计(经管类)试题答案

A.
n
1 1
n i1
xi
0
2
C. 1 n
n i1
xi 0
2
B.
n
1
1
n i 1
xi
0
D. 1 n
n i1
xi 0
3
9.设 x1, x2 , , x(n n 1)为来自正态总体N (,1)的样本,x 为样本均值。若检验假设 H0 : 0, H1 : 0 ,则
采用的检验统计量应为(A)
(3)计算 Cov X ,Y ; E(XY)=0, Cov X ,Y E XY E X E Y 0 (8 分)
(4)试问 X 与 Y 是否相互独立?是否不相关?为什么? 因为 P{X=3,Y=3}≠P{X=3}P{Y=3}, 所以 X 与 Y 不相互独立;(10 分)
因为 X 与 Y 的相关系数为 Cov X ,Y 0 D X D Y
2
置信区间长度为l 2 0.2 1.96 0.784 ,由l 0.2,则n 15.366,
n
n
故至少应随机抽取16周的利润才能达到。10分
yi y 2 ,Lxy n
xi x
yi y ,则 1 (D)
i 1
i 1
i 1
A. Lyy Lxx
B. Lxx L yy
C. Lxy L yy
D. Lxy Lxx
二、填空题:本大题共 15 小题,每小题 2 分,共 30 分。
11.设随机事件 A 与 B 互不相容,且 P(A)=0.2,P(A∪B)=0.3,则 P(B)=__0.1___。
求:(1)X 与 Y 的概率密度 f X x 与 fY y ;
(2)(X,Y)的概率密度 f x, y ;

自考-概率论与数理统计课件(经管类)

自考-概率论与数理统计课件(经管类)

贝叶斯定理
贝叶斯定理的表述
对于任何事件A和B,有P(B|A)=P(A∩B)/P(A)。
贝叶斯定理的应用
贝叶斯定理在统计推断、决策分析和机器学习等领域 有广泛的应用。
贝叶斯定理的推导
贝叶斯定理可以通过条件概率的定义和全概率公式进 行推导。
02 随机变量及其分布
离散随机变量
定义
离散随机变量是在一定区间内取有限个值的随机变量,通 常用整数或离散值表示。
04 数理统计基础
样本与抽样分布
总体与样本
总体是研究对象的全体,样 本是从总体中抽取的一部分 。
随机抽样
随机抽样是从总体中按照随 机原则抽取一部分个体的方 法。
抽样分布
抽样分布是描述样本统计量 的分布情况。
参数估计
点估计
点估计是利用样本数据对总体参数进行估计的 方法。
区间估计
区间估计是基于点估计,给出总体参数可能存 在的区间范围。
性质
随机变量的函数的概率分布可以 通过对原随机变量的概率分布进 行相应的运算得到。
03 数字特征与特征函数
期望与方差
期望
期望是概率论中用来度量随机变量取值的平均水平的数学工具,常用符号E表示。期望的计算公式为 E(X)=∑XP(X),其中X是随机变量,P(X)是随机变量取各个可能值的概率。
方差
方差是用来度量随机变量取值分散程度的数学工具,常用符号D表示。方差的计算公式为 D(X)=E[(X−E(X))^2],其中E(X)是随机变量的期望值。
市场调查数据分析
调查问卷设计
基于概率论与数理统计原理,设计有 效的调查问卷,确保数据收集的准确
性和代表性。
数据处理与分析
利用统计分析方法对市场调查数据进 行处理和分析,提取有价值的信息,

04183概率论与数理统计(经管类)(有答案)

04183概率论与数理统计(经管类)(有答案)

04183概率论与数理统计(经管类)一、单项选择题1.若E(XY)=E(X))(Y E ⋅,则必有( B )。

A .X 与Y 不相互独立B .D(X+Y)=D(X)+D(Y)C .X 与Y 相互独立D .D(XY)=D(X)D(Y2.一批产品共有18个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回,则第二次抽出的是次品的概率为 A 。

A .0.1B .0.2C .0.3D .0.43.设随机变量X 的分布函数为)(x F ,下列结论错误的是 D 。

A .1)(=+∞FB .0)(=-∞FC .1)(0≤≤x FD .)(x F 连续4.当X 服从参数为n ,p 的二项分布时,P(X=k)= ( B )。

A .nk k m q p CB .kn k k n q p C -C .kn pq-D .kn k qp -5.设X 服从正态分布)4,2(N ,Y 服从参数为21的指数分布,且X 与Y 相互独立,则(23)D X Y ++= CA .8B .16C .20D .246.设n X X X 21独立同分布,且1EX μ=及2DX σ=都存在,则当n 充分大时,用中心极限定理得()1n i i P X a a =⎧⎫≥⎨⎬⎩⎭∑为常数的近似值为 B 。

A .1a n n μσ-⎛⎫-Φ⎪⎝⎭ B.1-Φ C .a n n μσ-⎛⎫Φ ⎪⎝⎭ D.Φ7.设二维随机变量的联合分布函数为,其联合分布律为则(0,1)F = C 。

A .0.2B .0.4C .0.6D .0.88.设k X X X ,,,21 是来自正态总体)1,0(N 的样本,则统计量22221k X X X ++服从( D )分布A .正态分布B .t 分布C .F 分布D .2χ分布9.设两个相互独立的随机变量X 与Y 分别服从)1,0(N 和)1,1(N ,则 B 。

A .21)0(=≤+Y X P B .21)1(=≤+Y X PC .21)0(=≤-Y X PD .21)1(=≤-Y X P10.设总体X~N (2,σμ),2σ为未知,通过样本n x x x 21,检验00:μμ=H 时,需要用统计量( C )。

04183 概率论与数理统计(经管类)

04183 概率论与数理统计(经管类)

课程名称:概率论与数理统计(经管类)课程代码:04183第一章随机事件及其概率一、单项选择题1.设当A和B同时发生时,事件C必发生,则()。

A.B.C.D.2.设A.0.1B.0.2C.0.3D.0.43.设A、B、C为三个随机事件,且A.0.15B.0.25C.0.35D.0.454.设对于事件A、B、C有则A、B、C至少发生一个的概率为()。

A.3/8B.5/8C.7/8D.1/25.设两个相互独立的事件A与B都不发生的概率为1/9,A发生B不发生的概率与B发生A不发生的概率相等,则P(A)=()A.2/9B.5/9C.2/3D.1/36.若A.0.7B.0.8C.0.9D.0.17.设A,B为随机事件,则()。

A.AB.BC.ABD.φ8.对掷一枚硬币的试验, “出现正面”称为()。

A.样本空间B.必然事件C.不可能事件D.随机事件9.事件A,B相互独立,且P(A)=0.7,P(B)=0.6,P(A-B)=()。

A.0.28B.0.42C.0.88D.0.1810.事件A,B相互独立,且P(A)=0.7,P(B)=0.2,P(A-B)=()。

A.0.46B.0.42C.0.56D.0.1411.设A,B为两个随机事件,且P(B)>0,P(A│B)=1则有()。

A.P(A∪B)>P(A)B.P(A∪B)>P(B)C.P(A∪B)=P(A)D.P(A∪B)=P(B)12.设A,B为两随机事件,且,则下列式子正确的是()。

A.P(A∪B)=P(B)B.P(AB)=P(B)C.P(B|A)=P(B)D.P(B-A)=P(B)-P(A)13.从装有2只红球,2只白球的袋中任取两球,记:A=“取到2只白球”则=()。

A.取到2只红球B.取到1只红球C.没有取到白球D.至少取到1只红球14.设对于随机事件A、B、C,有P(A)=P(B)=P(C)=1/4,且P(AB)=P(BC)=0,,则三个事件A、B、C, 至少发生一个的概率为()。

自考04183概率论与数理统计经管类总结2数理统计部份

自考04183概率论与数理统计经管类总结2数理统计部份

高等教育自学考试辅导《概率论与数理统计(经管类)》第二部份数理统计部份专题一统计量及抽样的散布近几年试题的考点散布和分数散布最高分数分布最低分数分布平均分数分布样本的分布 2 1样本矩 2 1合计4/100 0/100 2/100一、整体与样本:所考察对象的全部称为整体;组成整体的每一个大体元素称为个体。

:从整体中随机抽取n个个体x1,x2…,x n称为整体的一个样本,个数n称为样本容量。

若是整体X的样本x1,x2…,x n知足:(1)x1与X有相同散布,i=1,2,…,n;(2)x1,x2…,x n彼此独立,那么称该样本为简单随机样本,简称样本。

取得简单随机样本的方式称为简单随机抽样方式。

(1)联合散布函数:设整体X的散布函数为F(x),x1,x2…,x n为该整体的一个样本,那么联合散布函数为二、统计量及其散布1.统计量、抽样散布:设x1,x2…,x n为取自某整体的样本,假设样本函数T=T(x1,x2…,x n)不含任何未知参数,那么称T为统计量;统计量的散布称为抽样散布。

:设x1,x2…,x n为取自某整体X的样本,(2)样本均值的性质:①若称样本的数据与样本均值的差为偏差,则样本偏差之和为零,即②偏差平方和最小,即对任意常数C,函数时取得最小值.(5)样本矩(7)正态分布的抽样分布A.应用于小样本的三种统计量的分布的为自由度为n的X2散布的α分位点.求法:反查X 2散布表.[答疑编号1]答案:D[答疑编号2]答案:[答疑编号3]答案:B [答疑编号4]答案:1 [答疑编号5]答案:B [答疑编号6]解析:故填20. [答疑编号7]答案:n解析:[答疑编号8]答案:解析:此题考核正态散布的叠加原理和x2-散布的概念。

根据课本P82,例题3-28的结果,若X~N(0,1),Y~N(0,1),且X与Y彼此独立,那么X+Y~N(0+0,1+1)=N(0,2)。

此题,已知X1、X2、X3、X4为来自整体X~N(0,1)的样本,因此X1、X2、X3、X4彼此独立且服从同散布N(0,1),那么X1+X2~N(0,2),X3+X4~N(0,2);从而,,那么以下选项中正确的选项是()[答疑编号9]答案:A解析:本题考察课本p140,4.一些重要结论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)在试题中,概率论和数理统计内容试题分数的分布大 致是75分和25分.
序言
概率论是研究什么的?
概率论——从数量上研究随机现象的统计规律性的
科学。
数理统计——从应用角度研究处理随机性数据,建 立有效的统计方法,进行统计推理。
目录
第一章 随机事件与概率(重点) 第二章 随机变量及其概率分布(重点) 第三章 多维随机变量及其概率分布(重点) 第四章 随机变量的数字特征(重点) 第五章 大数定律及中心极限定理 第六章 统计量及其抽样分布 第七章 参数估计(重点) 第八章 假设检验(重点) 第九章 回归分析
——
(4) ABC
(5)A B C A B C A B C
例1-5 某射手向一目标射击3次,Ai表示“第i次射击命中目标”,
i=1,2,3.Bj表示“三次射击恰命中目标j次”,j=0,1,2,3.试用 A1,A2,A3的运算表示Bj,j=0,1,2,3.
解 B0 A1A2A3;
B 1 A 1 A 2 A 3 A 1 A 2 A 3 A 1 A 2 A 3 ; B 2 A 1 A 2 A 3 A 1 A 2 A 3 A 1 A 2 A 3 ;
为对立事件的区别. 显然有:
1. A A.
2., .
3.ABA BAA B .
事件的运算律
1、交换律:AB=BA,AB=BA。
2、结合律:(AB)C=A(BC), (AB)C=A(BC)。
3、分配律:(AB)C=(AC)(BC), (AB)C=(AC)(BC)。
4、对偶(De Morgan)律:
基本事件:样本空间Ω仅包含一个样本点ω的单点子集{ω}。
例,在试验E1中{H}表示“正面朝上”,就是个基本事件。
两个特殊的事件
必然事件:Ω; 不可能事件:φ.
既然事件是一个集合,因此有关事件间的关系、 运算及运算规则也就按集合间的关系、运算及运算规 则来处理。
§1.1.4、事件之间的关系
1.包含关系与相等:“ 事件 A发生必有事件B发生”
,记为AB。
A=B AB且BA.
A B
A
B Ω
2.和事件: “事件A与事件B至少有一个发生”
,记作AB或A+B。
显然: 1.AAB,BAB; 2.若AB,则AB=B。
推广:n个事件A1, A2,…, An至少有一个发生,记作
ห้องสมุดไป่ตู้
n
Ai
i1
3.积事件 :事件A与事件B同时发生,记作 AB
或AB。
显然: 1.ABA,ABB; 2.若AB,则AB=A。 推广:n个事件A1, A2,…, An同时发生,记作 A1A2…An
B3 A1A2A3.
例:甲、乙、丙三人各向目标射击一发子弹,以A、B、C分
别表示甲、乙、丙命中目标,试用A、B、C的运算关系表示下
列事件:
A 1 “: 至少有一人命中目标 A 2 “: 恰有一人命中目标” A 3 “: 恰有两人命中目标” A 4 “: 最多有一人命中目标 A 5 “: 三人均命中目标” A 6 “: 三人均未命中目标”
5t|t , ;
6t|t0, 1.
§1.1.3 随机事件
1.定义 样本空间的任意一个子集称为随机事件, 简称“事 件”. 例在试验记E作2中A、,B令、AC表等示。“出现奇数点”,A就是一个随机事 件。 A还可以用样本点的集合形式表示,即A={1,3,5}.它是样本 空间Ω的一个子集。 事件发生:例如,在试验E2中,无论掷得1点、3点还是5点, 都称这一次试验中事件A发生了。
1、样本空间: 试验的所有可能结果所组成的集合称为 试验E的样本空间,记为Ω.
2、样本点:试验的每一个可能出现的结果成为一个 样本点,用字母ω表示.
下面分别写出上述各试验 E k 所对应的样本空间
1 {H,T};
2{1, 2, 3, 4, 5, 6};
3{0, 1, 2, 3, L}; 4 {t|t0};
§ 1.1.2 随机试验和样本空间
试验的例子
E1: 抛一枚硬币,观察正面H、反面T出现的情况; E2: 掷一颗骰子,观察出现的点数; E3: 记录110报警台一天接到的报警次数; E4: 在一批灯泡中任意抽取一个,测试它的寿命; E5: 记录某物理量的测量误差;
E6: 在区间 0 ,1 上任取一点,记录它的坐标。
ABA B, ABAB
可推 广 Ak Ak, Ak Ak.
k
k
k
k
例1-4、设A、B、C表示三个事件,试以A,B,C的运算表
示以下事件:
(1)仅A发生; (2)A,B,C都发生; (3)A,B,C都不发生; (4)A,B,C不全发生; (5)A,B,C恰有一个发生。
解 (1) ABC
(2)ABC ( 3 ) A B C
概率论与数理统计
教材:《概率论与数理统计》 (经管类)
课程代码:4183 柳金甫 王义东 主编
武汉大学出版社
本课程的重点章是第1、2、3、4、7、8章. (1)试题的难度可分为:易,中等偏易,中等偏难,难。
它们所占分数依次大致为:20分,40分,30分,10分。
(2)试题的题型有:选择题(10*2=20分)、填空题 (15*2=30分)、 计算题 (2*8=16分)、综合题(2*12=24分)、应用题(1*10=10分)。
4.差事件 :A-B称为A与B的差事件,表示事件 A发生而事件B不发生
显然: 1.A-BA; 2.若AB,则A-B=φ。
5.互不相容事件(也称互斥的事件) 即事件A与 事件B不可能同时发生。AB= 。
AB= A
B
Ω
6.对立事件 AB= , 且AB= 记作B A,称为A的对立事件;
思考:事件A和事件B互不相容与事件A和事件B互
第一章 随机事件与概率
• §1.1 随机事件 • §1.2 概率 • §1.3 条件概率 • §1.4 事件的独立性
§1.1 随机事件
1.1.1 随机现象
现象按照必然性分为两类:
一类是确定性现象; 一类是随机现象。
在一定条件下,可能出现这样的结果,也可能出现那
样的结果,我们预先无法断言,这类现象成为随机现象。
上述试验的特点: 1.试验的可重复性——可在相同条件下重复进行; 2.一次试验结果的随机性——一次试验之前无法确定具体
是哪种结果出现,但能确定所有的可能结果。
3.全部试验结果的可知性——所有可能的结果是预先可知
的。 在概率论中,将具有上述三个特点的试验成为随机试验,
简称试验。随机试验常用E表示。
样本空间
相关文档
最新文档