分式乘除法(二)

合集下载

15.2.1分式的乘除(二)教案

15.2.1分式的乘除(二)教案
教学内容
15.2.1分式的乘除(2)
课标对本节课的教学要求
掌握分式乘除法的法则
熟练地进行分式乘除法的混合运算.
教学目标
1.掌握分式乘除法的法则
2.熟练地进行分式乘除法的混合运算.
3.渗透类比转化的数学思想方法
教学重点
难点
重点:熟练地进行分式乘除法的混合运算.
难点:熟练地进行分式乘除法的混合运算.
教学准备
教学投影仪
教学时间
一课时。
教学过程
第(1)课时
教学环节
教师活动预设
学生活动预设引入
计算:(1)
(2)
学生独立完成,复习旧知
新课讲授
例题讲解
计算(1) (2)
(补充)例.计算
(1)
= (先把除法统一成乘法运算)
= (判断运算的符号)
= (约分到最简分式)
(2)
= (先把除法统一成乘法运算)
= (分子、分母中的多项式分解因式)
=
=
课堂练习:
计算(1) (2)
学生观察思考,并小组讨论
学生独立完成
分式乘除法的混合运算先统一成为乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的计算结果要是最简的.
作业安排
课堂小结
谈谈你的收获
板书设计
15.2.1分式的乘除(二)
1.例题讲解 2.练习
课后记

数学2.2《分式的乘除法》课件(2)

数学2.2《分式的乘除法》课件(2)

Conversation 4 Anna: Mei Ling, can you come to my party on Saturday? Mei Ling: Sorry, but I’m not available. I must study for a math test. Anna: Ok. Good luck!
①把各分式中分子或分母里的多项式分解因式; ②在乘除过程中遇到整式则视其为分母为1; ③应用分式乘除法法则进行运算; ④结果为最简分式或整式.
随堂练习 1、计算 (1)
a b b a2
(2) (a2 a) a
a 1
1
解(1)原式= a
(2)原式= (a-1)2
2.计算 a2 b 1 a2 1 a2 正确吗?
A: Can you play basketball with us?
B: Sorry, I can’t. I …
prepare for an exam
A: Can you … ? B: Sorry, I can’t. I …
go to the doctor
meet my friend
A: Can you …?
to meet my friend on Saturday.
Conversation 2 Anna: Hello, Mary! Can you come
to my party on Saturday? Mary: I’d love to. Do I need to bring
anything? Anna: No, I’ll buy all the circle can or can’t.
1. Jeff can/ can’t go to the party. 2. Mary can/ can’t go to the party. 3. May can/ can’t go to the party. 4. Mei Ling can/ can’t go to the party. 5. Paul can/ can’t go to the party.

参考例题分式的乘除法

参考例题分式的乘除法

●备课资料一、参考例题[例1]x 为何值时,(1)分式xx 1112--有意义 (2)分式323||2---x x x 的值为零 分析:对于分式BA 若有意义,则B ≠0; 若值为零,则⎩⎨⎧≠=00B A .由此可解.解:(1)由题意得:⎪⎩⎪⎨⎧≠-≠0110x x 解得x ≠0且x ≠1;(2)由题意得:⎩⎨⎧≠--=-03203||2x x x 解得x =-3[例2]若|321--x x |+(413++y y )2=0, 求代数式123+x -132-y 的值. 分析:我们知道任何数的绝对值和偶次方数都为非负数;原题中|321--x x |=0,(413++y y )2=0,则有321--x x =0,413++y y =0. 分式的值为零要满足分子为零,而分母不为零,可以求出x 和y ,进而求出代数式的值.解:因为|321--x x |≥0,(413++y y )2≥0 又|321--x x |+(413++y y )2=0 所以|321--x x |=0,(413++y y )2=0 解得x =1,y =-31,将x ,y 的值代入原代数式可得 原式=1123+⨯-1)31(32--⨯ =1+1=2.[例3]计算(1)(2222x a x a +-)3÷(44222x a x ax a -++)2·[2)(1x a -]2;(2)541524.06.0--a a ÷531.02113.12.02-+-a a a ÷1021-a . 分析:对于(2)要先把分子、分母中的系数变为整数,再进行计算.解:(1)原式=322322)()(x a x a +-÷224222)()2(x a x ax a -++·4)(1x a - =32233)()()(x a x a x a +-+·422222)()()()(x a x a x a x a +-++·4)(1x a - =22))((xa x a x a +-+=2222x a x a +- (2)原式=122169--a a ÷6151322-+-a a a ÷1021-a =-)6(2)32(3--a a ·)5)(32(6---a a a ·2(a -5) =-3[例4]若12+-mx x x =1 求13363+-x m x x 的值. 分析:先观察前后两个式子的特点,可以发现已知式子和要求值的式子中分子与分母中x 的指数是3倍关系,若倒转式子则发现12+-mx x x 可变为x mx x 12+-=x +x1-m =1,则有x +x 1=1+m ,而13363+-x m x x 可变为33361x x m x +-=(x 3+31x)-m 3,我们就可以利用x +x 1与x 3+31x之间的关系求解. 解:x mx x 12+-=x +x1-m =1 x +x1=1+m 33361x x m x +-=(x 3+31x)-m 3 =(x +x 1)(x 2+21x-1)-m 3 =(x +x 1)[(x +x1)2-3]-m 3 =3m 2-2. 所以13363+-x m x x =2312-m . 二、参考练习计算:(1)xy x y x +-2÷4222x y x x xy --·yx -1(2)(xy -x 2)÷xy y xy x 222+-·2x y x - (3)(x x --31)2÷(22996x x x -+-)2·1212+-x x 答案:(1)1 (2)-y (3)42)3()3(-+x x。

《分式的乘除法》课件(共14张PPT)

《分式的乘除法》课件(共14张PPT)


b a2

ab ba2

1 a
x2 1 x 1 (3) y y2
解 x2 1 y2 y x 1
(x 1)(x 1) y y y(x 1)
xy y
(2)(a2 a) a a 1
解 (a2 a) a 1 a
(a2 a)(a 1) a
第五章 分式与分式方程
2 分式的乘除法
•温故知新:
2 4 , 35
24 35
b d ?....... b d ?
ac
ac
猜想 a d a d
b c bc
a d a c ac b c b d bd
分式的乘除法的法则:
两个分式相乘,把分子相乘的积作为 积的分子,把分母相乘的积作为积的分 母;
⑵原式

(x 1)(x 1)
x 22

1 x 1
(x
1)(x x 1
2)

x 1 x2

2)

a2
1
2a
注意:按照法则 进行分式乘除运算,如果运算
结果不是最简分式,一定要进行约分,使运算结果 化成最简分式。
•例2计算
(1)3xy2 6 y2 x
解 原式 3xy2 x 6y2

3xy2 6y2
x
1 x2 2
(2)
a2
a 1 4a
4

a2 a2
1 4
③原式

3
xy

2
x y
2


3xy 2y2
x

3x2 2y
•做一做

5.2分式的乘除法(2)

5.2分式的乘除法(2)

2
-(2 x 1)= -2 x - 1
自学检测(二):6分钟 计算
2 b2 3a 3b a 2 8a b ⑴ 4ab 2a
⑵பைடு நூலகம்
x2 1 (x 1) x2 3x 2 x 1 x2 4x 4
2 3(a b) 2 a 12 a 2 8 a b 解:⑴原式 4ab (a b)( a b) a b
⑵原式
( x 1)( x 1) 1 ( x 1)( x 2) x 1 2 x2 x 2 x 1 x 1
自学指导(三):6分钟
• 先化简再求值: xy 2 2 (1)(x-y) ÷(x y-xy ). (2)若x= 3 ,y= 2 求代数式 xy y
; 。
通常购买同一品种的西瓜时,西瓜的质量越大, 花费的钱越多。因此人们希望西瓜瓤占整个西瓜 的比例越大越好。假如我们把西瓜都看成球形, 并把西瓜瓤的密度看成是均匀的,西瓜的皮厚都 是d,已知球的体积公式为V= 4πR3 (其中R为 3 球的半径)那么 (1)西瓜瓤与整个西瓜的体积各是多少? (2)西瓜瓤与整个西瓜的体积的比是多少? (3)你认为买大西瓜合算还是买小西瓜合算?
( x y)2
x y
,其中x=-2,y=1
2,
÷
( y x) 2 . x 2 y 2 的值 y xy y 2
当堂训练(10分钟)
完成《随堂小练》
a 1
2

“丰收2号”小麦的单位面积产量高。
a 1

2
(2)

500 500 2 2 a 1) a 1
“丰收2号”小麦的单位面积产量是“丰 a 1 收1号”小麦的单位面积产量的_______ a 1 倍。

人教版数学八年级上册15.2.1分式的乘除(第2课时)教学设计

人教版数学八年级上册15.2.1分式的乘除(第2课时)教学设计
2.教师通过具体的例题,演示分式乘除法的运算步骤,强调注意事项,如符号处理和化简方法。
3.教师引导学生观察分式乘除法与整式乘除法之间的联系,如乘法分配律、交换律等,帮助学生更好地理解分式乘除法。
4.教师通过讲解典型例题,让学生了解分式乘除法在实际问题中的应用,培养学生将数学知识应用于解决实际问题的能力。
2.学生分享自己在学习分式乘除法过程中的收获和感悟,以及遇到的困难和问题。
3.教师针对学生的反馈,进行针对性的解答和指导,巩固学生的知识点。
4.教师布置课后作业,要求学生在课后继续巩固所学知识,为下一节课的学习做好准备。
五、作业布置
为了巩固本节课所学的分式乘除知识,培养学生的数学思维能力,特布置以下作业:
(三)学生小组讨论
1.教师将学生分成小组,每组挑选一道具有代表性的分式乘除题目进行讨论。
2.学生在小组内部分享自己的解题思路和方法,互相交流,共同探讨。
3.各小组在讨论过程中,教师巡回指导,关注学生的解题过程,及时发现问题并给予指导。
4.讨论结束后,各小组派代表进行汇报,分享本组的讨论成果和心得体会。
5.练习巩固:设计难易程度不同的练习题,让学生独立完成,巩固所学知识。针对学生的错误,教师要及时给予指导和纠正。
6.知识拓展:引导学生将分式乘除法与整式乘除法进行对比,总结它们之间的联系与区别,提高学生的数学思维能力。
7.总结反馈:在教学结束时,教师对本节课的内容进行总结,强调重点和难点。同时,鼓励学生分享自己的学习心得,以便教师了解学生的学习情况。
4.实践题:结合生活实际,设计一道与分式乘除相关的实际问题,要求学生运用所学知识解决问题,并简要说明解题思路。此举旨在培养学生的知识运用能力和创新意识。
5.小组讨论题:以小组为单位,共同探讨以下问题:“分式乘除法在生活中的应用有哪些?”并撰写一篇简要的讨论报告,培养学生的合作意识和沟通能力。

5.2分式乘除法(2)

5.2分式乘除法(2)
A.
b b 3b 5. (技能题)计算: . 2 a a 4a
2 3
D.
b4n a2n
x2 6. (辨析题)计算 y
A. x 5 师生互动 B. x 5 y
2
y2 y 得( ) x x
2
13. (学科综合题)先化简,再求值: x2 2x 8 x 2 x 4 4 .其中 x x3 2 x 2 x x x 1 5
2. (技能题)计算:
16 m2 m4 m2 . 16 8m m2 2m 8 m 2
题型 2:分式的乘方运算
2a 2 b 3. (技能题)计算: . 3c
3
b2 4. (辨析题) 的值是( ) a
2n
b2 2 n b2 n 2 b4n B . C . a2n a2n a 2n 题型 3:分式的乘方、乘除混合运算
D. y 5 z
10.计算: (1)
2x 6 x2 x 6 ( x 3) x2 4 x 4 3 x
(2)
x2 6 x 9 x2 9 x3 x2 x 6 x2 3x 10 2x 10
拓展创新题
3 b2 b ab 12. (学科综合题)已知 3a b 1 3a b 0 .求 的值. 2 a b a b a b
C. y5 D. x15
3
4
x2 y y 7.计算 的结果是( ) y x x
A.
x2 y
2 n 1

分式的乘除二

分式的乘除二

a
b
a4 b 4;
猜想
a n b
a n b n .
分式的乘方法则:

a 即:
a n b
n
b n
(n是正整数)
例题2:
(1)
( 3x )2
(3x)2
32 x2
9x2
2y
(2y ) 2 2 2 y 2
4y 2
(2)( ຫໍສະໝຸດ b)3 2c(ab )32c
(ab)3 ( 2c) 3
1、分式混合运算一定要按照运算顺序。 2、乘除混合运算统一为乘法运算。
⑴ 3a 3b • 8a2b a2 b 2
4ab
2a
⑵ 2m 2n • 5p 2q 5mnp 3pq 2 4mn 3q
(3) a b 1 • a b
ab ab
a a n n
. 1.
是什么意思?
表示什么? 表示什么?
a3b3 8c 3
(3) ( xy ) 3
(xy) 3 x 3y 3
xy
(x y)3 (x y)3
例3:计算
(1)
2a 2b 3c
2
( 2)
a2b cd 3
3
2a d3

c 2a
2
(1)( 2 x4 y2 )2 3z
(2) ( 2acb2d3
)2
6a 4 b3
3c •( b2
)3
(3)( x 1 )2 3 x
(
x2 6x 9 x2
9 )2

x2
1 2x
1
(4)
(
3a 2 y2 2mn
)2

(
4mn 3m 3n2

2.2 分式的乘除法

2.2    分式的乘除法

152.2 分式的乘除法互动思维导图[基础知识与基本技能]1.分式的乘除法法则 ⑴分式乘法的法则为:分式乘以分式,把分子乘以分子,分母乘以分母,分别作为积的分子、分母,然后约去分子与分母中的公因式.用符号语言表达:f g ·u v =fugv.⑵分式除法的法则为:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用符号语言表达:f g ÷u v =f g ·vu=fv gu (u ≠0).(1)22368y x x y ;(2)222224a a a a a +---. 分析:⑴式是两个分式相乘,分式的分子、分母都是单项式,可直接利用分式乘法法则进行计算;⑵中的两个分式相乘,分子或分母是多项式,要先对分子或分母进行因式分解,然后再运用法则计算.16解:(1)223633298424y x y x x x x y x y y y== . (2)22222(2)242(2)(2)2a a a a a a a a a a a a a +-+-==---+-- . 方法技巧:⑴两个分式相乘,如果分子、分母是多项式,那么要先对分子或分母因式分解.然后运用分式的乘法法则进行计算;⑵最后计算的结果要通过约去分子、分母的公因式(数)化到最简;⑶在分式的乘法运算中,既可以用法则来计算,也可以根据情况先约去公因式再相乘,后者方法有时会更简便.(1)234xy ÷92y x ; ⑵2a-1a 44a -+÷2214a a --;⑶22442x xy yx y+++÷(4x 2-y 2).思维幻灯片:分析:⑴中的分式的分子、分母都是单项式,可以直接利用分子计算;⑵中的分子或分母有多项式,先把多项式因式分解,然后再运用法则计算;⑶中的除式是整式,把整式看作是分母为1的式子,再运用除法法则计算.解:⑴原式=234xy ·29x y =23249xy x y ∙⨯=26x y ;⑵原式=2a-1a 44a -+·2241a a --=2a-1(a 2)-·(a+2)(a-2)(a+1)(a-1) =2(2)(1)a a a +-+.⑶原式=22442x xy y x y +++·2241x y -=2(2)2x y x y ++·1(2x+y)(2x-y)=12x y-.方法技巧:⑴两个分式相乘,如果分子、分母都是单项式,可以直接利用分式除法法则进行计算,如果分子、分母有多项式,那么要先对分子或分母进行因式分解,然后运用分式的除法法则进行计算;⑵计算结果通过约去公因式化到最简或整式;⑶如果遇到分式与整式相乘除时,可以把整式看作分母为1的式子进行计算;⑷通常情况下,计算最后的结果要使分子和分母的符号都为正号.2.分式的约分把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.约分的关键是正确找出分子与分母的公因式.其一般方法是:①当分子和分母都是单项式时,先找分子、分母系数的最大公因数,再找相同字母的最低次幂;②当分子和分母都是多项式时,首先要对分子、分母进行因式分解,把分子、分母变为几个因式的积后,再找分子、分母的公因式.[温馨提示]⑴约分的依据是分式的基本性质,分子、分母都除以的整式是它们的公因式.由于原分式有意义,可知分子与分母的公因式一定不为零,故利用分式的基本性质约去公因式时,不必强调公因式不为零,直接约分即可.⑵要牢记分子、分母都是乘积形式时,才能进行约分;分子、分母是多项式时,通常先将分子、分母分解因式,然后再约分.43243521a b ca b d.分析:分子的数字因数是35,分母的数字因数是21,其最大公因数是7,分子、分母中的相同因式是a、b,其最低次幂分别为2、3,故最大公因式是723a b.解:43232224233575532173a b c a b a c a cbda b d a b bd⋅==⋅.方法技巧:当约分的分式的分子、分母都是单项式时,只要约去分子、分母的最大公因数和相同字母的最低次幂即可.2222a aba ab b+++.分析:此分式的分子和分母都是多项式,要先各自因式分解,然后约去公因式.解:原式=2()()a ab aa ba b+=++.方法技巧:约分的根据是分式的基本性质,将分子、分母的公因式约去,若分子、分母是多项式,须先因式分解,再约去公因式.特别注意分子、分母必须是乘积形式时1718才能进行约分. 4.最简分式434y x a +,2411x x --,22x xy y x y -++,2222a abab b +-A .1个B .2个C .3个D .4个分析:分子分母是多项式的,先把分子、分母都分解因式,看分子、分母中是否有公因式,第1个不能再分解了,是最简分式;第2个可化为2221(1)(1)x x x -+-有公因式x 2-1;第3个不能分解,也没有公因式;第4个可化为(2)(2)a ab a a b +-没有公因式,是最简分式.故有3个最简分式. 解:C .方法技巧:判断一个分式是否是最简分式,关键看分子、分母中有没有公因式,有些分式的分子、分母虽然都能因式分解,都是分解后仍然没有公因式,这样的分式仍然是最简分式. 5.分式的乘方分式的乘方是把分子、分母各自乘方.用符号语言表达:()nn n f f g g=.1922y x-)2;⑵(2222a ab ab b+-)3. 分析:⑴中的分式的分子、分母是单项式,可以直接运用法则计算;⑵中的分式的分子、分母是多项式,应该先各自因式分解,发现有公因式,先约分,然后再运用法则计算.解:⑴原式=2222()y x -()=244y x .⑵原式=((2)(2)a a b a a b +-)3=(22a b a b+-)3=3(2)a b +3(a-2b)方法技巧:在计算乘方运算时,如果分子、分母是单项式,可以直接运用法则计算;如果是多项式,要先因式分解,通常约去公因式后再计算,也可以先进行乘方运算后再约去公因式.32222183442x x x x x ⎛⎫--⎛⎫- ⎪⎪-+-⎝⎭⎝⎭÷ .思维幻灯片:分析:题目是求两个乘方的商,根据运算顺序,应先算乘方,后算除法.由于第一个分式的分子、分母是多项式,所以要先分解因式后再算乘方,最后将第二个分式的乘方分子、分母颠倒后再与第一个分式乘方的结果相乘.解:原式3232(3)(3)3(2)2x x x x x ⎡⎤+--⎛⎫= ⎪⎢⎥--⎝⎭⎣⎦÷=322(3)(3)(2)x x x ⎡⎤+-=⎢⎥-⎣⎦·223x x -⎛⎫ ⎪-⎝⎭322(3)(3)(2)x x x ⎡⎤+-=⎢⎥-⎣⎦·22(2-x )(3-x)203342348(3)(3)1(2)(3)8(3)(3)(2)x x x x x x x +-=--+-=-.方法技巧:分式的运算顺序与分数的运算顺序一样,要先算乘方,后算乘除,有括号的先算括号内的.[基本方法与拓展延伸]6.分式乘除法的步骤和运算顺序⑴分式乘除法的步骤:对一个分式进行乘除法运算时,先观察分式,看一个分式的分子、分母能否进行分解因式,若能分解因式的应先分解.当分解完成以后,要进行约分,直到分子、分母没有公因式时再进行乘除.⑵分式乘除法的运算顺序:分式乘除法与整式乘除法运算顺序相同一般是从左向右,有除法的先把除法转化为乘法.⑶进行分式乘除法运算时应注意的问题:在进行分式乘除法运算时,特别要注意,当分解因式后进行约分时,一定要先把除法转化为乘法后才可以进行.xy =3,求222223x xy y x xy y +--+的值.分析:有两种思路:其一可用含y 的代数式替代x,即x=3y,代入分式求值;其二可把求值分式变形,使之出现已知中的xy的式子. 解法一:由xy=3,可得x=3y. 则222223x xy y x xy y +--+=222222(3)2(3)31212.7(3)(3)7y y y y y y y y y y +-=-+ 解法二:将分式分子、分母都除以2y ,得222223x xy y x xy y +--+=222396312.93171x xy y x xy y ⎛⎫+⋅- ⎪+-⎝⎭==-+⎛⎫-+ ⎪⎝⎭方法技巧:解此类题目,用解法一求,变化已知条件,使求值分式能用同一个字母代替;用解法二求,所变化的分式,使之出现已知的式子,以便能用已知的数据来代替.这两种方法既是求分式值常用的方法,也是求代数式的值常用的方法.222222x y x yx xy y x xy--÷+++.分析:分式的分子、分母都是多项式,可先分解因式,再约分.解:222222x y x yx xy y x xy--÷+++=2()()()()x y x y x x yx yx y+-+⨯-+=x.方法技巧:当分式的分子、分母有公因式时,要先因式分解,变除法为乘法后约分,再按照运算法则计算.7.分式的乘除法混合运算分式的乘除法混合运算与分数的乘除法混合运算一样,应先把除法运算转化为乘法运算,使整个算式变为乘法运算,其运算顺序是由左到右依次运算,并且乘法的交换律和结合律在分式的乘法中依然可以运用,根据具体问题利用运算律可以简化运算.(1)221111121x x xx xx x-+-÷⋅-+-+.(2)0.60.424155aa--÷210.2 1.31230.15a aa-+-÷1210a-.分析:⑴中的分式的分子、分母都是多项式,所以应先各自因式分解,然后将除法转化为乘法计算即可;⑵中的分式的分子、分母的系数是分数,要先把分子、分母中的系数变为整数,再进行计算.解:⑴221111121x x xx xx x-+-÷⋅=-+-+221111121x x xx xx x---⋅⋅++-+2122=2(1)(1)(1)111(1)x x x x x x x +----⋅⋅++-=11x x --+; (2)原式=916212a a --÷2213156a a a -+-÷1210a -=-)6(2)32(3--a a ·)5)(32(6---a a a ·2(a -5)=-3.方法技巧:分式的乘除运算与分数的乘除法法则和运算顺序都相同,归根到底是分式的乘法运算,运算的实质是分式的约分.[基本能力与创新应用]8.分式的化简、求值的开放题分式化简、求值题是分式部分重要的题型,灵活运用前面学习的数学知识和思想方法,是解决分式求值问题的关键. 分式求值是代数式求值常见的题型之一,其基本解法是先化简,再把字母的值代入计算.但在条件开放下的分式求值问题,与传统题目不同的是,代入值由同学们自己选取,一方面题目开放,有无数种结果,另一方面也考查了分式有意义的条件,在实际解题时却有很多同学由于代入了使分式无意义的数值,从而导致错误.44,2,4222+---x x x x x 中,任选两个你喜欢的式子组成一个分式是 ,把这个分式化简所得的结果是 .分析:本例是一道组合开放型试题,所给的三个式子都是整式,并且都含有字母.因此可任意选择其中两个,一个为分子,另一个为分母,先组成分式,再进行化简,故答案不唯一.解:如:222(2)(2)42244(2)x x x x x x x x +--+==--+-.方法技巧:本题是条件开放,结论也开放,因此,这种题的答案不唯一,只要合理计算正确即可.24462x x x +--÷(x +3)·x x x --+362,并选择一个你喜欢的x 的值求出分式的值. 思维幻灯片:23分析:⑴本题是乘除法运算,乘法、除法属于同一级运算,计算时要从左到右,千万不能把运算顺序理解为先乘法后除法;⑵化简完毕后,把一个x 的值代入求出即可.解:24462xx x +--÷(x +3)·x x x --+362=2)2()3(2--x x ·31+x ·xx x -++3)2)(3(=22--x . 当x =-2时,原式=222---=21.误区警示:这类问题的答案不唯一,解答时,一是按常规先化简,二是代入求值时需防“陷阱”,在取值时既要注意使运算简捷,同时又要考虑到“隐含条件”的约束,所取字母的值必须使原分式有意义,如本题中x 的值不能取2和3以及-3,这样会使原分式无意义,而实际上部分同学往往只注意最后一步中x 不能取2,而忽视了原分式中隐含条件是x 不能为2,3,-3,从而导致错误.[迁移应用与分级检测]1.下列分式中不是最简分式的是( )A .2222a b a b +- B .24a a a + C .12a a ++ D .a a b +答案:B点拨:选项A 、C 、D 中的分式的分子、分母没有公因式,是最简分式,而选项B 中的分式的分子、分母含有公因式a ,不是最简分式. 2.计算33bab a÷的结果是( ) A .2bB .18aC .9aD .29a答案: D点拨:按照除法法则变为乘法,积为9a 2,故选择D . 3.计算1m n n÷ 的结果是( )24A .mB .2m nC .2mn D .2n m答案:B点拨:本题往往不注意运算顺序,先把n 和1n约分(相乘),得出错误答案m ,从而错误地选择A .4.计算22ab cd÷34ax cd -等于( )A .223b xB .32b 2xC .-223b xD .-222238a b xc d答案:C点拨:本题有两种方法,一是直接利用法则计算正确地得出选项C ;二是用排除法,由符号易排除选项A 、B ,由被除式和除式的分母都有cd 可知变为乘法后被约去,不可能是选项D ,故选择C .5.下面约分的四式中,正确的是( )A.22y y x x =B.22a c abb c +=+ C.12a b ma mb m +=+ D.1a b b a -=-- 答案:D点拨:对分式约分是约去分子与分母的公因式.实际上A ,B 两个分式的分子与分母没有公因式.C 式虽有公因式,但应把分母先分解因式然后再约去因式,即1()a b a b ma mb m a b m++==++,正确的是:1()a b a b b a a b --==----,故选D.6.约分3232105a bca b c -.解:3322322322221010522555a bc a bc a bc a a a b c a b c a bc b c b c=-=-=-- . 点拨:当分式的分子或分母的系数是负数时,应先把负号提到分式的前边再约分(即先确定整个分式的符号再约分).7.化简:222692693x x x x x x-+--+÷.解:原式=2(3)(3) (3)(3)2(3)x x xx x x-+ +--⨯=(3)(3)22x x xx--=--⨯.点拨:当分式的分子、分母是多项式时,应先各自因式分解后再按照法则计算.8.计算:①2222253518x ya bxy ab⨯;②2234()()()y xx yx y-÷-;解:①22222535566518x ya b a x axy b byxy ab⨯=⨯=.②226234234211 ()()()()y yx xx yx y x y x y y-÷-=⨯⨯-=- .点拨::注意运算顺序,先算乘方,后算乘除,在运算的过程中要正确确定结果的符号.9.(2009年淄博市)化简222a ba ab-+的结果为()A.ba-B.a ba-C.a ba+D.b-答案:B点拨:先将分子、分母因式分解,然后约去公因式a+b即可得出选项B.10.计算:(1)322822444x x xxx x-+⨯-++;(2)22212211x x xxx-+-÷+-解:(1)322822444x x xxx x-+⨯-++=22(2)(2)22(2)(2)x x x xxx-++⨯-+=2x.(2)22212211x x xxx-+-÷+-2(1)(1)1(1)(1)2(1)2x xx x x-+=⋅=-+---.点拨:分式的乘除运算中常将除法转化为乘法,再依据乘法法则先把分子、分母分别相乘,化成一个分式后再约分,但实际计算时,也可根据情况先约分,再相乘,这样有时既可简化运算过程,又不易出错.11.计算:239()33x x xx x x--⋅-+.2526解: 239()33x x x x x x--⋅-+ =(3)(3)(3)(3)333x x x x x x x x x x+-+-⋅-⋅-+ =3(x +3)-(x -3)=3x +9-x +3 =2x +12.点拨:本题可以按照乘法的分配律进行计算,约去公因式后变成两个整式,再合并同类型即可.12.计算:⑴ (xy z )3·(-xz y)3÷(yzx-)4;⑵3()a b ab-÷(b-a )2·(ab b a -)2.解:⑴原式=333x y z ·(-333x z y )·444()x y x -=-333x y z·333x z y ·444x y x =-1044x y x .⑵原式=3()a b ab -·21(a-b )·22()()ab b a -=2222()()a b ab a b a b -- 3(a-b )=aba b -. 点拨:在运算过程中,一定要严格按照运算顺序,先算乘方,后算乘除,特别注意变化过程中分式的符号.13.(2222a x a x-+)3÷(22442a ax x a x ++-)2·[21()a x -]2解:原式=322322)()(x a x a +-÷224222)()2(x a x ax a -++·4)(1x a -=32233)()()(x a x a x a +-+·422222)()()()(x a x a x a x a +-++·4)(1x a -=22()()a x a x a x +-+=2222xa x a +- 点拨:本题分式的分子、分母都含有公因式[中考零距离]1.(2009湖北省荆门市)计算22()ab a b -的结果是( )A .aB .bC .1D .-b27答案:B点拨:本题考查积的乘方运算与分式的化简,()22222ab a b b a ba b-==,故选B . 2.(2009年黄冈市)化简2422a a a a a a -⎛⎫-⋅ ⎪-+⎝⎭的结果是()A .-4B .4C .2aD .-2a答案:A点拨:2422aa a a a a -⎛⎫-⋅ ⎪-+⎝⎭=22a a a a a ⎛⎫-⋅ ⎪-+⎝⎭(2+a )(2-a) -(2+a)-(2-a)=-4.3.(2008山西省太原市)化简222m n m mn-+的结果是( )A .2m nm- B .m nm- C .m n m + D .m nm n-+ 答案:B点拨:把分式的分子、分母因式分解后约去公因式m+n 即可得出答案为选项B .4.(2008内蒙古呼和浩特市)计算:222233y x y x-÷= .答案:392x -点拨:按照除法法则变为乘法后约分即可.5.(2010广东中山)化简:22211x xy y x y -+---=_________.答案:x-y+1点拨:222211(1)(1)111x xy y x y x y x y x y x y x y -+----+--==------()= x-y+1.6.(2010江苏连云港)化简:(a -2)·a 2-4a 2-4a +4=___________.答案:a+2点拨:(a-2)·a2-4a2-4a+4=(a-2)·2(2)(2)(2)a aa+--=a+2.<教材问题与习题参考答案>教材问题详解本节无教材习题详解28。

分式的乘除(第2课时)课件

分式的乘除(第2课时)课件
金融投资
研究分式乘除法在金融投资中的应用,了解投 资回报计算、利息计算等。
实例演练
1
例题一
通过实例一,巩固对分式乘除法原理的理解,提高计算准确性。
2
例题二
通过实例二,拓展对分式乘除法的应用,提高解题能力和思维灵活性。
3
例题三
通过实例三,积极解答复杂问题,培养分析和解决问题的能力。
总结
通过本课时的学习,我们掌握了分式的乘法、分式的除法以及分式的乘除法 混合运算的方法和应用场景。通过实例演练,我们提高了解题能力和分析问 题的技巧。继续努力,我们一定能在分式的乘除法中游刃有余!
应用场景
发现分式乘法在实际生活中的应 用,理解其重要性。
分式的除法
基本原理
学习如何进行分式的除法, 通过掌握基本原理,进行准 确计算。
解题技巧
掌握分式除法的解题技巧, 提高解题效率,加强记忆。
常见错误
分析常见错误,避免在分式 除法中出现常见错误,保证 计算准确。
分式的乘除法混合运算
1
步骤总结
2
总结分式的乘除法混合运算的步骤,方
技巧指南
学习解题过程中的常用技巧和策 略,提高解题速度和准确性。
分式的乘除法的应用场景
商业场景
探索分式乘除法在商业领域中的应用,如利润 分配、成本计算等。
科学研究
发现分式乘除法在科学研究中的应用,如化学 计量、实验数据分析等。
日常生活
了解分式乘除法在日常生活中的实际应用,如 调配食材、调配药量等。
便记忆和应用。
3
问题分析
通过混合运算的实例,分析问题,了解 如何解决带有分式的复杂运算。
应用拓展
发现分式的乘除法混合运算在不同领域 的应用,加深对知识的理解和应用能力。

【2021年】【教材】《分式的乘除法(2)》课标分析

【2021年】【教材】《分式的乘除法(2)》课标分析

《分式的乘除法(2)》课标分析
在初中数学课程标准数与代数中,对分式与分式方程这一章是这样要求的:了解分式和最简分式的概念,能利用分式的基本性质进行约分和通分;能进行简单的分式加、减、乘、除运算。

基于对新课标的理解,确定本节课的学习目标为:
知识目标:
1.熟练掌握分式乘除法的运算法则,
2. 能明确算理,会进行含多项式简单分式的乘除运算;.
能力目标:
1.在分式乘除法运算过程中,体会因式分解在分式乘除法中的作用,发展有条理的思考和合情推理能力。

2.用分式的乘除法解决生活中的实际问题,提高“用数学”的意识.
情感态度与价值观:
1.通过共同交流、探讨,在掌握知识的基础上,认识事物之间的内在联系,获得成就感.
2.培养创新意识和应用数学的意识.。

八年级数学分式的乘除法2

八年级数学分式的乘除法2

x2
8x 16 x2 1

x2 x2
16 2x 1
分析:本题属于分式的除法运算,要先将除法运算转化为乘法运算,再对 分子,分母的多项式进行因式分解,最后约分,化成最简分式
解:原式=
除法转化乘法时,把除式中的分子分母位置颠倒,而被除式不变
; 优游 ;
计算
x2
x2 1 2x
1

x x
1 1

1 x x 1
分析:同级运算要从左到右依次进行,先把除法转化为乘 法,然后按顺序运算
解 原式=
点拨:分式的乘除混合运算一样,对同级运算一定按从左到 右的顺序进行.
1. 计 算
1
4x y 3y 2x2
2
ab2 2c2

3a 2b 2 4ca
迅速放入滚烫的油锅里,只听“吱啦”的一声,那个裹了面糊的香椿,顿时翻滚着膨胀起来,成了焦黄颜色。 ⑤一直站在旁边的我,早已被锅里的香椿鱼儿惹得大咽口水了。一出锅,就用手抓起来吃,烫得我直跺脚摇手。母亲乐了,拿出碗盛好递给我。我便乖乖地坐在灶前,稀溜稀溜 地吃到肚圆,抹一把嘴上的油,跑着玩去了。等回来,又会吃上一大碗。 ⑥一茬一茬的香椿吃下来,夏天已近,香椿已不能用来炸着吃了,我对香椿的热情也淡了下来。可母亲却去摘那些稍微嫩一些的叶子,切碎,晒在太阳底下,说是晒干后还可以吃。我不信,这怎么吃。炎炎夏日, 母亲便取出那些干香椿,放在锅里用油炸一下,然后拌在黄瓜丝里,放上醋,浇在凉水浸过的面条上,一碗清凉喷香的凉面吃过,夏日的炎热一下子就在香椿的清香消失了。这种干香椿只要保存得好,可以吃一年,直到又吃上那暗红的嫩芽。 ⑦母亲知道我爱吃香椿,因此总是在春天里 给我带来嫩香椿芽,有的嫩到可惜,可母亲却说这样的才好吃;过几天又会捎来一大包干香椿,于是我就一年

分式的乘除法2

分式的乘除法2

(2)(2015·衢州中考)先化简,再求值: x 2 9 x 3,
x
其中x=-1.
2 其中 a 6a 9 2a 6
a=-5.
a2 4 a 2 a 2 a 2 2 a 3 2a 4 【解析】 2 . 2 a 6a 9 2a 6 a2 a 3 a 3 当a 5时,原式 2 5 4 5 3 10 4 3. 2
【微点拨】 分式乘除的两点注意
1.运算顺序:分式的乘除运算要从左到右依次运算.
2.运算技巧:乘除混合运算先统一成乘法运算,能约 分的要先约分,以减少运算量.
【纠错园】
2 2 m 16 m 4m 计算: . 3m 12 3
m 4 m 4 3 m 4 . 【纠错空间】原式= 3 m 4 m m 4 m 2 4m
【思路点拨】分式的乘除混合运算是化除为乘,统一 成乘法运算.
【自主解答】 原式= x 3 x 2 x 2 x 3 2 x 3.
2
x 2 x 3 x 3 x 2
x2
1 xy 1 2 xy 2 x 3 y 2 对吗? 【互动探究】xy xy x y x y 2 y x y 提示:不对,应为xy·(x+y)· x . 2 x y x
【微点拨】 分式的乘除运算应注意的“四类问题”
1.理解法则,若作除法运算,先转化成乘法运算.
2.分子、分母能分解因式的先分解因式,然后再约分.
3.运算的结果要化为最简分式或整式.
4.自选数的代入求值问题,不要忽视分母不为零的条 件.
知识点二 分式的乘除混合运算

2.2分式的乘除法(2)ggy

2.2分式的乘除法(2)ggy
x2 1 y2 y x 1 ( x 1)( x 1) y y y ( x 1) xy y
注意:整式与分 式运算时,可以 把整式看作分母 是 1 的式子.
a (2)( a a ) a 1
2
a 1 (a a) a (a 2 a )( a 1) a a (a 1)( a 1) a a 2 2a 1
3
V1 则 的值也越大,即西瓜瓤占整个西瓜的体积 V
也越大. 因此,买大西瓜更合算.
达标检测题
计算下列各题 a 2 a 2 4a 4 1. 2 . a 9 a 3
注意:整式与分 式运算时,可以 把整式看作分母 是 1 的式子.
4 x 2 4 xy y 2 2 . ( 4 x 2 y 2) 2x y
3.计算:(xy xy x ) x y
2
达标检测题
(2013 ,龙岩) 先化简,再求值: x 3 1 2 ,其中x 2. 2x 3 4x 9 2x 3
使代数式 x3 x2 有意义的 x的值 ( ) x 3 x 4
D A.x≠3且x≠-2 C.x≠3且x≠-3 B.x≠3且x≠4 D.x≠-2且x≠3且x≠4
x2 x 3 2 ; 2 x 9 x 2x
• 计算:
例 例题解析 2
(1)
怎样进行分式的除法运算?
2 2 2 2
x y 50 1 2 2 ; a2 a 4
2 2
.
2
x 4y x 2y 3 2 . 2 x 2xy y x y
第二章 分式与分式方程
2.2 分式的乘除法(2)
知识回顾
课前检测
分数的乘除法法则: (1)分数乘以分数,用分子的积 做 积的分子 ;分母的积做 积的分母 . (2)分数除以分数,把除数的分子分母 颠倒位置与 被除数相乘 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题 分式乘除法(二)
课时 7 班级: 姓名:
●自学 自学---质疑---解疑
▲学习目标: 一、 熟练地进行分式乘除法的混合运算.
二、重点:熟练地进行分式乘除法的混合运算. 难点:熟练地进行分式乘除法的混合运算.
▲自学方法
1.认真看书本12-13页的内容,尝试独立完成,然后组内合作交流。

2. 例、习题的意图分析
1). P13页例4是分式乘除法的混合运算. 分式乘除法的混合运算先把除法统一成乘法运
算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的结果要
是最简分式或整式.(教材P13例4只把运算统一乘法,而没有把25x 2
-9分解因式,就得出
了最后的结果,教师在见解是不要跳步太快,以免学习有困难的学生理解不了,造成新的
疑点.)
2). P13页例4中没有涉及到符号问题,可运算符号问题、变号法则是学生学习中重点,
也是难点,故补充例题,突破符号问题. ★达成共识:
1).分式的乘法法测:
b a ·d
c =b
d ac . 2).分式的除法法则:b a ÷d c =b a ·c d =bc
ad 3).分式乘除法的混合运算. 分式乘除法的混合运算先统一成为乘法运算,再
把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的计
算结果要是最简的. ★(补充)例.计算)4(3)98(23232b x b a xy y x ab -÷-⋅=x
b b a xy y x ab 34)98(23232-⋅-⋅(先把除法统一成乘法运算)=x b b
a xy y x a
b 349823232⋅⋅(判断运算的符号)=32916ax b (约分到最简分式) (2)
x x x x x
x x --+⋅+÷+--3)2)(3()3(444622 =x x x x x x x --+⋅+⋅+--3)2)(3(31444622 (先把除法统一成乘法运算)=x x x x x x --+⋅+⋅--3)2)(3(31)2()3(22 (分子、分母中的多项式分解因式)=)3()2)(3(31)2()3(22---+⋅+⋅--x x x x x x =2
2--x ●量学 自测---互查---互教
计算(1))2(216322b a a bc a b -⋅÷ (2)1033
26423020)6(25b
a c c a
b b a
c ÷-÷
(3)x y y x x y y x -÷-⋅--9)()
()(3432 (4)22222)(x y x xy y xy x x xy -⋅+-÷-
●示学用学 展示---反馈---导学---点播
计算(1))6(438264
2z y x y x y x -÷⋅- (2)9323496222-⋅+-÷-+-a a b a b a a
(3)229612316244y y y y y y --÷+⋅-+- (4)xy
y xy y x xy x xy x -÷+÷-+222)(
●测学 巩固---运用---拓展
1.计算2223362c ab b c b a ÷=
2.计算4
222
2a b a a ab ab a b a --÷+-= . 3.计算(-y x )2·(-32y
x )3÷(-y x )4= . ●思学 回顾---总结---反思。

相关文档
最新文档