最短路径问题课件

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)现在的问题是怎样找出使两条线段长度之和为最 短的直线l上的点.设C 为直线上的一个动点,上 面的问题就转化为:当点C 在l 的什么位置时, AC 与CB 的和最小(如图).
A C
B l
探索新知
问题2 如图,点A,B 在直线l 的同侧,点C 是直 线上的一个动点,当点C 在l 的什么位置时,AC 与CB 的和最小?
追问1 对于问题2,如何 将点B“移”到l 的另一侧B′ 处,满足直线l 上的任意一点 C,都保持CB 与CB′的长度 相等?
B · A ·
l
探索新知
问题2 如图,点A,B 在直线l 的同侧,点C 是直 线上的一个动点,当点C 在l 的什么位置时,AC 与CB 的和最小?
追问2 你能利用轴对称的 有关知识,找到上问中符合条 件的点B′吗?
-最短路径问题课件
如图所示,从A地到B地有三条路可供选择,你会选走哪条路最近?你的理由是什么?
两点之间,线段最短
C
① ②
D
E

A
B
F
(Ⅰ)两点在一条直线异侧 已知:如图,A,B在直线L的两侧,在L上求一点P,使得PA+PB最小。
连接AB,线段AB与直线L的交点P ,就是所求。 P
思考??? 为什么这样做就能得到最短距离呢?
B · A ·
l
探索新知
问题2 如图,点A,B 在直线l 的同侧,点C 是直 线上的一个动点,当点C 在l 的什么位置时,AC 与CB 的和最小?
作法: (1)作点B 关于直线l 的对称
点B′; (2)连接AB′,与直线l 相交
于点C. 则点C 即为所求.
A ·
C
B ·
l
B′
探索新知 问题3 你能用所学的知识证明AC +BC最短吗?
A · C′
C
B ·
l
B′
探索新知
问题3 你能用所学的知识证明AC +BC最短吗?
证明:在△AB′C′中, AB′<AC′+B′C′, ∴ AC +BC<AC′+BC′. 即 AC +BC 最短.
A · C′
C
B ·
l
B′
探索新知
追问1 证明AC +BC 最短时,为什么要在直线l 上 任取一点C′(与点C 不重合),证明AC +BC <AC′ +BC′?这里的“C′”的作用是什么?
分别作点A关于OM,ON的对称点A′,A″;连接A′,A″, 分别交OM,ON于点B、点C,则点B、点C即为所求
谢谢
若直线l 上任意一点(与点 C 不重合)与A,B 两点的距离 和都大于AC +BC,就说明AC + BC 最小.
A · C′
C
B ·
l
B′
探索新知
追问2 回顾前面的探究过程,我们是通过怎样的 过程、借助什么解决问题的?
A · C′
C
B ·
l
B′

M
1. 如图,A.B两地在一条河的两岸,现要在河上建一座桥MN, 桥造在何处才能使从A到B的路径AMNB最短?(假设河的两
A ·
C
B ·
l
B′
探索新知
问题3 你能用所学的知识证明AC +BC最短吗?
证明:如图,在直线l 上任取一点C′(与点C 不 重合),连接AC′,BC′,B′C′.
由轴对称的性质知, BC =B′C,BC′=B′C′. ∴ AC +BC
= AC +B′C = AB′, AC′+BC′
= AC′+B′C′.
从图中的A 地出发,到一条笔直的河边l 饮马,然 后到B 地.到河边什么地方饮马可使他所走的路线全程 最短?
B A
l
探索新知
精通数学、物理学的海伦稍加思索,利用轴对称的 知识回答了这个问题.这个问题后来被称为“将军饮马 问题”.
你能将这个问题抽象为数学问题吗?
B A
l
探索新知
追问1 这是一个实际问题,你打算首先做什么? 将A,B 两地抽象为两个点,将河l 抽象为一条直 线.
岸是平行的直线,桥要与河垂直)
N E
B
Baidu Nhomakorabea
作法:1.将点B沿垂直与河岸的方向平移一个河宽到E, 2.连接AE交河对岸与点M,
则点M为建桥的位置,MN为所建的桥。 证明:由平移的性质,得 BN∥EM 且BN=EM, MN=CD, BD∥CE, BD=CE, 所以A.B两地的距:AM+MN+BN=AM+MN+EM=AE+MN, 若桥的位置建在CD处,连接AC.CD.DB.CE, 则AB两地的距离为: AC+CD+DB=AC+CD+CE=AC+CE+MN, 在△ACE中,∵AC+CE>AE, ∴AC+CE+MN>AE+MN, 即AC+CD+DB >AM+MN+BN 所以桥的位置建在CD处,AB两地的路程最短。

B ·
l
探索新知
追问2 你能用自己的语言说明这个问题的意思, 并把它抽象为数学问题吗?
(1)从A 地出发,到河边l 饮马,然后到B 地; (2)在河边饮马的地点有无穷多处,把这些地点与A,
B 连接起来的两条线段的长度之和,就是从A 地 到饮马地点,再回到B 地的路程之和;
探索新知
追问2 你能用自己的语言说明这个问题的意思, 并把它抽象为数学问题吗?
根据:两点之间线段最短.
引入新知
引言: 前面我们研究过一些关于“两点的所有连线中,线 段最短”、“连接直线外一点与直线上各点的所有线段 中,垂线段最短”等的问题,我们称它们为最短路径问 题.现实生活中经常涉及到选择最短路径的问题,本节 将利用数学知识探究数学史中著名的“将军饮马问题”.
探索新知
问题1 相传,古希腊亚历山大里亚城里有一位久 负盛名的学者,名叫海伦.有一天,一位将军专程拜访 海伦,求教一个百思不得其解的问题:
A· M
C
N D E B
(Ⅲ)一点在两相交直线内部 已知:如图A是锐角∠MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形,
使三角形周长最小.
分析:当AB、BC和AC三条边的长度恰好能够体现在一条直线上时,三角形的周长最小 D B C E
(Ⅲ)一点在两相交直线内部
已知:如图A是锐角∠MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形, 使三角形周长最小.
相关文档
最新文档