电磁场与电磁波静电场物理模拟实验报告
模拟静电场实习报告
一、实习目的本次实习旨在通过模拟静电场实验,加深对静电场理论知识的理解,掌握静电场的基本测量方法,培养实验操作能力和数据分析能力。
通过实习,使学生了解静电场在现实生活中的应用,提高学生的综合素质。
二、实习内容1. 实验原理静电场是指带电体在空间中产生的电场。
静电场的强度可以用电场强度E表示,其方向为正电荷受力方向,大小等于单位正电荷所受的力。
电场强度与电荷量成正比,与距离的平方成反比。
2. 实验仪器(1)静电场描绘仪:用于描绘静电场的等势线和电场线。
(2)模拟电极:提供两点电荷、同轴柱面、聚焦电极等模拟电极。
(3)坐标纸:用于记录实验数据。
(4)万用电表:用于测量电压。
3. 实验步骤(1)搭建实验装置,将模拟电极放入水盘中,连接静电场描绘仪。
(2)调节静电场描绘仪的电压,使其达到实验要求。
(3)在水中测量各点的电势,记录数据。
(4)将测量得到的电势点在坐标纸上打出印迹,同步记录在坐标纸上。
(5)根据测量数据,绘制静电场的等势线和电场线。
4. 实验结果与分析(1)实验结果通过实验,我们得到了静电场的等势线和电场线。
等势线呈同心圆状,电场线呈放射状。
(2)结果分析实验结果表明,静电场的等势线和电场线分布符合理论预期。
等势线与电场线垂直,且等势线间距随着距离的增加而增大。
三、实习总结1. 通过本次实习,我们掌握了静电场的基本测量方法,加深了对静电场理论知识的理解。
2. 实验过程中,我们培养了实验操作能力和数据分析能力,提高了自己的综合素质。
3. 实验结果表明,静电场在现实生活中的应用十分广泛,如静电除尘、静电喷涂等。
四、实习建议1. 在实验过程中,应注意安全操作,避免触电等事故的发生。
2. 在测量数据时,应确保精度,减少误差。
3. 在绘制等势线和电场线时,应注意线条的平滑和清晰。
4. 可进一步研究静电场在实际生活中的应用,如静电防护、静电消除等。
总之,本次模拟静电场实习让我们受益匪浅,不仅加深了对静电场理论知识的理解,还提高了我们的实验操作能力和数据分析能力。
电磁场与电磁波 点电荷模拟实验报告
重庆大学电磁场与电磁波课程实践报告题目:点电荷电场模拟实验日期:2013 年12 月7 日N=28《电磁场与电磁波》课程实践点电荷电场模拟实验1.实验背景电磁场与电磁波课程内容理论性强,概念抽象,较难理解。
在电磁场教学中,各种点电荷的电场线成平面分布,等势面通常用等势线来表示。
MATLAB 是一种广泛应用于工程、科研等计算和数值分析领域的高级计算机语言,以矩阵作为数据操作的基本单位,提供十分丰富的数值计算函数、符号计算功能和强大的绘图能力。
为了更好地理解电场强度的概念,更直观更形象地理解电力线和等势线的物理意义,本实验将应用MATLAB 对点电荷的电场线和等势线进行模拟实验。
2.实验目的应用MATLAB 模拟点电荷的电场线和等势线3.实验原理根据电磁场理论,若电荷在空间激发的电势分布为V ,则电场强度等于电势梯度的负值,即:E V =-∇r真空中若以无穷远为电势零点,则在两个点电荷的电场中,空间的电势分布为: 1212010244q q V V V R R πεπε=+=+本实验中,为便于数值计算,电势可取为1212q q V R R =+4.实验内容应用MATLAB 计算并绘出以下电场线和等势线,其中q 1位于(-1,0,0),q 2位于(1,0,0),n 为个人在班级里的序号:(1) 电偶极子的电场线和等势线(等量异号点电荷对q 2:q 1 = 1,q 2为负电荷);(2) 两个不等量异号电荷的电场线和等势线(q 2:q 1 = 1 + n /2,q 2为负电荷);(3) 两个等量同号电荷的电场线和等势线;(4) 两个不等量同号电荷的电场线和等势线(q 2:q 1 = 1 + n /2);(5) 三个电荷,q 1、q 2为(1)中的电偶极子,q 3为位于(0,0,0)的单位正电荷。
、n=28(1)电偶极子的电场线和等势线(等量异号点电荷对q2:q1 = 1,q2为负电荷);程序1:clear allq=1;xm=;ym=2;x=linspace(-xm,xm);y=linspace(-ym,ym);[X,Y]=meshgrid(x,y);R1=sqrt((X+1).^2+Y.^2);R2=sqrt((X-1).^2+Y.^2);U=1./R1-q./R2;u=-4::4;figurecontour(X,Y,U,u,'--');hold onplot(-1,0,'o','MarkerSize',12);plot(1,0,'o','MarkerSize',12);[Ex,Ey]=gradient(-U,x(2)-x(1),y(2)-y(1));dth1=11;th1=(dth1:dth1:360-dth1)*pi/180;r0=;x1=r0*cos(th1)-1;y1=r0*sin(th1);streamline(X,Y,Ex,Ey,x1,y1);dth2=11;th2=(dth2:dth2:360-dth2)*pi/180;x2=r0*cos(th2)+1;y2=r0*sin(th2);streamline(X,Y,-Ex,-Ey,x2,y2);axis equal tighttitle('μ×óμμ3oíμèê','fontsize',12)(2)两个不等量异号电荷的电场线和等势线(q2:q1 = 1 + n/2,q2为负电荷);程序2:clear allq=15;xm=;ym=2;x=linspace(-xm,xm);y=linspace(-ym,ym);[X,Y]=meshgrid(x,y);R1=sqrt((X+1).^2+Y.^2);R2=sqrt((X-1).^2+Y.^2);U=1./R1-q./R2;u=-4::4;figurecontour(X,Y,U,u,'--');hold onplot(-1,0,'o','MarkerSize',12);plot(1,0,'o','MarkerSize',12);[Ex,Ey]=gradient(-U,x(2)-x(1),y(2)-y(1));dth1=11;th1=(dth1:dth1:360-dth1)*pi/180;r0=;x1=r0*cos(th1)-1;y1=r0*sin(th1);streamline(X,Y,Ex,Ey,x1,y1);dth2=11;th2=(dth2:dth2:360-dth2)*pi/180;x2=r0*cos(th2)+1;y2=r0*sin(th2);streamline(X,Y,-Ex,-Ey,x2,y2);axis equal tighttitle('μ×óμμ3oíμèê','fontsize',12)(3)两个等量同号电荷的电场线和等势线;程序3:clear allq=-1;xm=;ym=2;x=linspace(-xm,xm);y=linspace(-ym,ym);[X,Y]=meshgrid(x,y);R1=sqrt((X+1).^2+Y.^2);R2=sqrt((X-1).^2+Y.^2);U=1./R1-q./R2;u=-4::4;figurecontour(X,Y,U,u,'--');hold onplot(-1,0,'o','MarkerSize',12);plot(1,0,'o','MarkerSize',12);[Ex,Ey]=gradient(-U,x(2)-x(1),y(2)-y(1));dth1=11;th1=(dth1:dth1:360-dth1)*pi/180;r0=;x1=r0*cos(th1)-1;y1=r0*sin(th1);streamline(X,Y,Ex,Ey,x1,y1);dth2=11;th2=(dth2:dth2:360-dth2)*pi/180;x2=r0*cos(th2)+1;y2=r0*sin(th2);streamline(X,Y,Ex,Ey,x2,y2);axis equal tighttitle('μ×óμμ3oíμèê','fontsize',12)(4)两个不等量同号电荷的电场线和等势线(q2:q1 = 1 + n/2);程序4:clear allq=-15;xm=;ym=2;x=linspace(-xm,xm);y=linspace(-ym,ym);[X,Y]=meshgrid(x,y);R1=sqrt((X+1).^2+Y.^2);R2=sqrt((X-1).^2+Y.^2);U=1./R1-q./R2;u=-4::4;figurecontour(X,Y,U,u,'--');hold onplot(-1,0,'o','MarkerSize',12);plot(1,0,'o','MarkerSize',12);[Ex,Ey]=gradient(-U,x(2)-x(1),y(2)-y(1)); dth1=11;th1=(dth1:dth1:360-dth1)*pi/180;r0=;x1=r0*cos(th1)-1;y1=r0*sin(th1);streamline(X,Y,Ex,Ey,x1,y1);dth2=11;th2=(dth2:dth2:360-dth2)*pi/180;x2=r0*cos(th2)+1;y2=r0*sin(th2);streamline(X,Y,Ex,Ey,x2,y2);axis equal tighttitle('μ×óμμ3oíμèê','fontsize',12)(5)三个电荷,q1、q2为(1)中的电偶极子,q3为位于(0,0,0)的单位正电荷程序5:clear allq=1;q3=-1;xm=;ym=2;x=linspace(-xm,xm);y=linspace(-ym,ym);[X,Y]=meshgrid(x,y);R1=sqrt((X+1).^2+Y.^2);R2=sqrt((X-1).^2+Y.^2);R3=sqrt(X.^2+Y.^2);U=1./R1-q./R2-q3./R3;u=-4::4;figurecontour(X,Y,U,u,'--');hold onplot(-1,0,'o','MarkerSize',12);plot(1,0,'o','MarkerSize',12);[Ex,Ey]=gradient(-U,x(2)-x(1),y(2)-y(1));dth1=11;th1=(dth1:dth1:360-dth1)*pi/180;r0=;x1=r0*cos(th1)-1;y1=r0*sin(th1);streamline(X,Y,Ex,Ey,x1,y1);dth2=11;th2=(dth2:dth2:360-dth2)*pi/180;x2=r0*cos(th2)+1;y2=r0*sin(th2);streamline(X,Y,-Ex,-Ey,x2,y2);dth3=11;th3=(dth3:dth3:360-dth3)*pi/180;x3=r0*cos(th3);y3=r0*sin(th3);streamline(X,Y,Ex,Ey,x3,y3);axis equal tighttitle('μ×óμμ3oíμèê','fontsize',12)从实验过程中学习到的东西:1.灵活学习,大胆求证,当不清楚E1,E2,前面符号的正负时,随便假设一个,再根据电荷的正负关系,看得到的图形是否正确,若不正确则再修改符号2.注意q的正负与两电荷是否异号有关,异号与同号q的正负不同3.学习初步使用matlab软件,为以后的学习打好基础4.更加深入地了解电荷的电场线与等势线。
电磁场与电磁波实验报告
实验一 静电场仿真1.实验目的建立静电场中电场及电位空间分布的直观概念。
2.实验仪器计算机一台3.基本原理当电荷的电荷量及其位置均不随时间变化时,电场也就不随时间变化,这种电场称为静电场。
点电荷q 在无限大真空中产生的电场强度E 的数学表达式为(1-1)真空中点电荷产生的电位为(1-2)其中,电场强度是矢量,电位是标量,所以,无数点电荷产生的电场强度和电位是不一样的,电场强度为4= (1-3) 电位为4= (1-4) 本章模拟的就是基本的电位图形。
4.实验内容及步骤(1)点电荷静电场仿真题目:真空中有一个点电荷-q,求其电场分布图。
程序1:负点电荷电场示意图clear[x,y]=meshgrid(-10:1.2:10);E0=8.85e-12;q=1.6*10^(-19);r=[];r=sqrt(x.^2+y.^2+1.0*10^(-10))m=4*pi*E0*r;m1=4*pi*E0*r.^2;E=(-q./m1).*r;surfc(x,y,E);负点电荷电势示意图clear[x,y]=meshgrid(-10:1.2:10); E0=8.85e-12;q=1.6*10^(-19);r=[];r=sqrt(x.^2+y.^2+1.0*10^(-10))m=4*pi*E0*r;m1=4*pi*E0*r.^2;z=-q./m1surfc(x,y,z);xlabel('x','fontsize',16)ylabel('y','fontsize',16)title('负点电荷电势示意图','fontsize',10)程序2clearq=2e-6;k=9e9;a=1.0;b=0;x=-4:0.16:4;y=x; [X,Y]=meshgrid(x,y);R1=sqrt((X+1).^2+Y.^2+1.0*10^(-10)); R2=sqrt((X-1).^2+Y.^2+1.0*10^(-10));Z=q*k*(1./R2-1./R1);[ex,ey]=gradient(-Z);ae=sqrt(ex.^2+ey.^2);ex=ex./ae;ey=ey./ae; cv=linspace(min(min(Z)),max(max(Z)),40); contour(X,Y,Z,cv,'k-');hold onquiver(X,Y,ex,ey,0.7);clearq=2e-6;k=9e9;a=1.0;b=0;x=-4:0.15:4;y=x; [X,Y]=meshgrid(x,y);R1=sqrt((X+1).^2+Y.^2+1.0*10^(-10));R2=sqrt((X-1).^2+Y.^2+1.0*10^(-10));U=q*k*(1./R2-1./R1);[ex,ey]=gradient(-U);ae=sqrt(ex.^2+ey.^2);ex=ex./ae;ey=ey./ae; cv=linspace(min(min(U)),max(max(U)),40); surfc(x,y,U);实验二恒定电场的仿真1.实验目的建立恒定电场中电场及电位空间分布的直观概念。
静电模拟法实验报告
一、实验目的1. 理解静电场模拟法的原理和适用条件。
2. 通过实验,掌握使用模拟法测量静电场的方法和步骤。
3. 加深对电场强度和电势等基本概念的理解。
4. 了解静电场在现实中的应用。
二、实验原理静电场是由电荷分布决定的,其电场强度和电势是描述静电场分布的两个基本物理量。
由于静电场中无电流,传统的测量方法(如磁电式仪表)无法直接测量静电场。
因此,我们采用静电场模拟法,通过稳恒电流场来模拟静电场,从而间接测量静电场分布。
根据电磁学理论,稳恒电流场与静电场满足相同的场方程,即:\[ \oint E \cdot dl = 0 \quad (静电场的环路定理) \]\[ \oint E \cdot dS = 0 \quad (闭合面内无电荷时静电场的高斯定理) \]在实验中,我们利用导电液体或导电板模拟静电场,通过测量模拟场中的电势分布,从而得到静电场的分布情况。
三、实验仪器1. 静电场模拟器2. 导电液体或导电板3. 数字电压表4. 电极5. 导线6. 坐标纸四、实验步骤1. 将导电液体或导电板放置在实验台上,确保其平整。
2. 将电极连接到静电场模拟器上,并将电极放置在导电液体或导电板上。
3. 调节静电场模拟器的电压,使其达到所需值。
4. 使用数字电压表测量电极间的电势差,并记录数据。
5. 根据测量数据,绘制静电场分布图。
五、实验结果与分析1. 通过实验,我们成功绘制了静电场分布图,验证了静电场模拟法的可行性。
2. 实验结果表明,模拟法测量静电场具有较高的准确性和可靠性。
3. 通过分析实验数据,我们加深了对电场强度和电势等基本概念的理解。
六、实验总结1. 静电场模拟法是一种有效的测量静电场的方法,适用于无法直接测量静电场的情况。
2. 通过实验,我们掌握了使用模拟法测量静电场的方法和步骤,加深了对电场强度和电势等基本概念的理解。
3. 静电场在现实中有广泛的应用,如静电除尘、静电喷涂、静电印刷等。
七、注意事项1. 实验过程中,注意电极的放置和电压的调节,确保实验数据的准确性。
用模拟法测绘静电场实验报告
用模拟法测绘静电场实验报告一、实验目的1、学习用模拟法测绘静电场的原理和方法。
2、加深对静电场概念的理解,了解静电场的分布特点。
3、掌握静电场测试仪的使用方法。
二、实验原理静电场是由静止电荷产生的一种特殊物质形态,其分布情况通常难以直接测量。
但我们可以利用相似的电流场来模拟静电场,因为在一定条件下,电流场和静电场的物理规律具有相似性,这种方法称为模拟法。
根据静电场的高斯定理,在真空中,静电场的电场强度 E 沿任意闭合曲面的通量等于该闭合曲面所包围的电荷的代数和除以真空介电常数ε₀。
对于具有一定几何形状和边界条件的带电体所产生的静电场,其场强分布是唯一确定的。
如果我们构造一个与静电场具有相似几何形状和边界条件的电流场,使电流场中的电流密度分布与静电场中的电场强度分布相似,那么就可以通过测量电流场中的电位分布来间接得到静电场的电位分布。
在电流场中,电流密度 J 与电场强度 E 成正比,比例系数为电导率σ。
在均匀介质中,电流密度 J 与电位梯度成正比,即 J =σ∇V,其中V 为电位。
通过测量电流场中的电位分布,利用等位线和电力线的关系,就可以描绘出静电场的电场线分布。
三、实验仪器1、静电场描绘仪2、直流稳压电源3、电压表4、探针5、坐标纸四、实验步骤1、连接电路将直流稳压电源的正、负极分别与静电场描绘仪的正、负极相连,确保连接牢固,无短路现象。
2、选择实验模型本实验采用同轴圆柱面电极模型,内圆柱电极接电源正极,外圆柱电极接电源负极。
3、测量电位将探针与电压表相连,移动探针在电极间的不同位置,测量相应点的电位值,并记录在坐标纸上。
测量时应注意保持探针与电极表面垂直,且接触良好。
4、绘制等位线根据测量得到的电位值,在坐标纸上绘制出等位线。
等位线是指电位相等的点所连成的曲线。
5、绘制电场线根据等位线与电场线的垂直关系,绘制出电场线。
电场线的方向是从高电位指向低电位。
五、实验数据记录与处理|测量点坐标|电位值(V)||::|::||(x₁, y₁) | V₁||(x₂, y₂) | V₂||(x₃, y₃) | V₃||||以坐标原点为中心,根据测量数据绘制等位线和电场线。
模拟静电场实验报告
模拟静电场实验报告实验目的,通过模拟静电场实验,观察静电场的基本性质,探究静电场的产生和影响规律。
实验器材,带有正负极的静电棒、金属小球、绝缘支架、电压计、导线等。
实验原理,静电场是由电荷产生的,当带有正负电荷的物体相互作用时,会产生静电场。
在静电场中,正电荷和负电荷之间会受到电力的作用,从而产生电场力。
实验中,我们可以利用静电棒带电,然后观察静电场对金属小球的作用,通过测量电压计的读数,来了解静电场的强度和分布情况。
实验步骤:1. 将绝缘支架放置在实验台上,确保支架稳固。
2. 将金属小球固定在支架上,保证小球的位置不变。
3. 使用导线连接静电棒和电压计,确保电路连接正确。
4. 将静电棒带电,然后将其靠近金属小球,观察小球的反应并记录下来。
5. 测量电压计的读数,记录下静电场的强度。
实验结果与分析:通过实验观察和数据记录,我们发现当静电棒带正电时,金属小球会受到排斥力,而当静电棒带负电时,金属小球会受到吸引力。
这表明静电场对带电物体有排斥和吸引的作用,且作用力的大小与电荷量成正比。
另外,我们还发现静电场的强度随着距离的增加而减小,这与静电场的基本规律相符。
结论:通过本次实验,我们深入了解了静电场的基本性质和产生规律。
静电场是由电荷产生的,对带电物体有排斥和吸引的作用,且作用力的大小与电荷量成正比。
静电场的强度随着距离的增加而减小。
这些结论对我们进一步研究静电场的特性和应用具有重要意义。
通过本次实验,我们不仅加深了对静电场的理解,还掌握了一些实验操作的技巧。
希望通过今后的实验学习,能够更深入地了解静电场的特性,为将来的科研工作打下坚实的基础。
大学物理实验模拟静电场实验报告
大学物理实验模拟静电场实验报告一、实验目的1、学习用模拟法测绘静电场的分布。
2、加深对静电场概念和电场强度、电势等物理量的理解。
二、实验原理1、静电场的描述静电场是由静止电荷所产生的一种特殊物质形态,其基本特征是对放入其中的电荷有力的作用。
电场强度E 是描述电场力性质的物理量,定义为单位正电荷在电场中所受的力;电势 V 是描述电场能性质的物理量,某点的电势等于单位正电荷从该点移至电势零点时电场力所做的功。
2、模拟法测绘静电场直接测量静电场的分布是很困难的,因为静电场中没有电流,一般的磁电式仪表不起作用,而且测量探头的引入会导致原静电场的分布发生改变。
模拟法是在一定条件下,用一种易于实现、便于测量的物理场来模拟另一种不易测量的物理场。
本实验用稳恒电流场来模拟静电场。
对于静电场,其场强分布满足高斯定理和环路定理。
对于稳恒电流场,其电流分布也满足类似的规律。
在两种场中,若电极的形状、相对位置和电导率分布相同,且边界条件一致,则它们的场分布相同。
3、同轴圆柱面间静电场的分布设圆柱形电极 A 的半径为 ra,电位为 Va,圆柱形电极 B 的半径为rb(rb > ra),电位为 Vb(通常接地,Vb = 0),则在两电极间的空间,电场中距离轴线为 r 处的电势为:\ V = V_a \frac{\ln(r / r_a)}{\ln(r_b / r_a)}\电场强度为:\ E =\frac{dV}{dr} =\frac{V_a}{r \ln(r_b / r_a)}\三、实验仪器静电场描绘仪、直流稳压电源、电压表、坐标纸、导电纸、探针等。
四、实验内容及步骤1、连接电路将静电场描绘仪与直流稳压电源连接好,确保电路连接正确无误。
2、安放电极将圆柱形电极 A 和 B 安放在静电场描绘仪的相应位置上。
3、铺设导电纸在电极上铺上导电纸,使其与电极良好接触。
4、测量电势用探针在导电纸上选取若干个点,测量这些点的电势,并记录下来。
最新电磁场与电磁波实验报告
最新电磁场与电磁波实验报告
在本次实验中,我们深入研究了电磁场与电磁波的基本特性,并进行了一系列的实验来验证理论和观测实际现象。
以下是实验的主要部分和观察结果的概述。
实验一:静电场的建立与测量
我们首先建立了一个简单的静电场,通过使用高压电源对两个相对的金属板进行充电。
通过改变电源的电压,我们观察到金属板上的电荷积累情况,并使用电位差计测量了电场强度。
实验数据显示,电场强度与电压成正比,这与库仑定律的预测一致。
实验二:电磁波的产生与传播
接下来,我们通过振荡电路产生了电磁波。
在一个封闭的微波腔中,我们使用电磁波发生器产生不同频率的电磁波,并通过特殊的探测器来测量波的传播特性。
实验结果表明,电磁波的传播速度在不同的介质中有所变化,这与介质的电磁特性有关。
实验三:电磁波的极化与干涉
在这部分实验中,我们研究了电磁波的极化现象。
通过使用不同极化的波前,我们观察到了波的干涉效应。
特别是在双缝干涉实验中,我们观察到了明显的干涉条纹,这证明了电磁波的波动性质。
实验四:电磁波的吸收与反射
最后,我们探讨了电磁波与物质相互作用的过程。
通过将电磁波照射在不同材料的样品上,我们测量了波的吸收和反射率。
实验发现,吸收和反射率与材料的电磁性质密切相关,并且可以通过改变波的频率来调整这些性质。
通过这些实验,我们不仅验证了电磁场与电磁波的基本理论,而且加深了对这些现象在实际应用中的理解。
这些实验结果对于无线通信、雷达技术以及其他相关领域的研究和开发具有重要的指导意义。
静电场的模拟实验报告
静电场的模拟实验报告静电场的模拟实验报告引言:静电场是物理学中的重要概念,它在我们日常生活中无处不在。
为了更好地理解静电场的性质和特点,我们进行了一系列模拟实验。
本报告将详细介绍实验的目的、方法、结果和分析。
实验目的:1. 研究静电场的基本性质和规律。
2. 探究不同电荷分布对静电场的影响。
3. 分析静电场的电场强度和电势分布。
实验材料和仪器:1. 电荷模拟实验仪器2. 电荷计3. 导线和电荷载体实验方法:1. 准备电荷模拟实验仪器,确保其正常工作。
2. 在实验仪器上设置不同形状和大小的电荷分布,如点电荷、线电荷、面电荷等。
3. 使用电荷计测量不同位置的电场强度和电势。
4. 记录实验数据,并进行分析和比较。
实验结果:1. 不同电荷分布产生了不同形状和强度的电场。
2. 点电荷产生的电场呈球对称分布,电场强度随距离的增加而减小。
3. 线电荷产生的电场呈圆柱对称分布,电场强度随距离的增加而减小。
4. 面电荷产生的电场呈平面对称分布,电场强度在表面附近较强。
5. 电场强度和电势之间存在一定的关系,电势随电场强度的增加而增加。
实验分析:1. 实验结果验证了静电场的基本规律,即电荷分布决定了电场的形状和强度。
2. 点电荷、线电荷和面电荷是理论上的理想模型,实际中很难完全实现。
然而,通过模拟实验,我们可以更好地理解静电场的性质。
3. 电场强度和电势是描述静电场的重要参数,它们对电荷的运动和相互作用有着重要影响。
实验应用:1. 静电场的研究对于电磁学、电子学和材料科学等领域具有重要意义。
2. 静电场的理论和实验研究为电荷的分离、储存和传输提供了基础。
3. 静电场的应用广泛,如静电喷涂、静电除尘、静电粉末涂层等。
结论:通过模拟实验,我们深入了解了静电场的基本性质和规律。
实验结果验证了理论预测,并为静电场的应用提供了理论和实验基础。
静电场的研究对于推动科学技术的发展和改善我们的生活具有重要意义。
在今后的学习和研究中,我们将进一步探索静电场的特性和应用,为人类社会的进步做出贡献。
电磁场与电磁波实验报告
电磁场与电磁波实验报告实验题目:电磁场与电磁波实验实验目的:1.了解电磁场的产生原理和特性。
2.理解电磁波的概念和基本特性。
3.掌握测量和分析不同电磁波的实验方法。
实验器材:1.U形磁铁2.电磁铁3.直流电源4.交流电源5.电磁感应器6.示波器7.微波源8.微波接收器9.光栅片10.各种电磁波滤波器实验原理:1.电磁场的产生:电流通过电线时,会在周围产生磁场。
在一对平行导线中,当电流方向相同时,导线之间的磁场是叠加的;当电流方向相反时,导线之间的磁场互相抵消。
2.电磁场的特性:电磁场具有两种性质,即不能长距离传播和具有作用力。
通过电磁感应现象,可以观察到电磁场的作用力。
3.电磁波的产生与传播:当电场和磁场变化时,会激发并产生电磁波。
电磁波可根据频率不同被分为不同波段,如:无线电波、微波、红外线、可见光、紫外线、X射线和γ射线。
实验步骤:实验1:观察电磁场的产生和作用1.将磁铁插入U形磁铁中,并将直流电源连接到U形磁铁的两端;2.在U形磁铁下方放置一根金属杆,并用电磁感应器在金属杆上方测量磁感应强度;3.开启直流电源,记录不同电流强度下的磁感应强度,并绘制电流与磁感应强度的图线;4.在磁铁两端放置一磁性物体,观察其受力情况。
实验2:测量电磁波的特性1.将微波源和微波接收器分别连接至交流电源和示波器;2.将微波源调至一定频率,并记录该频率;3.调整示波器至合适的量程和垂直偏置,观察示波器上的微波信号;4.更换不同频率和波长的电磁波,重复步骤3;5.将光栅片放置在微波源与接收器之间,观察光栅片的衍射效应。
实验结果与分析:实验1:观察电磁场的产生和作用根据实验数据,绘制出电流与磁感应强度的图线,可以观察到磁感应强度与电流之间呈现线性关系,并且磁性物体受到磁力的作用。
实验2:测量电磁波的特性根据实验数据,可以观察到不同频率和波长的电磁波在示波器上表现出不同的振动形态,频率越高,波长越短。
通过光栅片的衍射效应,可以观察到电磁波的波长。
模拟静电场实验报告
模拟静电场实验报告模拟静电场实验报告引言:静电场是物理学中的重要概念,它描述了由电荷引起的电力作用。
为了更好地理解和研究静电场,我们进行了一次模拟静电场实验。
本报告将详细介绍实验的目的、实验装置、实验过程和实验结果,并对实验结果进行分析和讨论。
一、实验目的本次实验的目的是通过模拟静电场,探究电荷之间的相互作用以及静电力的特性。
通过实验,我们可以更好地理解静电场的概念,加深对电荷分布和电场强度的理解,同时也可以探索静电力的大小和方向。
二、实验装置我们使用了一个模拟静电场的装置,包括一个带电体和几个探针。
带电体是一个金属球,其表面带有电荷。
探针是用来测量电场强度的工具,可以在不同位置上测量电场的强度。
三、实验过程1. 准备工作:首先,我们将实验装置放置在一个干燥的环境中,以避免静电干扰。
然后,我们将金属球带电体连接到电源上,通过调节电源的电压来控制金属球的电荷量。
2. 测量电场强度:接下来,我们将探针放置在不同的位置,并使用电场计测量电场强度。
我们在不同的距离上测量电场强度,并记录下测量结果。
3. 改变电荷量:为了进一步研究静电场的特性,我们改变了金属球的电荷量。
通过增加或减少电源的电压,我们可以调整金属球的电荷量,并观察电场强度的变化。
四、实验结果通过实验,我们得到了一系列的电场强度测量结果。
我们发现,电场强度随着距离的增加而减小,符合静电场的特性。
此外,我们还观察到改变金属球的电荷量会导致电场强度的变化,电场强度与电荷量成正比。
五、结果分析和讨论根据实验结果,我们可以得出以下结论:1. 静电场的电场强度与距离成反比,即电场强度随着距离的增加而减小。
这是由于静电力的作用范围有限,随着距离的增加,电场的强度逐渐减弱。
2. 静电场的电场强度与电荷量成正比,即电场强度随着电荷量的增加而增大。
这是由于电荷之间的相互作用导致了电场的形成,电荷量越大,电场强度越大。
然而,实验中也存在一些不确定性和误差。
例如,实验装置的精度和环境因素都可能对实验结果产生影响。
模拟静电场实验报告
模拟静电场实验报告近日,我在实验室进行了一次模拟静电场实验,探究静电场的基本性质和相关应用。
本文将详细介绍实验过程、结果以及对实验的感悟。
实验过程首先,我们将使用电容特性仪器测定两个相距一定距离的平行金属板的电容值。
通过更改金属板的距离和面积,可以观察电容值的变化,并且可以利用公式计算出两个金属板之间的电荷量和电场强度。
接下来,我们使用特制的电容放电器对金属板进行带电。
我们可以调节放电电压和电荷量,同时记录下金属板表面的静电电势分布图。
通过实验数据计算出金属板表面的电场强度和电荷密度分布情况,并比较其与理论值的差异。
最后,我们尝试在静电场中放置导体和非导体物体,观察它们在静电场中的运动情况。
我们可以通过实验数据计算出它们在静电场中所受的力和加速度,从而深入理解静电力的本质。
实验结果通过实验数据计算,我们得出了静电场中两个平行金属板的电荷量和电场强度,与理论值相差不大,证明了静电场实验模拟的可靠性。
在静电场中放置导体物体和非导体物体,我们观察到了它们在静电场中的运动情况。
导体物体在静电场中无法保持静止,因为导体内的自由电子会受到作用力而运动;而非导体物体则可以保持相对静止的状态。
同时,我们也计算出了它们所受的力和加速度,验证了静电力对物体运动的影响。
实验感悟本次模拟静电场实验让我深入了解了静电力的本质和相关性质。
静电力是指带电物体相互作用的力,它是自然界中普遍存在的力。
通过静电场实验,我们可以量化静电场的基本性质,同时深入研究静电力对物体运动的影响。
此外,静电力的应用也非常广泛。
它可以用于使用静电沉降法净化水源、制造静电喷粉涂料、使用静电势场分选微粒等方面,具有广泛的社会意义和经济价值。
总结本次实验让我深入理解了静电场的基本性质和相关应用。
通过实验数据计算分析,我们得到了静电力对物体运动的影响,也得到了静电场在实际应用中的广泛应用。
通过与理论值的比较,我们证明了实验的可靠性和准确性。
本次实验不仅增涨了我对静电场的认识,也让我深刻了解了实验科学研究的基本方法和过程。
电磁场与波实验报告
电磁场与波实验报告电磁场与波实验报告引言:电磁场与波是物理学中重要的研究对象,对于我们理解光、电、磁等现象具有重要意义。
为了更好地探究电磁场与波的性质,我们进行了一系列实验,下面将对实验过程和结果进行详细报告。
实验一:电磁感应现象实验目的:通过实验观察电磁感应现象,验证法拉第电磁感应定律。
实验装置:实验装置由一根导线、一个磁铁和一个电流表组成。
实验步骤:1. 将导线绕在一个纸芯上,形成一个线圈。
2. 将磁铁靠近线圈,观察电流表的指示情况。
实验结果:当磁铁靠近线圈时,电流表指针发生偏转,表明在导线中产生了电流。
当磁铁远离线圈时,电流方向相反。
这一现象验证了法拉第电磁感应定律,即磁场的变化会引起导线中的电流。
实验二:电磁波的传播实验目的:通过实验观察电磁波的传播特性,验证电磁波的存在。
实验装置:实验装置由一个发射器和一个接收器组成。
实验步骤:1. 将发射器放置在一定距离内,接通电源。
2. 在接收器处设置一个示波器,调节示波器的参数。
3. 观察示波器上的波形变化。
实验结果:当发射器工作时,示波器上出现了一定频率的波形。
通过调节示波器参数,我们可以观察到电磁波的传播特性,包括波长、频率等。
这一实验结果验证了电磁波的存在,并且进一步揭示了电磁波的传播特性。
实验三:电磁波的干涉实验目的:通过实验观察电磁波的干涉现象,验证电磁波的波动性质。
实验装置:实验装置由一个光源、一个狭缝、一个屏幕和一个检测器组成。
实验步骤:1. 将光源置于一定位置,使其照射到狭缝上。
2. 在屏幕上观察到干涉条纹的出现。
3. 使用检测器测量干涉条纹的强度。
实验结果:在屏幕上观察到了明暗相间的干涉条纹,这表明电磁波具有波动性质。
通过检测器的测量,我们可以进一步研究干涉条纹的强度分布规律。
这一实验结果验证了电磁波的波动性质,并且揭示了电磁波的干涉现象。
结论:通过以上实验,我们验证了电磁感应定律、电磁波的存在以及电磁波的波动性质。
电磁场与波是物理学中重要的研究对象,对于我们理解光、电、磁等现象具有重要意义。
静电场模拟实验报告
静电场模拟实验报告静电场模拟实验报告引言:静电场是物理学中一个重要的概念,它描述了由电荷引起的力场。
为了更好地理解静电场的性质和特点,我们进行了一系列的模拟实验。
本报告将详细介绍实验的目的、实验步骤、实验结果以及对实验结果的分析和讨论。
实验目的:本次实验的目的是通过模拟静电场,探究电荷间的相互作用和静电力的性质。
同时,我们还希望通过实验验证库仑定律,并探讨电场强度与电荷量、距离之间的关系。
实验步骤:1. 准备工作:将实验所需的材料准备齐全,包括电荷模拟器、导线、电压表、电流表等。
2. 搭建电荷模拟器:根据实验要求,搭建一个能够模拟静电场的装置。
将电荷模拟器放置在一个绝缘材料上,并将导线连接到电荷模拟器的两个极端。
3. 测量电场强度:在不同位置上,使用电压表和电流表测量电场强度。
记录下不同位置的电场强度数值,并进行比较。
4. 探究电场线:通过将一根细导线放置在电场中,观察导线上的电荷分布情况。
根据导线上电荷的分布情况,描绘出电场线。
5. 验证库仑定律:根据实验结果,验证库仑定律。
通过改变电荷量和距离,观察电场强度的变化情况,并与库仑定律进行对比。
实验结果:通过实验,我们得到了一系列的实验结果。
首先,我们观察到电场强度随着距离的增加而减小,这与我们的预期一致。
其次,实验结果验证了库仑定律,即电场强度与电荷量成正比,与距离的平方成反比。
进一步分析和讨论:实验结果的一致性和准确性表明了我们实验设计的合理性。
通过观察电场线的分布,我们可以清楚地看到电荷在空间中的分布情况,从而更好地理解静电场的性质。
此外,实验结果还与理论模型相符合,这进一步验证了我们对静电场的认识和理解。
然而,实验中也存在一些误差和不确定性。
例如,实验过程中可能存在测量误差,导致实际测得的数值与理论值有所偏差。
此外,由于实验条件的限制,我们无法完全模拟真实的静电场,因此实验结果仅能作为近似值使用。
结论:通过本次实验,我们成功地模拟了静电场,并验证了库仑定律。
电磁场与电磁波实验报告
电磁场与电磁波实验报告
实验目的:通过实验探究电磁场和电磁波的相关性质,加深对电磁
学原理的理解,掌握相关实验操作技巧。
一、实验仪器与材料
本次实验所用仪器设备包括:
1. 电磁场产生装置;
2. 电场仪表;
3. 磁场仪表;
4. 信号发生器;
5. 示波器等。
二、实验步骤
1. 观察并记录电磁场产生装置的工作原理,了解电磁场的形成过程;
2. 利用电场仪表和磁场仪表分别测量电磁场的电场分量和磁场分量,并记录实验数据;
3. 通过调节信号发生器的频率和幅度,产生不同频率的电磁波,并
利用示波器观察并记录波形;
4. 将电磁场和电磁波的实验数据整理,形成图表和曲线。
三、实验结果与分析
根据实验数据,我们可以观察到电磁场和电磁波在不同频率下的表现。
电磁场的电场分量和磁场分量呈现出明显的变化规律,频率越高,波动频率越密集;而电磁波的波形随着频率的增加呈现出不同的特征,频率在一定范围内变化会引起频率响应的变化。
四、结论与思考
通过本次实验,我们深入了解了电磁场和电磁波的相关特性,了解
到电磁场和电磁波在不同频率下的表现差异。
同时,我们也发现了实
验过程中需要注意的细节问题,如仪器的校准和操作注意事项等。
通
过实验,我们不仅加深了对电磁学理论知识的理解,也提高了实验操
作的技巧和分析能力。
综上所述,电磁场与电磁波实验为我们提供了一个直观、具体的实
践平台,促进了电磁学知识的学习与应用,为我们日后的研究与工作
打下了坚实的基础。
电磁模拟试验实验报告
电磁模拟试验实验报告实验目的:本实验旨在通过模拟电磁场的分布和变化,加深对电磁场理论的理解,掌握电磁场的模拟方法,并通过实验结果验证理论计算的准确性。
实验原理:电磁场是由变化的电场和磁场相互作用产生的,其分布和变化遵循麦克斯韦方程组。
在本实验中,我们使用计算机模拟软件来模拟电磁场的分布,通过改变电流源、介质参数等条件,观察电磁场的变化。
实验设备与材料:1. 计算机一台,安装有电磁场模拟软件。
2. 模拟软件所需的输入参数,包括电流源、介质的介电常数和磁导率等。
实验步骤:1. 打开电磁场模拟软件,设置实验参数,包括电流源的强度、频率,以及介质的物理特性。
2. 根据实验要求,选择合适的模拟区域和边界条件。
3. 运行模拟程序,观察电磁场的分布情况,并记录关键数据。
4. 改变电流源的参数或介质特性,重复步骤3,比较不同条件下的电磁场分布。
5. 根据模拟结果,绘制电磁场分布图,并与理论计算结果进行对比分析。
实验结果:通过模拟软件,我们得到了不同条件下电磁场的分布图。
在实验中,我们观察到电流源的强度和频率对电磁场分布有显著影响。
当电流源强度增大时,电磁场的强度也随之增大;频率增加时,电磁场的分布范围扩大。
介质的介电常数和磁导率也会影响电磁场的分布,介电常数增大时,电磁场在介质中的衰减减小,而磁导率的增大则会导致磁场强度的增加。
实验分析:实验结果与理论预期相符,验证了麦克斯韦方程组在描述电磁场分布方面的准确性。
通过改变电流源和介质参数,我们能够直观地理解这些因素对电磁场分布的影响。
此外,模拟软件的使用为电磁场的可视化提供了便利,有助于加深对电磁场理论的理解。
实验结论:本实验成功地模拟了电磁场的分布,并验证了理论计算的准确性。
通过改变电流源和介质参数,我们能够观察到电磁场分布的变化,这有助于我们更好地理解电磁场的物理特性。
实验结果表明,电磁场模拟软件是一个有效的工具,可以用于教学和科研工作。
实验建议:为了进一步提高实验的准确性和实用性,建议在未来的实验中增加更多的参数变化,如温度、湿度等环境因素,以及更复杂的介质结构。
电磁场与电磁波静电场物理模拟实验报告
电磁场与电磁波实验报告实验项目:__ 静电场物理模拟_____________________一、实验目的要求1. 理解物理模拟法的实验原理和应用条件。
2. 学习用物理模拟法研究静电场。
3. 加深对静电场场强和电位的理解。
二、实验内容1. 了解装置电路及实验原理。
2. 描绘矩形水槽薄水层中两个点电极产生的二维静电场。
三、实验仪器与软件矩形水槽、坐标纸两张、稳压电源和电压表,模拟电极、导线、固定支架。
四、实验原理理论上讲,如果知道了电荷的分布,就可以确定静电场的分布。
电场既可以用电场强度0E(电力线)来描述,又可以用电势U (等势面、线)来描述。
由于标量的测量和计算比矢量简便,因此,人们更愿意用电势来描述电场。
在给定条件下,确定系统静电场分布的方法,一般有解析法﹑数值模拟法和物理模拟法。
解析法只能求解一些简单的问题;数值模拟法,也就是数值计算方法,它能解决一些复杂的问题,虽计算量很大,但在计算机的帮助下,目前已经得到长足的发展,应用很广,数值模拟也有不足之处,对于一些形状比较复杂的带电体或电极周围静电场的分布,求解也非常困难。
模拟法作为一种重要的实验研究方法,它本质上是用一种易于实现﹑便于测量的物理状态或过程来模拟另一种不易实现﹑不便测量的物理状态或过程。
其条件是两种状态或过程有两组一一对应的物理量,并且满足相同形式的数学规律。
由于静电场中不存在电流,一般磁电式仪表,在有电流时才会有反应,因此难以确定静电场的等势线。
由于在一定条件下电介质中的稳恒电流场与静电场服从相同的数学规律,可以用恒定电流的电场模拟静电场。
如接到直流电源两端的小圆柱形电极之间形成的恒定电场,可以用来模拟等量异种电荷之间的静电场。
静电场与稳恒电流场的对应关系为导体上的电荷 ±Q电场强度 E介电常数极间电流±I 电场强度E电导率电位移 D=E无电荷区0E dS ε⋅=⎰电位满足 02=∇U电流密度 J=E无源区0E dS σ⋅=⎰电位满足 02=∇U根据上表中的对应关系可知,要想在实验上用稳恒电流场来模拟静电场,需要满足下面三个条件:⑴电极系统与导体几何形状相同或相似; ⑵导电质与电介质分布规律相同或相似;⑶电极的电导率远大于导电质的电导率,以保证电极表面为等势面。
模拟静电场实验报告
模拟静电场实验报告引言静电场是物理学中的一个重要概念,对于我们理解电荷和电场之间的相互作用具有极大的意义。
在本次实验中,我们通过模拟实验的方式探索静电场的基本性质,并结合实验结果进行进一步分析和讨论。
实验目的本次实验的目的是通过模拟静电场的形成和性质,深入理解电荷之间相互作用的规律,并通过实验数据进行分析和验证。
实验材料和方法材料:1. 高质量导体球体2. 塑料杯3. 塑料把手4. 电子天平5. 实验台方法:1. 将导体球体放在实验台上,并用电子天平测量其质量。
2. 将塑料把手插入塑料杯底部,并将杯子放在实验台上。
3. 将导体球体移近塑料杯,观察球体的运动情况。
4. 重复实验,记录不同条件下球体运动的变化。
实验结果在实验过程中,我们观察到以下现象:1. 当导体球靠近塑料杯时,球体受到塑料杯的吸引,向塑料杯移动。
2. 当导体球接触到塑料杯后,球体和杯子之间发生静电作用,导致球体停止运动。
3. 当导体球与塑料杯分离时,球体被远离塑料杯的力推离。
讨论和分析根据实验结果,我们可以得出以下结论和讨论:1. 静电力的存在:导体球与塑料杯之间的运动变化表明存在着静电力的作用。
静电力是由不同电荷之间产生的相互作用所引起的,其中正电荷和负电荷之间会相互吸引,同种电荷之间会相互排斥。
2. 静电场的形成:当导体球靠近塑料杯时,由于球和杯之间的接触,电荷会从球转移到杯子上,导致电荷分布不均,形成静电场。
静电场是由电荷分布所产生的一种力场,在空间中具有方向和强度。
3. 静电场的效应:我们观察到当导体球接触到塑料杯后,球体停止运动。
这是由于静电场的存在,在球体和杯子之间形成了静电力的平衡,阻止了球体继续运动。
当球和杯分离时,静电力的平衡被打破,导致球体被远离杯子的力所推动。
结论通过对模拟静电场的实验,我们在实验过程中观察到了静电力的作用,以及静电场形成和效应的相关现象。
这些实验结果加深了我们对静电场基本性质的理解,并为我们进一步研究电荷和电场之间的相互作用提供了实验基础。
中山学院电磁波实验——电磁场与电磁波实验0512
实验一电磁场分布模拟测量实验一、实验目的1、学会用恒定电流场描绘模拟静电场的实验方法。
2、研究电场线的分布规律。
3、加深对电场强度和电势概念的理解.二、实验概述电场强度和电势是表征电场特性的两个基本物理量,为了形象地表示静电场,常采用电场线(曾称电力线)和等势面来描绘静电场.电场线与等势面处处正交,因此有了等势面的图形就可以大致画出电场线的分布图,反之亦然。
静电场的研究有多种方法,模拟法就是一种重要的实验方法.两个物理量之间,只要具有相同的物理模型或相同的数学表达式,就可以用一个物理量去定量地或定性地模仿另一个物理量,这种方法称为模拟法.本实验采用稳恒电流场模拟静电场的方法来描绘等势线。
用灵敏电流计检测出一组等势点子,然后将这些等势点用光滑曲线连接起来,就描绘出了等势线。
三、实验准备本实验与微安电流表和稳压电源配合使用。
1、把实验器底板放正,旋下底板上的接线柱帽,并取下电极圈。
2、将打好孔的白纸、复写纸、导电纸依次套进接线柱螺杆上放平。
3、将接线柱帽旋入螺杆,同时把接线叉嵌入。
然后把接线帽旋紧使电极与导电纸接触良好。
4、将“+5V输出”端口与接线柱正负端相连接。
5、在两电极之间,均匀地在导电纸上取5个小点,作为实验基准点(A、B、C、D、E,学生自己标注)。
四、实验方法1、上述步骤安装完毕后,检查一个是否有接触和松动处。
2、检查无误后,接通“+5V”电源供电电路。
3、将一根探针放在基准点A上,用另一根探针尖在该附近找寻与A等势的点,电流表指针偏转越小,就越接近要找的点。
若找到某一点A1,指针无偏转,处于零位,就把探针用力按一下,白纸上便留下了与A等势的点A1。
4、用相同的方法可以找出A2、A3、、、A8等七个点,这样就取出了一条等势线的点。
5、把探针从A移到B,参照上述方法找出与B等势的点B1、B2、、、、B8。
6、依次类推,共找出五条等势线的点7、切断电源、取出白纸,分组把点用光滑曲线连成一条等势线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁场与电磁波实验报告
实验项目:__ 静电场物理模拟_____________________
一、实验目的要求
1. 理解物理模拟法的实验原理和应用条件。
2. 学习用物理模拟法研究静电场。
3. 加深对静电场场强和电位的理解。
二、实验内容
1. 了解装置电路及实验原理。
2. 描绘矩形水槽薄水层中两个点电极产生的二维静电场。
三、实验仪器与软件
矩形水槽、坐标纸两张、稳压电源和电压表,模拟电极、导线、固定支架。
四、实验原理
理论上讲,如果知道了电荷的分布,就可以确定静电场的分布。
电场既可以用电场强度
0E
(电力线)来描述,又可以用电势U (等势面、线)来描述。
由于标量的测量和计算比
矢量简便,因此,人们更愿意用电势来描述电场。
在给定条件下,确定系统静电场分布的方法,一般有解析法﹑数值模拟法和物理模拟法。
解析法只能求解一些简单的问题;数值模拟
法,也就是数值计算方法,它能解决一些复杂的问题,虽计算量很大,但在计算机的帮助下,目前已经得到长足的发展,应用很广,数值模拟也有不足之处,对于一些形状比较复杂的带电体或电极周围静电场的分布,求解也非常困难。
模拟法作为一种重要的实验研究方法,它本质上是用一种易于实现﹑便于测量的物理状态或过程来模拟另一种不易实现﹑不便测量的物理状态或过程。
其条件是两种状态或过程有两组一一对应的物理量,并且满足相同形式的数学规律。
由于静电场中不存在电流,一般磁电式仪表,在有电流时才会有反应,因此难以确定静电场的等势线。
由于在一定条件下电介质中的稳恒电流场与静电场服从相同的数学规律,可以用恒定电流的电场模拟静电场。
如接到直流电源两端的小圆柱形电极之间形成的恒定电场,可以用来模拟等量异种电荷之间的静电场。
静电场与稳恒电流场的对应关系为
⎰02
=∇U
⎰
电位满足 02
=∇U
根据上表中的对应关系可知,要想在实验上用稳恒电流场来模拟静电场,需要满足下面三个条件:
⑴电极系统与导体几何形状相同或相似; ⑵导电质与电介质分布规律相同或相似;
⑶电极的电导率远大于导电质的电导率,以保证电极表面为等势面。
实验中确定等势点的根据是:当两点电势相等时,连接该两点间的导线上无电流通过,否则将有电流从高电势点流向低电势点。
五、实验步骤
1. 将坐标纸压在盛有薄水层的透明水槽下面,如图一所示;
2. 根据各组的情况,确定供电电极A (正极,电位为U 0),B (负极电位为零)的坐标,
然后按图一的方式,接好电路。
为了接触良好,供电电极A,B 也要固定好。
电压表的两支表笔(红表笔为M,黑表笔为N)用作探针,用于测量等位线。
3、测量AB 之间的电压U 0 = 20V 。
测量以下电位的等值线:8V,10V,12V,14V,16V 。
4、黑表笔N 极接B 极,红表笔M 极轻轻在薄水层上滑动,当电压表的读数为8V 时, 将红表笔M 极固定,并读出水槽下面坐标纸上的坐标, 记录在另一张坐标纸上。
5、再让黑表笔N 极轻轻在薄水层上滑动,当电压表的读数为0时,每隔0.5~3cm 的间距,读出水槽下面坐标纸上的坐标,并将这些点的位置标在另一张坐标纸上,就可记录下8V 的等位线。
6、重复4-5的操作,记录U 1
,U 2,U 3,……,U n = 8V,10V,12V,14V,16V 的等位线,直到全部测完。
图一、静电场物理模拟实验仪器接线图
7、关闭电源,根据坐标纸上的点用点划线勾画等值线图。
8、改变AB之间的电压U0,重复4-7的操作,并观察两种情况下的电位分布是否一样,分析其原因。
注意事项
1.为保证模拟场准确,水层必须薄,否则不能近似为二维问题。
2.为避免接触电阻对探测的影响,必须确保电极与水层接触良好,且应尽量与坐标纸面垂直。
3.等势点间距离不要太大,一般在0.5~2cm左右,•对于等位线曲率较大或靠近供电电极处应多测一些等位点。
六、结果分析问题讨论
1.用电流场模拟静电场的理论依据是什么?
答:由于在一定条件下电介质中的稳恒电流场与静电场服从相同的数学规律,可以用恒定电流的电场模拟静电场。
2.分析影响探测结果的各种因素?
答:供电电极没有固定好;电压表的两支表笔没有垂直插入水中,没有垂直透过薄水层观察坐标纸坐标;测量等位线时两表笔之间电阻不正好为零,有测量误差等。
3.分析A、B极与水层之间的接触电阻的变化对观测结果的影响,如何避免?
答:为避免接触电阻对探测的影响,必须确保电极与水层接触良好,且应尽量与坐标纸面垂直。
4.如果要描绘12V的等位线,下面哪一种做法正确?并说明原因。
a. 黑表笔N极接B极,红表笔M极在水中轻轻滑动,当电压表的读数为12时
用力按一下,在坐标纸上记录该点的位置,并将红表笔M极固定;再让黑表笔N极轻轻在薄水层上滑动,当电压表的读数为0时,每隔0.5~2cm的间距在坐标纸上记录这些点的位置,就可记录下12V的等位线。
b. 黑表笔N极始终接B极,让红表笔M极不断地在水中轻轻滑动,只要电压
表的读数为12时,每隔0.5~2cm的间距,在坐标纸上就可记录下12V的等位线。
答:A种做法正确,可减小误差。
5.如果电源电压增加一倍,等位线与电力线的形状是否变化?
答:电源电压增加一倍后,等位线变密集,电力线没有变化。
6.与实验一数值模拟的结果进行对比,分析电位等值线图不完全一样的原因。
答:无实验一。