大地测量学考试总结分解
太原理工大学大地测量学基础全部复习总结分解
大地测量复习总结大地水准面:我们把完全静止的海水面所形成的重力等位面,专称它为大地水准面正高:正高系统是以大地水准面为高程基准面,地面上任一点的正高是该点沿垂线方向至大地水准面的距离。
正常高:正常高系统是地面点到一个与大地水准面极为接近的基准面的距离,这个基准面称为似大地水准面。
垂线偏差:地面一点上的重力向量g 和相应椭球面上的法线向量 n 之间的夹角定义为该点的垂线偏差。
法截面:过椭球面上任意一点可作垂直于椭球面的法线,包含这条法线的平面就叫法截面。
法截线(法截弧):法截面与椭球面的交线。
卯酉圈:过某点法线的无数个法截面中,与子午面相垂直的法截面同椭球面相截形成的闭合圈就称为卯酉圈。
将地面观测的方向值归算到椭球面基本要求:1) 以椭球面的法线为基准;2) 将地面观测元素化为椭球面上大地线的相应元素。
大地主题正解:已知一点的大地经度、大地纬度以及该点至待求点的大地线长度和大地方位角,计算待求点的大地经度、大地纬度和待求点至已知点的大地方位角的解算。
大地主题反解:已知两点的大地经度和大地纬度,计算这两点间的大地线长度和正反大地方位角的解算。
高斯投影的特点:1) 中央子午线投影后为直线,且长度不变。
2) 除中央子午线外,其余子午线的投影均为凹向中央子午线的曲线,并以中央子午线为对称轴。
投影后有长度变形。
3) 赤道线投影后为直线,但有长度变形。
4) 除赤道外的其余纬线,投影后为凸向赤道的曲线,并以赤道为对称轴。
5) 经线与纬线投影后仍然保持正交。
6) 所有长度变形的线段,其长度变形比均大于l 。
7) 离中央子午线愈远,长度变形愈大。
将椭球面三角系归算到高斯投影面的主要内容:1) 将起始点的大地坐标B ,L 归算为高斯平面直角坐标x ,y ;为了检核还应进行反算,亦即根据x ,y 反算B ,L 。
2) 通过计算该点的子午线收敛角及方向改正,将椭球面上起算边大地方位角归算到高斯平面上相应边的坐标方位角。
大地测量学基础知识要点考点总结
大地测量学基础知识要点考点总结《大地测量基础》知识要点第二章坐标与时间系统1、地轴方向相对于空间的变化(岁差和章动)2、地轴相对于地球本身相对位置变化(极移)3、地球自转速度变化(日长变化)4、描述上述三种地球自转运动规律的参数称为地球定向参数(EOP),描述地球自转速度变化的参数和描述极移的参数称为地球自转参数(ERP),EOP 即为 ERP 加上岁差和章动5、时间的描述包括时间原点、单位(尺度)两大要素6、地球的自转运动:恒星时(ST) 世界时UT 未经任何改正的世界时表示为UT0,经过极移改正的世界时表示为UT1,进一步经过地球自转速度的季节性改正后的世界时表示为UT2。
地球的公转:历书时ET与力学时 DT(太阳系质心力学时TDB 地球质心力学时TDT)物质的振动:原子时(AT) 协调世界时(UTC)7、大地基准所谓基准是指用以描述地球形状的参考椭球的参数(如参考椭球的长短半轴),以及参考椭球在空间中的定位及定向,还有在描述这些位置时所采用的单位长度的定义。
8、天球坐标系:用于研究天体和人造卫星的定位与运动。
地球坐标系:用于研究地球上物体的定位与运动,是以旋转椭球为参照体建立的坐标系统,分为大地坐标系和空间直角坐标系两种形式。
9、高程参考系统以大地水准面为参照面的高程系统称为正高以似大地水准面为参照面的高程系统称为正常高;大地水准面相对于旋转椭球面的起伏如图所示,正常高及正高与大地高有如下关系:H=H正常+ζ H=H正高+N10、大地测量参考系统的具体实现,是通过大地测量手段确定的固定在地面上的控制网(点)所构建坐标参考架、高程参考框架、重力参考框架。
11、参考椭球: 具有确定参数(长半径a和扁率α),经过局部定位和定向,同某一地区大地水准面最佳拟合的地球椭球.总地球椭球:除了满足地心定位和双平行条件外,在确定椭球参数时能使它在全球范围内与大地体最密合的地球椭球.椭球定位:是指确定椭球中心的位置,可分为两类:局部定位和地心定位。
测量学实验结果分析与总结(精选5篇)
测量学实验结果分析与总结(精选5篇)测量学实验结果分析与总结 总结是对某⼀特定时间段内的学习和⼯作⽣活等表现情况加以回顾和分析的⼀种书⾯材料,通过它可以全⾯地、系统地了解以往的学习和⼯作情况,让我们好好写⼀份总结吧。
下⾯是⼩编为⼤家整理的测量学实验结果分析与总结(精选5篇),希望对⼤家有所帮助。
测量学实验结果分析与总结1 为期17天的测量学实习已经结束,回顾这将近三周的实习⽣活,虽然确实体会到了学长们所描述的精疲⼒竭和酷暑炎热,可是我们也在收获⼀种技能的同收获了⼀段值得回味的经历。
由于测量学是⼀门技术性与实践性很强的专业基础课,既有丰富的测绘理论,⼜有⼤量的实际操作技术。
测量学实习作为《测量学》教学的⼀个重要组成部分对培养我们的思维和动⼿能⼒、掌握具体⼯作程序和内容都起着相当重要的作⽤。
也是我们通过现场实际操作巩固课堂知识,查漏补缺的最佳⽅式。
这⼗⼏天来,我们每天早晨都坚决地克服了赖床的⽑病,踩着朝露,扛着仪器,在安静的校园道路上⼤⼑阔斧的向实习地迈进。
在实习过程中我们克服天⽓的炎热,挥洒青春的汗⽔;在烈⽇的照射下,挑战我们的极限。
⼩组内⼤家亲如⼀家,相互关⼼,相互体谅,众志成城团结⼀致,⼤家分⼯合理并不断交换⼯作,因此我们六个⼈每⼈都能参与到每份⼯作中,得到相同并且全⾯的实习机会。
在对平顶⼭市会议中⼼进⾏地形图测绘的⼯作中我们遇到了很多问题和困难,⼤家耐⼼讨论并寻求问题的答案以及困难的最佳解决⽅法,对于⽆法组内解决的问题我们虚⼼向其他组同学请教,或者查阅资料询问⽼师。
总之在这次实习中,⼤家对于知识的那种渴望、积极和谦逊似乎都是空前的。
求学⼗⼏载,我们似乎⼀直都在为了考试⽽拼命死记课本中的条条框框;为了分数⽽对课堂上⽼师的⼀⾔⼀⾏唯命是从,却从没能在实际中运⽤到这些知识,从⽽不能发现知识的漏洞所在,更不能体会到知识的价值和重要性。
实习第⼀天,领取了实习所需的包括经纬仪,⾃动安平⽔准仪等仪器之后,⼤家开始进⾏第⼀项⼯作,检校仪器。
大地测量学复习总结
名词解释子午圈:包含短轴的平面与椭球面的交线。
卯酉圈:与椭球面上一点子午面相垂直的法截面同椭球面相截形成的闭合圈。
子午线曲率半径:子午圈上某微小弧段与此弧段对应的弧度的比值的极限。
卯酉线曲率半径:卯酉圈上某微小弧段与此弧段对应的弧度的比值的极限。
法截面:过椭球面上任意一点可作一条垂直于椭球面的法线,包含这条法线的平面叫作法截面。
法截线:法截面与椭球面的交线叫法截线。
法截面有无数个。
相对法截线:用A 点照准B 点,则照准面 An a B 同椭球面的截线为AaB,叫做A 点的正法截线,或B 点的反法截线;同理,由B 照A 点,则照准面Bn b A 同椭球面的截线为BbA ,叫做B 点的正法截线,或A 点的反法截线。
因A,B 的法线互不相交,故这两条法截线不重合。
我们把AaB 和BbA 叫做A、B 两点的相对法截线。
椭球定位:椭球定位是指确定椭球中心的位置,分为局部定位和地心定位。
椭球定向:指确定椭球旋转轴的方向。
地图投影:简单的说就是将椭球面上元素(包括坐标、方位、距离)按一定的数学法则投影到平面上投影变形:椭球面是一个凸起的不可展的曲面,如果将这个曲面上的元素,比如一段距离、一个方向、一个角度及图形等投影到曲面上,必然同原来的距离、方向、角度及图形产生差异,这一差异称为投影变形高斯投影:假想有一个椭圆柱面横套在地球椭球体外面,并与某一条子午线(此子午线称为中央子午线或轴子午线)相切,椭圆柱的中心轴通过椭球体中心,然后用一定投影方法,将中央子午线两侧各一定经差范围内的地区投影到椭圆柱面上,再将此柱面展开即成为投影面,此投影为高斯投影。
高斯投影长度比:在高斯投影中,投影面上的边长与原面上的相应长度之比垂线偏差:地面上一点的重力向量g 和相应椭球面上的法线向量n 之间的夹角。
大地线:指地球椭球面上两点间的最短程曲线。
子午线收敛角:高斯投影面上任意点子午线的投影线的切线方向与该点坐标的正北方向的夹角。
方向改正数:指大地线投影曲线和连接大地线两点间的夹角大地主题解算:已知某些大地元素推求另一些大地元素的计算工作叫大地主题解算。
大地测量学知识总结、总复习
第一章
1. 大地测量学定义:大地测量学是地球科学的一个分支学科,是研究和测定地球的形状、大小、重力场、整体与局 部运动和测定地面点的几何位置以及它们变化的理论和技术的学科。
2.大地测量学分类 1. 经典大地测量学 几何大地测量学(地表地形) 物理大地测量学(局域性) 2. 现代大地测量学 现代物理大地测量学(CHAMP 卫星、GRACE 卫星等)(全球性) 空间大地测量学:卫星大地测量学(GPS、GLONASS、 COMPASS、GALILEO)、甚长基线干涉测量(VLBI)、激光测 卫(SLR)、惯性测量统(INS)等。
5.大地测量学的基本内容 1.确定地球形状及外部重力场及其随时间变化,建立统一的大地测量坐标系,研究地壳变形,测定极移等; 2.研究月球及太阳系行星的形状及重力场; 3.建立和维持具有高科技水平的国家和全球天文大地水平控制网和精密水准网以及海洋大地控制网,以满足国民经 济和国防建设的需要; 4. 研究为获得高精度测量成果的仪器和方法 5.研究地球表面向椭球面或平面的投影数学变换及有关的大地测量计算; 6.研究大规模、高精度和多类别的地面网、空间网及其联合网的数学处理的理论和方法,测量数据库建立及应用等。 4. 研究为获得高精度测量成果的仪器和方法;
大地测量学 总结
大地测量技术的任务:高精度数据采集、量测测量学与大地的不同:测量学的范围小,观测基准是铅垂线和平面,并且认为铅垂线是平行的,计算基准是垂线和平面。
大地范围是整个地球,观测基准是铅垂线,但铅垂线是是不平行的。
计算基准是参考椭球的法线和大地水准面。
大地测量学:研究地球形状及行星几何和物理形态特征及其变化规律的基础科学(物理几何、卫星、空间)1.几何:确定地球的形状和大小及确定地面点的几何位置。
2.物理:用物理的方法(重力测量)确定地球形状及其外部重力场。
3.空间:以人造卫星及其它空间探测器为代表的空间大地测量学的理论、技术和方法。
发展的四个阶段:地球圆球、地球椭球、大地水准面、现代大地测量地球公转:开普勒三大定律黄道:绕太阳的椭圆轨道地球自转:地轴:瞬时旋转轴地轴方向相对于空间的变化(岁差和章动)岁差:地轴在空间绕黄极发生缓慢的旋转的现象。
周期为26000年。
章动:由于月球引力的影响,导致地轴在岁差的基础上叠加了周期为18.6年的短周期运动,极移:地轴相对于地球本体内部结构的相对位置变化(国际协议原点CIO)时间系统:描述卫星或天文现象相应的时间(时空合一)。
组成:一维时间坐标轴+时间原点为+时间度量单位IAG国际大地测量协会IAU国际天文联合会,IUGG地球物理联合会IPMS国际极移服务BIH国际时间局;CIO国际协议原点;椭球定位:确定椭球中心的位置(局部定位:参考椭球地心定位:总地球椭球)椭球定向:确定椭球旋转轴的方向。
⑴椭球短轴平行于地球自转轴⑵大地起始子午面平行于天文起始子午线二维坐标转换公式推导:平面极坐标公式θθsin cos 11r y r x == 旋转公式⎩⎨⎧-=-=)sin()cos(22βθβθr y r x公式展开写成矩阵形式⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡1122cos sin sin cos y x y x ββββ平移缩放⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡b a y x y x 1122cos sin sin cos ββββλ差计算转化为线性模型进行平βλβλsin ,cos ==d c112112cy dx b y dy cx a x +-=++=为尺度参数是旋转参数是平移参数和λβ,,b a )1(反算:⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡b y a x cddc y x ˆˆˆˆˆˆ12211λ 三维坐标转换数学模型的解法:1、用两个公共点计算出两个坐标的距离之比就是尺度参数的近似值。
最新大地测量学复习总结(3)
大地测量学复习总结(3)1.垂线同总地球椭球(或参考椭球)法线构成的角度称为绝对(或相对)垂线偏差2.以春分点作为基本参考点,由春分点周日视运动确定的时间,称为恒星时3.以真太阳作为基本参考点,由其周日视运动确定的时间,称为真太阳时。
一个真太阳日就是真太阳连续两次经过某地的上中天(上子午圈)所经历的时间。
4. 以格林尼治平子夜为零时起算的平太阳时称为世界时5.原子时是一种以原子谐振信号周期为标准6.归算:就是把地面观测元素加入某些改正,使之成为椭球面上相应元素。
7.把以垂线为依据的地面观测的水平方向值归算到以法线为依据的方向值而加的改正定义为垂线偏差改正7.大地线椭球上两点间的最短程曲线。
8.设椭球面上P点的大地经度L,在此子午面上以椭圆中心O为原点建立地心纬度坐标系; 以椭球长半径a为半径作辅助圆,延长P2P与辅助圆相交P1点,则OP1与x轴夹角称为P点的归化纬度u。
9.仪器加常数改正因测距仪、反光镜的安置中心与测距中心不一致而产生的距离改正,称仪器加常数改正,包括测距仪加常数和反光镜加常数。
10.因测距仪的基准频率等因素产生的尺度参数成为乘常数。
11.基本分划与辅助分划相差一个常数301.55cm,称为基辅差,又称尺常数12.控制网可靠性:控制网能够发现观测值中存在的粗差和抵抗残存粗差对平差的影响13.M是椭球面上一点,MN是过M的子午线,S为连接MP的大地线长,A 为大地线在M点的方位角。
以M为极点;MN为极轴;P点极坐标为(S, A)❖一点定位,如果选择大地原点:则大地原点的坐标为:❖多点定位,采用广义弧度测量方程1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。
它的原点不在北京,而在前苏联的普尔科沃。
相应的椭球为克拉索夫斯基椭球。
1954年北京坐标系的缺限:①椭球参数有较大误差。
②参考椭球面与我国大地水准面存在着自西向东明显的系统性的倾斜,在东部地区大地水准面差距最大达+68m。
物理大地测量学复习总结
1. 物理大地测量学1.大地测量学是研究和确定地球形状、大小、重力场、整体与局部运动和地表点的几何位置及其变化的理论和技术的学科 2.物理大地测量学是研究利用重力等物理观测量解决大地测量学科问题的大地测量学的分支学科 3.地球重力场是地球物质分布和地球旋转运动的综合反映,是地球的重要物理特征之一4.地球重力场的知识是地球科学,特别是大地测量学, 地球物理学,海洋学和空间科学以及地球动力学巨大进展中不可缺少的重要基础信息源2. 物理大地测量任务与内容:用物理的方法研究和测定地球形体,地球重力场及各自随时间的变化。
内容:重力位理论,地球形状及其外部重力场,全球性地球形状,区域性地球形状,重力探测技术。
3. 位函数:设有一个标量函数,它对被吸引点各坐标轴的偏导数等于力在相应坐标轴上的分量,这样的函数称为位函数,对引力来说具有引力位函数,简称引力位引力常数: 6.672*10^-11m3kg−1s−2,引力位物理意义:质点在某⼀位置时对无穷远处的引力位能的负值。
4.aa ff γω252*=+,)3591(2'e b a +=克莱罗定理;f 为地球椭球扁率f* 为地球椭球重力扁率ω 为地球自转角速度 a 为地球椭球长半轴γ a 为地球椭球赤道正常重力ωγ a 为地球椭球赤道离心力 5. Laplace :0sin1cot 222222222=∂∂+∂∂+∂∂+∂∂+∂∂λθθθθVV V rV rrV r,h1 = 1,h2 = r,h3 = rsin ϑ6. Poisson, Simeon-Denis :⎰⎰=-=σψσλϕ2sin2,),,(4322R l d R H lR rR H π,改进的Poisson方程为:⎰⎰---=σσλϕψd R H rR rlR rR H ),,()cos 31(42322π7. Stocks:⎰⎰∆=σσϕd r gS R T ),(4π,)(cos )(112),(12ψϕn n n P rR n n r S +∞=∑-+=,22222cos 5)2cos ln(cos 332),(rR rR r l rR rRl rR lR r S ψψψϕ--+--+=8. 谐函数定义:如果一个函数在空间区域υ范围内任何一点都满足拉普拉斯方程(ΔV=0),就称为谐函数。
大地测量学个人总结
第二章大地测量基础知识1、 野外测量的基准线和基准面——铅垂线和水准面2、地球椭球:大地体接近于一个具有极小扁率的旋转椭球。
椭球面是一个规则的数学曲面。
一般用长半径a 和扁率α(或长、短半径a 、b)表示椭球的形状和大小。
关系:α= (a – b )/ a3、参考椭球:把形状和大小与大地体相近,且两者之间相对位置确定的旋转椭球称为参考椭球4、垂线偏差u--同一测站点上铅垂线与椭球面法线之间的夹角。
通常用南北方向的投影分量ξ和东西方向的投影分量η表示。
大地水准面差距N —大地水准面与椭球面在某一点上的高差。
5、天球直角坐标系的定义:原点O 一般定义为地心,Z 轴与地球自转轴重合,XY 平面与赤道面重合,X 轴指向赤道上的春分点γ。
天球球面坐标系基准面是天球赤道面,基准点是春分点。
春分点:太阳由南半球向北半球运动所经过的天球黄道与天球赤道的交点叫“春分点”6、大地坐标系与天文坐标系 P10 表2-27、恒星时与平太阳时之间的关系:地球绕太阳运行一周即365个平太阳日,对于春分点来说,地球自转了366个恒星日。
实际上一年等于366.2422个恒星日,一年等于365.2422个平太阳日。
换算关系:平太阳时= 366.2422/ 365.2422恒星时 =(1+0.002737909)恒星时 8、重力g —引力F 与离心力P 的合力 重力位W —引力位V 与离心力位Q 之和: 9、重力位水准面:与l 垂直时,dw=0,即w=常数,此时与重力g 垂直的方向l 为一重力等位面,又叫重力位水准面。
重力位水准面之间既不平行,也不相交或相切。
10、正常重力位:是一个不涉及地球形状和密度的、函数较为简单可直接计算得到的近似的地球重力位。
11、水准面的不平行性:重力加速度随随纬度和物质分布的情况而变化,即gA ≠gB ,所以hA ≠hB 12、高程系统之间的关系似大地水准面与参考椭球面间的高差为高程异常;从大地水准面沿法线到地球椭球面的距离为大地水准面差距。
《大地测量学》复习知识点总结
大地测量学第一章1.大地测量学的定义?大地测量学与普通测量学有哪些主要区别?大地测量学是研究精确测定和描绘地面控制点空间位置、研究地球形状和大小、研究地球表面和外部重力场及其变化的学科。
区别在于:(1)测量的精度等级更高,工作更加严密。
(2)测量的范围更加广阔,常常是上百平方公里乃至整个地球。
(3)侧重研究的对象不同。
普通测量学侧重于研究如何测绘地形图以及进行工程施工测量的理论和方法。
大地测量学侧重于研究如何建立大地坐标系、建立科学化、规范化的大地控制网并精确测定控制网点坐标的理论和方法。
2.大地测量学的任务和主要研究内容是什么?简述其在国民经济建设中的地位。
一·基本任务可以概括为:1.在地球表面的陆地上建立高精度的大地测量控制网,并监测其数据随时间的变化;2.确定地球重力场及其随时间的变化,测定和描述地球动力学现象;3.根据地球表面和外部空间的观测资料确定地球形状和大小。
二·主要研究内容:1.确定地球形状及外部重力场及其随时间的变化,建立统一的大地测量坐标系,研究地壳形变(包括地壳垂直升降及水平位移),测定极移以及海洋水面地形及其变化等。
2.研究月球及太阳系行星的形状及重力场。
3.研究建立和维持高科技水平的工程和国家水平控制网和精密水准网的原理和方法;4.研究获得高精度测量成果的精密仪器和科学的使用方法;5.研究地球表面测量成果向椭球及平面的数学投影变换及有关问题的测量计算;6.研究高精度和多类别的地面网、空间网及其联合网的数学处理的理论和方法。
三·国民经济建设中的地位:(1)为地形测图和大型工程测量提供基本控制;(2)大地测量学在国民经济各项建设和社会发展中发挥着基础先行性的重要保证作用;(3)大地测量学在防灾、减灾、救灾及环境监测、评价与保护中发挥着特殊的作用;(4)大地测量是发展空间技术和国防建设的重要保障;(5)大地测量在当代地球科学研究中的地位显得越来越重要。
大地测量学总结(5篇范文)
大地测量学总结(5篇范文)第一篇:大地测量学总结1大地测量学是一定的时间-空间参考系统中,测量和描绘地球及其他行星体的一门学科,它的基本任务是测量和描绘地球并监测其变化,为人类活动提供关于地球等行星体的空间信息。
2地轴通过地球自转而不断变化,其变化有(1)岁差和章动(2)极移岁差:地球绕地轴旋转,由于日、月等天体的影响,地球的旋转轴在空间围绕黄级发生缓慢旋转,形成一个倒圆锥体,其锥角等于黄赤交角E=23.5度,旋转周期为26000年,这种运动称为岁差。
章动:月球绕地球旋转的轨道称为白道,由于白道对黄道有约为5度的倾斜,这使得月球引力产生的转矩的大小和方向不断地变化,从而导致地球旋转轴在岁差的基础上叠加18.6年的短期周圆周运动,振幅为9.21秒,这种现象称为章动。
极移:地球自转除了上述在空间的变化外,还存在相当于地球体自身内部结构的相对位置变化,从而导致极点在地球表面上的位置随时间而变化,这种现象被称为极移。
3协调世界时(UTC)原子时与地球自转没有直接关系,由于地球自转速度长期变慢的趋势,原子时与世界时的差异将逐渐变大,为了保证时间与季节的协调一致,便于日常使用,建立了以原子时秒长为计量单位,在时刻上与平太阳时之差小于0.9t的时间系统,称为世界协调时。
4坐标系统->参考椭球->高斯投影观测值大地高平面坐标+高程5坐标参考系统分为天球坐标系和地球坐标系天球坐标系用于研究天体和人造卫星的定位与运动。
地球坐标系用于研究地球上物体的定位与运动,是与旋转椭球与参照体建立的坐标系统,分为大地坐标系(B,L,H),空间直角坐标系(X,Y,Z)。
6高程参考系统:是以大地水准面为参考面的高程系统称为正高,以似大地水准面为参照面额高程系统称为正常高。
7椭球定位是指确定椭球中心的位置,可分为:局部定位和地心定位。
局部定位要求在一定范围内椭球面与大地水准面有最佳的符合,而对椭球的中心位置无特殊要求。
地心定位要求在全球范围内椭球面与大地水准面有最佳的符合,同时要求椭球中心与地球质心一致或最为接近。
武汉大学测绘学院空间大地测量学考试复习要点整理.docx
空间大地测量学::利用自然天体或人造天体精确确定点的位置,确定地球的形状,大小,外部重力场,以及他们随时间的变化状况的一整套理论和方法空间大地测量两个要素;1,必须利用空间的自然天体或人造天体所发出的信号来进行观测或将他们作为观测目标2,所做的工作必须属于大地测量的范畴,如精确测定点的坐标及其变化率,确定地球重力场及其变化,确定地球的运动和相关参数。
空间大地测量的主要任务:大体分为两类:一类是建立和维持各种坐标框架,1,建立和维持地球参考框架(1)建立和维持全球性的地球参考框架,(2)建立和维持区域性的地球参考框架2,建立和维持国际天球参考框架3,测定地球定向参数。
一类是确定地球重力场。
空间大地测量技术:VLBI,激光测月(SLR), GPS (GNSS), DORIS,利用卫星轨道摄动反演地球重力场,卫星测高,.卫星跟踪卫星,卫星重力梯度测量时间间隔:事物运动处于两个状态之间所经历的时间过稈,它描述了事物运动在时间上的连续状态时刻:发生某一现象的时间时间基准:时间测量的一个标准的公共尺度。
时间的起算基准和尺度基准一起决定事件发生的时刻时间的尺度基准决定两事件之间的时间间隔,也就是决定时段时间基准的条件:1。
运动是连续的、周期性的2,运动周期必须稳定3,运动周期必须具有复现性,即要求在任何时间和地点都可以通过观测和试验来复现这种周期运动时间基准有三种:1地球自转(建立世界时)2,行星绕太阳公转(历书时)3,电子,原了的谐波振荡(原了时)4,脉冲星发射周期性脉冲信号(脉冲星时)守时系统:被用来建立和维持时间频率基准,确定任一时刻的时间方法:通过时间频率测量和比对技术来评价和维持该系统的不同时钟的稳定度和准确度,并据此给予不同的权重,以便用多台钟来共同建立和维持时间系统的框架授时:通过授时设施(电话网络无线电,电视,专用长波和短波电台和卫星等)向用八传递准确的时间信息和频率信息时钟的主要技术指标:1频率准确度,振荡器所产生的实际震荡频率与:苴理论值得相对偏差2 ,频率漂移率频率准确度在单位时间内的变化量3,频率稳定度(反映时钟质量的最主要的技术指标)频标在一定的时间间隔内所输出的平均频率的随机变化程度频率准确度和频漂反映了钟的系统误差。
大地测量学基础知识要点考点总结
大地测量学基础知识要点考点总结1.大地测量学基本概念和基本原理:包括大地测量学的定义、目的、分类、基本量的定义和测量等。
2.大地测量学的发展历程:包括古代大地测量学的发展和现代大地测量学的发展。
3.大地测量学的基本坐标系统:包括大地水准面、基准面和基准点的概念以及其相互关系。
4.大地测量学的椭球模型:包括椭球参数、椭球面方程、椭球面上的坐标转换等。
5.大地测量学的重力场:包括重力梯度、重力异常、引力公式等。
6.测地线理论:包括测地线的定义、性质、测量以及测角和测距的原理等。
7.大地测量学的变形监测:包括地壳运动、地壳变形监测的方法和技术等。
8.大地水准面:包括大地水准面的概念、测量方法、精度要求等。
9.基线测量:包括基线测量的原理、仪器设备、观测方法和数据处理等。
10.卫星测高技术:包括全球卫星定位系统(GPS)原理、卫星高程测量方法、误差源和应用等。
1.理解大地测量学的基本概念、基本原理和发展历程,并能够将其应用于实际问题的解决中。
2.熟悉大地测量学的基本坐标系统和椭球模型,并能够进行坐标转换和相关计算。
3.理解重力场的基本概念和计算方法,并能够应用于重力异常和引力公式的计算中。
4.理解测地线的定义、性质和测量方法,并能够进行测角和测距的原理和计算。
5.了解大地测量学的变形监测方法和技术,并能够解决地壳变形监测的实际问题。
6.理解大地水准面的概念、测量方法和精度要求,并能够进行水准线的计算和数据处理。
7.了解基线测量的原理、仪器设备和观测方法,并能够进行基线测量数据的处理和分析。
8.了解卫星测高技术的原理、方法、误差源和应用,并能够应用于卫星高程测量问题的解决中。
总之,掌握大地测量学的基础知识对于理解地球形状、地球重力场、地球表面点的坐标、地球表面形状及其变形等内容至关重要。
通过深入学习和理解这些基础知识,可以为实际工程测量和科学研究提供可靠的测量基础。
《大地测量学》复习知识点总结
《大地测量学》复习知识点总结
大地测量学是地球测量学的重要研究分支之一,面向工程建设、调查集约、水文测量、数据分析、工程设计和科学研究等,是从事大地测量及其应用的理论,方法和技术总称,也是近代测量学中最重要的一个分支,是地理信息系统的理论依据和技术支持事业。
大地测量学的基本内容包括:
一、大地测量的基础理论性内容:坐标系统、视线理论、高程理论、平面测量、直线测量和空间测量。
二、地形测量:包括平面测量、直线测量、高程测量以及使用定位器测量的内容,如光学定位技术、电子定位技术、GPS定位技术等。
三、测量仪器:包括双距仪、激光测距仪、水准仪、气球观测仪、电子全站仪、多功能测距仪、遥感仪等。
四、测量数据处理:包括数据收集、数据处理、测量数据统计、大地及高程坐标系统换算、模型最优化、空间分析和定位精度评价。
五、不确定性测量:包括单位质量信息、随机误差估计、不确定性测量理论、数据可靠性评价、数据精度评价、数据校核及数据融合等。
六、地球椭球体的参数估计:包括椭球体参数计算、椭球参数估计等。
七、地图测量:包括经纬度网络测量、俯仰角测量等内容。
大地测量学实习总结
大地测量学实习总结各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢收获1.进一步巩固,加深大地测量学,GPS的有关理论知识。
2.熟练掌握了大地测量学,GPS所使用的仪器及观测方法,提高了控制测量实践能力。
大一实习时进行的是图根碎步测量,精度等级不高,而大范围,高等级的大地测量对局部的测量工作起到控制作用,对测绘人员的能力要求高,进一步培养了我的测绘实践能力。
3.培养和提高解决实际问题及组织测绘生产的管理能力。
4.数据计算整理能力在这次实习中也得到了很大的提高,以前接触的数据都不是通过自己实际测量得到的结果,整理时往往误差都在允许范围内,这次通过自己的实际测量练习得到的数据由于种种问题有些是超出误差允许范围的,这就需要我们能够迅速分析错误原因来得到新的数据。
进而也对数据检核的重要性有了新的认识。
数据计算整理是一项很繁琐的工作,需要我们在整理计算的时候要格外认真小心。
同时,也有很多方法和技巧也是可以用来避免因为整理计算而出现结果的错误。
首先在数据记录中要做到清晰、清楚,因为我们数据的整理是在一天的工作完成后进行的,由于数据量很大,如果记得不够清晰往往找不到数据或者分辨不清楚记录的数字。
另外在记录数据的过程中要随时检核数据是否可用,免得再最后整理时发现误差过大而耽误工程进度。
在计算数据时可以通过多种数学手段来边计算边检验结果的准确性,如果时间允许可以先由一个人计算数据再由另外一个人来检核。
5.我懂得了测绘工作要认真细致,不能有丝毫的马虎,特别是在使用水准仪,全站仪这样精密的仪器时,更要做到精益求精。
因为稍有差错就可能导致超限,必须重测,还会导致以后其它量的测量出错,最终导致数据计算的错误,或者每次误差很小,由于误差积累,使得最终结果超限。
体会:1. 加强对书本知识的巩固,将书本的理论知识与实际操作相结合,增强动手操作能力。
这次实习充分暴露出我们对课本知识掌握不牢固,比如用测回法观测导线水平角竟然模棱两可,使用水准仪测量高差步骤不能熟练掌握,对各种限差不能熟记。
大地测量实习总结
大地测量实习总结本次总共分为两个部分,要紧在7月初进行。
第一部分为二等周密水准测量,第一部分又包括外业测量和内业数据处理两个方面,第二部分为大地测量运算,要紧进行大地测量运算的相关编程工作。
现在几乎全部搞完了,回过对来看一看,感受收成依旧专门大的。
外业对我们来说是一次实质性的煅炼,大大地提高了我们小组的动手能力与团队协作的能力,同时在外业的过程当中,显现了许多难以幸免的错误与过失,使得我们在错误中不断地成长,不断地吸取体会。
内业编程运算更是对我的编程能力得到了专门大的提升,使我对大地测量教材里面的一些公式与算法有了更加深刻地明白得与认识。
二等水准本来对作业的要求就专门高,因为它需要专门高的精度,因此在工作的每一个环节和每一个时期都得专门小心与细心,一旦任何一个环节出了点什么问题,那么整个工作都前功尽弃了,因为得出来的结果并不合格。
正是我们刚开始没有意识到这一个道理,导致我们第一次测量的时候,太大意,不知在哪一个环节出了问题,最后算出来的结果专门不理想,最后数据不得不作废。
后来我们吸取了前面的教训,总结了一些我们自己和其它队伍的共同体会,在后面的工作中专门小心,从而使后面的结果比较中意。
万事开头难,在前几个学期的实习当中也能够看得出来,几乎每一个大大小小的实习,刚开始我们总是要出错,甚至会使全部的工作作废,然而第二次重新作业的时候就可不能显现那个问题了,速度也专门快。
因此我们都戏称第一次的工作为"熟悉仪器"、"打酱油"。
我们小组是我们班的第一组,因此拿到的仪器是比较好的,电子仪器,拿到仪器当时我还比较兴奋,以为我们捡到了一个大廉价。
结果到了后来,却发觉,我们捡到的不是廉价,而是悲剧。
我们的尺子只有两米,尽管我们的电子仪器测起来比较快,然而我们的尺子专门短,每一站的距离也只能将就拉到十几米的模样,一旦到了上坡的时候,更加不行,只能拉到六七米的模样。
而其它小组的三米长飞,跑起来飞速,我们测第一圈的时候,金妹他们就开始跑第三圈了,太不可思议了!看着他们火速度测完了,我们不得不忘"仪器"兴叹埃后来时刻证明,我们班其它两个小组测完的时候,我们才测完,也确实是说,我们花的时刻是别人的两倍啊,真是一个茶几一样的杯具!我们没有任何方法,只能说点背不能怪社会。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章绪论一、大地测量学:是指在一定的时间与空间参考系中,测量和描绘地球形状及其重力场并监测其变化,为人类活动提供关于地球的空间信息的一门学科。
经典大地测量:地球刚体不变、均匀旋转的球体或椭球体;范围小。
奠定几何、物理大地测量基础。
现代大地测量:空间测绘技术(人造地球卫星、空间探测器),空间大地测量为特征,范围大。
二、大地测量学的作用:的基础保证作用。
如交通运输、工程建設、土地管理、城市建設等学在防灾,减灾,救灾及环境监测、评价与保护中发挥着特殊作用。
如地震、山体滑坡、交通事故等的监测与救援。
大地测量是发展空间技术和国防建设的重要保障。
如:卫星、导弹、航天飞机、宇宙探测器等发射、制导、跟踪、返回工作都需要大地测量作保证。
在地球科学研究中越来越重要测绘各学科的基础科学三、大地测量学的任务:经济建设中的任务:统一全国坐标框架,建立国家和精密城市控制网,精确测定控制点的坐标,为经济建设服务。
地学研究中的任务:1. 建立与维持高精度的坐标框架和区域性与全球的三维大地网,长期监测网点随时间的变化;2. 监测和分析各种地球动力学现象;3. 测定地球形状和外部重力场的精细结构及其随时间的变化。
四、大地测量学的基本体系测量学:研究范围是不大的地球表面,把地球表面认为是平面且不损害测量精度,计算时也认为在该范围内的铅垂线彼此是平行的。
大地测量学:研究全球或相当大范围内的地球,铅垂线被认为彼此不平行,同时顾及地球的形状及重力场。
五、大地测量学的基本体系常规大地测量学、应用大地测量学、椭球大地测量学、天文大地测量学、重力大地测量学、测量平差现代大地测量学的基本体系(1)几何大地测量学(2)物理大地测量学(3)空间大地测量学六、大地测量学的发展简史第一阶段:地球圆球阶段第二阶段:地球椭球阶段第三阶段:大地水准面阶段第四阶段:现代大地测量新时期第二章坐标与时间系统一、天球是指以地球质心O为中心,半径r为任意长度的一个假想的球体。
在天文学中,通常均把天体投影到天球的球面上,并利用球面坐标来表达或研究天体的位置及天体之间的关系。
二、天轴与天极地球自转轴的延伸直线为天轴,天轴与天球的交点PN和PS称为天极,其中PN称为北天极,PS 为南天极。
三、天球赤道面与天球赤道通过地球质心O 与天轴垂直的平面称为天球赤道面。
天球赤道面与地球赤道面相重合。
该赤道面与天球相交的大圆称为天球赤道。
四、天球子午面与子午圈含天轴并通过任一点的平面,称为天球子午面。
天球子午面与天球相交的大园称为天球子午圈。
五、时圈通过天轴的平面与天球相交的大圆均称为时圈。
六、黄道地球公转的轨道面(黄道面)与天球相交的大园称为黄道。
黄道面与赤道面的夹角称为黄赤交角,约为23.5度。
七、黄极通过天球中心,且垂直于黄道面的直线与天球的交点,称为黄极。
其中靠近北天极的交点称为北黄极,靠近南天极的交点称为南黄极。
八、春分点与秋分点黄道与赤道的两个交点称为春分点和秋分点。
视太阳在黄道上从南半球向北半球运动时,黄道与天球赤道的交点称为春分点,用γ表示。
在天文学中和研究卫星运动时,春分点和天球赤道面,是建立参考系的重要基准点和基准面九、赤经与赤纬地球的中心至天体的连线与天球赤道面的夹角称为赤纬,春分点的天球子午面与过天体的天球子午面的夹角为赤经。
十、开普勒三大运动定律:运动的轨迹是椭圆,太阳位于其椭圆的一个焦点上;在单位时间内扫过的面积相等;运动的周期的平方与轨道的长半轴的立方的比为常数。
十一、岁差由于日、月等天体的影响,地球的旋转轴在空间围绕黄极发生缓慢旋转,类似于旋转陀螺,形成一个倒圆锥体(见下图),其锥角等于黄赤交角,旋转周期为26000年,这种运动称为岁差,是地轴方向相对于空间的长周期运动。
十二、章动月球绕地球旋转的轨道称为白道,月球运行的轨道与月球的之间距离是不断变化的,使得月球引力产生的大小和方向不断变化,从而导致北天极在天球上绕黄极旋转的轨道不是平滑的小圆,而是类似圆的波浪曲线运动,即地球旋转轴在岁差的基础上叠加周期为18.6年,且振幅为9.21″的短周期运动。
考虑岁差和章动的共同影响:真旋转轴、瞬时真天极、真天球赤道、瞬时真春分点。
考虑岁差的影响:平天极、平天球赤道、平春分点。
十三、极移地球自转轴存在相对于地球体自身内部结构的相对位置变化,从而导致极点在地球表面上的位置随时间而变化,这种现象称为极移。
十四、时间的描述包括时间原点、单位(尺度)两大要素。
十五、周期运动满足如下三项要求,可以作为计量时间的方法。
1、2、运动的周期具有足够的稳定3、运动是可观测的。
十六、恒星时(ST)以春分点作为基本参考点,由春分点周日视运动确定的时间,称为恒星时。
春分点连续两次经过同一子午圈上中天的时间间隔为一个恒星日,分为24个恒星时,某一地点的地方恒星时,在数值上等于春分点相对于这一地方子午圈的时角。
十七、平太阳时MT和世界时UT以真太阳作为基本参考点,由其周日视运动确定的时间,称为真太阳时。
一个真太阳日就是真太阳连续两次经过某地的上中天(上子午圈)所经历的时间。
假设以平太阳作为参考点,其速度等于真太阳周年运动的平均速度。
平太阳连续两次经过同一子午圈的时间间隔,称为一个平太阳日十八、世界时UT:以格林尼治平子夜为零时起算的平太阳时称为世界时。
十九、历书时ET与力学时DT由于地球自转速度不均匀,导致用其测得的时间不均匀。
1958年第10届IAU决定,自1960年起开始以地球公转运动为基准的历书时来量度时间,用历书时系统代替世界时。
在天文学中,天体的星历是根据天体动力学理论建立的运动方程而编写的,其中采用的独立变量是时间参数T,其变量被定义为力学时,力学时是均匀的。
二十、原子时(AT)原子时是一种以原子谐振信号周期为标准。
原子时的基本单位是原子时秒,定义为:在零磁场下,位于海平面的铯原子基态两个超精细能级间跃迁辐射192631770周所持续的时间为原子时秒,规定为国际单位制中的时间单位。
二十一、协调世界时(UTC)原子时与地球自转没有直接联系,由于地球自转速度长期变慢的趋势,原子时与世界时的差异将逐渐变大,秒长不等,大约每年相差1秒,便于日常使用,协调好两者的关系,建立以原子时秒长为计量单位、在时刻上与平太阳时之差小于0.9秒的时间系统,称之为世界协调时(UTC)。
二十二、大地基准所谓基准是指为描述空间位置而定义的点、线、面,在大地测量中,基准是指用以描述地球形状的参考椭球的参数(如参考椭球的长短半轴),以及参考椭球在空间中的定位及定向,还有在描述这些位置时所采用的单位长度的定义。
测量常用的基准包括平面基准、高程基准、重力基准等。
二十三、大地测量坐标系天球坐标系:用于研究天体和人造卫星的定位与运动。
地球坐标系:用于研究地球上物体的定位与运动,是以旋转椭球为参照体建立的坐标系统,分为大地坐标系和空间直角坐标系两种形式。
二十四、大地测量参考框架大地测量参考系统的具体实现,是通过大地测量手段确定的固定在地面上的控制网(点)所构建坐标参考框架、高程参考框架、重力参考框架。
二十五、高程参考系统以大地水准面为参照面的高程系统称为正高,以似大地水准面为参照面的高程系统称为正常高二十六、椭球定位和定向概念1、椭球的类型:参考椭球: 具有确定参数(长半径a和扁率α),经过局部定位和定向,同某一地区大地水准面最佳拟合的地球椭球.总地球椭球: 除了满足地心定位和双平行条件外,在确定椭球参数时能使它在全球范围内与大地体最密合的地球椭球.2、椭球定位:是指确定椭球中心的位置,可分为两类:局部定位和地心定位。
局部定位:要求在一定范围内椭球面与大地水准面有最佳的符合,而对椭球的中心位置无特殊要求;地心定位:要求在全球范围内椭球面与大地水准面最佳的符合,同时要求椭球中心与地球质心一致。
3、椭球的定向:指确定椭球旋转轴的方向,不论是局部定位还是地心定位,都应满足两个平行条件:①椭球短轴平行于地球自转轴;②大地起始子午面平行于天文起始子午面。
二十七、惯性坐标系:是指在空间固定不动或做匀速直线运动的坐标系。
二十八、地固坐标系(地球坐标系)以参考椭球为基准的坐标系,与地球体固连在一起且与地球同步运动,参考椭球的中心为原点的坐标系,又称为参心地固坐标系。
以总地球椭球为基准的坐标系.与地球体固连在一起且与地球同步运动,地心为原点的坐标系,又称为地心地固坐标系。
二十九、大地原点和大地起算数据大地原点也叫大地基准点或大地起算点,参考椭球参数和大地原点上的起算数据的确立是一个参心大地坐标系建成的标志.三十、1954年北京坐标系1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。
它的原点不在北京,而在前苏联的普尔科沃。
相应的椭球为克拉索夫斯基椭球。
1954年北京坐标系的缺限:①椭球参数有较大误差。
②参考椭球面与我国大地水准面存在着自西向东明显的系统性的倾斜,在东部地区大地水准面差距最大达+68m。
③几何大地测量和物理大地测量应用的参考面不统一。
我国在处理重力数据时采用赫尔默特1900~1909年正常重力公式,与这个公式相应的赫尔默特扁球不是旋转椭球,它与克拉索夫斯基椭球是不一致的,这给实际工作带来了麻烦。
④ 定向不明确,既不是国际协议原点也不是我国地极原点。
三十一、1980年国家大地坐标系特点① 采用1975年国际大地测量与地球物理联合会IUGG 第16届大会上推荐的5个椭球基本参数。
a=6378140m,·地球的扁率为 1/298.257·地心引力常数 GM=3.986 005×1014m3/s2,·重力场二阶带球谐系数J2 =1.082 63×10-8·自转角速度 ω=7.292 115×10-5 rad/s② 在1954年北京坐标系基础上建立起来的。
③椭球面同似大地水准面在我国境内最为密合,是多点定位④定向明确。
椭球短轴平行于地球质心指向地极原点 的方向⑤大地原点地处我国中部,位于西安市以北60 km 处的泾阳县永乐镇,简称西安原点。
⑥ 大地高程基准采用1956年黄海高程系三十二、新1954年北京坐标系(BJ54新)新1954年北京坐标系,是在GDZ80基础上,改变GDZ80相对应的IUGG1975椭球几何参数为克拉索夫斯基椭球参数,并将坐标原点 (椭球中心)平移,使坐标轴保持平行而建立起来的。
BJ54新的特点是:1、2、是综合GDZ80和BJ 建立起来的参心坐标系。
3、4、定向明确,坐标轴与GDZ80相平行,椭球短轴平行 于地球质心,指向1968.0地极原点的方向。
5、地原点与GDZ80相同,但大地起算数据不同。
6、高程基准采用1956年黄海高程系。
7、与BJ54相比,所采用的椭球参数相同,其定位相近,但定向不同。