矩阵理论资料期末考试试题整理版

合集下载

北航矩阵理论2019-2020学年第一学期期末试卷及解答

北航矩阵理论2019-2020学年第一学期期末试卷及解答

1
2
1
2
Байду номын сангаас
,b
=
0
.(1)求
A
的满秩分解,并用满秩
1 0 -1 0
2
0
1
1
1
-1
分解求 A+ .(2)判断方程组 Ax = b 是否有解. (3)求 Ax = b 的极小范数解或极小 最小二乘解.
1 1 0 1
1 0 -1 0
解:(1)
A
⎯行⎯→
0 0
1 -1
1 -1
1
⎯行⎯→
0
-1
n −1 1 j =1 3j
1 ,p 2
= 1,
,n .每个圆都是孤立
的,所以 A 有 n 个互异的特征值,即 A 相似于对角阵。 (2)因为 A 是实矩阵,圆心都在实轴上,所以特征值如果是复数只能共轭成对出现, 这与圆内只有一个特征值矛盾,所以只能是实数。.
1 1 0 1
1
4.(18 分)已知 A =
0
1 0
1 0
1 0
0
1
1
1
0 0 0 0
1 1
A = 1 1
2 0
1 0
0 1
−1 1
0 1 =FG
0 1
(2)
3
3 1 5 -2
A+
= G(H GGH)−(1 FHF)−1FH =
1
1
2
0
1
15 -2 1 -5 3
1
2
0
1
(3) AA+b=b,故Ax = b有解.
(4)极小范数解 A+b = (1,0,-1,0)T ,

西安邮电大学矩阵论期末真题试题4

西安邮电大学矩阵论期末真题试题4

西安邮电大学研究生课程考试试题( — 学年第一学期)一、计算题1 设4维线性空间V 的两组基4321,,,:)(e e e e I 和)3,1,6,6(),1,2,3,5(),0,1,3,0(),1,1,1,2(:)(4321===-=∏ββββ求(1)由基)(I 到基)(∏的过渡矩阵C(2)元素),,,(4321x x x x =α在基)(∏下的坐标 (10分)2 已知3R 的线性变换),,0(),,(21321x x x x x T =,求2T 的值域与核的基与维数 (10分)3 已知⎪⎪⎪⎭⎫⎝⎛--=01101i i i i A ,求 ∞∞A A A A A A F m m ,,,,,211 (12分)4 已知031042212A ⎛⎫ ⎪=- ⎪ ⎪⎝⎭,求A 的QR 分解.(12分)5 应用n Gerschgori 定理隔离⎪⎪⎪⎭⎫⎝⎛=1011131110A 的特征值,并根据实矩阵特征值的性质改进所得出的结果. (12分)6 设⎪⎪⎪⎭⎫⎝⎛=211211111221A ,求+A (12分)二、证明题1 已知m •是n n C ⨯上的矩阵范数,S 是n 阶可逆矩阵,对于任意n n C A ⨯∈,规定mAS S A 1-=,证明•是n n C ⨯上的一种矩阵范数。

(12分)2 设BA,都是正定矩阵,证明AB的特征值都大于零.(12分)3设n mA H==.(8分)O⇔∈,证明OCA⨯AA西安邮电大学研究生课程考试试题标准答案及评分标准( — 学年第一学期)一、计算题1(1)432144321332243211366,235,3,2e e e e e e e e e e e e e e +++=+++=+=+-+=ββββ(3分)于是由基)(I 到基)(∏的过渡矩阵为 ⎪⎪⎪⎪⎪⎭⎫⎝⎛-=3101121163316502C (2分)(2) 元素),,,(4321x x x x =α在基)(I 下的坐标为 T x x x x y ),,,(4321= (2分) 元素),,,(4321x x x x =α在基)(∏下的坐标为 y P 1- (3分) 2解:由 ),0,0(),,0()),,((),,(1213213212x x x T x x x T T x x x T === (2分) 可得 {}R x x T R ∈=),0,0()(2 {}R x x x x T N ∈=32322,),,0()((4分) 因此,1)(dim 2=T R , )(2T R 的一个基为 )1,0,0( (2分)2)(dim 2=T N ,)(2T N 的一个基为 )1,0,0(),0,1,0( (2分)3解:⎪⎪⎪⎭⎫⎝⎛--=212122223i i i i AA H)16)(1(2+--=-λλλλH AA E (4分)71=m A 3=∞m A 7=FA(4分)31=A 3=∞A 2232+=A (4分) 4解: 取 110,1c s == , (2分)则 130********T ⎛⎫ ⎪= ⎪ ⎪-⎝⎭ 132********T A ⎛⎫ ⎪=- ⎪ ⎪--⎝⎭(3分)取 2243,55c s -==, (2分)则 231004305534055T ⎛⎫ ⎪⎪- ⎪= ⎪ ⎪ ⎪⎝⎭2313212051002T T A R ⎛⎫ ⎪=-= ⎪ ⎪-⎝⎭ (3分) 故13233404521243()005155002100T T A QR T T R -⎛⎫⎪⎛⎫⎪ ⎪ ⎪===-⎪ ⎪ ⎪- ⎪⎝⎭ ⎪ ⎪⎝⎭(2分) 5 解: A 的3个盖尔圆为:2:1≤λG , 23:2≤-λG , 210:3≤-λG (3分)选取)25,1,1(diag D =,则⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛==-102525523152101DAD B , (2分) B 的3个盖尔圆为:57:1≤'λG , 573:2≤-'λG , 510:3≤-'λG (3分) 而1G ',2G ',3G '都是孤立盖尔圆,因此在盖尔圆1G ',2G ',3G 中各有A 的一个特征值(1分) 因为A 为实矩阵,若A 有复特征值则必共轭出现,因此A 的三个特征值都为实数,分别在区间:[]4.1,4.1-,[]4.4,6.1-,[]12,8 中各有A 的一个特征值 (3分)6解:⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫⎝⎛==01101001121121FG A (6分)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----==--+714417417714221)()(11HH H H F F F GG G A (6分)二、证明题1 证:(1)10mO S OS -== 当 A O ≠ 时,1S AS O -≠ 得10mA S AS-=> (3分)(2)11()m mkA S kA Sk S ASk A --=== (3分)(3)111()mmmA B S A B S S ASS BSA B ---+=+≤+=+ (3分)(4)11111()()()mmmmAB S AB SS AS S BS S AS S BSA B -----==≤= (3分)故A 是n n C ⨯上的矩阵范数2 证:A 是正定矩阵则存在酉矩阵U 使得),,,(21n H diag AU U λλλΛ=,0>i λ 即 H n U Udiag A ),,,(21λλλΛ=),,,(21n Udiag λλλΛ=),,,(21n diag λλλΛH U P P H =这里=P ),,,(21n diag λλλΛH U (3分) 同理,H n V Vdiag B ),,,(21μμμΛ==),,,(21n Vdiag μμμΛ),,,(21n diag μμμΛH V Q Q H =,这里=Q ),,,(21n diag μμμΛH V (3分) 因此Q PQ PQ Q Q PQ P AB H H H H H )()(1-==,表明AB 与)()(H H H PQ PQ 相似 (3分)而)()(H H H PQ PQ 为正定矩阵,故AB 的特征值都大于零 (3分) 3 证: :⇒ 显然 (2分):⇐设n m ij a A ⨯=)(,则m n ji H a A ⨯=)(,那么由O A A H =可得 (2分) 02212222121211=+++++++++mnm n n a a a a a a ΛΛΛΛ, (2分)因此0=ij a ,n j m i ΛΛ,2,1;,,2,1==,故O A = (2分)。

矩阵理论 (A-B卷)及答案

矩阵理论  (A-B卷)及答案

矩阵理论矩阵理论 2006-2007 学年第 一 学期末考试试题(A 卷)及答案一、 填空题(共20分,每空2分)1、 在欧氏空间4R 中,与三个向量(1,1,1,1),(1,1,1,1),(2,1,1,3)---都正交的单位向量为:)3,1,0,4(261-±2、 已知122212221A ⎛⎫⎪= ⎪ ⎪⎝⎭, 则12__________;__________;__________;F A A A A ∞====3、 已知三阶方阵A 的初等因子为()()21,1λλ--,则A 的约当标准形为:⎪⎪⎪⎭⎫⎝⎛1100100014、 已知cos sin ()sin cos t t A x t t ⎛⎫=⎪-⎝⎭,则1()______________;()______________;|()|______________;|()|______________.d dA t A t dt dtd dA t A t dt dt-====.1,0,s i n c o s c o s s i n ,s i n c o s c o s s i n ⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛---t t t t t t t t 二、解答下列各题((共48分,每小题8分)1. 用最小二乘法求解线性方程组121312312312021x x x x x x x x x x +=⎧⎪+=⎪⎨++=⎪⎪+-=-⎩解:⎪⎪⎪⎪⎪⎭⎫⎝⎛-=121111101011A ,⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫⎝⎛-=1021,111021011111b A T,-------------(3’) 所以b A x x x Ax A TT =⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--=312311164144321-----------------------(7’)求得最小二乘解为.64,613,617321-=-==x x x -------------------------------------(8’) 2. 设111111111A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,试计算43()322A A A A E φ=-++。

矩阵引论试题及答案

矩阵引论试题及答案

矩阵引论试题及答案一、选择题(每题5分,共20分)1. 矩阵的元素全部为0的矩阵称为:A. 零矩阵B. 单位矩阵C. 对角矩阵D. 标量矩阵答案:A2. 矩阵的秩是指:A. 矩阵的行数B. 矩阵的列数C. 矩阵中线性无关的行(列)的最大数目D. 矩阵的元素个数答案:C3. 矩阵的转置是指:A. 矩阵的行列互换B. 矩阵的行数变为列数C. 矩阵的列数变为行数D. 矩阵的元素不变答案:A4. 两个矩阵相乘的结果称为:A. 矩阵的和B. 矩阵的差C. 矩阵的积D. 矩阵的逆答案:C二、填空题(每题5分,共20分)1. 如果矩阵A的行列式为0,则称矩阵A为________。

答案:奇异矩阵2. 矩阵A的逆矩阵记作________。

答案:A^(-1)3. 矩阵A与矩阵B相乘,记作________。

答案:AB4. 对于任意矩阵A,矩阵A与单位矩阵相乘的结果仍然是________。

答案:A三、简答题(每题10分,共30分)1. 请简述矩阵的行列式是什么?答案:矩阵的行列式是一个标量值,它提供了关于矩阵的一些重要信息,如矩阵是否可逆(行列式非零则可逆)、线性方程组是否有解等。

2. 矩阵的逆矩阵有什么性质?答案:矩阵的逆矩阵具有以下性质:(A^(-1))^(-1) = A,(AB)^(-1) = B^(-1)A^(-1),以及单位矩阵I的逆矩阵仍然是I。

3. 矩阵的转置矩阵有什么特点?答案:矩阵的转置矩阵具有以下特点:(A^T)^T = A,(AB)^T =B^TA^T,以及矩阵A的转置矩阵的行列式等于矩阵A的行列式。

四、计算题(每题15分,共30分)1. 给定矩阵A = \[\begin{bmatrix} 1 & 2 \\ 3 & 4\end{bmatrix}\],计算A的行列式。

答案:\[ \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = (1)(4) - (2)(3) = 4 - 6 = -2 \]2. 给定矩阵B = \[\begin{bmatrix} 2 & 3 \\ 4 & 5\end{bmatrix}\],计算B的逆矩阵。

矩阵论考试题

矩阵论考试题
dx T 4. 设 x (1 , 2 , , n ) 是向量变量, 那么 = dx
T

任课教师
0 c c 5. 设 A c 0 c ,当 c c c 0
时,A 为收敛矩阵.
二、试用 Househoulder 变换将向量 x (1 , 2 , 2) 化为与 e1 (1 , 0 , 0) 同方向的 向量。 (8 分)
1 8 0 0
2 1 4 0
1 1 至少有两个实特征值。(10 分) 0 1
0 1 2 3 八、求矩阵 A 0 2 1 1 的满秩分解(10 分) 2 4 2 4
九、求矩阵 A 的 Jordan 标准形及相应的相似变换矩阵。其中 1 1 A 5 21 10、设 A H A , B H B ,证明: (1) e iA 为酉矩阵; (2) e B 为酉矩阵 (10 分) (10 分)
第 1 页 共 2 页
中国民航大学 2010-2011 学年第一学期 研究生《 矩阵论 》期末考试试卷
姓名
线――――――――――――――――――――――――――――――-
专业
学号
考试形式:闭卷
一、填空题(每小题 4 分,共 20 分) 1. det e A 2. 已知 e
At
2 e t e 2 t e 2t e t e 2t e t
姓名:
2 3 0 五、已知 A 1 3 0 ,求 A 的 Doolittle 分解。 1 3 6
(8 分)
1 0 0 六、矩阵 A ,求 A (8 分) 2 0 0
班级:
第 2 页 共 2 页
9 0 七、应用盖尔圆定理证明 1 1

矩阵期末练习题及答案

矩阵期末练习题及答案

矩阵期末练习题及答案例1若A 是对称矩阵,则A T -A=______。

答案:0例2若矩阵A 可逆,则(A T )-1=____.答案:(A -1)T例3设A ,B 均为方阵,若AB =I ,则A -1=_____,B -1=______.答案:B ,A例2 矩阵A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-100020100,则A -1=( )。

答案:⎢⎢⎢⎣⎡001 0210 ⎥⎥⎥⎦⎤-100 例3、 设A 、B 均为方阵,则下列结论正确的是( )。

A .(AB )T =A T B TB .AA T =A T AC .若A T =A ,则(A 2)T =A 2D .若A T =A ,B T =B ,则(AB )T =AB 。

答案:(C )。

例4、 设A 是三角形矩阵,若主对角线上元素( ),则A 可逆。

A .全部为0B .可以有零元素C .不全为0D .全不为0答案:(D )例5、设A=⎢⎢⎢⎣⎡-342 ⎥⎥⎥⎦⎤-101,B=⎢⎣⎡-87 ⎥⎦⎤-109,求A.B 。

解:A.B=⎢⎢⎢⎣⎡-342 ⎥⎥⎥⎦⎤-101⎢⎣⎡-87 ⎥⎦⎤-109=⎢⎢⎢⎣⎡-132822 ⎥⎥⎥⎦⎤--173628例6、设A=⎢⎢⎢⎣⎡321 422 ⎥⎥⎥⎦⎤313,求A -1。

解:(AE )=⎢⎢⎢⎣⎡321 422 313 001 010 ⎥⎥⎥⎦⎤100→⎢⎢⎢⎣⎡001 222-- 653-- 321-- 010 ⎥⎥⎥⎦⎤100→⎢⎢⎢⎣⎡001 022- 153-- 121-- 110- ⎥⎥⎥⎦⎤100→⎢⎢⎢⎣⎡001 022 153 121 110-⎥⎥⎥⎦⎤-100→⎢⎢⎢⎣⎡001 022 100 132-- 163-- ⎥⎥⎥⎦⎤-153→⎢⎢⎢⎣⎡001 020 100 131- 163- ⎥⎥⎥⎦⎤--152→⎢⎢⎢⎣⎡001 010 100 1231- 133- ⎥⎥⎥⎥⎦⎤--1252 ∴A -1=⎢⎢⎢⎣⎡1231- 133- ⎥⎥⎥⎥⎦⎤--1252例7.设矩阵 ⎥⎦⎤⎢⎣⎡-=021201A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=200010212B ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=242216C ,计算C BA -T . 解 C BA -T =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡200010212⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-022011⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+242216 =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-042006⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+242216 =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡200210例8.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=321221211A ,求1-A . .解 因为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1010110011010001211100321010221001211)(I A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→110100011010001211⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→110100*********011⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→110100*********001 所以,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-1100112121A . 例9.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=143102010A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100010001I ,求1)(-+A I . 解 因为 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=+243112011A I ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-103210012110001011100243010112001011 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→115100012110001011⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→115100127010001011 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→115100127010126001所以 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=+-115127126)(1A I 例10、解矩阵方程⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡--214332X . 解 因为⎥⎦⎤⎢⎣⎡--10430132⎥⎦⎤⎢⎣⎡→10431111 ⎥⎦⎤⎢⎣⎡--→23101111⎥⎦⎤⎢⎣⎡--→23103401 即 ⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡---233443321 所以,X =⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡--212334=⎥⎦⎤⎢⎣⎡-12例8、证明:若A 2=I ,且AA T =I ,则A 为对称矩阵。

矩阵理论试题答案最终版

矩阵理论试题答案最终版


G

(2, 2) (2, t + 1) (2, t 2 − 1) 2 (t + 1, 2) (t + 1, t + 1) (t + 1, t − 1) (t 2 − 1, 2) (t 2 − 1, t + 1) (t 2 − 1, t 2 − 1)
1 ∫−1 4dt 1 = ∫ 2*(t + 1)dt −1 1 ∫ 2*(t 2 − 1)dt −1 −8 4 8 3 10 −4 = 4 3 3 −8 −4 16 3 15 3
2
x ' −1 0 x 1 = + y ' 0 2 y −1 求多项式 P(x)经此仿射变换所得到的曲线,变换后的曲线是什么曲线? 解:(1)由平面的四个点我们可得如下方程。
a0 + a1 *1 + a2 *12 = 0 2 −1 a0 + a1 *(−1) + a2 *(−1) = 2 1 a0 + a1 * 2 + a2 * 2 = a + a *(−3) + a *(−3) 2 = 2 2 0 1
∫ ∫ ∫
1 −1 1
1
−1
2*(t + 1)dt
−1
(t 2 + 2t + 1)dt
(t + 1) *(t 2 − 1)dt
1 2 ∫−1 (t + 1) *(t − 1)dt 1 2 2 t dt t ( 1) *( 1) − − ∫−1

1
−1
2*(t 2 − 1)dt

研究生期末试题矩阵论a及答案

研究生期末试题矩阵论a及答案

验证 是 中的向量范数.
八、(10分)已知矩阵 ,写出矩阵函数 的Lagrange-Sylvester内插多项式表示,并计算 。
长 春 理Leabharlann 工 大 学研 究 生 期 末 考 试标准答案及评分标准
科目名称:矩阵论命题人:姜志侠
适用专业:审核人:
开课学期:2012——2013学年第 一 学期□开卷√闭卷
计算

则得谱分解式
+2 (10分)
六、

由于 ,
于是有 ,故
(10分)
七、当 时, ;当 不恒等于零时,由其连续性知 必在 的某个子区间 上不等于零,从而有

对于 ,有

对于 ,有

故 是 中的向量范数.(10分)
八、容易求出矩阵A的最小多项式为 ,所以 , ,于是
由此知 的内插多项式表示为
将矩阵A代入上式得
长 春 理 工 大 学
研 究 生 期 末 考 试试 题
科目名称:矩 阵 论命题人:姜志侠
适用专业:理 工 科审核人:
开课学期:2012——2013学年第 一 学期□开卷 √闭卷
一、(10分)设 是 的一个基,试求由 ,
, 生成的子空间 的基.
二、(10分)在 中,设 ,定义实数 为 ,判断是否为 中 与 的内积。

(2) 在基(Ⅱ)的坐标为 ,由坐标变换公式计算 在基(Ⅰ)下的坐标为
.(10分)
四、首先求出A的Jordan标准形

所以行列式因子 ;
不变因子 ;(6分)
那么A的初等因子为 ,故A的Jordan标准形为
.(10分)
五、解:求出 的特征根 (二重),计算对角化相似因子 及其逆 为

上海交通大学矩阵理论2009-2013年期末考试真题

上海交通大学矩阵理论2009-2013年期末考试真题
2009-2010
, . 1. ( 3 , 15
100 )
.
A∗
A
.
R3 U = {(x, y, z )T ∈ R3 | x + y + z = 0}, W = {(x, y, z )T ∈ R3 | x = y = ) (C) 2 . (D) 3 :
z − 2 }.
dim (U + W ) − dim U =( (A) 0 (B) 1 2. U, W V ⊥ ⊥ . (U + W ) = U + W ⊥ ; . (U + W )⊥ = U ⊥ ∩ W ⊥ ; . (U ∩ W )⊥ = U ⊥ + W ⊥ ; . (U ∩ W )⊥ = U ⊥ ∩ W ⊥ . ( ) (A) (B) A B
)
2.下列集合对所给运算构成实数域上线性空间的是( ) (A) 次数等于m(m 1)的实系数多项式的集合,对于多项式的通常加法和数与多项式的 通常乘法. (B) Hermite 矩阵的集合,对于矩阵的通常加法和实数与矩阵的通常乘法; (C) 平面上全体向量的集合,对于通常的加法和如下定义的数乘运算k · x = x0 ,k 是实数, x0 是某一取定向量. (D) 投影矩阵的集合,对于矩阵的通常加法和实数与矩阵的通常乘法; 3.线性变换为正交变换的必要而非充分条件的是( ) (A) 保持向量的长度不变; (B) 将标准正交基变为标准正交基; (C) 保 持 任 意 两 个 向 量 的 夹 角 不 变 ; 阵. 4.设A是幂等矩阵,则下列命题中不正确的是( ) (A) A与对角矩阵相似; (B) A的特征值只可能是1或者0; (D) 幂级数
∗,
D=
Λ O O O
)
m×n

矩阵理论期末复习题

矩阵理论期末复习题

1、非齐次微分方程组()()⎪⎩⎪⎨⎧=+=T x t F AX dt dx1,0)0(的解:其中⎪⎪⎭⎫⎝⎛-=3553A ()⎪⎪⎭⎫ ⎝⎛=-0t e t F2、设nn CA ⨯∈,则对任何矩阵范数∙,都有A A ≤)(ρ。

3、设⎪⎪⎪⎭⎫ ⎝⎛=010100012A ,求Ate 。

4、设nn CA ⨯∈,且1)(<A ρ,求级数∑∞=0m mA的和。

5、求矩阵⎪⎪⎪⎭⎫⎝⎛---=502613803A 的约当标准形。

6、求⎪⎪⎪⎭⎫ ⎝⎛----=031251233A 的最小多项式)(λm 。

7、讨论kk kk⎥⎦⎤⎢⎣⎡--∑∞=128160的敛散性。

8、线性变换的秩与零度的定义,秩与零度之间的关系 9、已知m nm R b R A ∈∈⨯,,对于矛盾线性方程组b Ax =,使得22)(b Ax x f -=为最小的向量)0(x 称为最小二乘解,试导出最小二乘解所满足的方程组。

1.设实数域上的多项式空间3[]P t 中的多项式230123()f t a a t a t a t =+++在线性变换T 下的像为2301122330()()()()()Tf t a a a a t a a t a a t =-+-+-+-,求线性变换T 的值域和核空间的基与维数。

2.设⎪⎪⎪⎭⎫⎝⎛=032100010A ,⎪⎪⎭⎫ ⎝⎛-=2010A ,求A e 。

3.求矩阵1141⎛⎫= ⎪⎝⎭A 的谱分解。

4.求微分方程组112212313214221tdx x x dt dx x x dt dx x x e dt ⎧=-++⎪⎪⎪=-++⎨⎪⎪=++-⎪⎩和1132123313383625dx x x dt dxx x x dt dx x x dt ⎧=+⎪⎪⎪=-+⎨⎪⎪=--⎪⎩满足初始条件123(0)1,(0)1,(0)1x x x ===-的解。

5.证明矩阵nn CA ⨯∈的幂序列}{)(m A 收敛于0的充分必要条件是()1A ρ<。

矩阵试题及答案

矩阵试题及答案

矩阵试题及答案一、选择题(每题4分,共20分)1. 矩阵的秩是指:A. 矩阵中非零元素的个数B. 矩阵中最大的线性无关行(列)向量组的个数C. 矩阵的行数D. 矩阵的列数答案:B2. 若矩阵A与矩阵B相等,则下列说法正确的是:A. A和B的行列式相等B. A和B的迹相等C. A和B的行列式和迹都相等D. A和B的行列式和迹都不相等答案:C3. 矩阵的转置是指:A. 将矩阵的行变成列B. 将矩阵的列变成行C. 将矩阵的行和列互换D. 将矩阵的元素取相反数答案:C4. 对于任意矩阵A,下列说法正确的是:A. A的行列式等于A的转置的行列式B. A的行列式等于A的逆矩阵的行列式C. A的行列式等于A的逆矩阵的转置的行列式D. 以上说法都不正确答案:A5. 若矩阵A是可逆矩阵,则下列说法正确的是:A. A的行列式不为0B. A的行列式为1C. A的行列式为-1D. A的行列式可以是任意非零值答案:A二、填空题(每题5分,共20分)1. 若矩阵A的行列式为-2,则矩阵A的逆矩阵的行列式为____。

答案:1/22. 设矩阵A为2x2矩阵,且A的行列式为3,则矩阵A的转置的行列式为____。

答案:33. 若矩阵A的秩为2,则矩阵A的行向量组的____。

答案:线性无关4. 设矩阵A为3x3矩阵,且A的行列式为0,则矩阵A是____。

答案:奇异矩阵三、解答题(每题10分,共30分)1. 已知矩阵A=\[\begin{bmatrix}1 & 2\\3 & 4\end{bmatrix}\],求矩阵A的行列式。

答案:\(\begin{vmatrix}1 & 2\\3 & 4\end{vmatrix} = (1)(4) - (2)(3) = 4 - 6 = -2\)2. 设矩阵B=\[\begin{bmatrix}2 & 0\\0 & 2\end{bmatrix}\],求矩阵B的逆矩阵。

线性代数期末考试试题及答案

线性代数期末考试试题及答案

线性代数期末考试试题及答案一、选择题(每题5分,共30分)1. 若矩阵A的秩为r(A),则下列结论正确的是()A. r(A) ≤ n,其中n是矩阵A的列数B. r(A) ≤ m,其中m是矩阵A的行数C. r(A) ≤ min(m, n)D. r(A) = max(m, n)答案:C2. 下列矩阵中,哪一个不是对称矩阵?()A. \(\begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}\)B. \(\begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}\)C. \(\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 &5 \end{pmatrix}\)D. \(\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 &9 \end{pmatrix}\)答案:D3. 若向量组α1, α2, α3线性无关,则向量组()A. α1 + α2, α2 +α3, α3 + α1 线性无关B. α1 - α2, α2 - α3, α3 - α1 线性无关C. α1 + 2α2, 2α2 + 3α3, 3α3 + α1 线性无关D. α1 + α2 + α3, 2α2 + 3α3, 3α3 + α1 线性无关答案:B4. 设矩阵A是n阶可逆矩阵,则下列结论正确的是()A. A的伴随矩阵A也是可逆矩阵B. A的逆矩阵A-1也是可逆矩阵C. A的转置矩阵AT也是可逆矩阵D. A的n次幂An也是可逆矩阵答案:D5. 若行列式D = |A|的值为0,则下列结论正确的是()A. 方程组Ax = b有唯一解B. 方程组Ax = b无解C. 方程组Ax = 0有非零解D. 方程组Ax = b有无穷多解答案:C6. 若矩阵A是正交矩阵,则下列结论正确的是()A. A的行列式值为1B. A的行列式值为-1C. A的转置矩阵AT等于A的逆矩阵A-1D. A的平方等于单位矩阵E答案:CD二、填空题(每题5分,共30分)7. 若矩阵A的行列式值为3,则矩阵A的伴随矩阵A的行列式值为________。

矩阵论期末试题及答案

矩阵论期末试题及答案

矩阵论期末试题及答案1. 选择题题目1:矩阵的秩是指矩阵中非零行(列)线性无关的最大个数,下面关于矩阵秩的说法中,错误的是:A. 若矩阵A的秩为r,则只能确定 A 中有r个行(列)线性无关。

B. 若矩阵A的秩为r,则只能确定 A 中有r个坐标线性无关。

C. 设A,B为n×m矩阵,若A的秩为r,B的秩为s,则AB的秩至少为max{r,s}。

D. 同一矩阵的行秩与列秩相等。

题目2:对于阶梯形矩阵,以下说法正确的是:A. 阶梯形矩阵的行秩与列秩相等。

B. 阶梯形矩阵的行秩等于主元的个数。

C. 阶梯形矩阵的列秩等于主元的个数。

D. 阶梯形矩阵的行秩与列秩之和等于矩阵的阶数。

题目3:设A为n阶矩阵,下列说法正确的是:A. 若A为可逆矩阵,则A的行秩和列秩都为n。

B. 若A的行秩和列秩都为n,则A为可逆矩阵。

C. 若对于非零向量 x,都有Ax=0,则称矩阵A为零矩阵。

D. 若A为可逆矩阵,则方程Ax=b存在唯一解。

题目4:对于实对称矩阵A,以下说法正确的是:A. A一定有n个线性无关的特征向量。

B. A的所有特征值都是实数。

C. 若A的特征向量构成的特征子空间的维数为n,则称A为满秩矩阵。

D. A一定可以对角化。

2. 计算题题目1:已知矩阵A = [1, 2; 3, 4],求矩阵A的转置矩阵。

解答:转置矩阵的行与列互换,故矩阵A的转置矩阵为:A^T = [1, 3; 2, 4]题目2:已知矩阵B = [2, 1; -1, 3],求矩阵B的逆矩阵。

解答:逆矩阵满足BB^(-1) = I,其中I为单位矩阵。

对于矩阵B,可以使用伴随矩阵法求解:B^(-1) = (1/(ad-bc)) * [d, -b; -c, a]其中a、b、c、d分别为矩阵B的元素:B^(-1) = (1/(2*3-(-1)*1)) * [3, -1; 1, 2] = [3/7, -1/7; 1/7, 2/7]题目3:已知矩阵C = [1, 2, 3; 4, 5, 6],求矩阵C的行列式的值。

关于矩阵考试题及答案

关于矩阵考试题及答案

关于矩阵考试题及答案一、单项选择题(每题2分,共10分)1. 矩阵的行列式为0,说明该矩阵是:A. 可逆的B. 不可逆的C. 正交的D. 对称的答案:B2. 矩阵A与矩阵B相乘的结果为零矩阵,那么矩阵A和矩阵B:A. 至少有一个是零矩阵B. 都是零矩阵C. 都是单位矩阵D. 至少有一个不可逆答案:D3. 矩阵的秩是指:A. 矩阵中非零元素的数量B. 矩阵中线性无关的行或列的最大数量C. 矩阵的行数D. 矩阵的列数答案:B4. 矩阵的特征值是:A. 矩阵的对角线元素B. 矩阵的非对角线元素C. 满足特征方程的λ值D. 矩阵的转置答案:C5. 矩阵的迹是指:A. 矩阵的行列式B. 矩阵的秩C. 矩阵对角线元素的和D. 矩阵的逆矩阵答案:C二、填空题(每题3分,共15分)1. 如果矩阵A的行列式为-5,则矩阵A的逆矩阵的行列式为______。

答案:-1/52. 矩阵A和矩阵B相乘得到单位矩阵,那么矩阵A和矩阵B互为______。

答案:逆矩阵3. 对于一个3x3的矩阵,其秩最大为______。

答案:34. 如果一个矩阵的所有行(或列)都线性相关,则该矩阵的秩为______。

答案:05. 矩阵的特征值可以通过求解特征方程______得到。

答案:det(A-λI)=0三、计算题(每题10分,共20分)1. 给定矩阵A=[1 2; 3 4],求矩阵A的行列式。

答案:det(A) = 1*4 - 2*3 = -22. 给定矩阵B=[2 0; 0 3],求矩阵B的逆矩阵。

答案:B^(-1) = [1/2 0; 0 1/3]四、证明题(每题15分,共30分)1. 证明:如果矩阵A和矩阵B可交换,即AB=BA,那么它们的特征值可以同时对角化。

答案:略2. 证明:对于任意的方阵A,有tr(A) = tr(A^T)。

答案:略。

终极资料整理版-山东科技大学矩阵理论往年试卷

终极资料整理版-山东科技大学矩阵理论往年试卷

山东科技大学2006—2007学年第一学期《矩阵理论》考试试卷班级 姓名 学号一、单项选择题(每题2分,共8分)1、设1()kk A f A k∞==∑收敛,则A 可以取为 A. 0091⎡⎤⎢⎥--⎣⎦B. 0091⎡⎤⎢⎥-⎣⎦C. 1011⎡⎤⎢⎥-⎣⎦ D. 100.11⎡⎤⎢⎥⎣⎦2、设211112121M --⎡⎤⎢⎥=--⎢⎥⎢⎥--⎣⎦,则M 不存在 A. QR 分解 B. 满秩分解 C. 奇异值分解 D. 谱分解 3、设2222221212134400033t t t tt t Attt tte e e te e e ee e e e ⎛⎫-+-+ ⎪= ⎪ ⎪-+⎝⎭,则A =A. 214020031⎛⎫⎪ ⎪ ⎪⎝⎭ B. 114010061⎛⎫ ⎪⎪ ⎪⎝⎭C. 224020031⎛⎫ ⎪⎪ ⎪⎝⎭D. 204020061⎛⎫ ⎪ ⎪ ⎪⎝⎭4、设3阶矩阵A 满足多项式222(4)(3)A E A E O --=, 且其最小多项式m (x )满足条件(1)(3)1m m ==,则A 可以相似于A. 200130002M ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦B. 20002002M ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦C.201202M ⎡⎤-⎢⎥=-⎢⎥⎢⎥-⎣⎦D. 200030013M -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦二、填空题(每题5分,共20分)1、设 220A A -=,则cos2A = 。

2.已知n nA C⨯∈,并且()1A ρ<,则矩阵幂级数kk kA∞=∑= 。

3.设矩阵1111A ⎡=⎥⎦,则A 的谱半径()A ρ= 。

4、设5阶复数矩阵A 的特征多项式为22()(1)(2)f λλλλ=-+,则2|A +E |= .三、(12分)设152010001A -⎛⎫ ⎪=- ⎪ ⎪⎝⎭,试求矩阵B 使得5B A =。

四、(10分)设221111122A -⎛⎫⎪=-- ⎪ ⎪--⎝⎭,求At e 。

矩阵论试题及答案可编辑全文

矩阵论试题及答案可编辑全文

2006矩阵论试题答案一.填空(每题4分,共40分)1. 设−−=41311221222832A ,则A 的值域4(){,R }R A y y Ax x ==∈的维数=)(dim A R 2 .2. 设A 的若当标准型−−−=10000011000001100000020000012000002J ,则A 的最小多项式=)(λψm 32(1)(2)λλ+−.3. 设110430102A −=−,则()5432333h A A A A A A =−++−=110430102−− −−. 4. 设埃尔米特阵为 −−+=2005111i i i i A , 则矩阵A 为 正定的 埃尔米特阵.5. 在3R 中有下列两组向量:()13,1,2Tα=−−,()21,1,1Tα=−,()32,3,1Tα=−; ()11,1,1Tβ=,()21,2,3Tβ=,()32,0,1Tβ=,则由321,,ααα到321,,βββ的过渡矩阵=P 619113421270−−−−−− −− .6.设33CA ×∈,21332211{}ij m j i A a ===∑∑,H AA 的非零特征值分别为15 ,5 ,3,则=2mA.7. 设12102101, 11111137A B −== −−,12,V V 分别为齐次线性方程组 0Ax =,0Bx =的解空间,则=)dim(21V V ∩ 1 .8. 设1(1)1(1)121()321nn n n n n n A n n n n +−−=++ −,则lim n n A →∞=1311e .9. 设213121202A −=,则A 的 LDU 分解为 A =100121012/51 2001123205200115004/5001−  −   − 10.设 −=5221A ,=0242B ,则2448204048102040100A B−−−⊗=. 二.(10分)设T 为n 维欧氏空间V 中的线性变换,且满足:),(),(Ty x y Tx −=,试证明:T 在标准正交基下的矩阵A 为反对称阵(T A A −=)证明:设n ααα,,,21 为V 的标准正交基,n n ij a A ×=}{,下证:ji ij a a −=: 由=),,,(21n T ααα A n ),,,(21ααα 知n ni i i i a a a T αααα+++= 2211,n nj j j j a a a T αααα+++= 2211, ),(),(j i j i T T αααα−=;=),(j i T ααji j n ni i i a a a a =+++),(2211αααα , =),(j i T ααij n nj j j i a a a a =+++),(2211αααα , 所以:ji ij a a −=.三.(10分)在复数域上求矩阵−−−=7137341024A 的若当标准形J ,并求出可逆矩阵P 使得J AP P =−1.解: A 的若当标准形210021002J=. 令123(,,)P p p p =,则有112123232,2,2Ap p Ap p p Ap p p ==+=+;1213262100621062104170,417,4173150315315p p p p p −−−−=−=−= −−−解得:123(2,1,1),(0,1,0),(1,2,1)T T Tp p p ===− , 201112101P=−.四. (10分)已知 =654321x x x x x xX ,162534()sin()x x f X e x x x x =++,求dXdf . 解答:16161234652543225516cos()cos()x x x x ff f x x x df dX ff f x x x x e x x x x x x x x x e ∂∂∂∂∂∂== ∂∂∂ ∂∂∂. 五.(10分)已知311202113A −=−−−,求4sin()A π,Ae .解:3||(2)E A λλ−=−,A 的最小多项式2)2()(−=λλϕ .待定系数一:令24sin ()(2)q a b πλλλλ=−++,则21,0a b b +==,4sin()A E π=;令2()(2)e q a b λλλλ=−++,则222,a b e b e +==.222211212112A e e e E e A −−=−+=− −−.待定系数二:令324sin ()(2)q a b c πλλλλλ=−+++,则22222414018,8,32216a b c b c a b c c ππππ ++=+=⇒=−==− =− ; 224sin()(44)32A E E A A E ππ=−−+=.令32()(2)e q a b c λλλλλ=−+++,则2222222414,,22a b c e b c e a e b e c e c e++= +=⇒==−== ; 2221()2211212112A e e E A A e −−− =− +−−= .六.(10分)设−=01200110A ,求A 的奇异值分解. 解答一:=5002A A H ,A 的奇异值为5,2; 00Σ= , 25H HV A AV = ,1001V =; 1100100100200100U AV −−− =Σ==; 00000000U− =; 0000010001 0 000 0 000A=.解答二:=5002A A H ,那么A 的奇异值为5,2,A A H对应于特征值5,2的标准特征向量为 = =01,1021x x ,=0110V ; 再计算H AA 的标准正交特征向量,解得分别与5,2,0,0对应的四个标准正交特征向量=0520511υ, −=2102102υ,−=0510523υ,=2102104υ,−−=210210051052210210052051U ; 所以=∆=HV UA 0000000000000110.七.(10分)设n n i A ×∈≠C 0,2rank rank i i A A =),,2,1(n i =,且当i j ≠时),,2,1,(0n j i A A j i ==.试用归纳法证明存在同一个可逆阵n n P ×∈C 使 得对所有的i ),,2,1(n i =有1−=P PE a A ii i i ,其中C ∈i a . 证明:1n =时,命题显然.假设n k ≤时,命题成立. 当1n k =+时,设1rank A r =.由若当分解11111000D A P P − =,其中1C r rD ×∈可逆; 当2,,j n = 时,由110j j A A A A ==可得1(1)(1)1100, C 0n n j jj A P P B B −−×− =∈(直接推出的j B 为()()n r n r −×−的) 再由0i j A A =得0i j B B =(,,2,,)i j i j n ≠= ;0j B ≠,2rank rank j j B B =也是明显的.由假设知存在可逆阵(1)(1)C n n Q −×−∈使得1j j jj B a QE Q −=,其中C j a ∈,2,,j n = .此时,再由110j j A A A A ==得到11111111110101010000000a A P P a P P Q Q −−− == ; 记1100P P Q =,则 11111111100000000 (2,,).0 j j j jj j j jj jj A P P P P B a QE Q a P P a P E P j n E −−−−− =====由归纳原理知命题为真.。

矩阵理论历年试题汇总及答案

矩阵理论历年试题汇总及答案

矩阵理论历年试题汇总及答案矩阵理论是线性代数中的一个重要分支,它涉及到矩阵的运算、性质以及矩阵在不同领域中的应用。

历年来的矩阵理论试题通常包括矩阵的基本运算、矩阵的特征值和特征向量、矩阵的分解等重要概念。

以下是对矩阵理论历年试题的汇总及答案解析。

矩阵的基本运算试题1:给定两个矩阵 \( A \) 和 \( B \),其中 \( A =\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \),\( B =\begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} \),求 \( A + B \) 和 \( AB \)。

答案:首先计算矩阵的加法 \( A + B \),根据矩阵加法的定义,对应元素相加,得到 \( A + B = \begin{bmatrix} 6 & 8 \\ 10 & 12 \end{bmatrix} \)。

接着计算矩阵乘法 \( AB \),根据矩阵乘法的定义,得到 \( AB = \begin{bmatrix} 1\cdot5 + 2\cdot7 & 1\cdot6 + 2\cdot8 \\ 3\cdot5 + 4\cdot7 & 3\cdot6 + 4\cdot8\end{bmatrix} = \begin{bmatrix} 19 & 22 \\ 43 & 50\end{bmatrix} \)。

特征值和特征向量试题2:已知矩阵 \( C = \begin{bmatrix} 4 & -2 \\ 1 & -1\end{bmatrix} \),求 \( C \) 的特征值和对应的特征向量。

答案:首先求特征值,我们需要解方程 \( \det(C - \lambda I) = 0 \),其中 \( I \) 是单位矩阵。

计算得到 \( \det(\begin{bmatrix}4-\lambda & -2 \\ 1 & -1-\lambda \end{bmatrix}) = (4-\lambda)(-1-\lambda) - (-2)(1) = \lambda^2 - 3\lambda - 2 \)。

矩阵论试题(整理)(完整版)实用资料

矩阵论试题(整理)(完整版)实用资料

矩阵论试题(整理)(完整版)实用资料(可以直接使用,可编辑完整版实用资料,欢迎下载)矩阵论试题(06,12)一.(18分填空:设1.A-B的Jordan标准形为J=2.是否可将A看作线性空间V2中某两个基之间的过渡矩阵()。

3.是否可将B看作欧式空间V2中某个基的度量矩阵。

()4.(),其中。

5.若常数k使得kA为收敛矩阵,则k应满足的条件是()。

6.AB的全体特征值是()。

7.()。

8.B的两个不同秩的{1}-逆为。

二.(10分设,对于矩阵的2-范数和F-范数,定义实数,(任意)验证是中的矩阵范数,且与向量的2-范数相容。

三.(15分已知。

1.求;2.用矩阵函数方法求微分方程满足初始条件x(0的解。

四.(10分用Householder变换求矩阵的QR分解。

五.(10分)用Gerschgorin定理隔离矩阵的特征值。

(要求画图表示)六.(15分已知。

1.求A的满秩分解;2.求A+;3.用广义逆矩阵方法判断线性方程组Ax=b是否有解;4.求线性方程组Ax=b的极小范数解,或者极小范数最小二乘解x0。

(要求指出所求的是哪种解)七.(15分已知欧式空间R22的子空间R22中的内积为V中的线性变换为T(X=XP+XT, 任意XV,1.给出子空间V的一个标准正交基;2.验证T是V中的对称变换;3.求V的一个标准正交基,使T在该基下的矩阵为对角矩阵.八.(7分设线性空间V n的线性变换T在基下的矩阵为A,T e表示V n的单位变换,证明:存在x00,使得T(x0=(T e-T(x0的充要条件是为A的特征值.矩阵论试题(07,12)一.(18分填空:1.矩阵的Jordan标准形为J=2.设则3.若A是正交矩阵,则cos(A=4.设,A+是A的Moore-Penrose逆,则(-2A, A+=5.设,则AB+I2I3的全体特征值是()。

6.设向量空间R2按照某种内积构成欧式空间,它的两组基为和且与的内积为则基的度量矩阵为()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矩阵重点(仅供参考)
第一章
线性空间的证明
例8.1
1}在三维空间用 中求下列各线性变换f在指定的基下的矩阵:已知f&「巧23)=(2眄一忑2卫2+乌,巧)’
求f在基Q=(1,0,0)„62=(0,1,0),£3=(0,0,1)下的距阵;
2)已知线桂变换f在基0-(一1」,1),血-(1,(),-1),773-((J,1,1)下的輕阵10 1'
入2_入0 0 0
化为Smith标准形*
[解]对矩阵人(州进行初等变换,得到
其中心(入)二1地(A)二心(A)二入(A-1) d (A) - A" (A-1)".
定理3.2重点讲的
定理
A-矩阵A(A)的Smith标准形是唯一的.
rd,(A)
价*
并且它们有相同的秩和相同的各阶行列式因子,所以4(入)的秩就是标准 形主肘角线上非零元素的个数r; A (A)的k阶行列式因子就是


J
2 1 0
[解]由前例有…4与Jordan标准形J= 0 2 1相似.
令P二(Pl、P2,pd则有Aj9i-2卫丄厂切2-P1+ 功2「切3-P2+ 2旳. 即:
■-G2 10'
'O'
■-62W
-6 2 10'
一4 1 7
Pi=
C
1
-4 1 7
P2 = Pi ,
-4 1 7
一3 1 5
0
-3 1 5
A(入)=山(A)心(入)…心(入)伙=12…“)
所以rfi (A)二6(A)//o(入)二器%…,rf,(入)二趙令知 即 心(入)a=12…,r)由丄(入)的行列式因子唯一确定,函以…4(入)的Smith标准形是唯一的・□
厂例3.3
-0
1
0…
0 -
0
0
1…
0
求矩阵貝(入)—
* r ♦
■ VI
i PVr#*
Di(入)=f)2(A)= ■■-=Dn-i(A)=1,
因此」(A)的不变因子为小(A)=丛(入)=…=f/„_i(A)=1,心(人)=(入一“)33(入)的初等因子为(入一“厂*
定理3.5重点讲的
例4.1考试题型
「例4,1
在复数域上求矩阵丄=
■3 0 8 '
3-16—20 —5
■■
的Jordan标准形J.
-3 15
”3 =P2
第四章
定理2.2考了很多次了(老师说的)
定理2.2
任意给崔非零列向量J GRH3 > !)及单位列向量Z匸则存住Househoider飪阵比使得Hjr =胡M
证:当乂=1=]Z时"取单位列向量也满足"0=0,则
Eh=(/—丁)=雷一2u(la丁頂)=邀=|^|*:
J —
JT
住一
即(A) -/(A),將5(入)的第一列.第n行去扌轧余下的71-1阶子式 为
所以,Di(A)二6(入)二…二几―1(入)=1,
di (A)=向2(Q=…=fAi-i(人)=1-d"(入)=/(人),
rl1
因此1A(A)的Smith标准形为:
2—1为非零常数.
[解]因为A(X)为n阶方阵,所以n, (A)=(A-q)\去掉第了乙行与第1列后,余下的"一1阶子式为C1C2…所以(入)=1,所以
J
-1
当X/|j|时I取?!=
(此绘应用 了等式|j?—|t|才=2(T—\t\)
证明;2(工一|工|JT)=(眄工)(J-,丈)二(4工)一臥近)+ I打=
|卫|益工一I工卜)=I工一I远I屮
例2.1
试求矩阵月=(04—21的QR分解.
[解]我们分别应用Homdioldcr变换,Givens变换和Schmidt正交化方法 求矩阵A的QR分解,
1 1 0,求f在基
-12 1
耳己知/(//I)二(-5,0,3)J(也)二(0,-1,6)二(-5,-1,9),其中切-
(—13),2)=(0,1,1) ,%=(3,-1,0)是一个基,求/在£1=(1,0,G),£2=(0,1,0),^3- (0,0,1)下的矩阵以及在基W二(一12,2),"二(0丄1),脚二(3,-1,0)下的矩阵.
A—3tJ—8
■1-
-3 A+1 -6
T
入41
2 0入+5
■ ■
.(入+1匚
[解]因为\I-A =
因此『初等因子为入+1,入+1冗 所a,A的Jordan标准形"「例48
■-4
2
10'
在复数域上求矩阵A=
-4
3
7
的Jordan标准形J,并求出可逆矩阵P,
—3
1

使得P-L4P=J.
的特征矩阵的不变因子,并将
0
0
G…
1
_ —伦徒
—5-1
—5-2…
一创.
其化为Smith标准形.
J
经初等变换得到
-0
-1
(.)
…0-
()
A
-1
…0
■ ■■
0
■ I■
0
I I■
0
■■ ■ III
-1
L/(A)
On—1
2
…A + rtj _
其中:/ (入)—入"+口1入"丄+…+A+(7n,并且,
血t」(A)=detD(A)=(-眾+」;(A) (-1)(入),
[解]1)因为/(叼卫2十』=(2工1一孔,^2 +衍卫J所以/(^1) = /(1.0,0)=(2,0,1),/(eJ = /(OJ4)=(—1J2),/(叼)=/(0小1) = (0丄0).
由于三维向莹在标准正楚基61,£2,^3下的坐标就是其分量,
又(巾「乃Jb)=(6^20」
■ ■
-110
■ ■
1 01
'"11-1'
"-11-2'
10 1
1 1 0
01-1
2 2 0
1-11
■ ■
一121
■ IS
1 0 1
3 0 2
H- ■
由此可得/(…勿如二
(G
因此f在基“T“疋3下的矩阵为
线性变换的矩阵表示是重点
第二章
例2.2
例2.2
在欧氏空间用 中对于基曲=(1」.1)・02=念=(1.0,0)行正交化
(方法一)应用Householder变换求QR分解.
因为fii=(0,0⑵',取6=Ik^lL=2,作单位向量
方法”求出/?"的一个标准正交基.
73=他一常帶bl一錚Ibii=;所以{九他斶是Q的一
个正交基;
2)再令C1=閔=(;^,為.雳)'厲2=盘|=(為,吉•-搓);。3=希=(为,-爲4);
则{创:血‘伽}却为欧氏空间R"的一个标准正交基.
第三章(最重要的是第三章 重中之重就是Jordan)
引理2.1重点讲的
如農入一矩阵月(入)中的元素创1(入)黑a并且A a)中至少有一个元素不能 被其整除,则必存在一个与卫(泊等价的入一矩阵5(入),并且B(X)中的元素6n (A)丰0.同时多项式fell (A)的次数小于ax(A)的次数.
[例2.2
将A-矩阵A[入)二
■0 0 0丹
() 0入2—A0
0(入-1)200
相关文档
最新文档