【重庆中考炸豆阅读题答案】重庆中考数学阅读题
(完整版)重庆中考数学阅读专题[含详细答案解析]
1.(2017•重庆)对任意一个三位数n,如果n满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.(1)计算:F(243),F(617);(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:k=,当F(s)+F(t)=18时,求k的最大值.2.(2016•重庆)我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所有3×4是12的最佳分解,所以F(12)=.(1)如果一个正整数a是另外一个正整数b的平方,我们称正整数a是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t为“吉祥数”,求所有“吉祥数”中F(t)的最大值.3.(2015•重庆)如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数叫做“和谐数”.例如:自然数64746从最高位到个位排出的一串数字是6,4,7,4,6,从个位到最高位排出的一串数字也是:6,4,7,4,6,所以64746是“和谐数”.再如:33,181,212,4664,…,都是“和谐数”.(1)请你直接写出3个四位“和谐数”,猜想任意一个四位数“和谐数”能否被11整除,并说明理由;(2)已知一个能被11整除的三位“和谐数”,设个位上的数字为x(1≤x≤4,x为自然数),十位上的数字为y,求y与x的函数关系式.4.(重庆南开2016)如果一个自然数可以表示为两个连续奇数的立方差,那么我们就称这个自然数为“麻辣数”.如:2=13﹣(﹣1)3,26=33﹣13,所以2、26均为“麻辣数”.【立方差公式a3﹣b3=(a﹣b)(a2+ab+b2)】(1)请判断98和169是否为“麻辣数”,并说明理由;(2)在小组合作学习中,小明提出新问题:“求出在不超过2016的自然数中,所有的‘麻辣数’之和为多少?”小组的成员胡图图略加思索后说:“这个难不倒图图,我们知道奇数可以用2k+1表示…,再结合立方差公式…”,请你顺着胡图图的思路,写出完整的求解过程.5.(2016春•重庆八中月考)如果一个自然数能表示为两个自然数的平方差,那么称这个自然数为智慧数,例如:16=52﹣32,16就是一个智慧数,小明和小王对自然数中的智慧数进行了如下的探索:小明的方法是一个一个找出来的:0=02﹣02,1=12﹣02,3=22﹣12,4=22﹣02,5=32﹣22,7=42﹣32,8=32﹣12,9=52﹣42,11=62﹣52,…小王认为小明的方法太麻烦,他想到:设k是自然数,由于(k+1)2﹣k2=(k+1+k)(k+1﹣k)=2k+1.所以,自然数中所有奇数都是智慧数.问题:(1)根据上述方法,自然数中第12个智慧数是15(2)他们发现0,4,8是智慧数,由此猜测4k(k≥3且k为正整数)都是智慧数,请你参考小王的办法证明4k(k≥3且k为正整数)都是智慧数.(3)他们还发现2,6,10都不是智慧数,由此猜测4k+2(k为自然数)都不是智慧数,请利用所学的知识判断26是否是智慧数,并说明理由.6.(2015春•重庆一中月考)我们用[x]表示不大于x的最大整数,例如[1.5]=1,[﹣2.5]=﹣3.请解决下列问题:(1)[π]= 3 ,[﹣π]= ﹣4 .(其中π为圆周率);(2)已知x、y满足方程组,求x、y的取值范围;(3)当﹣1≤x≤2时,求函数y=[x]2﹣2[x]+3的最大值与最小值.7.(2016•重庆巴蜀中学期末)我们来定义下面两种数:①平方和数:若一个三位数或者三位以上的整数分成左、中、右三个数后满足:中间数=(左边数)2+(右边数)2,我们就称该整数为平方和数;例如:对于整数251.它中间的数字是5,左边数是2,右边数是1.∵22+12=5,∴251是一个平方和数.又例如:对于整数3254,它的中间数是25,左边数是3,右边数是4,∵32+42=25∴2,34是一个平方和数.当然152和4253这两个数也是平方和数;②双倍积数:若一个三位数或者三位以上的整数分拆成左、中、右三个数后满足:中间数=2×左边数×右边数,我们就称该整数为双倍积数;例如:对于整数163,它的中间数是6,左边数是1,右边数是3,∵2×1×3=6,∴163是一个双倍积数,又例如:对于整数3305,它的中间数是30,左边数是3,右边数是5,∵2×35=30,∴3305是一个双倍积数,当然361和5303这两个数也是双倍积数;注意:在下面的问题中,我们统一用字母a表示一个整数分出来的左边数,用字母b表示一个整数分出来的右边数,请根据上述定义完成下面问题:(1)如果一个三位整数为平方和数,且十位数为9,则该三位数为390 ;如果一个三位整数为双倍积数,且十位数字为4,则该三位数为241或142 ;(2)如果一个整数既为平方和数,又是双倍积数.则a,b应该满足什么数量关系;说明理由;(3)为一个平方和数,为一个双倍积数,求a2﹣b2.重庆中考阅读答案:(2017•重庆)对任意一个三位数n,如果n满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.(1)计算:F(243),F(617);(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:k=,当F(s)+F(t)=18时,求k的最大值.【解答】解:(1)F(243)=(423+342+234)÷111=9;F(617)=(167+716+671)÷111=14.(2)∵s,t都是“相异数”,s=100x+32,t=150+y,∴F(s)=(302+10x+230+x+100x+23)÷111=x+5,F(t)=(510+y+100y+51+105+10y)÷111=y+6.∵F(t)+F(s)=18,∴x+5+y+6=x+y+11=18,∴x+y=7.∵1≤x≤9,1≤y≤9,且x,y都是正整数,∴或或或或或.∵s是“相异数”,∴x≠2,x≠3.∵t是“相异数”,∴y≠1,y≠5.∴或或,∴或或,∴或或,∴k的最大值为.(2016•重庆)我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所有3×4是12的最佳分解,所以F(12)=.(1)如果一个正整数a是另外一个正整数b的平方,我们称正整数a是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t为“吉祥数”,求所有“吉祥数”中F(t)的最大值.【解答】解:(1)对任意一个完全平方数m,设m=n2(n为正整数),∵|n﹣n|=0,∴n×n是m的最佳分解,∴对任意一个完全平方数m,总有F(m)==1;(2)设交换t的个位上的数与十位上的数得到的新数为t′,则t′=10y+x,∵t为“吉祥数”,∴t′﹣t=(10y+x)﹣(10x+y)=9(y﹣x)=18,∴y=x+2,∵1≤x≤y≤9,x,y为自然数,∴“吉祥数”有:13,24,35,46,57,68,79,∴F(13)=,F(24)==,F(35)=,F(46)=,F(57)=,F(68)=,F(79)=,∵>>>>>,∴所有“吉祥数”中,F(t)的最大值是.(2015•重庆)如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数叫做“和谐数”.例如:自然数64746从最高位到个位排出的一串数字是6,4,7,4,6,从个位到最高位排出的一串数字也是:6,4,7,4,6,所以64746是“和谐数”.再如:33,181,212,4664,…,都是“和谐数”.(1)请你直接写出3个四位“和谐数”,猜想任意一个四位数“和谐数”能否被11整除,并说明理由;(2)已知一个能被11整除的三位“和谐数”,设个位上的数字为x(1≤x≤4,x为自然数),十位上的数字为y,求y与x的函数关系式.解答:解:(1)四位“和谐数”:1221,1331,1111,6666;任意一个四位“和谐数”都能被11整数,理由如下:设任意四位数“和谐数”形式为:abba(a、b为自然数),则a×103+b×102+b×10+a=1001a+110b,∵=91a+10b∴四位数“和谐数”abba能被11整数;∴任意四位数“和谐数”都可以被11整除(2)设能被11整除的三位“和谐数”为:xyx,则x•102+y•10+x=101x+10y,=9x+y+,∵1≤x≤4,101x+10y能被11整除,∴2x﹣y=0,∴y=2x(1≤x≤4).4.(重庆南开2016)如果一个自然数可以表示为两个连续奇数的立方差,那么我们就称这个自然数为“麻辣数”.如:2=13﹣(﹣1)3,26=33﹣13,所以2、26均为“麻辣数”.【立方差公式a3﹣b3=(a﹣b)(a2+ab+b2)】(1)请判断98和169是否为“麻辣数”,并说明理由;(2)在小组合作学习中,小明提出新问题:“求出在不超过2016的自然数中,所有的‘麻辣数’之和为多少?”小组的成员胡图图略加思索后说:“这个难不倒图图,我们知道奇数可以用2k+1表示…,再结合立方差公式…”,请你顺着胡图图的思路,写出完整的求解过程.【解答】解:设k为整数,则2k+1、2k﹣1为两个连续奇数,设M为“麻辣数”,则M=(2k+1)3﹣(2k﹣1)3=24k2+2;(1)98=53﹣33,故98是麻辣数;M=24k2+2是偶数,故169不是麻辣数;(2)令M≤2016,则24k2+2≤2016,解得k2≤<84,故k2=0,1,4,9,16,25,36,49,64,81,故M的和为24×(0+1+4+9+16+25+36+49+64+81)+2×10=6860.5.(2016春•重庆八中月考)如果一个自然数能表示为两个自然数的平方差,那么称这个自然数为智慧数,例如:16=52﹣32,16就是一个智慧数,小明和小王对自然数中的智慧数进行了如下的探索:小明的方法是一个一个找出来的:0=02﹣02,1=12﹣02,3=22﹣12,4=22﹣02,5=32﹣22,7=42﹣32,8=32﹣12,9=52﹣42,11=62﹣52,…小王认为小明的方法太麻烦,他想到:设k是自然数,由于(k+1)2﹣k2=(k+1+k)(k+1﹣k)=2k+1.所以,自然数中所有奇数都是智慧数.问题:(1)根据上述方法,自然数中第12个智慧数是15(2)他们发现0,4,8是智慧数,由此猜测4k(k≥3且k为正整数)都是智慧数,请你参考小王的办法证明4k(k≥3且k为正整数)都是智慧数.(3)他们还发现2,6,10都不是智慧数,由此猜测4k+2(k为自然数)都不是智慧数,请利用所学的知识判断26是否是智慧数,并说明理由.【解答】解:(1)继续小明的方法,12=42﹣22,13=72﹣62,15=82﹣72,即第12个智慧数是15.故答案为:15;(2)设k是自然数,由于(k+2)2﹣k2=(k+2+k)(k+2﹣k)=4k+4=4(k+1).所以,4k(k≥3且k为正整数)都是智慧数.(3)令4k+2=26,解得:k=6,故26不是智慧数.6. (2015春•重庆一中月考)我们用[x]表示不大于x的最大整数,例如[1.5]=1,[﹣2.5]=﹣3.请解决下列问题:(1)[π]= 3 ,[﹣π]= ﹣4 .(其中π为圆周率);(2)已知x、y满足方程组,求x、y的取值范围;(3)当﹣1≤x≤2时,求函数y=[x]2﹣2[x]+3的最大值与最小值.【解答】解:(1)由题意可得:[π]=3,[﹣π]=﹣4;故答案为:3,﹣4;(2)解方程组得:,则﹣1≤x<0,2≤y<3;(3)当﹣1≤x<0时,[x]=﹣1,此时y=(﹣1)2﹣2×(﹣1)+3=6;当0≤x<1时,[x]=0,此时y=3;当1≤x<2时,[x]=1,此时y=12﹣2×1+3=2;当x=2时,[x]=2,此时y=22﹣2×2+3=3;综上所述:y最大=6,y最小=2.7.(2016年•重庆巴蜀中学期末)我们来定义下面两种数:①平方和数:若一个三位数或者三位以上的整数分成左、中、右三个数后满足:中间数=(左边数)2+(右边数)2,我们就称该整数为平方和数;例如:对于整数251.它中间的数字是5,左边数是2,右边数是1.∵22+12=5,∴251是一个平方和数.又例如:对于整数3254,它的中间数是25,左边数是3,右边数是4,∵32+42=25∴2,34是一个平方和数.当然152和4253这两个数也是平方和数;②双倍积数:若一个三位数或者三位以上的整数分拆成左、中、右三个数后满足:中间数=2×左边数×右边数,我们就称该整数为双倍积数;例如:对于整数163,它的中间数是6,左边数是1,右边数是3,∵2×1×3=6,∴163是一个双倍积数,又例如:对于整数3305,它的中间数是30,左边数是3,右边数是5,∵2×35=30,∴3305是一个双倍积数,当然361和5303这两个数也是双倍积数;注意:在下面的问题中,我们统一用字母a表示一个整数分出来的左边数,用字母b表示一个整数分出来的右边数,请根据上述定义完成下面问题:(1)如果一个三位整数为平方和数,且十位数为9,则该三位数为390 ;如果一个三位整数为双倍积数,且十位数字为4,则该三位数为241或142 ;(2)如果一个整数既为平方和数,又是双倍积数.则a,b应该满足什么数量关系;说明理由;(3)为一个平方和数,为一个双倍积数,求a2﹣b2.【解答】解:(1)∵三位整数为平方和数,9=32+02,∴左边数为3,右边数为0,∴该三位数为390.∵三位整数为双倍积数,且十位数字为4,4=2×2×1,∴该三位数为241或142.故答案为390,241或142.(2)如果一个整数既为平方和数,又是双倍积数.则a,b应该满足a2+b2=2ab,即(a﹣b)2=0,∴a=b.(3)由题意,易知(a﹣b)2=25,(a+b)2=1225,∵a>0,b>0,∴a﹣b=±5,a+b=35,∴a2﹣b2=±175.。
2021重庆中考数学专题复习阅读材料题
2021重庆中考数学专题复习阅读材料题1.阅读理解:把几个数用大括号括起来,中间用逗号断开,比如:{3,2},{−2,0,1,−1},我们称之为集合,其中大括号内的数称为该集合的元素.如果一个集合满足:只要其中有一个元素a,使得−2a+3也是这个集合的元素,我们把这样的集合称为自闭集合.例如:集合{−2,9,7},因为−2×(−2)+3=7,7恰好是这个集合的元素,所以{−2,9,7}是自闭集合.再如:集合{−1,3},因为−2×(−1)+3=5,而5不是这个集合的元素,且−2×3+ 3=−3,而−3也不是这个集合的元素,所以{−1,3}不是自闭集合.}______ 自闭集合;(选填“是”或“不是”)(1)判断:集合{2,4,−12(2)若集合{3,x}和集合{−y}都是自闭集合,求x+y的值.2.对于一列互不相同的整数:1,2,3,4,5,6,7,8,9.我们按以下规则进行操作:从这一列数中任意取走两个数,求出取走的这两个数的和或者差,把求得的和或者差连同余下的整数形成新的一列数.重复这样的操作,直到这一列数只剩下一个数为止,我们把最后剩下的数叫做“终止数”.(1)判断:6______ 这一列数的“终止数”;23______ 这一列数的“终止数”.(括号里填“是”或“不是”)(2)对这一列数进行多次重复操作,会得到不同的“终止数”,其中最大的“终止数”是______ ,这一列数一共能产生______ 个不同的“终止数”.(3)相同规则下,有这么一列互不相同的整数:2,11,3,7,a,b,c,13(a>b>c>0),如果这一列数的“终止数”中最大的一个为54,试求出abc的最大3.一个正整数的各位数字都相同,我们称这样的数为“称心数”,如5,44,666,2222,…对任意一个三位数n,如果n满足各数位上的数字互不相同,且都不为零,那么称这个数为“相异数”.将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和记为S(n),如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和S(123)=213+321+132=666,是一个“称心数”.(1)计算:S(432),S(617),并判断是否为“称心数”;(2)若“相异数”n=100+10p+q(其中正整数p,q满足1≤p≤9,1≤q≤9),且S(n)为最大的三位“称心数”,求n的值.4.若在一个三位自然数中,十位上的数字恰好等于百位与个位上的数字之和,则称这个三位数为“奇异数”.例如,在自然数132中,3=1+2,则132是“奇异数”;在自然数462中,6=4+2,则462是“奇异数”.(1)请你写出最大的“奇异数”,并证明:任意一个“奇异数”一定能被11整除.(2)若有“奇异数”能同时被3和7整除,求出这样的“奇异数”.5. 材料一:一个整数的各个数位上的数字之和能被9整除,则这个整数能被9整除.材料二:已知一个各位数字都不为零的四位数m =abcd −=1000a +100b +10c +d ,百位和十位上的数字之和是千位和个位上的数字之和的两倍,则称这个四位数为“双倍数”,将这个“双倍数”m 的各位数字颠倒过来就变成新的“双倍数”m′=dcba −,记F(m)=m+m′111,例如m =2461,4+6≠2×(1+2),所以2461不是“双倍数”,m =2685,6+8=2×(2+5),所以2685是“双倍数”,m′=5862,F(2685)=2685+5862111=77.(1)判断2997,6483是否为“双倍数”并说明理由;(2)若s ,t 均为“双倍数”,s 的千位数字是5,个位数字大于2,t 的百位数字是7,且s 能被9整除,4F(s)+F(t)是完全平方数,求t 的最大值.6. 对于一个非零整数a ,将其各个数位上的数字分别立方后取其个位数字,得到一个新数b ,称b 是a 的“荣耀数”例如:a =125,其各个数位上的数字分别立方后得到的数为1、8、125,则其个位数字分别为1、8、5,则a 的“荣耀数”b 为185. (1)18的“荣耀数”为______ ,2046的“荣耀数”为______ .(2)对于一个两位数m 和一个三位数n ,在m 的中间位插入一个一位数k ,得到一个新的三位数m′,若m′是m 的9倍,且n 是m′的“荣耀数”,求所有满足条件的n 的值.7. 一个三位正整数amb −各个数位上的数字均不为零.若amb −满足个位与百位上的数字互换位置后得到的三位数bma −能够被十位上的数字m 整除,商记为k ,我们就称此数amb −为“m 有缘牵手k 年好合数”.(1)若三位数6ma −是“m 有缘牵手213年好合数”,求m 的值;(2)若三位数5m4−是“m 有缘牵手k 年好合数”,求m 的值及对应k 的值.8. 对于正整数a ,如果存在正整数b ,c 使得a =bc ,则称b ,c 为a 的约数.比如36=4×9,所以4和9是36的约数.为了找出36的所有约数,我们可以把36继续分解,即36=2×2×3×3,进一步写成36=22×32,所以36的约数就可以表示成2α⋅3β的形式,其中α可取0、1、2,β可取0、1、2;这样我们就很快地得出36共有9(9=3×3)个约数,分别为1、3、9、2、6、18、4、12、36.以上方法我们称之为是对36进行“分解质因数”.其实不难发现,对于任意正整数m 都可以对其进行分解质因数,即m =P 1α1P 2α2…Pn αn,其中P 1,P 2,…,P n 是互不相等的质数,那么m 的所有约数n 就可表示为n =p 1β1p 2β2…p n βn (0≤β1≤α1,0≤β2≤α2,…0≤βn ≤αn 且β1,β2…,βn 都是整数),进而不难得出m 共有(a 1+1)(a 2+1)…(a n +1)个约数.特别的,如果m =n 2k (n 是正整数,k 为自然数),则称m 为完全平方数.(1)根据以上阅读材料,求出3000共有多少个约数? (2)请说明对任意的一个完全平方数的约数个数一定是奇数.9.阅读下列材料,回答问题:材料一:一个三位正整数M,若M的十位数字大于个位数字且M是一个正整数的完全平方数,则称M为“中核完全平方数”.例如:三位数961,因为961=312,且6>1.所以961是“中核完全平方数”.三位数621,因为242<621<252,所以621不是“中核完全平方数”.材料二:一个三位正整数N=abc−(1≤a≤9,1≤b≤9,1≤c≤9,且a、b、c为整数),把这个三位数作变换得到6个两位数分别为:8a−,8b−,8c−,a8−,b8−,c8−,将这6个两位数加起来的和再除以11的商记作F(N).例如:三位数276,按照这种变换可以得到6=39.个两位数分别为:82,87,86,28,78,68,所以F(276)=82+87+86+28+78+6811(1)请分别判断121和921是否是“中核完全平方数”,并说明理由;(2)一个三位正整数N是一个小于500的“中核完全平方数”,求所有符合条件的F(N)的最大值.10.对于任意一个三位正整数,十位上的数字减去个位上的数字之差恰好等于百位上的数字,则称这个三位数为“极差数”.例如:对于三位数451,5−1=4,则451是“极差数”;对于三位数110,1−0=1,则110是“极差数”(1)求证:任意一个“极差数”一定能被11整除;(2)在一个“极差数”首位之前添加其十位的数字得到一个新的四位数M,在一个“极差数”末位之后添加数字1得到一个新的四位数N,若M−N能被12整除,求满足条件的“极差数”.11.阅读材料:对于一个三位自然数m,将各个数位上的数字分别3倍后取个位数字,得到三个新的数字x,y,z,我们对自然数m规定一个运算:F(m)=x2+y2+z2.例如:m=752,其各个数位上的数字分别3倍后再取个位数字分别是:1、5、6,则F(752)=12+52+62= 62.(1)根据材料内容,求F(234)−F(567)的值;(2)已知两个三位数p=a3a−,q=3b3−(a,b为整数,且2≤a≤7,2≤b≤7),若p+q能被17整除,求F(p+q)的值.12.对于自然数n,在计算n+(n+1)+(n+2)时,各数位都不产生进位,则称这个自然数n为“纯数”.例如:2020是纯数,因为计算2020+2021+2022时,各数位都不产生进位.任意一个正整数m都可以表示为:m=a2b(a、b均为正整数),在m的所有表示结果中,当|a−b|最小时,规定:F(m)=2ab.例如:12=12×12=22×3,∵|1−12|>|2−3|,∴F(12)=12.(1)计算F(32)的值,并判断F(32)是否为纯数,说明理由;(2)若F(x)比最大的三位数纯数小310,求x.13. 若一个四位数的后两位数字组成的两位数是前两位数字组成的两位数的2倍,则称该数为“进步数”.如1326、2550都是进步数,对于任意自然数t ,各数位上的数字从左往右数,把所有奇数位上的数字之和与所有偶数位上的数字之和的平方差的绝对值记为F(t).例如:F(154)=|(1+4)2−52|=0,F(3154)=|(3+5)2−(1+4)2|=39. (1)若27mn −是一个进步数,求F(27mn −)的值; (2)求证:所有的进步数都能被6整除.14. 若一个三位数m =xyz −(其中x ,y ,z 不全相等且都不为0),现将各数位上的数字进行重排,将重排后得到的最大数与最小数之差称为原数的差数,记作M(m).例如435,重排后得到345,354,453,534,543,所以435的差数M(435)=543−345=198. (1)若一个三位数t =x2y −(其中x >y >2)的差数M(t)=594,且各数位上的数字之和能被5整除,求t 的值;(2)若一个三位数m ,十位数字为2,个位数字比百位数字大2,且m 被4除余1,求所有符合条件的M(m)的最小值.15.阅读材料:材料一:对实数a,b,定义T(a,b)的含义为,当a<b时T(a,b)=a+b;当a≥b时,T(a,b)=a−b例如:T(1,3)=1+3=4:T(2,−1)=2−(−1)=3材料二:关于数学家高斯的故事,200多年前,高斯的算术老师提出了下面的问题:1+ 2+3+4+⋯+100=?据说,当其他同学忙于把100个数还项相加时,十岁的高斯却用下面的方法迅速算出了正确答案:(1+100)+(2+99)+⋯+(50+51)=101×50=5050也可以这样理解:令S=1+2+3+⋯+100,则S=100+99+⋯+ 3+2+1②①+②:2S=(1+100)+(2+99)+(3+98)+⋯+(100+1)100个=100×101=10100,=5050.即S=100×(1+100)2根据以上材料,回答下列问题:(1)已知x+y=10,且x>y,求T(5,x)−T(5,y)的值;(2)对于正数m,有T(m2+1,−1)=3,求T(1,m+99)+T(2,m+99)+T(3,m+99)+⋯+T(199,m+99)的值.16.求一组正整数的最小公倍数是常见的数学问题,中国古代数学专著《九章算术》中便记载了求一组正整数最小公倍数的一种方法--少广术,术曰:“置全步及分母子,以最下分母遍乘诸分子及全步,各以其母除其子,置之于左.命通分者,又以分母遍乘诸分子及已通者,皆通而同之,并之为法.置所求步数,以全步积分乘之为实.实如法而一,得从步.”意思是说,要求一组正整数的最小公倍数,先将所给一组正整数分别变为其倒数,首项前增一项“1”,然后以最末项分母分别乘各项,并约分;再用最末项分数的分母分别乘各项,再约分,…;如此类推,直到各项都为整数止,则首项即为原组正整数之最小公倍数.例如:求6与9的最小公倍数.解:第一步:1,16,1 9;第二步:9,32,1:第三步:18,3,2所以,6与9的最小公倍数是18.请用以上方法解决下列问题:(1)求54与45的最小公倍数;(2)求三个数6,51,119的最小公倍数.17.阅读以下材料:对数的创始人是苏格兰数学家纳皮尔(J.Napier,1550年−1617年),纳皮尔发明对数是在指数概念建立之前,直到18世纪瑞士数学家欧拉(Euler,1707年−1783年)才发现指数与对数之间的联系.对数的定义:一般地,若a x=N(a>0,a≠1),则x叫做以a为底N的对数,记作x= log a N.比如指数式24=16可以转化为4=log216,对数式2=log525可以转化为52=25.我们根据对数的定义可得到对数的一个性质:log(M⋅N)=log a M+log a N(a>0,a≠1,M>0,N>0).理由如下:设log a M=m,log a N=n,所以M=a m,N=a n,所以MN=a m a n=a m+n,由对数的定义得m+n=log a(M+N),又因为m+n= log a M+log a N,所以log a(MN)=log a M+log a N.解决以下问题:(1)将指数53=125转化为对数式:______.=log a M−log a N(a>0,a≠1,M>0,N>0).(2)仿照上面的材料,试证明:log a MN(3)拓展运用:计算log32+log318−log34=______.18.定义:将一个大于0的自然数,去掉其个位数字,再把剩下的数加上原数个位数字的4倍,如果得到的和能被13整除,则称这个数是“一刀两断”数,如果和太大无法直接观察出来,就再次重复这个过程继续计算.例如55263→5526+12=5538,5538→553+32=585,585→58+20=78,78÷13=6,所以55263是“一刀两断”数.3247→324+28=352,35+8=43,43÷13=3…4,所以3247不是“一刀两断”数.(1)判断5928是否为“一刀两断”数:______(填是或否),并证明任意一个能被13整除的数是“一刀两断”数;(2)对于一个“一刀两断”数m=1000a+100b+10c+d(1≤a≤9,0≤b≤9,0≤c≤9,0≤d≤9,a,b,c,d均为正整数),规定G(m)=|b2−c|,若m的千位数满足1≤a−da≤4,千位数字与十位数字相同,且能被65整除,求出所有满足条件的四位数m中,G(m)的最大值.19.材料:对任意一个n位正整数M(n≥3),若M与它的十位数字的p倍的差能被整数q=101;整除,则称这个数为“p阶q级数”,例如:712是“5阶7级数”,因为712−5×17=70.712也是“12阶10级数”,因为712−12×110(1)若415是“5阶k级数”,且k<300,求k的最大值;(2)若一个四位数M的百位数字比个位数字大2,十位数字为1,且M既是“4阶13级数”又是“6阶5级数”,求这个四位数M.20.阅读下列材料,解答下列问题材料一:一个三位以上的自然数,如果该自然数的末三位表示的数与末三位之前的数字表示的数之差是11的倍数,我们称满足此特征的数叫“网红数”,如:65362,362−65=297=11×27,称65362是“网红数”.材料二:对任的自然数p均可分解为P=100x+10y+z(x≥0,0≤y≤9,0≤z≤9且x、y,z均为整数)如:5278=52×100+10×7+8,规定:G(P)=x2+x−z(1+x)+1.x−z(1)求证:任两个“网红数”之和一定能被11整除;(2)已知:S=300+10b+a,t=1000b+100a+1142(1≤a≤7,0≤b≤5,其a、b均为整数),当s+t为“网红数”时,求G(t)的最大值.21.我们已经知道一些特殊的勾股数,如三连续正整数中的勾股数:3、4、5;三个连续的偶数中的勾股数6、8、10;事实上,勾股数的正整数倍仍然是勾股数.(1)另外利用一些构成勾股数的公式也可以写出许多勾股数,毕达哥拉斯学派提出的公式:a=2n+1,b=2n2+2n,c=2n2+2n+1(n为正整数)是一组勾股数,请证明满足以上公式的a、b、c的数是一组勾股数.(2)然而,世界上第一次给出的勾股数公式,收集在我国古代的着名数学着作《九章算术》中,书中提到:当a=12(m2−n2),b=mn,c=12(m2+n2)(m、n为正整数,m>n时,a、b、c构成一组勾股数;利用上述结论,解决如下问题:已知某直角三角形的边长满足上述勾股数,其中一边长为37,且n=5,求该直角三角形另两边的长.。
(完整word版)重庆中考专题训练九阅读理解题型问题(一)
中考专题训练九阅读理解题型问题一、“新概念新方法”型阅读理解例题1.在因式分解中, 把多项式中某些部分看作一个整体, 用一个新的字母代替(即换元), 不仅可以简化要分解的多项式的结构, 而且能使式子的特点更加明显, 便于观察处如何进行因式分解, 这种方法就是换元法.例如: 分解因式时, 可以先将原式中的、分别计算, 得:, , 观察后设, 则原式222222(2)2()(66)A x A x A Ax x A x x x又如: 分解因式时, 考虑到系数的对称性, 如果提取中间项的字母及指数后, 就可以使用换元法, 具体过程如下:4322222221241141217124(41217)[4()12()17]x x x x x x x x x x x x x x令, 则原式,(1)请参照阅读材料中的换元对下列各式进行因式分解:(2)22(53)(57)4a a a a (3)22(1)(34)(4)x x x x x(4)4324241x x x x例题2.阅读下列材料, 解决教材后的问题:材料一: 我们知道对于x 轴上的任意两点,有, 而对于平面直角坐标系中的任意两点, ,我们把称为两点间的直角距离, 记作, , 及121212(,)=+d P P x x y y --.材料二: 对非负实数“四舍五入”到个位的值记为, 及当为非负数时, 若, 则,(1) 如: ,…①已知点为坐标原点, 动点满足=4,则(2) ②如果, 则实数的取值范围为若为满足的最大值, 求点到直线的最小直角距离.练习:对于一元二次方程解的范围, 我们可以用如下的方法进行估计:当时, ,当时, ,所以方程有一个根在5和2之间.(1)参照上面的方法, 找到方程的另外一个根在哪两个连续的整数之间;若方程有一个根在0和1之间, 求的取值范围.表示n 变形的对角线的交点个数(指落在其内部的交点), 如果这些交点都不重合, 那么与n 的关系式为:(1)(其中是常数, )(2)通过画图, 可得四边形时, (填数字);五边形时, (填数字)若, 求的值.若关于x 的一元二次方程有两个实数根, 且两根满足:①若一个是实数根比另一个实数根大1, 则我们称该方程为“邻根方程”;(1)②若一个是实数根是另一个实数根的整数倍, 则我们称该方程为“倍根方程”;(2)请写出一个一元二次方程, 改方程的二次项系数是“1”, 且方程既是“邻根方程”又是“倍根方程”; 若关于x 的“邻根方程”(且均为正整数)较小的一个实数根为t, 且关于x 的方程是“倍根方程”, 求.进制也就是进位制, 是人们规定的一种进位方法, 对于任何一种进制——进制, 就表示某一位置上的数运算时是逢进一位, 十进制就是逢十进一, 十六进制就是逢十六进一, 二进制就是逢二进一, 以此类推, 进制就是逢进位, 为与十进制进行区分, 我们常把进制表示的数写成.类比于十进制, 我们可以知道:进制表示的数中, 右起第一位上的1表示, 第二位上的1表示, 第三位上的1表示, 第四位上的1表示, 。
记叙文关键词语的含义分析
技法五:描绘法 即对所要解释的词语加以具体的描绘 例如:蹒跚→腿脚不灵便,走路很慢、摇摆的样子
技法 1.找出词语的表述对象 2.放到具体语境中进行理解 3.看词性: 名词:是什么? 动词、形容词:为什么? 答题格式:“xx”一词原指……(本义),这 里指……(文中义)。【表现了什么,表达了 什么】
变式训练
联系语境,说说下列句中加点词语的含义。
掉光了叶子的豆棵、豆荚如紧密的鞭炮,从头坠到根, 蓄意沉甸甸地爆裂。
答案:原义指存心、有意。这里指豆棵、豆 荚积攒力量迎接成熟与丰收。
修辞义
双关技法:先分析表层义,再分析深层义。 比喻、借代、拟人技法:找准修辞手法,结合 语境,寻找本体,再结合文中义作答。 答题格式:(这个词用了……),这里指……
技法一:换词法 用与该词意思相近的词替换 例如:不畏→不怕 一瞬间→一刹那 技法二:分合法 把构成词语的关键字分开,添字分别注解,然后 再组合起来 例如:勘测,勘→勘探,测→测量,勘测就是勘探 和测量
技法三:反义否定法 用反义词加“不” “没有”的否定形式来解释 例如:模糊→不清楚;崎岖→不平坦 技法四:定义法 用简明的语言,对该词所反映概念的本质特征做确 切的解释 例如:视野→视力所及的范围;拂晓→天快亮的时候
Hale Waihona Puke 例题展示22015重庆B卷《炸豆》:2.结合上下文,说说下 列句子中加点词语的含义。(4分) (1)农人们在豆地南头儿占好自己的田垄,就 像运动员占好自己的跑道,人和镰刀都酝酿着粘 稠的梦。 (2)两个女娃从村子走进田地,黄衣的是姐姐, 红衣的是妹妹,慵懒的土地就有了色彩和灵动。 答案:(1)在这里指农人们渴望黄豆有一 个好收成的愿望。 (2)本义是困倦、懒惰。这里指割掉豆棵的 田地闲置、没有生机的状态。
精品解析:2024年初中升学考试重庆市中考语文真题B卷(解析版)
故选A。
【4题详解】
本题考查语言表达。首段围绕“中华民族经历了无数难以想象的惊涛骇浪,锤炼出自强不息的民族品格”展开,第二段写中华民族伟大复兴之路道阻且长,第三段“作为新时代的中学生,必须继承和发扬自强不息的民族精神,跃马扬鞭,一路向前”我们该如何去做,“我们应该明白”应该是由上文内容明白的道理,我们应该在继承中发展,自强不息,为民族复兴,国家繁荣富强而奋斗;需用“……不是……而是……因为……”的句式表达,注意字数不超过80字。
故选D。
【3题详解】
本题考查句子的排序。语句排序题解决方法:①寻头断尾,确定首尾句;②把握时间顺序、空间顺序和逻辑顺序;③把握关联词的搭配;④把握话题衔接尤其是重复出现的词语。
①句承接“如今”点明“中华民族伟大复兴”的现状“进程不可阻挡,但道阻且长”;③句“愈进愈难”承接①句“道阻且长”;②句点明这个时候应该采取的办法“依靠全体人民自强不息、团结一致的磅礴力量”,进而引出④句结果“走向胜利”;故排为:①③②④;
初中学业水平暨高中招生考试
语文试题(B卷)
(全卷共四个大题,满分150分,考试时间120分钟)
注意事项:
1.试题的答案书写在答题卡上,不得在试题卷上直接作答。
2.作答前认真阅读答题卡上的注意事项。
3.考试结束,由监考人员将试题卷和答题卡一并收回。
重庆中考专题:阅读材料题-(解析版)
奇幻数、魔幻数。
梦幻数完美数正格对数对称数逆序数轮换数智慧数吉祥数麻辣数【答案】(1)不是(2)6860【解析】试题分析:(1)根据相邻两个奇数的立方差,可得答案;(2)根据相邻两个奇数的立方差,麻辣数的定义,可得答案.试题解析:设k为整数,则2k+1、2k﹣1为两个连续奇数,设M为“麻辣数”,则M=(2k+1)3﹣(2k﹣1)3=24k2+2;(1)98=53﹣33,故98是麻辣数;M=24k2+2是偶数,故169不是麻辣数;(2)令M≤2016,则24k2+2≤2016,解得k2≤100712<84,故k2=0,1,4,9,16,25,36,49,64,81,故M的和为24×(0+1+4+9+16+25+36+49+64+81)+2×10=6860.考点:平方差公式数字对称数循环数祖冲之组数【考点】因式分解的应用.【分析】(1)根据祖冲之数组的定义,即可解决问题.(2)首先判断出a是5,9,11的倍数,由此即可解决问题.【解答】解:(1)∵n•n(n﹣1)÷[n+n(n﹣1)]=n2(n﹣1)÷n2=n﹣1,∴n和n(n﹣1)(n≥2,n为整数)组成的数组是祖冲之数组.(2)∵=,=,=都是整数,∴a是5,9,11的倍数,∴满足条件的所有三位正整数a为495或990.【点评】本题考查因式分解的应用,整数等知识,解题的关键是理解题意,题目比较抽象,有一定难度.回文数终止数原始数妙数阶梯数互逆数欢乐数反转数对应数灵动数劳动数四位友谊数兄弟数希尔伯特数魔术数双倍积数平方和数24.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+22=(1+2)2.善于思考的小明进行了以下探索:设a+b2=(m+n2)2(其中a、b、m、n均为整数),则有a+b2=m2+2n2+2mn2.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b2的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b3=(m+n3)2,用含m、n的式子分别表示a、b,得:a= ,b= ;(2)利用所探索的结论,找一组正整数a、b、m、n填空:;(3)若a+43=(m+n3)2,且a、m、n均为正整数,求a的值?【答案】(1)、m2+3n2,2mn;(2)、4、2、1、1;(3)、a=22+3×12=7,或a=12+3×22=13【解析】试题分析:(1)、根据完全平方公式运算法则,即可得出a、b的表达式;(2)、首先确定好m、n的正整数值,然后根据(1)的结论即可求出a、b的值;(3)、根据题意,4=2mn,首先确定m、n的值,通过分析m=2,n=1或者m=1,n=2,然后即可确定好a的值.试题解析:(1)、∵a+b3=()23nm+,∴a+b3=m2+3n2+2mn3,∴a=m2+3n2,b=2mn.(2)、设m=1,n=1,∴a=m2+3n2=4,b=2mn=2.(3)、由题意,得: a=m2+3n2,b=2mn ∵4=2mn,且m、n为正整数,∴m=2,n=1或者m=1,n=2,∴a=22+3×12=7,或a=12+3×22=13.考点:二次根式的混合运算.24.先阅读短文,然后回答短文后面所给出的问题:对于三个数a 、b 、c 的平均数,最小的数都可以给出符号来表示,我们规定{},,M a b c 表示这三个数的平均数,{}min ,,a b c 表示这三个数中的最小的数,{}max ,,a b c 表示这三个数中最大的数.例如:{}12341,2,333M -++-==,{}min 1,2,31-=-,{}max 1,2,33-=;{}1211,2,33a a M a -+++-==,{}()()1min 1,2,11a a a a ≤-⎧⎪-=⎨->-⎪⎩. (1)请填空:{}min 1,3,0-= ;若0x <,则{}2max 2,2,1x x ++= ; (2)若{}{}min 2,22,421,54,32x x M x x x +-=--+,求x 的取值范围; (3)若{}{}2245,12,77max 12,26,6M x x x x x x --+-=--,求x 的值.试题解析:(1)、-1,22x + (2)、{}1,54,32M x x x --+=2 ∴222422x x +≥⎧⎨-≥⎩ 则01x ≤≤ (3)、{}2245,12,77M x x x x --+-=223x x + 令1226x x -=- 6x ∴=当6x =时,12266x x -=-=,{}max 12,26,66x x ∴--=则2263x x +=,∴13153x -+=,23153x --= 当6x >时,26612x x ->>-,{}max 12,26,626x x x ∴--=-则22263x x x +=-,无解当6x <时,12626x x ->>-,{}max 12,26,612x x x ∴--=- 则22123x x x +=-,16x ∴=-,23x = 综上所述:x=6或x=-6或x=3或x=31534.考点:(1)、不等式组;(2)、一元二次方程;(3)、新定义型.学科网24.(10分)阅读下列材料解决问题:材料:古希腊著名数学家毕达哥拉斯发现把数1,3,6,10,15,21…这些数量的(石子),都可以排成三角形,则称像这样的数为三角形数.把数 1,3,6,10,15,21…换一种方式排列,即1=11+2=31+2+3=61+2+3+4=101+2+3+4+5=15…从上面的排列方式看,把1,3,6,10,15,…叫做三角形数“名副其实”.(1)设第一个三角形数为a1=1,第二个三角形数为a2=3,第三个三角形数为a3=6,请直接写出第n个三角形数为a n的表达式(其中n为正整数).(2)根据(1)的结论判断66是三角形数吗?若是请说出66是第几个三角形数?若不是请说明理由.(3)根据(1)的结论判断所有三角形数的倒数之和T与2的大小关系并说明理由.试题分析:(1)根据题意归纳总结得到一般性规律,写出即可;(2)66是三角形数,理由为:根据得出的规律确定出原因即可;(3)表示出T后,利用拆项法整理判断即可.试题解析:(1)根据题意得:a n=(1)2n n+(n为正整数);(2)66是三角形数,理由如下:当(1)2n n+=66时,解得:n=11或n=﹣12(舍去),则66是第11个三角形数;(2)T=11+13+16+115+…+2(1)n n+=212⨯+223⨯+234⨯+245⨯+…+2(1)n n+=2(1﹣12+12﹣13+13﹣+…+1n﹣11n+)=21nn+,∵n为正整数,∴0<1nn+<1,则T<2.考点:规律型:数字的变化类.和谐数23.(2015•重庆A)如果把一个自然数各数位上数字从最高位到个位依次排出一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数叫做“和谐数”.例如:自然数64746从最高位到个位排出的一串数字是:6、4、7、4、6,从个位到最高排出的一串数字也是:6、4、7、4、6,所64746是“和谐数”.再如:33,181,212,4664,…,都是“和谐数”.(1)请你直接写出3个四位“和谐数”,猜想任意一个四位“和谐数”能否被11整除,并说明理由;(2) 已知一个能被11整除的三位“和谐数”,设个位上的数字为x(14x≤≤,x为自然数),十位上的数字为y,求y与x的函数关系式.24.阅读材料:材料1.若一元二次方程20(0)ax bx c a ++=≠的两根为12x x 、,则12b x x a+=-,12c x x a=材料2.已知实数m n 、满足210m m --=、210n n --=,且m n ≠,求n m m n+的值.解:由题知m n 、是方程210x x --=的两个不相等的实数根,根据材料1得1m n +=,1mn =-∴222()21231n m m n m n mn m n mn mn ++-++====-- 根据上述材料解决下面问题:(1)一元二次方程22310x x +-=的两根为12x x 、,则12x x += ,12x x = . .(2)已知实数m n 、满足01222=--m m 、01222=--n n ,且m n ≠,求22m n mn+的值.(3)已知实数p q 、满足232+=p p 、1322+=q q ,且q p 2≠,求224q p +的值.23.仔细阅读下列材料.“分数均可化为有限小数或无限循环小数”. 反之,“有限小数或无限循环小数均可化为分数”.例如: 1=14=0.254÷ ,331=1+=1+0.6=1.655或381==85=1.655÷, 1=13=0.33•÷反之,2510.25==1004,631.6=1+0.6=1+=1105或1681.6==105,那么0.3•怎么化为13呢?解:∵0.310=3.3=3+0.3•••⨯∴不妨设0.3=x •,则上式变为103x x =+,解得13x = 即10.33•=根据以上材料,回答下列问题. (1)将“分数化为小数”:74= ;411= . (2)将“小数化为分数”: 0.4•= ;1.53•= . (3)将小数1.02••化为分数,需写出推理过程.24.若一个正整数,它的各位数字是左右对称的,则称这个数是对称数,如22,797,12321都是对称数.最小的对称数是11,没有最大的对称数,因为数位是无穷的.(1)有一种产生对称数的方式是:将某些自然数与它的逆序数相加,得出的和再与和的逆序数相加,连续进行下去,便可得到一个对称数.如:17的逆序数为71,17+71=88,88是一个对称数;39的逆序数为93,39+93=132,132的逆序数为231,132+231=363,363是一个对称数.请你根据以上材料,求以687产生的第一个对称数;(2)若将任意一个四位对称数分解为前两位数所表示的数,和后两位数所表示的数,请你证明这两个数的差一定能被9整除;(3)若将一个三位对称数减去其各位数字之和,所得的结果能被11整除,则满足条件的三位对称数共有多少个?平衡数24.一个多位数整数,a代表这个整数分出来的左边数,b代表这个整数分出来的右边数,其中a,b两部分数位相同,若a2b+正好为剩下的中间数,则这个多位数就叫平衡数,例如:357满足3752+=,233241满足2341322+=(1)写出一个三也平衡数和一个六位平衡数,并证明任意一个六位平衡数一定能被3整除;(2)若一个三位平衡数后两位数减去百位数字之差为3的倍数,且这个平衡数为偶数,求这个三位数。
2021年重庆年中考22题阅读材料专题(3)
2021年重庆年中考22题阅读材料专题(3)1(E蜀2021级初三上定时训练二)阅读理解: 平方差数:若一个四位数赢万满足:b^=a2-b2 ,我们就成该数是平方差数•比如:对于四位数3729, ∙.∙92-33 =72, A 3729是平方差数;当然9723也是平方差数. 请根据上述定义完成下面问题:(1)判断2457,3266是否是平方差数,并说明理由:(2)一个四位数顾是平方差数,请求出这个数.2(重庆一外2021级九上第四次周考)对于任意一个三位正整数,十位上的数字减去个位上的数字之差恰好等于百位上的数字,则称这个三位数为“极差数” •对于三位数451,5-1=4,则451是“极差数”:对于三位数110.1-0=1, 则110是“极差数”(1)求证:任意一个极差数一泄能被11整除:(2)在一个“极差数”收尾之前添加七十位的数字得到一个新的四位数M,在一个“极差数”末尾之后添加数字1得到一个新的四位数N,若M-N能被12整除,求满足条件的“极差数化3(重庆一外2021级九上第三次周考)众所周知,多有实数都可以用数轴上的点来表示,我们将数轴上表示正整数的点称为'正点”,取任意一个“正点'P,到点P的距离为1的点多对应的数分别几位a.b(a<b).⅛义:若数m = b3-a3,则称数m为“复合数”。
例如:若"正点” P所表示的数为2,则a=l.b=3,那么m = 33-l3=26 ,所以26是“复合数”.(立方差公式:h3-a3 = (b-a)(b2+ab + a2))(1)请直接判断6和98是不是“复合数”,(2)证明所有的“复合数” 一泄能被6除余2;(3)已知两个'‘复合数”的差是126,求整两个“复合数”4(重庆育才2021级九上第一次月考复习)在整数的除法运算中,只有能整除与不被整除两种情况,当不能整除时, 就会产生余数,现在我们利用整数的除法运算来研究一种数一一“差一数”立义:对于一个自然数,如果这个数除以5余数为4,且除3余数为2,则称这个数为"差一数”.例如:14÷5=2…4,14÷3=4…2,所以14是“差一数”:19÷5=3…4,19÷3=6…1,所以19不是“差一数”;(1)判断49和74是否为“差一数” ?请说明理由:(2)求大于300且小于400的所有“差一数”.5 (重庆冇才2021级九上第一次月考)若一个多位数各个数位上的数字之和为11的倍数,则称该数为“淘宝数S 例如687,因为6+9+7=22,则697是“洶宝数”,又如468591,因为4+6+8+5+9十1=33,则468591也是“陶宝数”.(1)判断56和26982是否为“淘宝数” ?(2)若一个四位数满足十位数字比千位数字小3,百位数字是个位数字的2倍,且千位数字与百位数字的差是十位数字与个位数字差得3倍,求满足所有条件的四位数,并判断这些书是否是“淘宝数”。
2021年重庆年中考24阅读材料题型专题练习(重庆一中试题集)
2021年重庆年中考24阅读材料题型专题练习(重庆一中试题集) 1(一中2021级初三上入学测试)若一个三位数abc t =(其中a 、b 、c不全相等且都不为0),重新排列各数位上的数字必可得到一个最大数和一个最小数,此最大数和最小数的差叫做原数的差数,记为)(t T .例如,539的差数594359953)539(=-=T .(1)根据以上方法求出=)268(T __________,=)513(T __________;(2)已知三位数b a 1(其中1>>b a )的差数495)1(=b a T ,且各数位上的数字之和为3的倍数,求所有符合条件的三位数的值.2(一中2021级初三上国庆作业一)阅读下列材料并解决问题:定义:对于任意一个实数R ,定义R 的干数m 是与R 最接近的两个整数中较小的一个整数,R 的支数n 是R 减去R 的干数m 之差,即n R m =-.例如:实数2.07,因为与2.07最接近的两个整数时2和3,且2小于3,所以2.07的干数m =2,2.07的支数n =2.07-2=0.07;实数 1.72-,因为与 1.72-最接近的两个整数是1-和2-,且2-小于1-,所以 1.72-的干数2m =-, 1.72-的支数1.72(2)0.28n =---=.相关结论:m 是一个整数,n 的取值范围是01n ≤<.(1)实数10.8的干数m = ,实数34-的支数n = ; (2)某实数的干数是x ,支数是y ,且30.5x y +=,求这个实数.3(一中2020级初三下押题卷)材料一:一个大于1的正整数,若被N除余1,被(N-1)除余1,被(N-2)除余1…,被3除余1,被2除余1,那么称这个正整数为“明N礼”数(N取最大),例如:73(被5除余3)被4除余1,被3除余1,被2除余1,那么73为“明四礼”数.材料二:设N,(N-1),(N-2),…3,2的最小公倍数为k,那么“明N礼”数可以表示为kn+1,(n为正整数),例如:6,5,4,3,2的最小公倍数为60,那么“明六礼”数可以表示为60n+1.(n为正整数)(1)17______“明三礼”数(填“是”或“不是”);721是“明______礼”数;(2)求出最小的三位“明三礼”数;(3)一个“明三礼”数与“明四礼”数的和为32,求出这两个数.4(一中2020级初三下数学一模试卷)在初中数学学习阶段,我们常常会利用一些变形技巧来简化式子,解答问题.材料一:在解决某些分式问题时,倒数法是常用的变形技巧之一.所谓倒数法,即把式子变成其倒数形式,从而运用约分化简,以达到计算目的.例:已知:,求代数式的值.解:∵,∴即∴∴材料二:在解决某些连等式问题时,通常可以引入参数“k”,将连等式变成几个值为k的等式,这样就可以通过适当变形解决问题.例:若2x=3y=4z,且xyz≠0,求的值.解:令2x=3y=4z=k(k≠0)则∴根据材料回答问题:(1)已知,则=.(2)解分式方程组:(3)若,x≠0,y≠0,z≠0,且abc=5,求xyz的值.5(一中2020级初三下假期作业补充)一个四位数,记千位数字与个位数字之和为x,十位数字与百位数字之和为y,如果x = y,那么称这个四位数为“对称数”.(1)请直接写出最小的“对称数”;若四位数A与2020之和为最大的“对称数”,请直接写出A的值;(2)一个四位的“对称数”M,它的百位数字是千位数字a的3倍,个位数字与十位数字之和为8,且千位数字a使得不等式组34214251x xx a--⎧-≤⎪⎨⎪->⎩恰有4个整数解。
中考数学-阅读材料题综合专题(重庆育才试题集)-含答案
2021年重庆年中考24题阅读材料题综合专题(重庆育才试题集)1(育才2021级初三上定时训练二)中国古贤常说万物皆自然.而古希腊学者说万物皆数.小学我们就接触了自然数,在数的学习过程中,我们会对其中一些具有某种特性的自然数进行研究,比如奇数、偶数、质数、合数等,今天我们来研究另一种特殊的自然数﹣﹣“欢喜数”.定义:对于一个各数位不为零的自然数,如果它正好等于各数位数字的和的整数倍,我们就说这个自然数是一个“欢喜数”.例如:24是一个“欢喜数”,因为24=4×(2+4),125就不是一个“欢喜数”因为1+2+5=8,125不是8的整数倍.(1)判断28和135是否是“欢喜数”?请说明理由;(2)有一类“欢喜数”,它等于各数位数字之和的4倍,求所有这种“欢喜数”.2(育才2020级初三下中考模拟5月份)我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=.(1)若F(a)=且a为100以内的正整数,则a=(2)如果m是一个两位数,那么试问F(m)是否存在最大值或最小值?若存在,求出最大(或最小)值以及此时m的取值并简要说明理由.3(育才2020级初三下中考模拟二)先阅读,再解答问题.恒等变形,是代数式求值的一个很重要的方法,利用恒等变形,可以把无理数运算转化为有理数运算,可以把次数较高的代数式转化为次数较低的代数式.如当x=时,求﹣x2﹣x+2的值,为解答这题,若直接把x=代入所求的式中,进行计算,显然很麻烦.我们可以通过恒等变形,对本题进行解答.方法一将条件变形.因x=,得x﹣1=.再把所求的代数式变形为关于(x﹣1)的表达式.原式=(x3﹣2x2﹣2x)+2=[x2(x﹣1)﹣x(x﹣1)﹣3x]+2=[x(x﹣1)2﹣3x]+2=(3x﹣3x)+2=2方法二先将条件化成整式,再把等式两边同时平方,把无理数运算转化为有理数运算.由x﹣1=,可得x2﹣2x﹣2=0,即,x2﹣2x=2,x2=2x+2.原式=x(2x+2)﹣x2﹣x+2=x2+x﹣x2﹣x+2=2请参以上的解决问题的思路和方法,解决以下问题:(1)若a2﹣3a+1=0,求2a3﹣5a2﹣3+的值;(2)已知x=2+,求的值.4(育才2020级初三下中考模拟三))阅读理解:添项法是代数变形中非常重要的一种方法,在整式运算和因式分解中使用添项法往往会起到意想不到的作用,例如:例1:计算(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)解:原式=(3﹣1)(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)=(32﹣1)(32+1)(34+1)(38+1)(316+1)(332+1)=(34﹣1)(34+1)(38+1)(316+1)(332+1)……=例2:因式分解:x4+x2+1解:原式=x4+x2+1=x4+2x2+1﹣x2=(x2+1)2﹣x2=(x2+1+x)(x2+1﹣x)根据材料解决下列问题:(1)计算:;(2)小明在作业中遇到了这样一个问题,计算,通过思考,他发现计算式中的式子可以用代数式之x4+4来表示,所以他决定先对x4+4先进行因式分解,最后果然发现了规律;轻松解决了这个计算问题.请你根据小明的思路解答下列问题:①分解因式:x4+4;②计算:.5(育才2019级初三下中考模拟一)阅读材料:黑白双雄,纵横江湖;双剑合壁,天下无敌.这是武侠小说中的常见描述,其意是指两个人合在一起,取长补短,威力无比,在二次根式中也有这种相辅相成的“对子”,如,,它们的积不含根号,我们说这两个二次根式互为有理化因式,其中一个是另一个的有理数因式,于是,二次根式除法可以这样解:如,.像这样通过分子、分母同乘以一个式子把分母中的根号化去或把根号中的分母化去,叫分母有理化.解决间题:(1)比较大小:(用“>”“<”或“=”填空);(2)计算:+;(3)设实数x,y满足,求x+y+2019的值6(育才2020级初三下中考模拟二练习)我们已经知道一些特殊的勾股数,如三个连续正整数中的勾股数:3、4、5;三个连续的偶数中的勾股数6、8、10;事实上,勾股数的正整数倍仍然是勾股数.(1)另外利用一些构成勾股数的公式也可以写出许多勾股数,毕达哥拉斯学派提出的公式:a=2n+1,b=2n2+2n,c=2n2+2n+1(n为正整数)是一组勾股数,请证明满足以上公式的a、b、c的数是一组勾股数.(2)然而,世界上第一次给出的勾股数公式,收集在我国古代的著名数学著作《九章算术》中,书中提到:当a=(m2﹣n2),b=mn,c=(m2+n2)(m、n为正整数,m>n时,a、b、c构成一组勾股数;利用上述结论,解决如下问题:已知某直角三角形的边长满足上述勾股数,其中一边长为37,且n=5,求该直角三角形另两边的长.7(双福育才2020级初三下中考模拟一)阅读材料:若22228160m mn n n -+-+=,求m 、n 的值.解:22228160m mn n n -+-+= ,222(2)(816)0m mn n n n ∴-++-+=22()(4)0m n n ∴-+-=,0,40m n n ∴-=-=,4,4n m ∴==.根据你的观察,探究下面的问题:(1)己知2222210x xy y y ++++=,求x y -的值.(2)已知△ABC 的三边长a、b、c 都是正整数,且满足2268250a b a b +--+=,求边c 的最大值.(3)若己知24,6130a b ab c c -=+-+=,求a b c -+的值.8(育才2020级初三下入学测试)阅读材料:材料1:数学世界里有一些整数你无论从左往右看,还是从右往左看,数字都是完全一样的,例如:11、171、1661、134431、…,像这样的数我们叫它“完美数”.材料2:如果一个三位数abc ,满足9=++c b a ,我们就称这个三位数为“长久数”.(1)请直接写出既是“完美数”又是“长久数”的所有三位数;(2)若三位数是大于500的“完美数”,它的各位数字之和等于k ,k 是一个完全平方数且k 为奇数,求这个三位数(请写出必要的推理过程).9(育才2020级初三上第二次月考)阅读下列材料,并解决问题:任意一个大于1的正整数m 都可以表示为:q p m +=2(p 、q 是正整数),在m 的所有这种表示中,如果q p -最小时,规定:()pq m F =.例如:21可以表示为:54123172201212222+=+=+=+=,因为54123172201->->->-,所以()4521=F .(1)求()33F 的值;(2)如果一个正整数n 可以表示为t t -2(其中2≥t ,且是正整数),那么称n 是次完全平方数,证明:任何一个次完全平方数n ,都有()1=n F ;(3)一个三位自然数k ,c b a k ++=10100(其中90,90,91≤≤≤≤≤≤c b a ,且c a ≤,c b a ,,为整数,)满足十位上的数字恰好等于百位上的数字与个位上的数字之和,且k 与其十位上数字的2倍之和能被9整除,求所有满足条件的k 中()k F 的最小值.10(双福育才2020级初三下第二次诊断性测试)一个形如abcde 的五位自然数(其中a 表示该数的万位上的数字,b 表示该数的千位上的数字,c 表示该数的百位上的数字,d 表示该数的十位上的数字,e 表示该数的个位上的数字,且0,0a b ≠≠),若有,a e b d ==且c a b =+,则把该自然数叫做“对称数”,例如在自然数12321中,3=2+1,则12321是一个“对称数”.同时规定:若该“对称数”的前两位数与后两位数的平方差被693的奇数倍,则称该“对称数”为“智慧对称数”.如在“对称数”43734中,224334693-=,则43734是一个“智慧对称数”.(1)将一个“对称数”的个位上与十位上的数字交换位置,同时,将千位上与万位上的数字交换位置,称交换前后的这两个“对称数”为一组“相关对称数”。
重庆市2015年中考数学新题型——阅读理解题型及答案(最新权威)
重庆2015年阅读理解试题汇编:25. 现场学习题问题背景:在△ABC 中,AB 、BC 、AC小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC (即△ABC 三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC 的高,而借用网格就能计算出它的面积.AB C图3图2图1(1)请你将△ABC 的面积直接填写在横线上.________ 思维拓展:(2)我们把上述求△ABC 面积的方法叫做构图法.若△ABC、(0)a >,请利用图2的正方形网格(每个小正方形的边长为a )画出相应的△ABC ,并求出它的面积是: .探索创新:(3)若△ABC(0,,)m n o m n >>≠ ,请运用构图法在图3指定区域内画出示意图,并求出△ABC 的面积为:答案:(1) 25.(2)面积:23a .(3)面积:3mn .图2AB CA CB 4m2m 2mn n 2n 图325.问题背景(1)如图22(1),△ABC 中,DE ∥BC 分别交AB ,AC 于D ,E 两点,过点E 作EF ∥AB交BC 于点F .请按图示数据填空:四边形DBFE 的面积S = ,△EFC 的面积1S = ,△ADE 的面积2S = . 探究发现(2)在(1)中,若BF a =,FC b =,DE 与BC 间的距离为h .请证明2124S S S =.拓展迁移(3)如图22(2),□DEFG 的四个顶点在△ABC 的三边上,若△ADG 、△DBE 、△GFC 的面积分别为2、5、3,试利用..(2.)中的结论....求△ABC 的面积.答案:(1)四边形DBFE 的面积S =632=⨯,△EFC 的面积1S =93621=⨯⨯,△ADE 的面积2S =1. (2)根据题意可知:ah S =,bh S 211=,DE ∥BC ,EF ∥AB∴四边形DEFB 是平行四边形,EFC ADE ∠=∠,C AED ∠=∠∴DE=a ; ADE ∆∽EFC ∆, ∴122S S b a =⎪⎭⎫ ⎝⎛ ∴b h a S b a S 221222== ∴222212244h a bha bh S S =⨯⨯= ∴2124S S S =(3) 过点G 作GH//AB∴由题意可知:四边形DGFE 和四边形DGHB 都是平行四边形 ∴DG=BH=EF ∴BE=HFGHF DBE S S ∆∆=8=∆GHC S64824S 4S G H C A D G D G H B 2=⨯⨯=⋅=∆∆四边形S∴8DGHB=四边形S∴18882S ABC =++=∆B C D G F E A6 22(1)A GFDCBA25.小明想把一个三角形拼接成面积与它相等的矩形.他先进行了如下部分操作,如图1所示: ①取△ABC 的边AB 、AC 的中点D 、E ,联结DE ; ②过点A 作AF ⊥DE 于点F ;(1)请你帮小明完成图1的操作,把△ABC 拼接成面积与它相等的矩形.(2)若把一个三角形通过类似的操作拼接成一个与原三角形面积相等的正方形,那么原三角形的一边与这边上的高之间的数量关系是________________.(3)在下面所给的网格中画出符合(2)中条件的三角形,并将其拼接成面积与它相等的 答案:解:(1)(22:1 (3)画对一种情况的一个图给1分或N M ②①②①F E D C B A25.如图1,已知等边△ABC 的边长为1,D 、E 、F 分别是AB 、BC 、AC 边上的点(均不与点A 、B 、C 重合),记△DEF 的周长为p .(1)若D 、E 、F 分别是AB 、BC 、AC 边上的中点,则p =_______;(2)若D 、E 、F 分别是AB 、BC 、AC 边上任意点,则p 的取值范围是 .小亮和小明对第(2)问中的最小值进行了讨论,小亮先提出了自己的想法:将ABC △以AC 边为轴翻折一次得1AB C △,再将1AB C △以1B C 为轴翻折一次得11A B C △,如图2所示. 则由轴对称的性质可知,112DF FE E D p ++=,根据两点之间线段最短,可得2p DD ≥. 老师听了后说:“你的想法很好,但2DD 的长度会因点D 的位置变化而变化,所以还得不出我们想要的结果.”小明接过老师的话说:“那我们继续再翻折3次就可以了”.请参考他们的想法,写出你的答案.答案 解:(1)32p =; .…………………………….……………………………2分 (2)332p <≤..…………………………….……………………………5分25. 如图,将正方形沿图中虚线(其x y <)剪成① ② ③ ④ 四块图形,用这四块图形恰好能拼成一个矩形(非正方形).(1)画出拼成的矩形的简图; (2)求xy的值.答案.(1)如图(2)面积可得 2()(2)x y x y y +=+ ----------------------3分 22222x xy y xy y ++=+A B DFC E1图AB DFCE 1F 1A 1B 2D 1D 1E 2图yy xy x y x x④③②①④③②①220x xy y +-=2()10x x yy +-= 12x y = (舍去) 12x y =25.阅读并操作:如图①,这是由十个边长为1的小正方形组成的一个图形,对这个图形进行适当分割(如图②),然后拼接成新的图形(如图③).拼接时不重叠、无空隙,并且拼接后新图形的顶点在所给正方形网格图中的格点上(网格图中每个小正方形边长都为1).图① 图② 图③请你参照上述操作过程,将由图①所得到的符合要求的新图形画在下边的正方形网格图中. (1)新图形为平行四边形; (2)新图形为等腰梯形.答案: 解:(1) (2)ABCABCFEDA BC25.认真阅读下列问题,并加以解决:问题1:如图1,△ABC 是直角三角形,∠C =90º.现将△ABC 补成一个矩形.要求:使△ABC 的两个顶点成为矩形一边的两个端点,第三个顶点落在矩形这一边的对边上.请将符合条件的所有矩形在图1中画出来;图1 图2问题2:如图2,△ABC 是锐角三角形,且满足BC >AC >AB ,按问题1中的要求把它补成矩形.请问符合要求的矩形最多可以画出 个,并猜想它们面积之间的数量关系是 (填写“相等”或“不相等”);问题3:如果△ABC 是钝角三角形,且三边仍然满足BC >AC >AB ,现将它补成矩形.要求:△ABC 有两个顶点成为矩形的两个顶点,第三个顶点落在矩形的一边上,那么这几个矩形面积之间的数量关系是 (填写“相等”或“不相等”).答案.解:(1)………………… 正确画出一个图形给1分,共2’(2)符合要求的矩形最多可以画出 3 个,它们面积之间的数量关系是 相等 ;………4’ (3) 不相等 . …………………………………………………………………………………5’25.将正方形ABCD (如图1)作如下划分:第1次划分:分别联结正方形ABCD 对边的中点(如图2),得线段HF 和EG ,它们交于点M ,此时图2中共有5个正方形;第2次划分:将图2左上角正方形AEMH 按上述方法再作划分,得图3,则图3中共有_______个正方形; 若每次都把左上角的正方形依次划分下去,则第100次划分后,图中共有_______个正方形;继续划分下去,能否将正方形ABCD 划分成有2011个正方形的图形?需说明理由.答案:第2次划分,共有9个正方形;A D A H D A H DE M G E M GB FC B F C 图1 图2 图3第100次划分后,共有401个正方形;依题意,第n 次划分后,图中共有4n+1个正方形,而方程4n+1=2011没有整数解, 所以,不能得到2011个正方形.25.我们约定,若一个三角形(记为1A ∆)是由另一个三角形(记为A ∆)通过一次平移,或绕其任一边中点旋转︒180得到的,称1A ∆是由A ∆复制的。
重庆市2023-2024年中考语文(A卷)真题(含答案解析)
重庆市2023-2024年中考语文(A卷)真题(含答案解析)重庆市2023年初中学业水平暨高中招生考试语文试题(A卷)(全卷共四个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上、不得在试题卷上直接作答。
2.作答前认真阅读答题卡上的注意事项。
3.考试结束、由监考人员将试题卷和答题卡一并收回。
一、语文知识及运用(30分)为了深入传承汉字文化,学校将筹建一面“汉字文化墙”,请完成1~4小题。
任务一:设计“回文图”1、填写汉字“回文图”中空缺的字音、字形。
(4分)①_________ ②_________ ③_________ ④_________任务二:编写介绍词汉字博大精深,是华夏民族创造的令人______的文化瑰宝。
①汉字,纵跨几千年时光,横越数万里广袤土地,让所有南腔北调、方言异音的海内外中国人,都能作乡音晤谈般的亲切问候。
②汉字起源甚平,经过数千年的淡变,形成了丰富的字体与书风。
③这种问候所展现的民族向心力与文化聚合力,是其它文字所不及的。
④从字体的古今演变中,可以窥探古人生活与文化的点点滴滴。
因此我们可以说:“汉字是全球华人共同的乡音。
”2.填入语段横线处最恰当的词语是()(3分)A.叹为观止B.富丽堂皇C.附庸风雅D.眼花缭乱3.语段中画波浪线句子语序排列最合理的一项是()(3分)A.①④②③B.②④①③C.④③①②D.③①②④任务三:创作汉字诗4.参照示例,从下面的各选汉字中任选一个为文化墙创作一首小诗。
可从字形分析哲理,也可用意象表达情思,句式不限。
(4分)备选汉字:人旦云灯示例一___示例二___小诗创作5.根据《傅雷家书》《骆驼祥子》的相关内容,回答下面的问题。
(8分)(1)教材建议《傅雷家书》的阅读方法是选择性阅读,请你为小渝推荐书中最值得阅读的部分,并说明理由。
(4分)_________ ________________ _______(2)老舍曾评价祥子:“在新环境里还能保持着旧习惯。
初中阅读理解技巧精讲之赏析题
【 ❤初级闯关】 2.下列句子和修辞手法对应不正确的一项是( )
A.(拟人)油蛉在这里低唱,蟋蟀们在这里弹琴。 B.(排比)徜徉在古诗的海洋里,陶渊明的悠然遐思, 李太白的潇洒飘逸,杜子美的济世情怀无不让人荡气回肠。 C.(比喻)大家都很喜欢他,因为他长得像明星刘德华。 D.(反问)你难道没有看到他走路多艰难吗?
【 ❤初级闯关】
4.阅读下面两首诗歌,赏析划横线的诗句。(每 句3分,一共6分。)
闻王昌龄左迁龙标遥有此寄[1]
李白 杨花[2]落尽子规[3]啼,闻道龙标[4]过五溪[5]。
我寄愁心与明月,随君直到夜郎[6]西。
【 注 释 】[1] 选 自 《 李 太 白 校 注 》 卷 十 三。王昌龄:字少伯,京兆长安(今陕 西西安)人,唐代诗人。天宝年间被贬 为龙标尉。左迁:降职。龙标:唐代县 名,在今湖南洪江西。[2]杨花:柳絮。 [3]子规:布谷鸟,又称“杜鹃”。[4] 龙标:指王昌龄。古代常用官职或者是 任官之地的州县名字来称呼一个人。[5] 五溪:今湖南西部、贵州东部五条溪流 的合称。[6]夜郎:唐代夜郎有三处,两 个在今贵州桐梓,本诗所说的“夜郎” 在今湖南怀化境内。
【❤真题闯关】
1. 请从语言运用角度和情感表达角度赏析下面句子。(4分) “父亲和竹子挨得那么近,皮肤挨着皮肤,骨头连着骨头,以至在手搬肩扛之 间,我听到了骨头与竹节的窃窃私语声。”
——2017年江苏省淮安市中考卷《大地的恩典》
【参考答案】 (1)运用了拟人的修辞手法,把竹子拟人化,体现了父亲和竹 子的亲密,表现出父亲劳作的艰辛【2分】 (2)本句还通过“挨着”“连着”“窃窃私语”等关键词语, 写出了父亲使用竹扁担劳作时的模样,体现了父亲和竹子的亲 密,表现了父亲劳作时的艰辛【2分】 ——>表达了“我”对父亲辛勤劳动的感动与赞美之情。
重庆市2022-2022年中考语文真题试题(B卷,含答案)
初中毕业暨高中招生考试语文试题(B卷)(全卷共四个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试卷上直接作答。
2.作答前认真阅读答题卡上的注意事项。
3.考试结束,由监考人员将试题和答题卡一并收回。
一、语文知识及运用(30分)1.下列词语中加点字注音完全正确的一项是()(3分)A.啜泣(chuò)角色(jiǎo)踱来踱去(duó)B.祈祷(dǎo)眼翳(yì)前仆后继(pú)C.贮蓄(chú)羁绊(jī)人声鼎沸(dǐng)D.虐杀(nǜe)翩然(piān)不省人事(xǐng)2.下列词语书写完全正确的一项是()(3分)A.惦记栖息转瞬既逝B.闲游镶嵌一代天娇C.执拗黄晕大彻大悟D.甜密洗濯斩钉截铁3.下列句子中加点词语使用不恰当的一项是()(3分)A.月明风清的夜晚,静悄悄的,一只小船从芦苇丛中撑出来,在湖里,像一片苇叶,向着东南方向驶去。
B.每遇烦恼,我就会情不自禁地躺在草地上,任清风拂面,希望自己也能化作一阵风,在天空中自由地俯仰生姿。
C.平凡生活中,常有一些情感不能自已,令我们微笑着俯下身去,细细清点飞珠溅玉般的回忆,诉说对生命的感激。
D.如果我们失去了至尊至贵的诚信,人与人之间就会保持距离,保持谨慎的交往,小心翼翼地躲避伤害。
4.依次填入下列句子横线处的词语最恰当的一项是()(3分)(1)当他们再次相见的时候,曾经的心有灵犀已成过往,多年不通消息使他们彼此起来。
(2)不法商人总是以次充好,牟取暴利,我们的责任是擦亮眼睛,保护消费者的利益。
(3)苏州园林亭台轩榭布局美,假山池沼配合美,花草树木映衬美,当然这些,你可以亲自去游览一番。
A. 隔膜企图不止B. 隔膜企望不只C.隔绝企图不只D. 隔绝企望不止5.花香鸟语、草长莺飞……这些大自然的语言会在我们心中唤起不同的感受。
请从声音、形态、气味三个角度中选择一个,参照示例写句子,要求具体形象,句式不限。
标题的含义及作用
文章的标题,通常被称作文章的“题眼”,既然是“眼睛”,那一定是文章的主要内容,也即文章的精要内容的提炼、概括、与浓缩。
因此,理解文章的标题有助于我们读懂文章,把握文章的主要内容和情感倾向。
中考中,往往会从标题上出题,考查对作品理解的深度。
常见主要考法1、给文章拟题下列最适合做本文题目的一项是()A .夫妻情B 、卖小炒的女人C 、萝卜花D 、小城风景 ——2009年长沙市2、标题的含义是什么?谈谈你对标题“成熟的稻谷会弯腰”的理解。
—— 2010重庆卷《成熟的稻谷会弯腰》文章的标题“种春风”有什么深刻含义?——2010年长沙市《种春风》本文标题“只想让您听听我的心跳”有何含义?请结合全文,谈谈你对文章主题的理解和感悟。
——2013年长沙市《只想让您听听我的心跳》3、标题的作用是什么?本文为什么以“炸豆”为标题,联系全文,谈谈你的理解。
(4分)——2015重庆B 卷《炸豆》说说文章以“天窗”为题的作用。
——2010南京《天窗》4、这个标题好不好?为什么?有人认为将题目改为“那车一开,就是6年”更贴切,简要谈谈你的看法。
—— 2008年长沙市《 火车6年不到站》文章以“留两个柿子看树”为题有什么好处?——2012荆州《留两个柿子看树》方法指导(一)揣摩标题的含义表层含义:标题的字面含义、文中内容深层含义:引申义、比喻义、象征义《走一步,再走一步》表层含义:父亲鼓励我一步步走下悬崖深层含义 :大目标化解成小目标,一个个击破,取得最后成功。
《变色龙》表层含义:善于变色的蜥蜴深层含义 :比喻像变色龙一样善变的沙皇警察(比喻义)标题的含义及作用《爸爸的花儿落了》表层含义:夹竹桃凋谢深层含义:父亲去世,也预示我长大了(象征义)小结理解标题的含义一联系表层含义二体会深层含义三联系全文内容四结合文章主旨(二)分析标题的作用表明写作对象体现主要内容贯穿全文线索揭示情感主旨引起读者兴趣1、表明写作对象有的以人或物作为文题的文章,其题目里指出的人或物就是文章的写作对象。
2024年重庆市中考语文真题卷(B)及答案解析
重庆市2024年初中学业水平暨高中招生考试语文试题(B卷)(全卷共四个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试题卷上直接作答。
2.作答前认真阅读答题卡上的注意事项。
3.考试结束,由监考人员将试题卷和答题卡一并收回。
一、语文知识及运用(30分)班级开展“君子自强不息”主题学习,请你完成以下活动。
活动一:致敬航天英雄①神舟十八号载人飞船研制、发射成功,标志着中国载人航天事业再启新征程。
②科研团队持续创新,不断推动载人航天事业的发展。
航天员队伍工作一丝不苟,zhāng()显了骇人听闻的航天精神,一次次书写了探索浩瀚太空的新篇章!③通过他们日复一日地勤学苦练,淬炼出百折不挠的意志。
④一串串奋斗的足迹,铺就一条飞天之路。
人生从来没有轻而易举的成功,一鸣惊人的背后,都是qiè()而不舍、鞠躬尽瘁的精神。
1. 根据拼音写汉字,给加点字注音。
zhāng()显浩瀚()qiè()而不舍鞠躬尽瘁()2. 文段中画横线词语使用不恰当的一项是()A. 一丝不苟B. 骇人听闻C. 百折不挠D. 轻而易举3. 文段中画波浪线句子有语病的一项是()A① B. ② C. ③ D. ④4. 围绕“君子自强不息”的学习主题,根据表中“资料搜集”,设计两个问题,采访航天科学家孙家栋。
资料搜集孙家栋是在中国航天事业发展历程中成长起来的优秀科学家。
在从事航天工作的60多年中,他带领团队不断攻坚克难,开拓创新。
当发射第一颗返回式遥感卫星失败时,他带着大家在戈壁黄沙中一点点寻找卫星残骸,分析故障,查找原因,最终让卫星发射成功。
他为中国突破导航卫星组网技术、卫星返回技术和深空探测技术等做出了重大贡.献。
采访问题①________________________________②________________________________5. 积累经典名句,致敬航天英雄。
(1)请你再写两句有关自强不息的名言或诗句。
2022年重庆市(初三学业水平考试)中考数学真题试卷(B卷)含详解
重庆市2022年初中学业水平暨高中招生考试数学试卷(B 卷)(全卷共四个大题,满分150分,考试时间120分钟)注意事项:1.试卷的答案书写在答题卡上,不得在试卷卷上直接作答;2.作答前认真阅读答题卡的注意事项;3.作图(包括作辅助线)请一律用黑色2B 铅笔完成;参考公式:抛物线2y ax bx c =++(0a ≠)的顶点坐标为24,24b ac b a a ⎛⎫-- ⎪⎝⎭,对称轴为2bx a =-.一、选择题(共12个小题,每小题4分,共48分)在每个小题的下面,都给出了序号为A 、B 、C 、D 的四个选项,其中只有一个正确的,请将答题卡上题号右侧的正确答案所对应的方框涂黑.1.2-的相反数是()A.2- B.2C.12D.12-2.下列北京冬奥会运动标识图案是轴对称图形的是()A.B.C. D.3.如图,直线a b ∥,直线m 与a ,b 相交,若1115∠=︒,则2∠的度数为()A.115°B.105°C.75°D.65°4.如图是小颖0到12时的心跳速度变化图,在这一时段内心跳速度最快的时刻约为()A.3时B.6时C.9时D.12时5.如图,ABC 与DEF 位似,点O 是它们的位似中心,且位似比为1∶2,则ABC 与DEF 的周长之比是()A.1∶2B.1∶4C.1∶3D.1∶96.把菱形按照如图所示的规律拼图案,其中第①个图案中有1个菱形,第②个图案中有3个菱形,第③个图案中有5个菱形,…,按此规律排列下去,则第⑥个图案中菱形的个数为()A.15B.13C.11D.97.估计4的值在()A.6到7之间B.5到6之间C.4到5之间D.3到4之间8.学校连续三年组织学生参加义务植树,第一年共植树400棵,第三年共植树625棵.设该校植树棵数的年平均增长率为x ,根据题意,下列方程正确的是()A.2625(1)400x -= B.2400(1)625x +=C.2625400x =D.2400625x =9.如图,在正方形ABCD 中,对角线AC 、BD 相交于点O .E 、F 分别为AC 、BD 上一点,且OE OF =,连接AF ,BE ,EF .若25AFE ∠=︒,则CBE ∠的度数为()A.50°B.55°C.65°D.70°10.如图,AB 是O 的直径,C 为O 上一点,过点C 的切线与AB 的延长线交于点P,若AC PC ==则PB 的长为()A.B.32C. D.311.关于x 的分式方程31133x a x x x -++=--的解为正数,且关于y 的不等式组92(2)213y y y a +≤+⎧⎪-⎨>⎪⎩的解集为5y ≥,则所有满足条件的整数a 的值之和是()A.13B.15C.18D.2012.对多项式x y z m n ----任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:()()x y z m n x y z m n ----=--++,()x y z m n x y z m n ----=--+-,…,给出下列说法:①至少存在一种“加算操作”,使其结果与原多项式相等;②不存在任何“加算操作”,使其结果与原多项式之和为0;③所有的“加算操作”共有8种不同的结果.以上说法中正确的个数为()A.0B.1C.2D.3二、填空题(共4个小题,每小题4分,共16分)请将每小题的答案直接填在答题卡中对应的横线上.13.0|2|(3-+-=_________.14.不透明的袋子中装有2个红球和1个白球,除颜色外无其他差别,随机摸出一个球后,放回并摇匀,再随机摸出一个,两次都摸到红球的概率是________.15.如图,在矩形ABCD 中,1AB =,2BC =,以B 为圆心,BC 的长为半轻画弧,交AD 于点E .则图中阴影部分的面积为_________.(结果保留π)16.特产专卖店销售桃片、米花糖、麻花三种特产,其中每包桃片的成本是麻花的2倍,每包桃片、米花糖、麻花的售价分别比其成本高20%、30%、20%.该店五月份销售桃片、米花糖、麻花的数量之比为1∶3∶2,三种特产的总利润是总成本的25%,则每包米花糖与每包麻花的成本之比为_________.三、解答题(共2个小题,每小题8分,共16分)17.计算:(1)()()(2)x y x y y y +-+-;(2)2244124m m m m m -+⎛⎫-÷ ⎪⎝⎭-+.18.我们知道,矩形的面积等于这个矩形的长乘宽,小明想用其验证一个底为a ,高为h 的三角形的面积公式为12S ah =.想法是:以BC 为边作矩形BCFE ,点A 在边FE 上,再过点A 作BC 的垂线,将其转化为证三角形全等,由全等图形面积相等来得到验证.按以上思路完成下面的作图与填空:证明:用直尺和圆规过点A 作BC 的垂线AD 交BC 于点D .(只保留作图痕迹)在ADC 和CFA △中,∵AD BC ⊥,∴90ADC ∠=︒.∵90F ∠=︒,∴______①____.∵EF BC ∥,∴______②_____.又∵____③______.∴ADC CFA △≌△(AAS ).同理可得:_____④______.11112222ABC ADC ABD ADCF AEBD BCFE S S S S S S ah =+=+== 矩形矩形矩形.三、解答题(共7个小题,每小题10分,共70分)19.在“世界读书日”到来之际,学校开展了课外阅读主题周活动,活动结束后,经初步统计,所有学生的课外阅读时长都不低于6小时,但不足12小时,从七,八年级中各随机抽取了20名学生,对他们在活动期间课外阅读时长(单位:小时)进行整理、描述和分析(阅读时长记为x ,67x ≤<,记为6;78x ≤<,记为7;89x ≤<,记为8;…以此类推),下面分别给出了抽取的学生课外阅读时长的部分信息,七年级抽取的学生课外阅读时长:6,7,7,7,7,8,8,8,8,8,8,8,9,9,9,9,9,10,10,11,七、八年级抽取的学生课外阅读时长统计表年级七年级八年级平均数8.38.3众数a 9中位数8b8小时及以上所占百分比75%c根据以上信息,解答下列问题:(1)填空:=a ______________,b =______________,c =______________.(2)该校七年级有400名学生,估计七年级在主题周活动期间课外阅读时长在9小时及以上的学生人数.(3)根据以上数据,你认为该校七,八年级学生在主题周活动中,哪个年级学生的阅读积极性更高?请说明理由,(写出一条理由即可)20.反比例函数4y x =的图象如图所示,一次函数y kx b =+(0k ≠)的图象与4y x=的图象交于(,4)A m ,(2,)B n -两点,(1)求一次函数的表达式,并在所给的平面直角坐标系中面出该函数的图象;(2)观察图象,直接写出不等式4kx b x+<的解集;(3)一次函数y kx b =+的图象与x 轴交于点C ,连接OA ,求OAC 的面积.21.为保障蔬菜基地种植用水,需要修建灌溉水渠.(1)计划修建灌溉水渠600米,甲施工队施工5天后,增加施工人员,每天比原来多修建20米,再施工2天完成任务,求甲施工队增加人员后每天修建灌溉水渠多少米?(2)因基地面积扩大,现还需修建另一条灌溉水渠1800米,为早日完成任务,决定派乙施工队与甲施工队同时开工合作修建这条水渠,直至完工.甲施工队按(1)中增加人员后的修建速度进行施工.乙施工队修建360米后,通过技术更新,每天比原来多修建20%,灌溉水渠完工时,两施工队修建的长度恰好相同.求乙施工队原来每天修建灌溉水渠多少米?22.湖中小岛上码头C 处一名游客突发疾病,需要救援.位于湖面B 点处的快艇和湖岸A 处的救援船接到通知后立刻同时出发前往救援.计划由快艇赶到码头C 接该游客,再沿CA 方向行驶,与救援船相遇后将该游客转运到救援船上.已知C 在A 的北偏东30°方向上,B 在A 的北偏东60°方向上,且B 在C 的正南方向900米处.(1)求湖岸A 与码头C 的距离(结果精确到1 1.732=);(2)救援船的平均速度为150米/分,快艇的平均速度为400米/分,在接到通知后,快艇能否在5分钟内将该游客送上救援船?请说明理由.(接送游客上下船的时间忽略不计)23.对于一个各数位上的数字均不为0的三位自然数N ,若N 能被它的各数位上的数字之和m 整除,则称N 是m 的“和倍数”.例如:∵247(247)2471319÷++=÷=,∴247是13的“和倍数”.又如:∵214(214)2147304÷++=÷= ,∴214不是“和倍数”.(1)判断357,441是否是“和倍数”?说明理由;(2)三位数A 是12的“和倍数”,a ,b ,c 分别是数A 其中一个数位上的数字,且a b c >>.在a ,b ,c 中任选两个组成两位数,其中最大的两位数记为()F A ,最小的两位数记为()G A ,若()()16F AG A +为整数,求出满足条件的所有数A .24.如图,在平面直角坐标系中,抛物线234y x bx c =-++与x 轴交于点(4,0)A ,与y 轴交于点(0,3)B .(1)求抛物线的函数表达式;(2)点P 为直线AB 上方抛物线上一动点,过点P 作PQ x ⊥轴于点Q ,交AB 于点M ,求65PM AM +的最大值及此时点P 的坐标;(3)在(2)的条件下,点P '与点P 关于抛物线234y x bx c =-++的对称轴对称.将抛物线234y x bx c =-++向右平移,使新抛物线的对称轴l 经过点A .点C 在新抛物线上,点D 在l 上,直接写出所有使得以点A 、P '、C 、D 为顶点的四边形是平行四边形的点D 的坐标,并把求其中一个点D 的坐标的过程写出来.25.在ABC 中,90BAC ∠=︒,22AB AC ==,D 为BC 的中点,E ,F 分别为AC ,AD 上任意一点,连接EF ,将线段EF 绕点E 顺时针旋转90°得到线段EG ,连接FG ,AG .(1)如图1,点E 与点C 重合,且GF 的延长线过点B ,若点P 为FG 的中点,连接PD ,求PD 的长;(2)如图2,EF 的延长线交AB 于点M ,点N 在AC 上,AGN AEG ∠=∠且GN MF =,求证:AM AF +=2;(3)如图3,F 为线段AD 上一动点,E 为AC 的中点,连接BE ,H 为直线BC 上一动点,连接EH ,将BEH △沿EH 翻折至ABC 所在平面内,得到B EH '△,连接B G ',直接写出线段B G '的长度的最小值.重庆市2022年初中学业水平暨高中招生考试数学试卷(B 卷)(全卷共四个大题,满分150分,考试时间120分钟)注意事项:1.试卷的答案书写在答题卡上,不得在试卷卷上直接作答;2.作答前认真阅读答题卡的注意事项;3.作图(包括作辅助线)请一律用黑色2B 铅笔完成;参考公式:抛物线2y ax bx c =++(0a ≠)的顶点坐标为24,24b ac b a a ⎛⎫-- ⎪⎝⎭,对称轴为2bx a =-.一、选择题(共12个小题,每小题4分,共48分)在每个小题的下面,都给出了序号为A 、B 、C 、D 的四个选项,其中只有一个正确的,请将答题卡上题号右侧的正确答案所对应的方框涂黑.1.2-的相反数是()A.2-B.2C.12D.12-【答案】B【分析】根据相反数的定义可得结果.【详解】因为-2+2=0,所以-2的相反数是2,故选:B .【点睛】本题考查求相反数,熟记相反数的概念是解题的关键.2.下列北京冬奥会运动标识图案是轴对称图形的是()A.B.C. D.【答案】C【分析】根据轴对称图形的定义进行逐一判断即可.【详解】A.不是轴对称图形,故A 错误;B.不是轴对称图形,故B 错误;C.是轴对称图形,故C 正确;D.不是轴对称图形,故D 错误.故选:C .【点睛】本题主要考查了轴对称图形的定义,如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.3.如图,直线a b ∥,直线m 与a ,b 相交,若1115∠=︒,则2∠的度数为()A.115°B.105°C.75°D.65°【答案】A【分析】根据两直线平行,同位角相等即可求得结果.【详解】∵a b ∥,∴2∠1=∠=115°(两直线平行同位角相等),故选:A .【点睛】本题考查了平行线的性质,比较简单,熟练掌握平行线的性质是解题的关键.4.如图是小颖0到12时的心跳速度变化图,在这一时段内心跳速度最快的时刻约为()A.3时B.6时C.9时D.12时【答案】C【分析】分析图象的变化趋势和位置的高低,即可求出答案.【详解】解:∵观察小颖0到12时的心跳速度变化图,可知大约在9时图象的位置最高,∴在0到12时内心跳速度最快的时刻约为9时,故选:C【点睛】此题考查了函数图象,由纵坐标看出心跳速度,横坐标看出时间是解题的关键.5.如图,ABC 与DEF 位似,点O 是它们的位似中心,且位似比为1∶2,则ABC 与DEF 的周长之比是()A.1∶2B.1∶4C.1∶3D.1∶9【答案】A 【分析】根据位似图形是相似图形,位似比等于相似比,相似三角形的周长比等于相似比即可求解.【详解】解:∵ABC 与DEF 位似∴ABC DEF∽△△∵ABC 与DEF 的位似比是1:2∴ABC 与DEF 的相似比是1:2∴ABC 与DEF 的周长比是1:2故选:A .【点睛】本题考查了位似变换,解题的关键是掌握位似变换的性质和相似三角形的性质.6.把菱形按照如图所示的规律拼图案,其中第①个图案中有1个菱形,第②个图案中有3个菱形,第③个图案中有5个菱形,…,按此规律排列下去,则第⑥个图案中菱形的个数为()A .15 B.13 C.11 D.9【答案】C【分析】根据第①个图案中菱形的个数:1;第②个图案中菱形的个数:123+=;第③个图案中菱形的个数:1225+⨯=;…第n 个图案中菱形的个数:()121n +-,算出第⑥个图案中菱形个数即可.【详解】解:∵第①个图案中菱形的个数:1;第②个图案中菱形的个数:123+=;第③个图案中菱形的个数:1225+⨯=;…第n 个图案中菱形的个数:()121n +-,∴则第⑥个图案中菱形的个数为:()126111+⨯-=,故C 正确.故选:C .【点睛】本题主要考查的是图案的变化,解题的关键是根据已知图案归纳出图案个数的变化规律.7.估计4的值在()A.6到7之间B.5到6之间C.4到5之间D.3到4之间【答案】D【分析】根据49<54<64,得到78<<,进而得到344<<,即可得到答案.【详解】解:∵49<54<64,∴78<<,∴344<<4-的值在3到4之间,故选:D .【点睛】此题考查了无理数的估算,正确掌握无理数的估算方法是解题的关键.8.学校连续三年组织学生参加义务植树,第一年共植树400棵,第三年共植树625棵.设该校植树棵数的年平均增长率为x ,根据题意,下列方程正确的是()A.2625(1)400x -= B.2400(1)625x +=C.2625400x = D.2400625x =【答案】B【分析】第一年共植树400棵,第二年植树400(1+x )棵,第三年植树400(1+x )²棵,再根据题意列出方程即可.【详解】第一年植树为400棵,第二年植树为400(1+x )棵,第三年400(1+x )²棵,根据题意列出方程:2400(1)625x +=.故选:B .【点睛】本题考查了一元二次方程的应用,属于增长率的常规应用题,解决此类题目要多理解、练习增长率相关问题.9.如图,在正方形ABCD 中,对角线AC 、BD 相交于点O .E 、F 分别为AC 、BD 上一点,且OE OF =,连接AF ,BE ,EF .若25AFE ∠=︒,则CBE ∠的度数为()A.50°B.55°C.65°D.70°【答案】C 【分析】根据正方形的性质证明△AOF ≌△BOE (SAS ),得到∠OBE =∠OAF ,利用OE =OF ,∠EOF =90°,求出∠OEF =∠OFE =45°,由此得到∠OAF =∠OEF -∠AFE =20°,进而得到∠CBE 的度数.【详解】解:在正方形ABCD 中,AO =BO ,∠AOD =∠AOB =90°,∠CBO =45°,∵OE OF =,∴△AOF ≌△BOE (SAS ),∴∠OBE =∠OAF ,∵OE =OF ,∠EOF =90°,∴∠OEF =∠OFE =45°,∵25AFE ∠=︒,∴∠OAF =∠OEF -∠AFE =20°,∴∠CBE =∠CBO +∠OBE =45°+20°=65°,故选:C .【点睛】此题考查了正方形的性质,全等三角形的判定及性质,熟记正方形的性质是解题的关键.10.如图,AB 是O 的直径,C 为O 上一点,过点C 的切线与AB 的延长线交于点P ,若AC PC ==则PB 的长为()A. B.32 C. D.3【答案】D【分析】连接OC ,根据AC PC =,OC OA =,证出A OCA P ==∠∠∠,求出30A OCA P ===︒∠∠∠,在Rt OPC △中,tan OC P PC =∠,cos PC P OP=∠,解得OC 、OP 的长度即可求出PB 的长度.【详解】解:连接OC ,如图所示,∵AC PC =,∴A P ∠=∠,∵OC OA =,∴A OCA ∠=∠,∴A OCA P ==∠∠∠,∵PC 是O 的切线,∴90OCP ∠=︒,∵180A P OCA OCP +++=︒∠∠∠∠,∴30A OCA P ===︒∠∠∠,在Rt OPC △中,tan OC P PC =∠,cos PC P OP=∠,∴3tan 33OC PC P =⨯==∠,6cos 32PC OP P ==∠,∵PB OP OB =-,3OB =,∴3PB =,故选D .【点睛】本题考查了等腰三角形的性质、切线的性质、解直角三角形等知识点,正确作出辅助线是解答此题的关键.11.关于x 的分式方程31133x a x x x -++=--的解为正数,且关于y 的不等式组92(2)213y y y a +≤+⎧⎪-⎨>⎪⎩的解集为5y ≥,则所有满足条件的整数a 的值之和是()A.13B.15C.18D.20【答案】A【分析】先通过分式方程求出a 的一个取值范围,再通过不等式组的解集求出a 的另一个取值范围,两个范围结合起来就得到a 的有限个整数解.【详解】由分式方程的解为整数可得:313x a x x ---=-解得:2=-x a 又题意得:20a ->且23a -≠∴2a >且5a ≠,由()922y y +≤+得:5y ≥由213y a ->得:32a y +>∵解集为5y ≥∴352a +<解得:7a <综上可知a 的整数解有:3,4,6它们的和为:13故选:A .【点睛】本题考查含参数的分式方程和含参数的不等数组,掌握由解集倒推参数范围是本题关键.12.对多项式x y z m n ----任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:()()x y z m n x y z m n ----=--++,()x y z m n x y z m n ----=--+-,…,给出下列说法:①至少存在一种“加算操作”,使其结果与原多项式相等;②不存在任何“加算操作”,使其结果与原多项式之和为0;③所有的“加算操作”共有8种不同的结果.以上说法中正确的个数为()A.0B.1C.2D.3【答案】D【分析】给x y -添加括号,即可判断①说法是否正确;根据无论如何添加括号,无法使得x 的符号为负号,即可判断②说法是否正确;列举出所有情况即可判断③说法是否正确.【详解】解:∵()x y z m n x y z m n----=----∴①说法正确∵0x y z m n x y z m n -----++++=又∵无论如何添加括号,无法使得x 的符号为负号∴②说法正确∵当括号中有两个字母,共有4种情况,分别是()x y z m n ----、()x y z m n ----、()x y z m n ----、()x y z m n ----;当括号中有三个字母,共有3种情况,分别是()x y z m n ----、()x y z m n ----、()x y z m n ----;当括号中有四个字母,共有1种情况,()x y z m n ----∴共有8种情况∴③说法正确∴正确的个数为3故选D .【点睛】本题考查了新定义运算,认真阅读,理解题意是解答此题的关键.二、填空题(共4个小题,每小题4分,共16分)请将每小题的答案直接填在答题卡中对应的横线上.13.0|2|(3-+-=_________.【答案】3【分析】先计算绝对值和零指数幂,再进行计算即可求解.【详解】解:0|2|(3213-+=+=故答案为:3.【点睛】本题考查了实数的运算,解答此题的关键是要掌握负数的绝对值等于它的相反数,任何不为0的数的0次幂都等于1.14.不透明的袋子中装有2个红球和1个白球,除颜色外无其他差别,随机摸出一个球后,放回并摇匀,再随机摸出一个,两次都摸到红球的概率是________.【答案】49【分析】画树状图列出所有等可能结果,从中找出符合条件的结果数,再根据概率公式求解即可.【详解】解:画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到红球的有4种结果,所以两次都摸到红球的概率为49,故答案为:49.【点睛】本题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.15.如图,在矩形ABCD 中,1AB =,2BC =,以B 为圆心,BC 的长为半轻画弧,交AD 于点E .则图中阴影部分的面积为_________.(结果保留π)【答案】π3【分析】先根据特殊角的锐角三角函数值,求出ABE ∠,进而求出EBC ∠,再根据扇形的面积公式求解即可.【详解】解:∵矩形ABCD ,90A ABC ∴∠=∠=︒,以B 为圆心,BC 的长为半轻画弧,交AD 于点E ,2BC =,2BE BC ∴==,在Rt ABE △中,1AB =,1cos 2AB ABE BE ∴∠==,60ABE ∴∠=︒,906030EBC ∴∠=︒-︒=︒,S 阴影230π2π3603⨯==.故答案为:π3.【点睛】本题考查了由特殊角的三角函数值求角度数,矩形的性质,扇形的面积的计算,综合掌握以上知识点并熟练运用是解题的关键.16.特产专卖店销售桃片、米花糖、麻花三种特产,其中每包桃片的成本是麻花的2倍,每包桃片、米花糖、麻花的售价分别比其成本高20%、30%、20%.该店五月份销售桃片、米花糖、麻花的数量之比为1∶3∶2,三种特产的总利润是总成本的25%,则每包米花糖与每包麻花的成本之比为_________.【答案】4:3【分析】设每包麻花的成本为x 元,每包米花糖的成本为y 元,桃片的销售量为m包,则每包桃片的成本为2x 元,米花糖的销售量为3m 包,麻花的销售量为2m 包,根据三种特产的总利润是总成本的25%列得220%30%320%225%232x m y m x m mx my mx⋅⋅+⋅+⋅=++,计算可得.【详解】解:设每包麻花的成本为x 元,每包米花糖的成本为y 元,桃片的销售量为m 包,则每包桃片的成本为2x 元,米花糖的销售量为3m 包,麻花的销售量为2m 包,由题意得220%30%320%225%232x m y m x m mx my mx⋅⋅+⋅+⋅=++,解得3y =4x ,∴y :x =4:3,故答案为:4:3.【点睛】此题考查了三元一次方程的实际应用,正确理解题意确定等量关系是解题的关键.三、解答题(共2个小题,每小题8分,共16分)17.计算:(1)()()(2)x y x y y y +-+-;(2)2244124m m m m m -+⎛⎫-÷ ⎪⎝⎭-+.【答案】(1)22x y-(2)22m -【分析】(1)根据平方差公式和单项式乘多项式法则进行计算,再合并同类项即可;(2)先将括号里通分计算,所得的结果再和括号外的分式进行通分计算即可.【小问1详解】解:()()(2)x y x y y y +-+-=2222x y y y-+-=22x y-【小问2详解】解:2244124m m m m m -+⎛⎫-÷ ⎪⎝⎭-+=()()()222222m m m m m m -+-÷++-=()()()222222m m m m +-⨯+-=22m -【点睛】本题考查了平方差公式、单项式乘多项式、合并同类项、分式的混合运算等知识点,熟练掌握运算法则是解答本题的关键.18.我们知道,矩形的面积等于这个矩形的长乘宽,小明想用其验证一个底为a ,高为h 的三角形的面积公式为12S ah =.想法是:以BC 为边作矩形BCFE ,点A 在边FE 上,再过点A 作BC 的垂线,将其转化为证三角形全等,由全等图形面积相等来得到验证.按以上思路完成下面的作图与填空:证明:用直尺和圆规过点A 作BC 的垂线AD 交BC 于点D .(只保留作图痕迹)在ADC 和CFA △中,∵AD BC ⊥,∴90ADC ∠=︒.∵90F ∠=︒,∴______①____.∵EF BC ∥,∴______②_____.又∵____③______.∴ADC CFA △≌△(AAS ).同理可得:_____④______.11112222ABC ADC ABD ADCF AEBD BCFE S S S S S S ah =+=+== 矩形矩形矩形.【答案】图见解析,∠ADC =∠F ;∠1=∠2;AC =AC ;△ABD ≌△BAE【分析】根据垂线的作图方法作图即可,利用垂直的定义得到∠ADC =∠F,根据平行线的性质得到∠1=∠2,即可证明△ADC ≌△CAF ,同理可得△ABD ≌△BAE ,由此得到结论.【详解】解:如图,AD 即为所求,在ADC 和CFA △中,∵AD BC ⊥,∴90ADC ∠=︒.∵90F ∠=︒,∴∠ADC =∠F .∵EF BC ∥,∴∠1=∠2.又∵AC =AC .∴ADC CFA △≌△(AAS ).同理可得:△ABD ≌△BAE .11112222ABC ADC ABD ADCF AEBD BCFE S S S S S S ah =+=+== 矩形矩形矩形.故答案为:∠ADC =∠F ;∠1=∠2;AC =AC ;△ABD ≌△BAE .【点睛】此题考查了全等三角形的判定及性质,垂线的作图方法,矩形的性质,熟练掌握三角形的判定定理是解题的关键.三、解答题(共7个小题,每小题10分,共70分)19.在“世界读书日”到来之际,学校开展了课外阅读主题周活动,活动结束后,经初步统计,所有学生的课外阅读时长都不低于6小时,但不足12小时,从七,八年级中各随机抽取了20名学生,对他们在活动期间课外阅读时长(单位:小时)进行整理、描述和分析(阅读时长记为x ,67x ≤<,记为6;78x ≤<,记为7;89x ≤<,记为8;…以此类推),下面分别给出了抽取的学生课外阅读时长的部分信息,七年级抽取的学生课外阅读时长:6,7,7,7,7,8,8,8,8,8,8,8,9,9,9,9,9,10,10,11,七、八年级抽取的学生课外阅读时长统计表年级七年级八年级平均数8.38.3众数a9中位数8b8小时及以上所占百分比75%c根据以上信息,解答下列问题:(1)填空:=a______________,b=______________,c=______________.(2)该校七年级有400名学生,估计七年级在主题周活动期间课外阅读时长在9小时及以上的学生人数.(3)根据以上数据,你认为该校七,八年级学生在主题周活动中,哪个年级学生的阅读积极性更高?请说明理由,(写出一条理由即可)【答案】(1)8,8.5,65%(2)160名(3)八年级阅读积极性更高.理由:七年级和八年级阅读时长平均数一样,八年级阅读时长的众数和中位数都比七年级高(合理即可)【分析】(1)根据众数、中位数、百分比的意义求解即可;(2)用400名学生乘七年级在主题周活动期间课外阅读时长在9小时及以上所占的百分比即可求解;(3)根据七年级阅读时长为8小时及以上所占百分比比八年级高进行分析即可.【小问1详解】解:∵七年级学生阅读时长出现次数最多是8小时∴众数是8,即8a=∵将八年级学生阅读时长从小到大排列,处在中间位置的两个数的平均数为898.5 2+=∴八年级学生阅读时长的中位数为8.5,即8.5b=∵八年级学生阅读时长为8小时及以上的人数为13∴八年级学生阅读时长为8小时及以上所占百分比为13100%65%20⨯=,即65%c =综上所述:8a =,8.5b =,65%c =【小问2详解】解:840016020⨯=(名)答:估计七年级在主题周活动期间课外阅读时长在9小时及以上的学生人数为160名.【小问3详解】解:∵七年级和八年级阅读时长平均数一样,八年级阅读时长众数和中位数都比七年级高∴八年级阅读积极性更高(合理即可)【点睛】本题考查了条形统计图、统计表、众数、中位数等知识点,能够读懂统计图和统计表并理解相关概念是解答本题的关键.20.反比例函数4y x =的图象如图所示,一次函数y kx b =+(0k ≠)的图象与4y x=的图象交于(,4)A m ,(2,)B n -两点,(1)求一次函数的表达式,并在所给的平面直角坐标系中面出该函数的图象;(2)观察图象,直接写出不等式4kx b x+<的解集;(3)一次函数y kx b =+的图象与x 轴交于点C ,连接OA ,求OAC 的面积.【答案】(1)一次函数的表达式为22y x =+;函数图象见解析;(2)2x <-或01x <<(3)2【分析】(1)把(,4)A m ,(2,)B n -分别代入4y x=求出m ,n 的值,再运用待系数法求出a ,b 的值即可;(2)根据交点坐,结合函数图象即可解答;(3)先求出点C 的坐标,再根据三角形面积公式求解即可.【小问1详解】∵一次函数y kx b =+(0k ≠)的图象与4y x =的图象交于(,4)A m ,(2,)B n -两点,∴把(,4)A m ,(2,)B n -分别代入4y x=,得,44,24m n =-=,解得,1,2m n ==-,∴(1,4)A ,(2,2)B --,把(1,4)A ,(2,2)B --代入y kx b =+,得:422k b k b +=⎧⎨-+=-⎩,解得,22k b =⎧⎨=⎩∴一次函数的表达式为22y x =+;画出函数图象如下图:【小问2详解】∵直线22y x =+与反比例函数4y x=交于点A (1,4),B (-2,-2)∴当2x <-或01x <<时,一次函数的图象在反比例函数图象的下方,∴不等式4kx b x+<的解集为2x <-或01x <<;【小问3详解】如图,对于22y x =+,当0y =时,220x +=,解得,1x =-,∴点C 的坐标为(-1,0)∵A (1,4)∴1114222AOC A S OC y ∆==⨯⨯= 【点睛】本题考查反比例函数与一次函数的交点问题,解题关键是掌握函数与方程及不等式的关系.21.为保障蔬菜基地种植用水,需要修建灌溉水渠.(1)计划修建灌溉水渠600米,甲施工队施工5天后,增加施工人员,每天比原来多修建20米,再施工2天完成任务,求甲施工队增加人员后每天修建灌溉水渠多少米?(2)因基地面积扩大,现还需修建另一条灌溉水渠1800米,为早日完成任务,决定派乙施工队与甲施工队同时开工合作修建这条水渠,直至完工.甲施工队按(1)中增加人员后的修建速度进行施工.乙施工队修建360米后,通过技术更新,每天比原来多修建20%,灌溉水渠完工时,两施工队修建的长度恰好相同.求乙施工队原来每天修建灌溉水渠多少米?【答案】(1)100米(2)90米【分析】(1)设甲施工队增加人员后每天修建灌溉水渠x 米,原来每天修建()20x -米,根据工效问题公式:工作总量=工作时间×工作效率,列出关于x 的一元一次方程,解方程即可得出答案;(2)设乙施工队原来每天修建灌溉水渠y 米,技术更新后每天修建()120y+%米,根据水渠总长1800米,完工时,两施工队修建长度相同,可知每队修建900米,再结合两队同时开工修建,直至同时完工,可得两队工作时间相同,列出关于y 的分式方程,解方程即可得出答案.【小问1详解】解:设甲施工队增加人员后每天修建灌溉水渠x 米,原来每天修建()20x -米,则有()5202600x x -+=解得100x =∴甲施工队增加人员后每天修建灌溉水渠100米.【小问2详解】∵水渠总长1800米,完工时,两施工队修建长度相同∴两队修建的长度都为1800÷2=900(米)乙施工队技术更新后,修建长度为900-360=540(米)解:设乙施工队原来每天修建灌溉水渠y 米,技术更新后每天修建()120y +%米,即1.2y 米则有5403609001.2100y y +=解得90y =经检验,90y =是原方程的解,符合题意∴乙施工队原来每天修建灌溉水渠90米.【点睛】本题考查一元一次方程和分式方程的实际应用,应注意分式方程要检验,读懂题意,正确设出未知数,并列出方程,是解题的关键.22.湖中小岛上码头C 处一名游客突发疾病,需要救援.位于湖面B 点处的快艇和湖岸A 处的救援船接到通知后立刻同时出发前往救援.计划由快艇赶到码头C 接该游客,再沿CA 方向行驶,与救援船相遇后将该游客转运到救援船上.已知C 在A 的北偏东30°方向上,B 在A 的北偏东60°方向上,且B 在C 的正南方向900米处.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【重庆中考炸豆阅读题答案】重庆中考数学阅读题
《炸豆》这篇文章是重庆中考的一道阅读理解题。
下面是小编整理的关于《炸豆》阅读题目及其参考答案,希望对大家有帮助。
《炸豆》阅读原文
①天上是金黄的太阳,地上是金黄的豆田。
数千亩黄豆在豫东平原成熟,没有遮拦的那种黄,每一片豆叶都似纯金的。
②露水一夜间打落金片似的豆叶,豆叶就在豆棵[2]下打了卷、褪了色。
那叶面的金色被太阳光收了,凝固在豆荚里,黄豆就黄得耀眼了。
③农人们在豆地南头儿占好自己的田垄,就像运动员占好自己的跑道,人和镰刀都酝酿着黏稠的梦。
掉光了叶子的豆棵、豆荚如紧密的鞭炮,从头坠到根,蓄意沉甸甸地爆裂。
镰刀反射太阳的光芒,豆棵在农人的脚边齐齐倒下。
④割掉豆棵的田地,灰秃秃一片平坦。
两个女娃从村子走进田地,黄衣的是姐姐,红衣的是妹妹,慵懒的土地就有了色彩和灵动。
⑤姐妹俩一进豆地就低头寻找,找到一粒黄豆就放进搪瓷茶缸,叮当响了一声,叮当又响一声,小姐俩在豆的音乐里喜悦。
黄豆吸饱了晨露和潮湿的地气,胖胖地躺在那里,乖得如睡着的小娃娃。
小姐妹爱惜地把它们捡起,粒粒裹带女娃的牵挂。
奶奶患了严重的眼疾,眼睛红肿成一条细缝。
夜夜枕边有炸豆的声响,奶奶似闻到黄豆的醇香。
奶奶说:有碗豆芽汤喝,该多好啊!可是,豆还没有脱粒归仓。
小姐俩就端起茶缸来到豆地,眼见各自茶缸里的豆粒,像太阳一样越升越高。
⑥突然,小妹锐利地一声尖叫,茶缸咚地掉在地上,豆粒惊恐地蹦跳,纷纷逃入草叶。
一条蛇盘成腐败豆叶的颜色,小妹懵懂地扒醒它幽暗的梦。
那蛇迅速伸展阴冷的身子,曲曲弯弯去追红衣小妹。
小妹惊梦般逃向地头,那里有棵高大的苦楝树。
小姐姐扭头发现小妹的危险,她大叫着追蛇。
蛇昂起尖脑袋,麻花着软身子,追逐妹妹,小妹惊叫得不成样子,田野的空气忍不住战栗。
小姐姐举起茶缸砸向蛇头,蛇疼得一抽,辨不清方向,冲向路边水沟。
⑦小姐妹背靠苦楝树,小脸儿如苦楝果般白白黄黄。
镰刀割去粗硬的豆棵,留下钉子似的斜尖儿。
斜尖穿透小姐妹单薄的布鞋底,扎破她们白嫩的脚板。
麻麻扎扎的细小伤口渗着丝丝鲜红的血。
小姐姐把树下的尘土,拢起一个温软的小丘,姐妹俩的伤脚埋进面粉似的细土。
带着太阳温度的细土暖洋洋地抚慰了伤痛,小妹的泪水,在柔嫩的小脸上,渐渐干成两道白印。
⑧小姐姐蹒跚地找到搪瓷茶缸,沿着蛇追赶的布满豆茬的路,她把散落的黄豆重新拾进茶缸。
姐妹俩回家的脚步歪歪扭扭。
⑨拾来的豆粒,被小姐俩放进黑瓦盆,倒上清水,蒙上毛巾,她们像大人一样端坐,等待豆的长大。
夜晚,姐俩坐在眼疾奶奶的床边,更像两个大人了,她们在黄豆成熟的季节里长大。
⑩瓦盆里的豆发了牙,一根根白嫩嫩的豆芽,顶着黄澄澄的大脑袋,咧嘴朝小姐俩憨笑。
那天,奶奶喝了三碗乳白、滚烫的豆芽汤,舒坦坦地睡了一天又一夜。
醒来时,奶奶红肿的双眼消了不少肿,模糊的血丝消退了。
眼清目明的奶奶,掀开盖着白毛巾的瓦盆,豆芽又长胖长高了。
只是有些奇怪,有些豆芽,头上顶着透明的小白帽,有些呢,却戴着油亮亮的小绿帽。
⑾小妹在黄豆芽瓦盆里,悄悄撒了一小把绿豆,那豆芽就黄黄绿绿的了。
选自2014年8月23日《人民日报》,有删改
《炸豆》阅读题目
1.结合上下文,说说下列句子中加点词语的含义。
(1)农人们在豆地南头儿占好自己的田垄,就像运动员占好自己的跑道,人和镰刀都酝酿着黏稠的梦。
(2)两个女娃从村子走进田地,黄衣的是姐姐,红衣的是妹妹,慵懒的土地就有了色彩和灵动。
2.从修辞的角度品析下面句子的妙处。
黄豆吸饱了晨露和潮湿的地气,胖胖地躺在那里,乖得如睡着的小娃娃。
3.小姐妹在黄豆成熟的季节里长大,联系全文,说说她们的长大具体体现在哪些方面。
4.本文为什么以炸豆为标题?联系全文,谈谈你的理解。
《炸豆》阅读答案
1.(1)黏稠的梦在句中指农人们渴望黄豆有一个好收成的愿望。
(2)慵懒的本义是困倦、懒惰。
句中指已收割后灰秃秃的平坦田地带给人心理上的感受。
2.运用比喻和拟人的修辞手法,将遗失在地里的黄豆比作小娃娃,并赋予黄豆躺这一人的行为,形象生动地写出了黄豆饱满的形状和惹人喜爱的情态,表现了小姐妹的喜悦之情。
3.①小姐妹到田地里拾黄豆来发豆芽,给患有眼疾的奶奶熬豆芽汤。
浓浓的孝心体现了二人长大。
②小姐姐大叫着追蛇,举起茶缸砸蛇头,救危险中的小妹妹。
临危不惧的品格表明她长大。
③姐妹俩用细土抚慰被斜尖扎破脚板带来的伤痛。
丰富的生活经验表明她们长大
5①作为线索贯穿全文。
②暗示了文章的主题。
③激发了读者的阅读兴趣。
阐述:略。
看过重庆中考炸豆阅读题答案的人还看了:
1.《炸豆》阅读答案
2.2016重庆炸豆作文阅读答案
3.炸豆2016年中考阅读题答案
4.炸豆阅读题答案感谢您的阅读!。