高考数学函数的概念(一)精选题

合集下载

高考数学函数的概念与基本初等函数多选题知识点及练习题含答案(1)

高考数学函数的概念与基本初等函数多选题知识点及练习题含答案(1)

高考数学函数的概念与基本初等函数多选题知识点及练习题含答案(1)一、函数的概念与基本初等函数多选题1.设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,也叫取整函数.令()[]f x x x =-,以下结论正确的有( ) A .()1.10.9f -= B .函数()f x 为奇函数 C .()()11f x f x +=+ D .函数()f x 的值域为[)0,1【答案】AD 【分析】根据高斯函数的定义逐项检验可得正确的选项. 【详解】对于A ,()[]1.11 1.120..9.111f --=-+=-=-,故A 正确. 对于B ,取 1.1x =-,则()1.10.9f -=,而()[]1.1-1.1 1.110.11.1f =-==, 故()()1.1 1.1f f -≠-,所以函数()f x 不为奇函数,故B 错误.对于C ,则()[][]()11111f x x x x x f x +=+-+=+--=,故C 错误.对于D ,由C 的判断可知,()f x 为周期函数,且周期为1, 当01x ≤≤时,则当0x =时,则()[]0000f =-=, 当01x <<时,()[]0f x x x x x =-=-=, 当1x =时,()[]11110f x =-=-=,故当01x ≤≤时,则有()01f x ≤<,故函数()f x 的值域为[)0,1,故D 正确.故选:AD . 【点睛】思路点睛:对于函数的新定义问题,注意根据定义展开讨论性质的讨论,并且注意性质讨论的次序,比如讨论函数值域,可以先讨论函数的奇偶性、周期性.2.已知函数()()124,01,21,1,x x f x af x x ⎧--≤≤⎪=⎨⎪->⎩其中a R ∈,下列关于函数()f x 的判断正确的为( ) A .当2a =时,342f ⎛⎫=⎪⎝⎭B .当1a <时,函数()f x 的值域[]22-,C .当2a =且[]()*1,x n n n ∈-∈N时,()1212242n n f x x --⎛⎫=-- ⎪⎝⎭D .当0a >时,不等式()122x f x a -≤在[)0,+∞上恒成立 【答案】AC 【分析】对于A 选项,直接代入计算即可;对于B 选项,由题得当(]*,1,x m m m N ∈+∈时,()()m f x a f x m =-,进而得当(]*,1,x m m m N ∈+∈时,()()2,2f x ∈-,故()f x 的值域(]2,2-;对于C 选项,结合B 选项得当2a =且[]()*1,x n n n ∈-∈N时,()()121n f x f x n -=-+进而得解析式;对于D 选项,取特殊值即可得答案.【详解】解:对于A 选项,当2a =时,3111222442222f f ⎛⎫⎛⎫⎛⎫==--= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故A 选项正确; 对于B 选项,由于当01x ≤≤,函数的值域为[]0,2,所以当(]*,1,x m m m N ∈+∈时,()()m f x a f x m =-,由于(]0,1x m -∈,所以()[]0,2f x m -∈,因为1a <,所以()1,1m a ∈-,所以当(]*,1,x m m m N ∈+∈时,()()2,2f x ∈-,综上,当1a <时,函数()f x 的值域(]2,2-,故B 选项错误;对于C 选项,由B 选项得当(]*,1,x m m m N ∈+∈时,()()mf x a f x m =-,故当2a =且[]()*1,x n n n ∈-∈N时,()()1112122412n n f x f x n x n --⎛⎫=-+=--+- ⎪⎝⎭1112122422422n n n x n x --⎛⎫⎛-⎫=--+=-- ⎪ ⎪⎝⎭⎝⎭,故C 选项正确; 对于D 选项,取812a =,34x =,则331241442f ⎛⎫=--= ⎪⎝⎭,122x a-=()311142482488111222222222---⎛⎫⎛⎫==⨯=⨯= ⎪ ⎪⎝⎭⎝⎭,不满足式()122x f x a -≤,故D选项错误. 故选:AC. 【点睛】本题考查函数的综合应用,考查分析能力与运算求解能力,是难题.本题解题的关键在于根据题意得当(]*,1,x m m m N ∈+∈时,()()mf x a f x m =-,且当01x ≤≤,函数的值域为[]0,2,进而利用函数平移与伸缩变换即可求解.3.设[]x 表示不超过x 的最大整数,如:[]1.21=,[]1.22-=-,[]y x =又称为取整函数,在现实生活中有着广泛的应用,诸如停车收费,出租车收费等均按“取整函数”进行计费,以下关于“取整函数”的描述,正确的是( ) A .x R ∀∈,[][]22x x =B .,x y R ∀∈,若[][]x y =,则1x y ->-C .x R ∀∈,[][]122x x x ⎡⎤++=⎢⎥⎣⎦D .不等式[][]2230x x --≥的解集为{|0x x <或}2x ≥ 【答案】BCD 【分析】通过反例可得A 错误,根据取整函数的定义可证明BC 成立,求出不等式2230t t --≥的解后可得不等式[][]2230x x --≥的解集,从而可判断D 正确与否. 【详解】对于A , 1.5x =-,则[][][]()233,2224x x =-=⨯--==-,故[][]22x x ≠,故A 不成立.对于B ,[][]x y m ==,则1,1m x m m y m ≤<+≤<+, 故1m y m --<-≤-,所以1x y ->-,故B 成立. 对于C ,设x m r =+,其中[),0,1m Z r ∈∈,则[]11222x x m r ⎡⎤⎡⎤++=++⎢⎥⎢⎥⎣⎦⎣⎦,[][]222x m r =+, 若102r ≤<,则102r ⎡⎤+=⎢⎥⎣⎦,[]20r =,故[][]122x x x ⎡⎤++=⎢⎥⎣⎦;若112r <<,则112r ⎡⎤+=⎢⎥⎣⎦,[]21r =,故[][]122x x x ⎡⎤++=⎢⎥⎣⎦,故C 成立.对于D ,由不等式[][]2230x x --≥可得[]1x ≤-或[]32x ≥, 故0x <或2x ≥,故D 正确. 故选:BCD 【点睛】本题考查在新定义背景下恒等式的证明与不等式的解法,注意把等式的证明归结为整数部分和小数部分的关系,本题属于较难题.4.已知函数()() ()52 log1,122,1x xf xx x⎧-<⎪=⎨--+≥⎪⎩,则方程12f x ax⎛⎫+-=⎪⎝⎭的实根个数可能为()A.8 B.7 C.6 D.5【答案】ABC【分析】以()1f x=的特殊情形为突破口,解出1x=或3或45或4-,将12xx+-看作整体,利用换元的思想进一步讨论即可.【详解】由基本不等式可得120xx+-≥或124xx+-≤-,作出函数()()()52log1,122,1x xf xx x⎧-<⎪=⎨--+≥⎪⎩的图像,如下:①当2a>时,1224xx+-≤-或1021xx<+-<,故方程12f x ax⎛⎫+-=⎪⎝⎭的实数根个数为4;②当2a=时,1224xx+-=-或1021xx<+-<或122xx+-=,故方程12f x ax⎛⎫+-=⎪⎝⎭的实数根个数为6;③当12a<<时,12424xx-<+-<-或1021xx<+-<或1122xx<+-<或1223xx<+-<,故方程12f x ax⎛⎫+-=⎪⎝⎭的实数根个数为8;④当1a=时,124xx+-=-或1021xx<+-<或121xx+-=或123xx+-=,故方程12f x a x ⎛⎫+-= ⎪⎝⎭的实数根个数为7; ⑤当01a <<时,1420x x -<+-<或1324x x<+-<, 故方程12f x a x ⎛⎫+-=⎪⎝⎭的实数根个数为2; ⑥当0a =时,120x x +-=或1324x x<+-<, 故方程12f x a x ⎛⎫+-= ⎪⎝⎭的实数根个数为3; ⑦当0a <时,123x x+->, 故方程12f x a x ⎛⎫+-= ⎪⎝⎭的实数根个数为2; 故选:ABC 【点睛】本题考查了求零点的个数,考查了数形结合的思想以及分类讨论的思想,属于难题.5.函数1()()0()x f x x ⎧=⎨⎩为有理数为无理数, 则下列结论正确的是( )A .()f x 是偶函数B .()f x 的值域是{0,1}C .方程(())f f x x =的解为1x =D .方程(())()f f x f x =的解为1x =【答案】ABC 【分析】 逐项分析判断即可. 【详解】当x -为有理数时,x 也为有理数∴()1f x -=当x -为无理数时,x 也为无理数∴()0f x -= ∴1()()0()x f x x ⎧-=⎨⎩为有理数为无理数∴()()f x f x -=()f x ∴是偶函数,A 对;易知B 对;1x =时,()((1))11f f f ==∴C 对(())()f f x f x =的解为全体有理数∴D 错故选:ABC. 【点睛】本题综合考查分段函数的奇偶性判断、值域、解方程等,要求学生能灵活应用知识解题,难度较大.6.已知函数12()123x x x f x x x x ++=+++++,下列关于函数()f x 的结论正确的为( ) A .()f x 在定义域内有三个零点 B .函数()f x 的值域为R C .()f x 在定义域内为周期函数 D .()f x 图象是中心对称图象【答案】ABD 【分析】将函数变形为111()3123f x x x x ⎛⎫=-++⎪+++⎝⎭,求出定义域,结合导数求函数的单调性即可判断BC ,由零点存在定理结合单调性可判断A ,由()()46f x f x --=+可求出函数的对称点,即可判断D. 【详解】解:由题意知,1111()111312311123f x x x x x x x ⎛⎫=-+-+-=-++ ⎪++++++⎝⎭, 定义域为()()()(),33,22,11,-∞-⋃--⋃--⋃-+∞,()()()22211()01213f x x x x '=++>+++,所以函数在()()()(),3,3,2,2,1,1,-∞------+∞定义域上单调递增,C 不正确; 当1x >-时,()3371230,004111523f f ⎛⎫-=-++<=+> ⎪⎝⎭,则()1,-+∞上有一个零点, 当()2,1x ∈--时,750,044f f ⎛⎫⎛⎫-<-> ⎪ ⎪⎝⎭⎝⎭,所以在()2,1x ∈--上有一个零点, 当()3,2x ∈--时,1450,052f f ⎛⎫⎛⎫-<-> ⎪ ⎪⎝⎭⎝⎭,所以在()3,2x ∈--上有一个零点, 当3x <-,()0f x >,所以在定义域内函数有三个零点,A 正确; 当0x <,1x +→-时,()f x →-∞,当x →+∞时,()f x →+∞, 又函数在()1,-+∞递增,且在()1,-+∞上有一个零点,则值域为R ,B 正确;()1111(4)363612311123f x f x x x x x x x ⎡⎤⎛⎫⎛⎫--=+++=--++=- ⎪ ⎪⎢⎥++++++⎝⎭⎝⎭⎣⎦, 所以()()46f x f x --=+,所以函数图象关于()2,3-对称,D 正确; 故选:ABD. 【点睛】 结论点睛:1、()y f x =与()y f x =-图象关于x 轴对称;2、()y f x =与()y f x =-图象关于y 轴对称;3、()y f x =与()2y f a x =-图象关于x a =轴对称;4、()y f x =与()2y a f x =-图象关于y a =轴对称;5、()y f x =与()22y b f a x =--图象关于(),a b 轴对称.7.若定义在R 上的函数()f x 满足()()0f x f x ,当0x <时,23()22f x x ax a =++(a ∈R ),则下列说法正确的是( )A .若方程()2af x ax =+有两个不同的实数根,则0a <或48a << B .若方程()2af x ax =+有两个不同的实数根,则48a << C .若方程()2af x ax =+有4个不同的实数根,则8a > D .若方程()2af x ax =+有4个不同的实数根,则4a > 【答案】AC 【分析】由题知()f x 是R 上的奇函数,则由0x <时的解析式可求出()f x 在R 上的解析式.先讨论特殊情况0x =为方程的根,则可求出0a =,此时方程化为()0f x =,而函数()f x 为R 上的减函数,则方程仅有一个根.当0x ≠时,由分段函数分类讨论得出0x <时,1(1)2(1)a x x =-+++-+,0x >时,4242a x x =-++-.利用数形结合思想,画出图象,则可得知方程()2af x ax =+不同的实数根个数分别为2个和4时,参数a 的取值范围. 【详解】 因为()()0f x f x 所以()()f x f x -=-,所以()f x 是R 上的奇函数,(0)0f =,当0x >时,0x -<,23()22f x x ax a -=-+, 所以23()()22f x f x x ax a =--=-+-, 综上2232,02()0,032,02x ax a x f x x x ax a x ⎧++<⎪⎪==⎨⎪⎪-+->⎩,若0x =是方程()2af x ax =+的一个根, 则0a =,此时()2af x ax =+,即()0f x =, 而22,0()0,0,0x x f x x x x ⎧<⎪==⎨⎪->⎩,在R 上单调递减,当0a =时,原方程有一个实根. 当0x <时,23222a x ax a ax ++=+, 所以20x ax a ++=,当1x =-时不满足,所以21(1)21(1)x a x x x =-=-++++-+, 当0x >时,23222ax ax a ax -+-=+, 所以220x ax a -+=,当2x =时不满足,所以242422x a x x x ==-++--,如图:若方程()2af x ax =+有两个不同的实数根, 则0a <或48a <<;若方程()2af x ax =+有4个不同的实数根,则8a >. 故选:AC 【点睛】关键点点睛:本题的关键是将方程()2af x ax =+进行参数分离,再借助数形结合法,求出对应的参数的取值范围.8.狄利克雷是德国著名数学家,是最早倡导严格化方法的数学家之一,狄利克雷函数()1,0,x Q f x x Q∈⎧=⎨∉⎩(Q 是有理数集)的出现表示数学家对数学的理解开始了深刻的变化,从研究“算”到研究更抽象的“概念、性质、结构”.关于()f x 的性质,下列说法正确的是( )A .函数()f x 是偶函数B .函数()f x 是周期函数C .对任意的1x R ∈,2x ∈Q ,都有()()121f x x f x +=D .对任意的1x R ∈,2x ∈Q ,都有()()121f x x f x ⋅= 【答案】ABC 【分析】利用函数奇偶性的定义可判断A 选项的正误;验证()()1f x f x +=,可判断B 选项的正误;分1x Q ∈、1x Q ∉两种情况讨论,结合函数()f x 的定义可判断C 选项的正误;取20x =,1x Q ∉可判断D 选项的正误.【详解】对于A 选项,任取x Q ∈,则x Q -∈,()()1f x f x ==-; 任取x Q ∉,则x Q -∉,()()0f x f x ==-.所以,对任意的x ∈R ,()()f x f x -=,即函数()f x 为偶函数,A 选项正确; 对于B 选项,任取x Q ∈,则1x Q +∈,则()()11f x f x +==; 任取x Q ∉,则1x Q +∉,则()()10f x f x +==.所以,对任意的x ∈R ,()()1f x f x +=,即函数()f x 为周期函数,B 选项正确; 对于C 选项,对任意1x Q ∈,2x ∈Q ,则12x Q x +∈,()()1211f x x f x +==; 对任意的1x Q ∉,2x ∈Q ,则12x x Q +∉,()()1210f x x f x +==. 综上,对任意的1x R ∈,2x ∈Q ,都有()()121f x x f x +=,C 选项正确;对于D 选项,取20x =,若1x Q ∉,则()()()12101f x x f f x ⋅==≠,D 选项错误. 故选:ABC. 【点睛】关键点点睛:本题解题的关键在于根据已知函数的定义依次讨论各选项,分自变量为无理数和有理数两种情况讨论,对于D 选项,可取1x Q ∉,20x =验证.二、导数及其应用多选题9.设函数()()()1f x x x x a =--,则下列结论正确的是( ) A .当4a =-时,()f x 在11,2⎡⎤-⎢⎥⎣⎦上的平均变化率为194B .当1a =时,函数()f x 的图像与直线427y =有2个交点 C .当2a =时,()f x 的图像关于点()1,0中心对称D .若函数()f x 有两个不同的极值点1x ,2x ,则当2a ≥时,()()120f x f x +≤ 【答案】BCD 【分析】运用平均变化率的定义可分析A ,利用导数研究()f x 的单调性和极值,可分析B 选项,证明()()20f x f x +-=可分析C 选项,先得出1x ,2x 为方程()23210x a x a -++=的两个实数根,结合韦达定理可分析D 选项. 【详解】对于A ,当4a =-时,()()()14f x x x x =-+,则()f x 在11,2⎡⎤-⎢⎥⎣⎦上的平均变化率为()()()119123192221412⎛⎫⨯-⨯--⨯-⨯ ⎪⎝⎭=---,故A 错误;对于B ,当1a =时,()()23212f x x x x x x =-=-+,()()()2341311f x x x x x '=-+=--,可得下表:因为14327f ⎛⎫=⎪⎝⎭,()10f =,()42227f =>,结合()f x 的单调性可知, 方程()427f x =有两个实数解,一个解为13,另一个解在()1,2上,故B 正确; 对于C ,当2a =时,()()()()()()()231211111f x x x x x x x x ⎡⎤=--=---=---⎣⎦, 则有()()()()()()33211110f x f x x x x x +-=---+---=,故C 正确; 对于D ,()()()1f x x x x a =--,()()()()()2121321f x x x a x x a x a x a '=--+--=-++,令()0f x '=,可得方程()23210x a x a -++=,因为()()22412130a a a ∆=-+=-+>,且函数()f x 有两个不同的极值点1x ,2x , 所以1x ,2x 为方程()23210x a x a -++=的两个实数根,则有()12122132x x a a x x ⎧+=+⎪⎪⎨⎪=⎪⎩, 则()()()()()()1211122211f x f x x x x a x x x a +=--+--()()()()33221212121x x a x x a x x =+-++++()()()()()22212112212121212x x x x x x a x x x x a x x ⎡⎤=+-++++-++⎣⎦ ()()()22211221212221233a x x x x x x x x a ⎡⎤=+-+-+++⎢⎥⎣⎦ ()()()()()21242212113327a a a x x a a --⎡⎤=+-++=-+⋅⎢⎥⎣⎦因为2a ≥,所以()()120f x f x +≤,故D 正确;故选:BCD .【点睛】关键点点睛:本题考查利用导数研究函数的单调性,平均变化率,极值等问题,本题的关键是选项D ,利用根与系数的关系,转化为关于a 的函数,证明不等式.10.对于函数2ln ()x f xx =,下列说法正确的是( ) A .函数在x =12e B .函数的值域为1,2e ⎛⎤-∞ ⎥⎝⎦ C .()f x 有两个不同的零点 D .(2)f f f <<【答案】ABD【分析】求导,利用导数研究函数的单调区间,进而研究函数的极值可判断A 选项,作出函数()f x 的抽象图像可以判断BCD 选项.【详解】函数的定义域为()0,∞+,求导2431ln 212ln()x x x x x f x x x ⋅-⋅-'==, 令()0f x '=,解得:x e =x()0,e e (),e +∞ ()'f x+ 0 - ()f x 极大值所以当x e =时,函数有极大值()2f e e =,故A 正确;对于BCD ,令()0f x =,得ln 0x =,即1x =,当x →+∞时,ln 0x >,20x >,则()0f x >作出函数()f x 的抽象图像,如图所示:由图可知函数的值域为1,2e ⎛⎤-∞ ⎥⎝⎦,故B 正确;函数只有一个零点,故C 错误;又函数()f x 在),e +∞32e π<<<,则(2)3)f f f π<<,故D 正确;故选:ABD【点睛】方法点睛:本题考查利用导数研究函数单调性,函数的极值,函数的值域,及求函数零点个数,求函数零点个数常用的方法:(1)方程法:令()0f x =,如果能求出解,有几个解就有几个零点.(2)零点存在性定理法:利用定理不仅要求函数在区间[],a b 上是连续不断的曲线,且()()0f a f b ⋅<,还必须结合函数的图像与性质(如单调性、奇偶性、周期性、对称性)才能确定函数有多少个零点或零点值所具有的性质.(3)数形结合法:转化为两个函数的图像的交点个数问题.先画出两个函数的图像,看其交点的个数,其中交点的横坐标有几个不同的值,就有几个不同的零点.。

2024年高考数学高频考点(新高考通用)函数的概念及其表示(精练:基础+重难点)解析版

2024年高考数学高频考点(新高考通用)函数的概念及其表示(精练:基础+重难点)解析版

【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)第06讲函数的概念及其表示(精讲)【A组在基础中考查功底】则函数根据函数图像可知:(f x 故选:ACD.8.已知函数4 ()f x xx=+A.-3B 【答案】ABC四、解答题12.定义在R 上的函数()f x 对任意实数x 都有()2243f x x x -=-+.(1)求函数()f x 的解析式;(2)若函数()()23g x f x x =-+在[],1m m +上是单调函数,则求实数m 的取值范围.【答案】(1)()21f x x =-(2)(][),01,-∞+∞ 【分析】(1)配方后,利用整体法求解函数解析式;(2)求出()g x 的单调区间,与[],1m m +比较,得到不等式,求出实数m 的取值范围.【详解】(1)()()2224321f x x x x -=-+=--,故函数()f x 的解析式为()21f x x =-;(2)()()2223122121x x g x x x x =-+=---++=在(),1-∞上单调递减,在()1,+∞上单调递增,因为()g x 在[],1m m +上是单调函数,所以m 1≥或11m +≤,解得0m ≤或m 1≥,所以实数m 的取值范围是(][),01,-∞+∞ .【B 组在综合中考查能力】由图可得当且仅当0t<<时)的,故()()()()36494922f f f f m n =⨯=+=+.【C 组在创新中考查思维】,该函数在当32m>时,当x>m时()2,3f x⎛∈-∞-⎝①,当1,22aa >>时,()f x 在[]0,1上单调递增,②,由2222a a a x ⎛⎫-+⨯=- ⎪⎝⎭解得12x a +=或1x -=。

函数的概念经典例题

函数的概念经典例题

考点一:由函数的概念判断是否构成函数函数概念:设A 、B 是非空的数集,如果按照某种确定的关系f ,使对于集合A中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数。

例1. 下列从集合A 到集合B 的对应关系中,能确定y 是x 的函数的是( )① A={x x ∈Z},B={y y ∈Z},对应法则f :x →y=3x;② A={xx>0,x ∈R}, B={yy ∈R},对应法则f :x →2y =3x;③ A=R,B=R, 对应法则f :x →y=2x ; 变式1. 下列图像中,是函数图像的是( )① ② ③ ④ 变式2. 下列式子能确定y 是x 的函数的有( )①22x y +=2 1= ③ A 、0个 B 、1个 C 、2个 D 、3个 变式3. 已知函数y=f (x ),则对于直线x=a (a 为常数),以下说法正确的是( )A. y=f (x )图像与直线x=a 必有一个交点B. y=f (x )图像与直线x=a 没有交点C. y=f (x )图像与直线x=a 最少有一个交点D. y=f (x )图像与直线x=a 最多有一个交点考点二:同一函数的判定函数的三要素:定义域、对应关系、值域。

如果两个函数的定义域相同,并且对应关系完全一致,我们就称这两个函数相等。

例1. 下列哪个函数与y=x 相同( ) A. y=x B. y = C. 2y =D.y=t变式1.下列函数中哪个与函数y = )A. y =B. y =-C. y =-D. y x =变式2. 下列各组函数表示相等函数的是( )A. 293x y x -=- 与 3y x =+ B. 1y = 与 1y x =-C. 0y x =(x ≠0) 与 1y =(x ≠0)D. 21y x =+,x ∈Z 与21y x =-,x ∈Z考点三:求函数的定义域(1)当f (x )是整式时,定义域为R ;(2)当f (x )是分式时,定义域是使分母不为0的x 取值集合;(3)当f (x )是偶次根式时,定义域是使被开方式取非负值的x 取值集合; (4)当f (x )是零指数幂或负数指数幂时,定义域是使幂的底数不为0的x 取值集合;(5)当f (x )是对数式时,定义域是使真数大于0且底数为不等于1的正数的x 取值集合;例1. 函数y =的定义域是( )A. {}1,1-B. ( -1 , 1 )C. [ -1 , 1 ]D. (-∞ ,-1 )∪( 1 ,+∞ )例2. 求函数y =变式1. 求下列函数的定义域⑴1y x =+ ⑵01x y +=变式2. 求下列函数的定义域 ⑴y =⑵()2lg 31y x =++ ⑶()1log 13x y x -=+求复合函数的定义域例1. 已知函数f (21x -)定义域为[]1,3-, 求f (x )的定义域变式1. 已知函数f[ 0,3 ],求f (x )的定义域变式2. 已经函数f (x+2)定义域为[ 0 , 4], 求f ()2x 的定义域考点四:求函数的值域 例1.(1)4y =-(2)2y x =(3)y x =+(4)x(5)y x =例2.求下列函数的值域①31y x =+ , x ∈{1,2 ,3,4,5 } ( 观察法 )②246y x x =-+ ,x ∈[)1,5( 配方法 :形如2y ax bx c =++ )③2y x =( 换元法:形如y ax b =+ ) ④1x y x =+ ( 分离常数法:形如cx d y ax b+=+ )⑤221y x x =+ ( 判别式法:形如21112222a x b x c y a x b x c ++=++ )变式1. 求下列函数的值域① 2243y x x =-+② y x =③ y =213x x +- ④ 2224723x x y x x +-=++考点五:求函数的解析式例1 . 已知f (x )= 22x x -,求f (1x -)的解析式 ( 代入法 / 拼凑法 )变式1. 已知f (x )= 21x -, 求f (2x )的解析式变式2. 已知f (x+1)= 223x x ++,求f (x )的解析式例2. 若f [ f (x )] = 4x+3,求一次函数f (x )的解析式 ( 待定系数法 )变式1. 已知f (x )是二次函数,且()()211244f x f x x x ++-=-+,求f (x ).例3. 已知f (x )-2 f (-x )= x ,求函数f (x )的解析式 ( 消去法/ 方程组法 )变式1. 已知2 f (x )- f (-x )= x+1 ,求函数f (x )的解析式变式2. 已知2 f (x )-f 1x ⎛⎫⎪⎝⎭= 3x ,求函数f (x )的解析式例4. 设对任意数x ,y 均有()()222233f x y f y x xy y x y +=++-++,求f (x )的解析式. ( 赋值法 / 特殊值法)变式1. 已知对一切x ,y ∈R ,()()()21f x y f x x y y -=--+都成立,且f (0)=1,求f (x )的解析式.考点六:函数的求值例11. 已经函数f (x )= 32x x +,求f (2)和f (a )+f (-a)的值变式1. 已知f (2x )= 21x x+,求f (2)的值例12. 已知函数()510320x x x x f x ⎧+ ≥⎪⎨-+ <⎪⎩=,求f (1)+f (1-)的值变式1. 已知函数()()2122111f x x x x x x f x ⎧+ , ≤-⎪⎪+ , -<<⎨⎪2-4 , ≥ ⎪⎩= ,求f [f (4-)]的值变式2. 已知函数()1(2)2n f n n fn *⎧1 , (= 1)⎪=⎨1+- , (∈N )⎪⎩,求f (5)的值例13 . 设函数()812l ,1]og (1,)(,xf x x x x -⎧⎪=⎨⎪⎩∈-∞ ∈+∞ ,,求满足f (x )=12的x 值变式1. 已知函数()11xf x x x x 3⎧⎪=⎨⎪⎩≤- , > , ,若f (x )=2,求x 的值自主检测1.已知两个函数f(x)和g(x),其定义如下表:2.已知函数f(x)=2x -3,x ∈{x ∈N|1≤x ≤5},则函数f(x)的值域为__________. 3.已知函数f(2x +1)=3x +2,且f(a)=4,则a =________.4.函数f(x)的定义域为[0,2],则函数f(x +1)的定义域是________. 5.求下列函数的定义域:(1)y =2x -1-7x ;(2)y =(x +1)0|x|-x.6.设集合M ={x|0≤x ≤2},N ={y|0≤y ≤2},那么下面的4个图形中,能表示集合M 到集合N 的函数关系的有( )A .①②③④B .①②③C .②③D .② 7.有一位商人,从北京向上海的家中打电话,通话m 分钟的电话费,由函数f(m)=1.06×(0.5[m]+1)(元)决定,其中m >0,[m]是大于或等于m 的最小整数.则从北京到上海通话时间为5.5分钟的电话费为( )A .3.71元B .3.97元C .4.24元D .4.77元 8.已知a 是实数,则下列函数中,定义域和值域都有可能是R 的是( )A .f(x)=x 2+aB .f(x)=ax 2+1C .f(x)=ax 2+x +1D .f(x)=x 2+ax +1A .90元B .80元C .70元D .60元 11.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,那么函数解析式为y =2x 2+1,值域为{3,9}的“孪生函数”共有( )A .10个B .9个C .8个D .7个 12.设f(x)=⎩⎨⎧x +2,x ≤-1,x 2,-1<x<2,2x ,x ≥2,若f(x)=3,则x =______.13.若函数f(x)的定义域是[0,1],则函数f(2x)+f(x +23)的定义域为__________.。

高中试卷-3.1 函数的概念及其表示方法(含答案)

高中试卷-3.1 函数的概念及其表示方法(含答案)

3.1 函数的概念及其表示方法1. 函数概念的理解;2. 求函数的定义域;3. 求函数值(值域);4. 函数的三种表示方法;5. 求函数解析式;6. 分段函数的概念;7.分段函数的求值;8.函数的图象及应用;9. 分段函数与方程、不等式综合问题一、单选题1.(2021·全国高一课时练习)设()1,01,01,0x x f x x x +>ìï==íï-<î,则()()0f f 等于( )A .1B .0C .2D .-1【答案】C 【解析】1,0()1,01,0x x f x x x +>ìï==íï-<îQ\ (0)1f =,((0))(1)112f f f ==+=.故选: C.2.(2021·浙江南湖嘉兴一中高一月考)下列函数中,与函数y =有相同定义域的是( )A.()f x =B .1()f x x=C .()||f x x =D.()f x =【答案】A 【解析】函数y =的定义域为{}0x x >;函数()f x ={}0x x >;函数1()f x x=的定义域为{}0,x x x ¹ÎR ;函数()f x x =的定义域为R ;函数()f x =定义域为{}1x x ….所以与函数y =有相同定义域的是()f x =.故选:A.3.(2021·浙江高一期中)函数1()f x x=的定义域是( )A .R B .[1,)-+¥C .(,0)(0,)-¥+¥U D .[1,0)(0,)-+¥U 【答案】D 【解析】由题意可得:10x +³,且0x ¹,得到1x ³-,且0x ¹,故选:D4.(2021·全国高一课时练习)已知函数f(x -1)=x 2-3,则f(2)的值为( )A .-2B .6C .1D .0【答案】B 【解析】令1x t -=,则1x t =+,()()213f t t \=+-,()()213f x x \=+-()()222136f \=+-=,故选B.5.(2021·全国高一课时练习)如果1f x æöç÷èø=1x x-,则当x≠0,1时,f(x)等于( )A .1xB .11x -C .11x-D .11x-【答案】B 【解析】令1x=t ,则x =1t ()1t ¹,代入1f x æöç÷èø=1x x -,则有f(t)=111t t-=11t -()1t ¹.即()()111f x x x =¹-.故选:B.6.(2021·全国高一课时练习)已知函数y =21,02,0x x x x ì+£í->î,则使函数值为5的x 的值是( )A .2-或2B .2或52-C .2-D .2或2-或52-【答案】C 【解析】当0x £时,令5y =,得215x +=,解得2x =-;当0x >时,令5y =,得25x -=,解得52x =-,不合乎题意,舍去.综上所述,2x =-.故选:C.7.(2021·全国高一课时练习)设函数若f (a )=4,则实数a =( )A .-4或-2B .-4或2C .-2或4D .-2或2【答案】B 【解析】当0a £时,()4f a a =-=,解得4a =-;当0a >时,24()f a a ==,解得2a =±,因为0a >,所以2a =,综上,4a =-或2,故答案选B 8.(2021·全国高一)函数()f x x =+的值域是( )A .1,2éö+¥÷êëøB .1,2æù-¥çúèûC .(0,)+¥D .[1,)+¥【答案】A【解析】t =,且0t ³,则212t x +=,函数转化为2211(1)22t y t t +=+=+由0t ³,则12y ≥,即值域为1,2éö+¥÷êëø故选:A.9.(2021·浙江高一课时练习)下列函数中,不满足:(2)2()f x f x =的是( )A .()f x x =B .()f x x x=-C .()1f x x =+D .()f x x=-【答案】C 【解析】A 中()()2222f x x x f x ===,B 中()()2222f x x x f x =-=,C 中()()2212f x x f x =+¹,D 中()()222f x x f x =-=10.(2021·浙江高一课时练习)设函数()f x 的定义域是[0,1],则函数()(2)(01)f x a f x a a +++<<的定义域为( )A .1,22a a -éù-êúëûB .,12a a éù--êúëûC .[,1]a a --D .1,2a a -éù-êúëû【答案】A 【解析】由1011021220101a x ax a a a x a x a a --ì+ìï-ïï+Þ-ííïï<<î<<ïî……………………得122a a x --……故选:A 二、多选题11.(2021·广东禅城 佛山一中高一月考)下列四个图形中可能是函数y =f (x )图象的是( )A .B .C .D .【答案】AD 【解析】在A ,D 中,对于定义域内每一个x 都有唯一的y 与之相对应,满足函数关系,在B ,C 中,存在一个x 有两个y 与x 对应,不满足函数对应的唯一性,故选AD.12.(2021·历下 山东师范大学附中高一学业考试)已知()221f x x +=,则下列结论正确的是( )A .()34f -=B .()2214x x f x -+=C .()2f x x=D .()39f =【答案】AB 【解析】由()221f x x +=,令21x t +=,可得12t x -=,可得:()222(1)2124t t t f t --+==,即:()2214x x f x -+=,故C 不正确,B 正确;可得:()2(31)344f ---==,故A 正确;()2(31)314f -==故D 不正确;故选:AB.13.(2021·江苏姑苏 苏州中学高一期中)下列各组函数中,两个函数是同一函数的有( )A .()||f x x =与()g x =B .()1f x x =+与21()1x g x x -=-C .||()x f x x =与1,0()1,0x g x x >ì=í-<îD .()f x =()g x =【答案】AC 【解析】对A, ()g x x ==,故A 正确.对B, ()1f x x =+定义域为R ,21()1x g x x -=-定义域为{}|1x x ¹,故B 错误.对C, 1,0()1,0x xf x x x >ì==í-<î,故C 正确.对D, ()f x =210x -³,解得1x £-或1x ³.()g x =定义域为1010x x +³ìí-³î即1x ³.故D 错误.故选:AC14.(2021·全国高一课时练习)已知函数()22,1,12x x f x x x +£-ì=í-<<î,关于函数()f x 的结论正确的是( )A .()f x 的定义域为RB .()f x 的值域为(),4-¥C .()13f =D .若()3f x =,则x E.()1f x <的解集为()1,1-【答案】BD 【解析】由题意知函数()f x 的定义域为(),2-¥,故A 错误;当1x £-时,()f x 的取值范围是(],1-¥,当12x -<<时,()f x 的取值范围是[)0,4,因此()f x 的值域为(),4-¥,故B 正确;当1x =时,()2111f ==,故C 错误;当1x £-时,23x +=,解得1x =(舍去),当12x -<<时,23x =,解得x =或x =,故D 正确;当1x £-时,21x +<,解得1x <-,当12x -<<时,21x <,解得11x -<<,因此()1f x <的解集为()(),11,1-¥--U ;故E 错误.故选:BD.三、填空题15.(2021·全国高一课时练习)下列对应或关系式中是A 到B 的函数的序号为________.①,ÎÎA R B R ,221x y +=;②A ={1,2,3,4},B ={0,1},对应关系如图:③,==A R B R ,1:2®=-f x y x ;④,==A Z B Z ,:®=f x y .【答案】②【解析】①,ÎÎA R B R ,221x y +=,存在x 对应两个y 的情况,所以不是A 到B 的函数;②符合函数的定义,是A 到B 的函数;③,==A R B R ,1:2®=-f x y x ,对于集合A 中的2x =没有对应y ,所以不是A 到B 的函数;④,==A Z B Z ,:®=f x y ,对于集合A 中的{|0,}x x x z £Î没有对应y ,所以不是A 到B的函数.故答案为:②16.(2021·浙江南湖 嘉兴一中高一月考)已知,若()()10f f a =,则a =______________.【答案】32【解析】0x >时,()20f x x =-<,∴由()10f x =知0x £,∴2110x +=,3x =-,而2()11f x x =+³,因此由()3f a =-知0a >,即23a -=-,32a =.故答案为:32.17.(2021·全国高一课时练习)已知()1,00,0x f x x ³ì=í<î则不等式()2xf x x +£的解集是________.【答案】{}|1x x £【解析】当0x ³时,()1f x =,代入()2xf x x +£,解得1x £,∴01x ££;当0x <时,()0f x =,代入()2xf x x +£,解得2x £,∴0x <;综上可知{}|1x x £.故答案为:{}|1x x £.四、双空题18.(2021·全国高一课时练习)已知f(x)=11x+ (x≠-1),g(x)=x 2+2,则f (2)=________,f(g (2))=________.【答案】13 17【解析】因为()11f x x =+,故可得()123f =;又()22g x x =+,故可得()22226g =+=;故()()()1267f g f ==.故答案为:13;17.19.(2021·安达市第七中学高一月考)设[]x 表示不超过x 的最大整数,已知函数[]()f x x x =-,则(0.5)f -=________ ;其值域为_________.【答案】0.5 [)0,1 【解析】作出函数[]()f x x x =-的图像,如图所示,由图可知(0.5)0.5(1)0.5f -=---=,其值域为[)0,1,故答案为(1). 0.5 (2). [)0,120.(2021·浙江高一期中)设函数()(2141x f x x ì<ï=í³ïî,则((0))f f =____,使得()4f a a ³的实数a 的取值范围是_____.【答案】4 1a £ 【解析】因为()(2141x f x x ì<ï=í³ïî,所以()01f =,因此((0))(1)4f f f ==;当1a <时,()4f a a ³可化为2(1)4+³a a ,即2(1)0a -³显然恒成立,所以1a <;当1a ³时,()44f a a =³,解得1a =;综上,1a £.故答案为4;1a £21.(2021·首都师范大学附属中学高一期中)已知函数22,(),x x x af x x x a ì-+£=í>î.(1)当a =1时,函数()f x 的值域是___________;(2)若函数()f x 的图像与直线y a =只有一个公共点,则实数a 的取值范围是_______________.【答案】R []0,1【解析】(1)当a =1时,22,1(),1x x x f x x x ì-+£=í>î当1x >时,()1f x x =>当1x £时,22()2(1)11f x x x x =-+=--+£所以函数()f x 的值域是(1,)(,1]R+¥-¥=U (2)因为当x a >时,()f x x a =>,所以只需函数2()2,()f x x x x a =-+£的图像与直线y a =只有一个公共点,当22x x x -+³,即01x ££时,所以当01a ££时,函数2()2,()f x x x x a =-+£的图像与直线y a =只有一个公共点,当22x x x -+<,即1x >或0x <时,所以当1a >或0a <,即2a x x >-+,从而函数2()2,()f x x x x a =-+£的图像与直线y a =无公共点,因此实数a 的取值范围是[]0,1故答案为:(1). R (2). []0,1五、解答题22.(2021·全国高一课时练习)求下列函数的定义域.(1)y =3-12x ;(2)y =(3)y(4)y 1x.【答案】(1)R ;(2)10,7éùêúëû;(3)()()2,11,---+¥U ;(4)()3,00,22éö-÷êëøU .【解析】(1)因为函数y =3-12x 为一次函数,所以该函数的定义域为全体实数R ;(2)由题意可得0170x x ³ìí-³î,解得107x ££,所以该函数的定义域为10,7éùêúëû;(3)由题意得1020x x +¹ìí+>î,解得2x >-且1x ¹-,所以该函数的定义域为()()2,11,---+¥U ;(4)由题意得230200x x x +³ìï->íï¹î,解得322x -£<且0x ¹,所以该函数的定义域为()3,00,22éö-÷êëøU .23.(2021·全国高一课时练习)已知2,11()1,11,1x x f x x x ì-££ï=>íï<-î(1)画出f(x)的图象;(2)若1()4f x =,求x 的值;(3)若1()4f x ³,求x 的取值范围.【答案】(1)作图见解析;(2)12x =±;(3)11,,22æùéö-¥-È+¥ç÷úêèûëø【解析】(1)函数2y x =的对称轴0x =,当0x =时,0y =;当1x =-时,1y =;当1x =时,1y =,则f(x)的图象如图所示.(2)1()4f x=等价于21114xx-££ìïí=ïî①或1114x>ìïí=ïî②或1114x<-ìïí=ïî③解①得12x=±,②③的解集都为Æ∴当1()4f x=时,12x=±.(3)由于1124fæö±=ç÷èø,结合此函数图象可知,使1()4f x³的x的取值范围是11,,22æùéö-¥-È+¥ç÷úêèûëø24.(2021·全国高一课时练习)根据下列条件,求f(x)的解析式.(1)f(x)是一次函数,且满足3f(x+1)-f(x)=2x+9;(2)f(x+1)=x2+4x+1;(3)12()(0) f f x x xxæö+=¹ç÷èø.【答案】(1)f(x)=x+3;(2)f(x)=x2+2x-2;(3)2()(0)33xf x xx=-¹【解析】(1)解由题意,设f(x)=ax+b(a≠0)∵3f(x+1)-f(x)=2x+9∴3a(x+1)+3b-ax-b=2x+9,即2ax+3a+2b=2x+9,由恒等式性质,得22 329 aa b=ìí+=î∴a=1,b=3∴所求函数解析式为f(x)=x+3.(2)设x+1=t,则x=t-1f(t)=(t-1)2+4(t-1)+1即f(t)=t2+2t-2.∴所求函数解析式为f(x)=x2+2x-2.(3)解1 ()2f x f xxæö+=ç÷èøQ,将原式中的x与1x互换,得112()f f xx xæö+=ç÷èø.于是得关于f(x)的方程组()()12112f x f x x f f x x x ìæö+=ç÷ïïèøíæöï+=ç÷ïèøî解得2()(0)33x f x x x =-¹.25.(2021·全国高一课时练习)已知函数22,2()2,2x x f x x x £ì=í+>î(1)若0)(8f x =,求0x 的值;(2)解不等式()8f x >.【答案】(1)0x =;(2){|>x x .【解析】(1)当02x £时,由02=8x ,得04x =,不符合题意;当02x >时,由2028+=x,得0x =0x =舍去),故0x =(2)()8f x >等价于228x x £ìí>î ——①或2228x x >ìí+>î——②解①得x f Î,解②得>x ,综合①②知()8f x >的解集为{|>x x .26.(2021·全国高一)已知(1)f x +的定义域为(2,4),(1)求()f x 的定义域;(2)求(2)f x 的定义域【答案】(1)(3,5);(2)35,22æöç÷èø.【解析】(1))1(f x +Q 的定义域为(2,4),24x \<<,则315x <+<,即()f x 的定义域为(3,5);(2)()f x Q 的定义域为(3,5);\由325x <<得3522x <<,即(2)f x 的定义域为35,22æöç÷èø.27.(2021·全国高一)若函数()f x =的定义域为R ,则m 的取值范围为多少?【答案】112mm ìü>íýîþ∣.【解析】Q 函数()f x =的定义域为R ,230mx x \++¹,若0m =,则3x ¹-,不满足条件.,若0m ¹,则判别式1120m D =-<,解得112m >,即1|12m m ìü>íýîþ。

必修一-函数的概念练习题(含答案)

必修一-函数的概念练习题(含答案)

函数的概念(一)一、选择题1.集合A ={x |0≤x ≤4},B ={y |0≤y ≤2},下列不表示从A 到B 的函数是( )A .f (x )→y =12xB .f (x )→y =13xC .f (x )→y =23x D .f (x )→y =x 2.某物体一天中的温度是时间t 的函数:T (t )=t 3-3t +60,时间单位是小时,温度单位为℃,t =0表示12:00,其后t 的取值为正,则上午8时的温度为( )A .8℃B .112℃C .58℃D .18℃3.函数y =1-x2+x2-1的定义域是( )A .[-1,1]B .(-∞,-1]∪[1,+∞)C .[0,1]D .{-1,1}4.已知f (x )的定义域为[-2,2],则f (x 2-1)的定义域为( )A .[-1,3]B .[0,3]C .[-3,3]D .[-4,4]5.若函数y =f (3x -1)的定义域是[1,3],则y =f (x )的定义域是( )A .[1,3]B .[2,4]C .[2,8]D .[3,9]6.函数y =f (x )的图象与直线x =a 的交点个数有( )A .必有一个B .一个或两个C .至多一个D .可能两个以上7.函数f (x )=1ax2+4ax +3的定义域为R ,则实数a 的取值范围是( ) A .{a |a ∈R } B .{a |0≤a ≤34}C .{a |a >34} D .{a |0≤a <34} 8.某汽车运输公司购买了一批豪华大客车投入运营.据市场分析,每辆客车营运的利润y 与营运年数x (x ∈N )为二次函数关系(如图),则客车有营运利润的时间不超过( )年.A .4B .5C .6D .79.(安徽铜一中高一期中)已知g (x )=1-2x ,f [g (x )]=1-x2x2(x ≠0),那么f ⎝⎛⎭⎫12等于( )A .15B .1C .3D .3010.函数f (x )=2x -1,x ∈{1,2,3},则f (x )的值域是( )A .[0,+∞)B .[1,+∞)C .{1,3,5}D .R二、填空题11.某种茶杯,每个2.5元,把买茶杯的钱数y (元)表示为茶杯个数x (个)的函数,则y =________,其定义域为________.12.函数y =x +1+12-x 的定义域是(用区间表示)________. 三、解答题13.求一次函数f (x ),使f [f (x )]=9x +1.14.将进货单价为8元的商品按10元一个销售时,每天可卖出100个,若这种商品的销售单价每涨1元,日销售量就减少10个,为了获得最大利润,销售单价应定为多少元?15.求下列函数的定义域.(1)y =x +1x2-4; (2)y =1|x|-2;(3)y =x2+x +1+(x -1)0. 16.(1)已知f (x )=2x -3,x ∈{0,1,2,3},求f (x )的值域.(2)已知f (x )=3x +4的值域为{y |-2≤y ≤4},求此函数的定义域.17.(1)已知f (x )的定义域为 [ 1,2 ] ,求f (2x -1)的定义域;(2)已知f (2x -1)的定义域为 [ 1,2 ],求f (x )的定义域;(3)已知f (x )的定义域为[0,1],求函数y =f (x +a )+f (x -a )(其中0<a <12)的定义域.18.用长为L 的铁丝弯成下部为矩形,上部为半圆形的框架(如图),若矩形底边长为2x ,求此框架的面积y 与x 的函数关系式及其定义域.1.2.1 函数的概念答案一、选择题1.[答案] C[解析] 对于选项C ,当x =4时,y =83>2不合题意.故选C. 2.[答案] A[解析] 12:00时,t =0,12:00以后的t 为正,则12:00以前的时间负,上午8时对应的t =-4,故T (-4)=(-4)3-3(-4)+60=8.3.[答案] D[解析] 使函数y =1-x2+x2-1有意义应满足⎩⎪⎨⎪⎧ 1-x2≥0x2-1≥0,∴x 2=1,∴x =±1. 4.[答案] C[解析] ∵-2≤x 2-1≤2,∴-1≤x 2≤3,即x 2≤3,∴-3≤x ≤ 3.5.[答案] C[解析] 由于y =f (3x -1)的定义域为[1,3],∴3x -1∈[2,8],∴y =f (x )的定义域为[2,8]。

函数基本概念常考题型含详解

函数基本概念常考题型含详解

函数概念常考基础题型题型一:函数概念1、下列各曲线中,不能表示y是X的函数的是()2、下列对应关系是从集合A到集合3的函数的是()A. A = R, B = {x∣x>O∣, f:x→γ = ∣xB. A = R, B = {x∣x>0∣, f:x→ y = lnxC. A = Z 9 B = N , f:x → y = y[xD. A = Z, B = N, /:x→y 二∕3、判断下列对应是否为函数:(1) /:x→j=x, x∈{x∣0<x<6), j∈{j∣O<y≤3}5(2) /:x→y=-x f x∈{x∣0≤x≤6}, j∈{j∣0<y≤3}j6(3) f:x→βy=3x+L χGR, y∈R题型二:区间表示1、用区间表示下列集合:(1) {x∣-l ≤x≤3} ; (2) {x∣0<x≤ 1} ; (3) {x∖2≤x<5};(4) {x∣0<x<2}∙ (5) [x∖x<3}; (6) {x∖x≥2}.2、若[a, 3a—1]为一确定区间,则a的取值范围是题型三:求函数的定义域1、求下列函数的定义域:(1) y — 2x÷3H ---------- ;(2) y —>∕x + 3 H—;(3) y —>∕x+^3 ÷ V—% —3.x-∖x2、解下列各题:(1)已知函数∕(x)的定义域是[1,2],求函数/(X+1)的定义域.(2)已知函数/(X+1)的定义域是[L2],求函数/(九)的定义域.(3)已知函数∕(x+l)的定义域为[一2』,求函数g(χ) =―二+ f(χ-2)的定义域。

x — 2(4)已知函数y=,〃优2 _6〃›+加+8的定义域是R,求实数机的取值范围.3、若y = ∕(χ)的定义域为[-1」,则函数y = ∕(3χ) + ∕ -的定义域为\ 3 )。

函数概念练习题(含解析)

函数概念练习题(含解析)

2
, y
2x 1 的值域为 , 2
x3
2,
.
(4)令
x 1 t ,则 t 0 且 x t2 1, y 2
t2 1
t 2t 2 t 2 2 t
1 4
2
15 , 8
则当 t
1 4
时,
ymin
15 8

y
2x
x
1
的值域为
15 8
,
.
18.(1) R
(2){x∣1 x 4}
A. f (x) x0 与 g(x) 1
B. f (x) x 与 g(x) x2 x
C.
f
x
1,x 0, 1,x 0 与
g
x
x x
,x
1,x
0
0, D.
f
(x)
(x 1)2 与 g(x) x 1
6.若函数
f
2x 1 的定义域为1,1 ,则函数 y
f
x 1
的定义域为(

x 1
A. 1, 2
x 不是同一函数. 故选:C. 9.A 【分析】根据题意,由换元法,结合二次函数的最值,即可得到结果.
【详解】设 t 3 x ,则 t 0 ,即 x 3 t2 ,所以 y f t 2 3 t2 4t 2 t 12 8,
因为 t 0 ,所以当 t 1时,函数取得最大值为 8 . 故选:A 10.C 【分析】把自变量直接代入解析式即可求解.
x 1
故选:D
7.C
【分析】逐个求解函数的定义域判断即可
【详解】对于 A,由 x 0 ,得函数的定义域为[0, ) ,所以 A 错误,
答案第 2页,共 6页
对于 B,由 x 1 0 ,得 x 1 ,所以函数的定义域为 (,1) (1,) ,所以 B 错误,

函数的概念和性质高考真题

函数的概念和性质高考真题

函数的概念和性质高考真题1.函数的概念和性质1.1 函数的定义函数是一种特殊的关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素上。

通常用符号f(x)表示函数,其中x是定义域中的元素,f(x)是值域中的元素。

1.2 函数的性质函数有很多性质,其中一些比较重要的包括:1)定义域和值域:函数的定义域是所有可能输入的集合,值域是所有可能输出的集合。

2)奇偶性:如果对于函数f(x),有f(-x)=-f(x),则称f(x)是奇函数;如果有f(-x)=f(x),则称f(x)是偶函数。

3)单调性:如果对于函数f(x),当x1f(x2),则称f(x)在区间(x1,x2)上单调递减。

4)零点和极值:函数的零点是函数图像与x轴的交点,极值是函数在某一区间内的最大值或最小值。

2.例题解答2.1(2019江苏4)函数y=7+6x-x^2的定义域是所有实数。

函数f(x)是奇函数,且当x<0时,f(x)=-eax。

若f(ln2)=8,则a=ln(1/4)。

2.2(2019全国Ⅱ理14)已知。

2.3(2019全国Ⅲ理11)设f(x)是定义域为R的偶函数,且在(0,+∞)上单调递减,则正确的不等式是B。

2.4(2019北京理13)设函数f(x)=ex+ae-x(a为常数),若f(x)为奇函数,则a=0;若f(x)是R上的增函数,则a的取值范围是(-∞,0)。

2.5(2019全国Ⅰ理11)关于函数f(x)=sin|x|+|sinx|有下述四个结论:①f(x)是偶函数;②f(x)在区间(π/2,π)单调递增;③f(x)在[-π,π]有4个零点;④f(x)的最大值为2.其中所有正确结论的编号是B。

2.6(2019全国Ⅰ理5)函数f(x)=sinx+x/cosx+x^2在[-π,π]的图像大致为D。

2.7(2019全国Ⅲ理7)函数y=2x+2-x在[-6,6]的图像大致为A。

2.8(2019浙江6)在同一直角坐标系中,函数y=11/x^2,y=loga(x+2)(a>0且a≠1)的图像可能是B。

函数的概念试题及答案高中

函数的概念试题及答案高中

函数的概念试题及答案高中一、选择题1. 下列哪个选项正确描述了函数的概念?A. 函数是一种运算B. 函数是一种关系C. 函数是一种映射D. 函数是一种变量2. 如果f(x) = 2x + 3,那么f(-1)的值是多少?A. -1B. 1C. 3D. 53. 函数y = x^2 + 1在x = -2时的值是多少?A. 5B. 4C. 3D. 1二、填空题4. 如果一个函数f(x)的定义域是所有实数R,那么这个函数被称为_________函数。

5. 函数f(x) = 3x - 2的反函数是_________。

三、简答题6. 函数的三要素是什么?7. 请解释什么是函数的值域,并给出一个例子。

四、计算题8. 给定函数f(x) = x^2 - 4x + 4,求出当x = 0, 1, 2, 3时的函数值。

答案一、选择题1. C. 函数是一种映射2. A. -1(计算过程:f(-1) = 2*(-1) + 3 = -2 + 3 = 1)3. A. 5(计算过程:y = (-2)^2 + 1 = 4 + 1 = 5)二、填空题4. 无界5. f^(-1)(x) = (x + 2) / 3三、简答题6. 函数的三要素包括:定义域(Domain)、值域(Range)和对应法则(Rule of correspondence)。

7. 函数的值域是指函数所有可能的输出值的集合。

例如,函数y =x^2的值域是所有非负实数,即[0, +∞)。

四、计算题8. 当x = 0时,f(x) = 0^2 - 4*0 + 4 = 4;当x = 1时,f(x) = 1^2 - 4*1 + 4 = 1;当x = 2时,f(x) = 2^2 - 4*2 + 4 = 0;当x = 3时,f(x) = 3^2 - 4*3 + 4 = 1。

结束语:通过本试题的练习,希望同学们能够加深对函数概念的理解,掌握函数的基本性质和计算方法。

函数是数学中的基础工具,对后续的数学学习至关重要。

函数的概念复习题答案

函数的概念复习题答案

函数的概念复习题答案一、选择题1. 函数的定义域是指函数中所有可能的自变量x的取值范围。

以下哪个选项不是函数定义域的描述?A. 所有实数B. 所有非负实数C. 所有正实数D. 所有负实数答案:D2. 函数的值域是指函数中所有可能的因变量y的取值范围。

以下哪个选项不是函数值域的描述?A. 所有实数B. 所有非负实数C. 所有正实数D. 所有负实数答案:D3. 函数的单调性是指函数在其定义域内随着自变量的增加,函数值是增加还是减少。

以下哪个选项描述了函数的单调性?A. 函数值随着自变量的增加而增加B. 函数值随着自变量的增加而减少C. 函数值随着自变量的增加而不变D. 函数值随着自变量的增加而先增后减答案:A4. 函数的奇偶性是指函数是否满足特定的对称性。

以下哪个选项描述了偶函数的性质?A. f(-x) = f(x)B. f(-x) = -f(x)C. f(x) = -f(x)D. f(x) = f(-x)答案:A5. 函数的连续性是指函数在其定义域内任意两点之间的函数值是否没有间断。

以下哪个选项描述了连续函数的性质?A. 函数在其定义域内任意两点之间存在间断点B. 函数在其定义域内任意两点之间没有间断点C. 函数在其定义域内所有点上都存在间断点D. 函数在其定义域内至少存在一个间断点答案:B二、填空题1. 如果一个函数f(x)满足f(x) = f(-x),则称该函数为____函数。

答案:偶2. 如果一个函数f(x)满足f(x) = -f(-x),则称该函数为____函数。

答案:奇3. 如果一个函数在其定义域内任意两点之间没有间断点,则称该函数为____函数。

答案:连续4. 函数f(x) = 2x + 3的定义域是____。

答案:所有实数5. 函数f(x) = 1/x的值域是____。

答案:所有非零实数三、解答题1. 给定函数f(x) = x^2 - 4x + 4,求该函数的定义域和值域。

答案:定义域为所有实数,值域为[0, +∞)。

2023年高考数学一轮复习第二章函数1函数的概念及其表示练习含解析

2023年高考数学一轮复习第二章函数1函数的概念及其表示练习含解析

函数的概念及其表示考试要求 1.了解函数的含义,会求简单函数的定义域和值域.2.在实际情景中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并会简单的应用.知识梳理 1.函数的概念一般地,设A ,B 是非空的实数集,如果对于集合A 中的任意一个数x ,按照某种确定的对应关系f ,在集合B 中都有唯一确定的数y 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作y =f (x ),x ∈A . 2.函数的三要素(1)函数的三要素:定义域、对应关系、值域.(2)如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为同一个函数. 3.函数的表示法表示函数的常用方法有解析法、图象法和列表法. 4.分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数. 常用结论1.直线x =a 与函数y =f (x )的图象至多有1个交点.2.在函数的定义中,非空数集A ,B ,A 即为函数的定义域,值域为B 的子集.3.分段函数虽由几个部分组成,但它表示的是一个函数.分段函数的定义域等于各段函数的定义域的并集,值域等于各段函数的值域的并集. 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)若两个函数的定义域和值域相同,则这两个函数是同一个函数.( × ) (2)函数y =f (x )的图象可以是一条封闭曲线.( × ) (3)y =x 0与y =1是同一个函数.( × ) (4)函数f (x )=⎩⎪⎨⎪⎧x -1,x ≥0,x 2,x <0的定义域为R .( √ )教材改编题1.下列各曲线表示的y 与x 之间的关系中,y 不是x 的函数的是( )答案 C2.(多选)下列各组函数是同一个函数的是( ) A .f (x )=x 2-2x -1,g (s )=s 2-2s -1B .f (x )=x -1,g (x )=x 2-1x +1C .f (x )=x 2,g (x )=⎩⎪⎨⎪⎧x ,x ≥0,-x ,x <0D .f (x )=-x 3,g (x )=x -x 答案 AC3.(2022·长沙质检)已知函数f (x )=⎩⎪⎨⎪⎧3x,x ≤0,log 3x ,x >0,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12等于( )A .-1B .2C.3D.12答案 D解析 ∵f ⎝ ⎛⎭⎪⎫12=log 312<0, ∴f ⎝⎛⎭⎪⎫f⎝ ⎛⎭⎪⎫12=31log 23=12.题型一 函数的定义域例1 (1)(2022·武汉模拟)函数f (x )=1ln x +1+4-x 2的定义域为( ) A .[-2,0)∪(0,2]B .(-1,0)∪(0,2]C .[-2,2]D .(-1,2]答案 B解析 要使函数有意义,则需⎩⎪⎨⎪⎧x +1>0,x +1≠1,4-x 2≥0,解得-1<x ≤2且x ≠0, 所以x ∈(-1,0)∪(0,2].所以函数的定义域为(-1,0)∪(0,2].(2)若函数f (x )的定义域为[0,2],则函数f (x -1)的定义域为________. 答案 [1,3]解析 ∵f (x )的定义域为[0,2], ∴0≤x -1≤2,即1≤x ≤3, ∴函数f (x -1)的定义域为[1,3].延伸探究 将本例(2)改成“若函数f (x +1)的定义域为[0,2]”,则函数f (x -1)的定义域为________. 答案 [2,4]解析 ∵f (x +1)的定义域为[0,2], ∴0≤x ≤2, ∴1≤x +1≤3, ∴1≤x -1≤3, ∴2≤x ≤4,∴f (x -1)的定义域为[2,4]. 教师备选1.(2022·西北师大附中月考)函数y =lg(x 2-4)+x 2+6x 的定义域是( ) A .(-∞,-2)∪[0,+∞) B .(-∞,-6]∪(2,+∞) C .(-∞,-2]∪[0,+∞) D .(-∞,-6)∪[2,+∞) 答案 B解析 由题意,得⎩⎪⎨⎪⎧x 2-4>0,x 2+6x ≥0,解得x >2或x ≤-6.因此函数的定义域为(-∞,-6]∪(2,+∞).2.已知函数f (x )=x1-2x ,则函数f x -1x +1的定义域为( )A .(-∞,1)B .(-∞,-1)C .(-∞,-1)∪(-1,0)D .(-∞,-1)∪(-1,1) 答案 D解析 令1-2x>0, 即2x<1,即x <0.∴f (x )的定义域为(-∞,0).∴函数f x -1x +1中,有⎩⎪⎨⎪⎧x -1<0,x +1≠0,解得x <1且x ≠-1.故函数f x -1x +1的定义域为(-∞,-1)∪(-1,1).思维升华 (1)求给定函数的定义域:由函数解析式列出不等式(组)使解析式有意义. (2)求复合函数的定义域①若f (x )的定义域为[m ,n ],则在f (g (x ))中,由m ≤g (x )≤n 解得x 的范围即为f (g (x ))的定义域.②若f (g (x ))的定义域为[m ,n ],则由m ≤x ≤n 得到g (x )的范围,即为f (x )的定义域. 跟踪训练1 (1)函数f (x )=11-4x2+ln(3x -1)的定义域为( )A.⎝ ⎛⎦⎥⎤13,12B.⎝ ⎛⎭⎪⎫13,12C.⎣⎢⎡⎭⎪⎫-12,14 D.⎣⎢⎡⎦⎥⎤-12,12 答案 B解析 要使函数f (x )=11-4x2+ln(3x -1)有意义,则⎩⎪⎨⎪⎧1-4x 2>0,3x -1>0⇒13<x <12. ∴函数f (x )的定义域为⎝ ⎛⎭⎪⎫13,12. (2)已知函数f (x )的定义域为[-2,2],则函数g (x )=f (2x )+1-2x的定义域为__________. 答案 [-1,0]解析 由条件可知,函数的定义域需满足⎩⎪⎨⎪⎧-2≤2x ≤2,1-2x≥0,解得-1≤x ≤0,所以函数g (x )的定义域是[-1,0]. 题型二 函数的解析式例2 (1)(2022·哈尔滨三中月考)已知f ⎝ ⎛⎭⎪⎫2x+1=lg x ,则f (x )的解析式为________.答案 f (x )=lg2x -1(x >1) 解析 令2x+1=t (t >1),则x =2t -1, 所以f (t )=lg 2t -1(t >1), 所以f (x )=lg2x -1(x >1). (2)已知y =f (x )是二次函数,若方程f (x )=0有两个相等实根,且f ′(x )=2x +2,则f (x )=________. 答案 x 2+2x +1解析 设f (x )=ax 2+bx +c (a ≠0), 则f ′(x )=2ax +b ,∴2ax +b =2x +2, 则a =1,b =2.∴f (x )=x 2+2x +c , 又f (x )=0,即x 2+2x +c =0有两个相等实根. ∴Δ=4-4c =0,则c =1. 故f (x )=x 2+2x +1.(3)已知函数对任意的x 都有f (x )-2f (-x )=2x ,则f (x )=________. 答案 23x解析 ∵f (x )-2f (-x )=2x ,① ∴f (-x )-2f (x )=-2x ,② 由①②得f (x )=23x .教师备选已知f (x )满足f (x )-2f ⎝ ⎛⎭⎪⎫1x =2x ,则f (x )=________.答案 -2x 3-43x解析 ∵f (x )-2f ⎝ ⎛⎭⎪⎫1x =2x ,①以1x代替①中的x ,得f ⎝ ⎛⎭⎪⎫1x -2f (x )=2x,②①+②×2得-3f (x )=2x +4x,∴f (x )=-2x 3-43x.思维升华 函数解析式的求法(1)配凑法;(2)待定系数法;(3)换元法;(4)解方程组法. 跟踪训练2 (1)已知f (1-sin x )=cos 2x ,则f (x )=________. 答案 -x 2+2x ,x ∈[0,2] 解析 令t =1-sin x , ∴t ∈[0,2],sin x =1-t ,∴f (t )=1-sin 2x =1-(1-t )2=-t 2+2t ,t ∈[0,2], ∴f (x )=-x 2+2x ,x ∈[0,2].(2)(2022·黄冈质检)已知f ⎝⎛⎭⎪⎫x 2+1x2=x 4+1x4,则f (x )=__________.答案 x 2-2,x ∈[2,+∞)解析 ∵f ⎝⎛⎭⎪⎫x 2+1x 2=⎝⎛⎭⎪⎫x 2+1x22-2,∴f (x )=x 2-2,x ∈[2,+∞). 题型三 分段函数例3 (1)已知f (x )=⎩⎪⎨⎪⎧cosπx ,x ≤1,f x -1+1,x >1,则f ⎝ ⎛⎭⎪⎫43+f⎝ ⎛⎭⎪⎫-43的值为( ) A.12B .-12C .-1D .1 答案 D解析 f ⎝ ⎛⎭⎪⎫43=f⎝ ⎛⎭⎪⎫43-1+1=f ⎝ ⎛⎭⎪⎫13+1=cosπ3+1=32,f ⎝ ⎛⎭⎪⎫-43=cos ⎝ ⎛⎭⎪⎫-4π3=cos2π3=-12, ∴f ⎝ ⎛⎭⎪⎫43+f ⎝ ⎛⎭⎪⎫-43=32-12=1.(2)已知f (x )=⎩⎪⎨⎪⎧2x+3,x >0,x 2-4,x ≤0,若f (a )=5,则实数a 的值是__________;若f (f (a ))≤5,则实数a 的取值范围是__________. 答案 1或-3 [-5,-1]解析 ①当a >0时,2a+3=5,解得a =1; 当a ≤0时,a 2-4=5, 解得a =-3或a =3(舍). 综上,a =1或-3.②设t =f (a ),由f (t )≤5得-3≤t ≤1. 由-3≤f (a )≤1,解得-5≤a ≤-1. 教师备选1.已知函数f (x )=⎩⎪⎨⎪⎧sin ⎝ ⎛⎭⎪⎫πx +π6,x >1,⎝ ⎛⎭⎪⎫12x,x <1,则f (f (2022))等于( )A .-32B.22C.32D. 2 答案 B解析 f (2022)=sin ⎝ ⎛⎭⎪⎫2022π+π6=sin π6=12,∴f (f (2022))=f ⎝ ⎛⎭⎪⎫12=1212⎛⎫ ⎪⎝⎭=22. 2.(2022·百校联盟联考)已知函数f (x )=⎩⎪⎨⎪⎧x 3,x ≥0,-x 2,x <0,若对于任意的x ∈R ,|f (x )|≥ax ,则a =________. 答案 0解析 当x ≥0时,|f (x )|=x 3≥ax ,即x (x 2-a )≥0恒成立,则有a ≤0; 当x <0时,|f (x )|=x 2≥ax ,即a ≥x 恒成立, 则有a ≥0,所以a =0.思维升华 分段函数求值问题的解题思路(1)求函数值:当出现f (f (a ))的形式时,应从内到外依次求值.(2)求自变量的值:先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验.跟踪训练3 (1)(2022·河北冀州一中模拟)设f (x )=⎩⎪⎨⎪⎧x +2x-3,x ≥1,x 2+1,x <1.则f (f (-1))=________,f (x )的最小值是________. 答案 0 22-3 解析 ∵f (-1)=2,∴f (f (-1))=f (2)=2+22-3=0,当x ≥1时,f (x )=x +2x-3≥22-3,当且仅当x =2时取等号,f (x )min =22-3, 当x <1时,f (x )=x 2+1≥1,x =0时取等号, ∴f (x )min =1,综上有f (x )的最小值为22-3.(2)(2022·重庆质检)已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >1,x 2-1,x ≤1,则f (x )<f (x +1)的解集为________.答案 ⎝ ⎛⎭⎪⎫-12,+∞解析 当x ≤0时,x +1≤1,f (x )<f (x +1), 等价于x 2-1<(x +1)2-1, 解得-12<x ≤0;当0<x ≤1时,x +1>1, 此时f (x )=x 2-1≤0,f (x +1)=log 2(x +1)>0,∴当0<x ≤1时,恒有f (x )<f (x +1);当x >1时,f (x )<f (x +1)⇔log 2x <log 2(x +1)恒成立.综上知,不等式f (x )<f (x +1)的解集为⎝ ⎛⎭⎪⎫-12,+∞.课时精练1.(2022·重庆模拟)函数f (x )=3-xlg x的定义域是( ) A .(0,3) B .(0,1)∪(1,3) C .(0,3] D .(0,1)∪(1,3]答案 D解析 ∵f (x )=3-xlg x,∴⎩⎪⎨⎪⎧3-x ≥0,lg x ≠0,x >0,解得0<x <1或1<x ≤3,故函数的定义域为(0,1)∪(1,3].2.若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )答案 B解析 A 中函数定义域不是[-2,2];C 中图象不表示函数;D 中函数值域不是[0,2]. 3.(2022·安徽江淮十校联考)设函数f (x )=⎩⎪⎨⎪⎧4x -12,x <1,a x ,x ≥1,若f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫78=8,则a 等于( ) A.12 B.34 C .1 D .2答案 D解析 f ⎝ ⎛⎭⎪⎫78=4×78-12=3,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫78=f (3)=a 3,得a 3=8,解得a =2.4.设函数f ⎝ ⎛⎭⎪⎫1-x 1+x =x ,则f (x )的表达式为( )A.1+x1-x(x ≠-1) B.1+xx -1(x ≠-1) C.1-x1+x(x ≠-1) D.2xx +1(x ≠-1) 答案 C解析 令t =1-x 1+x ,则x =1-t1+t ,∴f (t )=1-t 1+t ,即f (x )=1-x1+x(x ≠-1).5.如图,点P 在边长为1的正方形的边上运动,M 是CD 的中点,当P 沿A -B -C -M 运动时,设点P 经过的路程为x ,△APM 的面积为y ,则函数y =f (x )的图象大致是( )答案 A解析 由题意可得y =f (x )=⎩⎪⎨⎪⎧12x ,0≤x <1,34-x4,1≤x <2,54-12x ,2≤x ≤52.画出函数f (x )的大致图象,故选A.6.(多选)下列函数中,与y =x 是同一个函数的是( ) A .y =3x 3B .y =x 2C .y =lg10xD .y =10lg x答案 AC解析 y =x 的定义域为x ∈R ,值域为y ∈R ,对于A 选项,函数y =3x 3=x 的定义域为x ∈R ,故是同一函数;对于B 选项,函数y =x 2=||x ≥0,与y =x 的解析式、值域均不同,故不是同一函数;对于C 选项,函数y =lg10x=x ,且定义域为R ,故是同一函数;对于D 选项,y =10lg x=x 的定义域为(0,+∞),与函数y =x 的定义域不相同,故不是同一函数.7.(多选)(2022·张家界质检)设函数f (x )=⎩⎪⎨⎪⎧1-x ,x ≤a ,2x,x >a ,若f (1)=2f (0),则实数a可以为( ) A .-1B .0C .1D .2 答案 AB 解析 若a <0,则f (0)=1,f (1)=2,f (1)=2f (0)成立; 若0≤a <1,则f (0)=1,f (1)=2,f (1)=2f (0)成立; 若a ≥1,则f (0)=1,f (1)=0,f (1)=2f (0)不成立. 综上所述,实数a 的取值范围是(-∞,1).8.(多选)具有性质:f ⎝ ⎛⎭⎪⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数满足“倒负”变换的函数的是( ) A .f (x )=x -1xB .f (x )=ln1-x1+xC .f (x )=1ex x-D .f (x )=⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1答案 AD解析 对于A ,f (x )=x -1x,f ⎝ ⎛⎭⎪⎫1x =1x-x =-f (x ),满足题意; 对于B ,f (x )=ln1-x1+x,则f ⎝ ⎛⎭⎪⎫1x =ln x -1x +1≠-f (x ),不满足; 对于C ,f ⎝ ⎛⎭⎪⎫1x =111e xx -=ex -1,-f (x )=1ex x--≠f ⎝ ⎛⎭⎪⎫1x ,不满足;对于D ,f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,0<1x <1,0,1x =1,-x ,1x >1,即f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,x >1,0,x =1,-x ,0<x <1,则f ⎝ ⎛⎭⎪⎫1x =-f (x )满足“倒负”变换,故选AD.9.已知f (x 5)=lg x ,则f (100)=________. 答案 25解析 令x 5=100, 则x =15100=2510, ∴f (100)=25lg 10=25.10.函数f (x )=ln(x -1)+4+3x -x 2的定义域为________. 答案 (1,4]解析 依题意⎩⎪⎨⎪⎧x -1>0,4+3x -x 2≥0,解得1<x ≤4,∴f (x )的定义域为(1,4].11.(2022·广州质检)已知函数f (x )=⎩⎪⎨⎪⎧1-2a x +3a ,x <1,ln x ,x ≥1的值域为R ,则实数a的取值范围是________.答案 ⎣⎢⎡⎭⎪⎫-1,12 解析 ∵当x ≥1时,f (x )=ln x ≥ln1=0, 又f (x )的值域为R ,故当x <1时,f (x )的值域包含(-∞,0).故⎩⎪⎨⎪⎧1-2a >0,1-2a +3a ≥0,解得-1≤a <12.12.设函数f (x )=⎩⎪⎨⎪⎧x ,x <0,1,x >0,则不等式xf (x )+x ≤2的解集是________.答案 [-2,0)∪(0,1] 解析 当x <0时,f (x )=x , 代入xf (x )+x ≤2得x 2+x -2≤0, 解得-2≤x <0; 当x >0时,f (x )=1,代入xf (x )+x ≤2,解得0<x ≤1. 综上有-2≤x <0或0<x ≤1.13.设函数f (x )=⎩⎪⎨⎪⎧2-x,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( ) A .(-∞,-1] B .(0,+∞) C .(-1,0) D .(-∞,0)答案 D解析 当x ≤0时,函数f (x )=2-x是减函数,则f (x )≥f (0)=1.作出f (x )的大致图象如图所示,结合图象知,要使f (x +1)<f (2x ),当且仅当⎩⎪⎨⎪⎧x +1<0,2x <0,2x <x +1或⎩⎪⎨⎪⎧x +1≥0,2x <0,解得x <-1或-1≤x <0,即x <0.14.设函数f (x )=⎩⎪⎨⎪⎧-x +λ,x <1λ∈R,2x,x ≥1,若对任意的a ∈R 都有f (f (a ))=2f (a )成立,则λ的取值范围是______. 答案 [2,+∞) 解析 当a ≥1时,2a≥2. ∴f (f (a ))=f (2a)=22a=2f (a )恒成立.当a <1时,f (f (a ))=f (-a +λ)=2f (a )=2λ-a ,∴λ-a ≥1,即λ≥a +1恒成立, 由题意λ≥(a +1)max ,∴λ≥2, 综上,λ的取值范围是[2,+∞).15.(多选)若函数f (x )满足:对定义域内任意的x 1,x 2(x 1≠x 2),有f (x 1)+f (x 2)>2f ⎝ ⎛⎭⎪⎫x 1+x 22,则称函数f (x )具有H 性质.则下列函数中具有H 性质的是( )A .f (x )=⎝ ⎛⎭⎪⎫12xB .f (x )=ln xC .f (x )=x 2(x ≥0) D .f (x )=tan x ⎝ ⎛⎭⎪⎫0≤x <π2 答案 ACD解析 若对定义域内任意的x 1,x 2(x 1≠x 2),有f (x 1)+f (x 2)>2f ⎝ ⎛⎭⎪⎫x 1+x 22,则点(x 1,f (x 1)),(x 2,f (x 2))连线的中点在点⎝⎛⎭⎪⎫x 1+x 22,f ⎝ ⎛⎭⎪⎫x 1+x 22的上方,如图⎝⎛⎭⎪⎫其中a =f⎝ ⎛⎭⎪⎫x 1+x 22,b =f x 1+f x 22.根据函数f (x )=⎝ ⎛⎭⎪⎫12x ,f (x )=ln x ,f (x )=x 2(x ≥0),f (x )=tan x ⎝⎛⎭⎪⎫0≤x <π2的图象可知,函数f (x )=⎝ ⎛⎭⎪⎫12x ,f (x )=x 2(x ≥0),f (x )=tan x ⎝⎛⎭⎪⎫0≤x <π2具有H 性质,函数f (x )=ln x 不具有H 性质.16.设f (x )是定义在R 上的函数,且f (x +2)=2f (x ),f (x )=⎩⎪⎨⎪⎧2x +a ,-1<x <0,b e 2x,0≤x ≤1,其中a ,b 为正实数,e 为自然对数的底数,若f ⎝ ⎛⎭⎪⎫92=f ⎝ ⎛⎭⎪⎫32,则a b 的取值范围为________. 答案 (2e ,+∞)解析 因为f (x +2)=2f (x ),所以f ⎝ ⎛⎭⎪⎫92=f⎝ ⎛⎭⎪⎫12+4=(2)2f ⎝ ⎛⎭⎪⎫12=2e b ,f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫-12+2=2f ⎝ ⎛⎭⎪⎫-12 =2⎣⎢⎡⎦⎥⎤2×⎝ ⎛⎭⎪⎫-12+a =2(a -1), 因为f ⎝ ⎛⎭⎪⎫92=f ⎝ ⎛⎭⎪⎫32,所以2(a -1)=2e b , 所以a =2e b +1, 因为b 为正实数, 所以a b=2e b +1b=2e +1b∈(2e ,+∞),故a b的取值范围为(2e ,+∞).。

函数的概念与性质(解析版)--2024高考数学常考题型精华版

函数的概念与性质(解析版)--2024高考数学常考题型精华版

第1讲函数的概念与性质【考点分析】1.函数的定义域、值域、解析式是高考中必考内容,具有较强的综合性,贯穿整个高中数学的始终.而在高考试卷中的形式可谓千变万化,但万变不离其宗,真正实现了常考常新的考试要求.所以,我们应该掌握一些简单的基本方法.2.函数的单调性、奇偶性是高考命题热点,每年都会考一道选择或者填空题,分值5分,一般与指数,对数结合起来命题【题型目录】题型一:函数的定义域题型二:同一函数概念题型三:函数单调性的判断题型四:分段函数的单调性题型五:函数的单调性唯一性题型六:函数奇偶性的判断题型七:已知函数奇偶性,求参数题型八:已知函数奇偶性,求函数值题型九:利用奇偶性求函数解析式题型十:给出函数性质,写函数解析式题型十一:()=x f 奇函数+常数模型(()()常数⨯=+-2x f x f )题型十二:中值定理(求函数最大值最小值和问题,()()()中f x f x f 2min max =+,中指定义域的中间值)题型十三:.单调性和奇偶性综合求不等式范围问题题型十四:值域包含性问题题型十五:函数性质综合运用多选题【典型例题】题型一:函数的定义域【例1】(2021·奉新县第一中学高一月考)函数()f x =的定义域为()A .(]1,2B .[]1,4C .()1,4D .[]2,4答案:C解析:对于函数()f x =,有1040x x ->⎧⎨->⎩,解得14x <<.因此,函数()ln 1f x -=的定义域为()1,4.故选:C.【例2】函数()21log (3)f x x =-的定义域为【答案】()()3,44,⋃+∞【详解】由题意知()230log 30x x ->⎧⎨-≠⎩,得()223log 3log 1x x >⎧⎨-≠⎩,所以331x x >⎧⎨-≠⎩,所以()()3,44,x ∈⋃+∞.【例3】(2020·集宁期中)已知函数)32(-x f 的定义域是]41[,-,则函数)21(x f -的定义域()A .]12[,-B .]21[,C .]32[,-D .]31[,-【答案】C【详解】因为函数)32(-x f 的定义域是]41[,-,所以41≤≤-x ,所以5325≤-≤-x ,函数)(x f 的定义域为]55[,-,令5215≤-≤-x ,解得32≤≤-x 【例4】若函数()12log 22++=x ax y 的定义域为R ,则a 的范围为__________。

函数的概念(含答案解析)

函数的概念(含答案解析)

函数的概念一、选择题1.函数y=+的定义域为( )A.{x|x≤1}B.{x|x≥0}C.{x|x≥1,或x≤0}D.{x|0≤x≤1}【解析】选D.要使函数有意义,需解得0≤x≤1.2.若函数y=f(x)的定义域为{x|-3≤x≤8,x≠5},值域为{y|-1≤y≤2,y≠0},则y=f(x)的图象可能是( )【解析】选B.A中y取不到2,C中不是函数关系,D中x取不到0.3.已知集合P={x|0≤x≤4},Q={y|0≤y≤2},下列从P到Q的各对应关系f不是函数的是( )A.f:x→y=xB.f:x→y=xC.f:x→y=xD.f:x→y=【解题指南】解答此类问题时,若否定结论则只需找一反例即可.【解析】选C.因为P={x|0≤x≤4},Q={y|0≤y≤2},从P到Q的对应关系f:x→y=x,当x=4时,y=>2,所以在集合Q中没有数y与之对应,故构不成函数.4.下列式子中不能表示函数y=f(x)的是( )A.x=y2B.y=x+1C.x+y=0D.y=x2【解析】选A.从函数的概念来看,一个自变量x对应一个y;而A中x=y2中一个x 对应两个y.所以A不是函数.5.函数f(x)=(x∈R)的值域是( )A.[0,1]B.[0,1)C.(0,1]D.(0,1)【解析】选C.因为x2≥0,所以x2+1≥1,所以0<≤1,所以值域为(0,1].6.下列各组函数中,表示同一个函数的是( )A.y=与y=x+1B.y=与y=C.y=-1与y=x-1D.y=x与y=【解析】选D.对于选项A:函数y=的定义域不包含1,而y=x+1的定义域是R,显然不是同一个函数.对于选项B:函数y=的定义域为x≥0,而函数y=的定义域是{x|x≠0},显然不是同一个函数.对于选项C:函数y=-1的值域是大于等于-1的,而直线y=x-1的值域是R,显然不是同一个函数.对于选项D:因为y=x与y=的最简解析式相等,且定义域都为R,所以为同一个函数.7.函数y=2的值域是( )A.[0,+∞)B.[1,+∞)C.(-∞,+∞)D.[,+∞)【解析】选A.因为x≥0,所以≥0,所以y≥0,所以函数的值域为[0,+∞).8.已知函数f(x)的定义域为[0,1),则函数f(1-x)的定义域为( )A.[0,1)B.(0,1]C.[-1,1]D.[-1,0)∪(0,1]【解题指南】原函数的定义域,即为1-x的范围,解不等式组即可得解.【解析】选B.因为原函数的定义域为[0,1),所以0≤1-x<1,即所以0<x≤1,所以函数f(1-x)的定义域为(0,1].9.下列函数中,与函数y=有相同定义域的是( )A.f(x)=B.f(x)=C.f(x)=|x|D.f(x)=【解析】选B.因为函数y=的定义域是{x|x≠0},所以A,C,D都不对.10.已知函数f(x)=-1,则f(2)的值为( )A.-2B.-1C.0D.不确定【解题指南】解答本题的关键是明确对应关系为定义域中的任意变量的值都对应于-1,即该函数为常函数.【解析】选 B.因为函数f(x)=-1,所以不论x取何值其函数值都等于-1,故f(2)=-1.11.函数y=的定义域是(-∞,1)∪[2,5),则其值域是( )A.(-∞,0)∪B.(-∞,2]C.∪[2,+∞)D.(0,+∞)【解题指南】根据定义域求值域.【解析】选A.因为x∈(-∞,1)∪[2,5),所以x-1∈(-∞,0)∪[1,4),当x-1∈(-∞,0)时,∈(-∞,0);当x-1∈[1,4)时,∈.12.函数f(x)的定义域为[-6,2],则函数y=f()的定义域为( )A.[-4,4]B.[-2,2]C.[0,]D.[0,4]【解析】选D.因为函数f(x)的定义域为[-6,2],所以-6≤≤2,又因为≥0,所以0≤≤2,所以0≤x≤4.二、填空题1.若[a,3a-1]为一确定区间,则a的取值范围是.【解析】由题意3a-1>a,则a>.答案:【误区警示】本题易忽略区间概念而得出3a-1≥a,则a≥的错误.2.已知函数f(x)=ax2-1(a≠0),且f(f(1))=-1,则a的取值为.【解析】因为f(x)=ax2-1,所以f(1)=a-1,f(f(1))=f(a-1)=a(a-1)2-1=-1,所以a(a-1)2=0,又因为a≠0,所以a-1=0,所以a=1.答案:13.四个函数:(1)y=x+1;(2)y=x3;(3)y=x2-1;(4)y=.其中定义域相同的函数的序号是.【解析】函数y=x+1的定义域是R;函数y=x3的定义域是R;函数y=x2-1的定义域是R;函数y=的定义域是(-∞,0)∪(0,+∞).由此可知定义域相同的序号是(1)(2)(3).答案:(1)(2)(3)4.若函数y=的定义域是A,函数y=的值域是B,则A∩B= . 【解析】由题意知A={x|x≠2},B={y|y≥0},则A∩B=[0,2)∪(2,+∞).答案:[0,2)∪(2,+∞)三、解答题1.已知函数f(x)=x2+x-1,求(1)f(2).(2)f.(3)若f(x)=5,求x的值.【解析】(1)f(2)=4+2-1=5.(2)f=+-1=++1.(3)f(x)=5,即x2+x-1=5.由x2+x-6=0得x=2或x=-3.2.已知f(x)=,x∈R.(1)计算f(a)+f的值.(2)计算f(1)+f(2)+f+f(3)+f+f(4)+f的值.【解题指南】(1)将函数的自变量代入计算即可,(2)可以分别将f(1),f(2),f,f(3),f,f(4),f的函数值算出再相加,也可以根据待求式中数据的特征,结合(1)中所得结果求解.【解析】(1)由于f(a)=,f=,所以f(a)+f=1.(2)方法一:因为f(1)==,f(2)==,f==,f(3)==,f==,f(4)==,f==,所以f(1)+f(2)+f+f(3)+f+f(4)+f=++++++=.方法二:因为f(a)+f=1,从而f(2)+f=f(3)+f=f(4)+f=1,即++f(4)+f=3,而f(1)=,所以f(1)+f(2)+f+f(3)+f+f(4)+f=.3.已知函数y=(1<x≤2),求函数值域.【解析】设x1,x2∈(1,2]且x1<x2,则f(x1)-f(x2)=-=,因为x1<x2,所以x2-x1>0,因为x1,x2∈(1,2],所以(2x1-1)(2x2-1)>0,所以f(x1)-f(x2)>0,所以f(x)在(1,2]上单调递减,所以当1<x≤2时,f(2)≤f(x)<f(1),即≤f(x)<1,所以函数的值域为.4.记函数f(x)=的定义域为集合A,函数g(x)=图象在二、四象限时,k的取值集合为B,函数h(x)=x2+2x+4的值域为集合C.(1)求集合A,B,C.(2)求集合A∪(B),A∩(B∪C).R【解析】(1)由2x-3>0,得x>,所以A=, 又由k-1<0,得k<1,所以B=,而h(x)=x2+2x+4=+3≥3,所以C=.B)=,A∩(B∪C)=.(2)A∪(R。

(完整版)新高考真题《函数的概念与基本初等函数》小题专题训练(含答案)

 (完整版)新高考真题《函数的概念与基本初等函数》小题专题训练(含答案)
【解析】因为 ,故 ,
因为 为偶函数,故 ,
时 ,整理得到 ,
故 ,
7.【2020年高考全国I卷理数】若 ,则
A. B.
C. D.
【答案】B
【解析】设 ,则 为增函数,因为
所以 ,
所以 ,所以 .

当 时, ,此时 ,有
当 时, ,此时 ,有 ,所以C、D错误.
【点晴】本题主要考查函数与方程的综合应用,涉及到构造函数,利用函数的单调性比较大小,是一道中档题.
13.【2020年高考天津】函数 的图象大致为
A B
CD
【答案】A
【解析】由函数的解析式可得: ,则函数 为奇函数,其图象关于坐标原点对称,选项CD错误;
当 时, ,选项B错误.
【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.
14.【2020年高考天津】设 ,则 的大小关系为
A. B.
C. D.
【答案】D
【解析】因为 ,


所以 .
故选:D.
【点睛】本题考查的是有关指数幂和对数值的比较大小问题,在解题的过程中,注意应用指数函数和对数函数的单调性,确定其对应值的范围.
比较指对幂形式的数的大小关系,常用方法:
(1)利用指数函数的单调性: ,当 时,函数递增;当 时,函数递减;
A.10名B.18名
C.24名D.32名
【答案】B
【解析】由题意,第二天新增订单数为 ,设需要志愿者x名,

(完整版)高考文科数学函数专题讲解及高考真题精选(含答案)

(完整版)高考文科数学函数专题讲解及高考真题精选(含答案)

函 数【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <. (3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:利用常见函数的值域来求一次函数y=ax+b(a ≠0)的定义域为R ,值域为R ; 反比例函数)0(≠=k xky 的定义域为{x|x ≠0},值域为{y|y ≠0}; 二次函数)0()(2≠++=a c bx ax x f 的定义域为R ,当a>0时,值域为{ab ac y y 4)4(|2-≥};当a<0时,值域为{ab ac y y 4)4(|2-≤}②配方法:③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.转化成型如:)0(>+=k xkx y ,利用平均值不等式公式来求值域;⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f ,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象. (7)求函数解析式的题型有:1)已知函数类型,求函数的解析式:待定系数法;2)已知()f x 求[()]f g x 或已知[()]f g x 求()f x :换元法、配凑法;3)已知函数图像,求函数解析式;4)()f x 满足某个等式,这个等式除()f x 外还有其他未知量,需构造另个等式解方程组法;5)应用题求函数解析式常用方法有待定系数法等yxo〖1.3〗函数的基本性质 【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法函数的 性 质定义图象判定方法函数的单调性如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< .x .2.时,都有f(x ...1.)<f(x .....2.).,那么就说f(x)在这个区间上是增函数.... x 1x 2y=f(X)xy f(x )1f(x )2o(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象上升为增) (4)利用复合函数 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< .x .2.时,都有f(x ...1.)>f(x .....2.).,那么就说f(x)在这个区间上是减函数.... y=f(X)yx ox x 2f(x )f(x )211(1)利用定义 (2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象下降为减)(4)利用复合函数增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减. (2)打“√”函数()(0)af x x a x=+>的图象与性质 ()f x 分别在(,]a -∞-、[,)a +∞上为增函数,分别在[,0)a -、]a 上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.1 (4)证明函数单调性的一般方法:①定义法:设2121,x x A x x <∈且;作差)()(21x f x f -,判断正负号②用导数证明: 若)(x f 在某个区间A 内有导数,则()0f x ≥’,)x A ∈(⇔)(x f 在A 内为增函数;⇔∈≤)0)(A x x f ,(’)(x f 在A 内为减函数 (5)求单调区间的方法:定义法、导数法、图象法(6)复合函数[])(x g f y =在公共定义域上的单调性:①若f 与g 的单调性相同,则[])(x g f 为增函数;②若f 与g 的单调性相反,则[])(x g f 为减函数注意:先求定义域,单调区间是定义域的子集(7)一些有用的结论:①奇函数在其对称区间上的单调性相同;②偶函数在其对称区间上的单调性相反; ③在公共定义域内:增函数+)(x f 增函数)(x g 是增函数;减函数+)(x f 减函数)(x g 是减函数; 增函数-)(x f 减函数)(x g 是增函数;减函数-)(x f 增函数)(x g 是减函数④函数)0,0(>>+=b a x bax y 在,,b b a a ⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢ ⎪⎝⎦⎣⎭或上单调递增;在,00b b a a ⎡⎫⎛⎤-⎪ ⎢⎥⎪ ⎣⎭⎝⎦或,上是单调递减【1.3.2】奇偶性①定义及判定方法函数的 性 质定义图象判定方法 函数的奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于原点对称)如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于y 轴对称)②若奇函数()f x 的定义域包含0,则(0)0f =.()f x 为偶函数()(||)f x f x ⇔=③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反. ④在公共定义域内,奇+奇=奇,奇⨯奇=偶,偶+偶=偶,偶⨯偶=偶,奇⨯偶=奇判断函数的奇偶性有时可以用定义的等价形式:()()0f x f x ±-=,()1()f x f x =±- 函数周期性定义:若T 为非零常数,对于定义域内的任一x ,使)()(x f T x f =+恒成立,则f(x)叫做周期函数,T 叫做这个函数的一个周期〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩 01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴 ()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象 ()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去①y=f(x) 轴x →y= -f(x); ②y=f(x) 轴y →y=f(-x);③y=f(x) ax =→直线y=f(2a -x); ④y=f(x) xy =→直线y=f -1(x);⑤y=f(x) 原点→y= -f(-x)(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.第二章 基本初等函数(Ⅰ)〖2.1〗指数函数【2.1.1】指数与指数幂的运算(1)根式的概念①如果,,,1nx a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次当n 是偶数时,正数a 的正的n负的n次方根用符号表示;0的n 次方根是0;负数a 没有n 次方根.这里n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:n a =;当n 为奇数时,a =;当n 为偶数时,(0)|| (0) a a a a a ≥⎧==⎨-<⎩. (2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,mna a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是:1()0,,,m m nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①(0,,)rsr sa a aa r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈③()(0,0,)r r rab a b a b r R =>>∈【2.1.2】指数函数及其性质(4)指数函数〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义①若(0,1)xa N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)xa x N a N a a N =⇔=>≠>.(2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN += ②减法:log log log a a aM M N N-= ③数乘:log log ()na a n M M n R =∈ ④log a N a N =⑤log log (0,)b n a a nM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a =>≠且【2.2.2】对数函数及其性质设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y fx -=.(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;③将1()x fy -=改写成1()y f x -=,并注明反函数的定义域.(8)反函数的性质①原函数()y f x =与反函数1()y fx -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y fx -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.④一般地,函数()y f x =要有反函数则它必须为单调函数.〖2.3〗幂函数(1)幂函数的定义一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(2)幂函数的图象(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当qpα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则q py x =是奇函数,若p 为奇数q 为偶数时,则q py x =是偶函数,若p 为偶数q 为奇数时,则qpy x =是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.(3)二次函数图象的性质①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是24(,)24b ac b a a--. ②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2b a-+∞上递增,当2bx a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2ba -+∞上递减,当2bx a=-时,2max 4()4ac b f x a -=.③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x 轴有两个交点11221212(,0),(,0),||||||M x M x M M x x a =-=. (4)一元二次方程20(0)ax bx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=- ③判别式:∆ ④端点函数值符号.(5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值 设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+. (Ⅰ)当0a >时(开口向上)①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a =- ③若2b q a ->,则()m f q = ①若02b x a -≤,则()M f q = ②02bx a ->,则()M f p =(Ⅱ)当0a <时(开口向下)①若2bp a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a =- ③若2bq a ->,则()M f q =①若02bx a -≤,则()m f q = ②02bx a ->,则()m f =.>O -=f (p) f (q) ()2b f a -x>O -=f (p) f (q) ()2b f a -x >O -=f(p)f (q) ()2bf a -x>O -=f(p)f (q) ()2bf a -0x x >O -=f (p) f (q) ()2b f a -0x x <O -=f (p) f (q) ()2b f a -x <O -=f (p) f(q) ()2bf a -x <O -=f (p) f (q) ()2b f a -0xx <O -=f(p) f (q)()2bf a -x<O-=f(p) f (q)()2bfa -0x第三章 函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。

高中数学高考总复习函数概念习题及详解

高中数学高考总复习函数概念习题及详解

高中数学高考总复习函数概念习题及详解一、选择题1.(文)(2010·浙江文)已知函数f (x )=log 2(x +1),若f (a )=1,则a =( ) A .0 B .1 C .2D .3[答案] B[解析] 由题意知,f (a )=log 2(a +1)=1,∴a +1=2, ∴a =1.(理)(2010·广东六校)设函数f (x )=⎩⎪⎨⎪⎧2xx ∈(-∞,2]log 2x x ∈(2,+∞),则满足f (x )=4的x 的值是( )A .2B .16C .2或16D .-2或16[答案] C[解析] 当f (x )=2x 时.2x =4,解得x =2. 当f (x )=log 2x 时,log 2x =4,解得x =16. ∴x =2或16.故选C.2.(文)(2010·湖北文,3)已知函数f (x )=⎩⎪⎨⎪⎧log 3x x >02x x ≤0,则f (f (19))=( )A .4 B.14 C .-4D .-14[答案] B[解析] ∵f (19)=log 319=-2<0∴f (f (19))=f (-2)=2-2=14.(理)设函数f (x )=⎩⎪⎨⎪⎧21-x-1 (x <1)lg x (x ≥1),若f (x 0)>1,则x 0的取值范围是( )A .(-∞,0)∪(10,+∞)B .(-1,+∞)C .(-∞,-2)∪(-1,10)D .(0,10) [答案] A[解析] 由⎩⎪⎨⎪⎧ x 0<121-x 0-1>1或⎩⎪⎨⎪⎧x 0≥1lg x 0>1⇒x 0<0或x 0>10.3.(2010·天津模拟)若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“同族函数”,那么函数解析式为f (x )=x 2,值域为{1,4}的“同族函数”共有( )A .7个B .8个C .9个D .10个[答案] C[解析] 由x 2=1得x =±1,由x 2=4得x =±2,故函数的定义域可以是{1,2},{-1,2},{1,-2},{-1,-2},{1,2,-1},{1,2,-2},{1,-2,-1},{-1,2,-2}和{-1,-2,1,2},故选C.4.(2010·柳州、贵港、钦州模拟)设函数f (x )=1-2x1+x ,函数y =g (x )的图象与y =f (x )的图象关于直线y =x 对称,则g (1)等于( )A .-32B .-1C .-12D .0[答案] D[解析] 设g (1)=a ,由已知条件知,f (x )与g (x )互为反函数,∴f (a )=1,即1-2a1+a =1,∴a =0.5.(2010·广东六校)若函数y =f (x )的图象如图所示,则函数y =f (1-x )的图象大致为( )[答案] A[解析] 解法1:y =f (-x )的图象与y =f (x )的图象关于y 轴对称.将y =f (-x )的图象向右平移一个单位得y =f (1-x )的图象,故选A.解法2:由f (0)=0知,y =f (1-x )的图象应过(1,0)点,排除B 、C ;由x =1不在y =f (x )的定义域内知,y =f (1-x )的定义域应不包括x =0,排除D ,故选A.高考总复习含详解答案6.(文)(2010·广东四校)已知两个函数f (x )和g (x )的定义域和值域都是集合{1,2,3},其定义如下表,填写下列g (f (x ))的表格,其三个数依次为( )A.3,1,2 C .1,2,3D .3,2,1[答案] D[解析] 由表格可知,f (1)=2,f (2)=3,f (3)=1,g (1)=1,g (2)=3,g (3)=2, ∴g (f (1))=g (2)=3,g (f (2))=g (3)=2,g (f (3))=g (1)=1, ∴三个数依次为3,2,1,故选D.(理)(2010·山东肥城联考)已知两个函数f (x )和g (x )的定义域和值域都是集合{1,2,3},其定义如下表:则方程g [f (x )]=x 的解集为( ) A .{1} B .{2} C .{3}D .∅[答案] C[解析] g [f (1)]=g (2)=2,g [f (2)]=g (3)=1; g [f (3)]=g (1)=3,故选C.7.若函数f (x )=log a (x +1) (a >0且a ≠1)的定义域和值域都是[0,1],则a 等于( ) A.13B. 2C.22D .2[答案] D[解析] ∵0≤x ≤1,∴1≤x +1≤2,又∵0≤log a (x +1)≤1,故a >1,且log a 2=1,∴a =2.8.(文)(2010·天津文)设函数g (x )=x 2-2(x ∈R),f (x )=⎩⎪⎨⎪⎧g (x )+x +4,x <g (x )g (x )-x ,x ≥g (x ),则f (x )的值域是( )A.⎣⎡⎦⎤-94,0∪(1,+∞) B .[0,+∞)C.⎣⎡⎭⎫-94,+∞D.⎣⎡⎦⎤-94,0∪(2,+∞) [答案] D[解析] 由题意可知f (x )=⎩⎪⎨⎪⎧x 2+x +2 x <-1或x >2x 2-x -2 -1≤x ≤21°当x <-1或x >2时,f (x )=x 2+x +2=⎝⎛⎭⎫x +122+74 由函数的图可得f (x )∈(2,+∞).2°当-1≤x ≤2时,f (x )=x 2-x -2=⎝⎛⎭⎫x -122-94, 故当x =12时,f (x )min =f ⎝⎛⎭⎫12=-94, 当x =-1时,f (x )max =f (-1)=0, ∴f (x )∈⎣⎡⎦⎤-94,0. 综上所述,该分段函数的值域为⎣⎡⎦⎤-94,0∪(2,+∞). (理)定义在R 上的函数f (x )满足f (x )=⎩⎪⎨⎪⎧log 2(1-x ) (x ≤0)f (x -1)-f (x -2) (x >0),则f (2010)的值为( ) A .-1 B .0 C .1D .2[答案] B[解析] f (2010)=f (2009)-f (2008)=(f (2008)-f (2007))-f (2008)=-f (2007),同理f (2007)=-f (2004),∴f (2010)=f (2004),∴当x >0时,f (x )以6为周期进行循环, ∴f (2010)=f (0)=log 21=0.9.(文)对任意两实数a 、b ,定义运算“*”如下:a *b =⎩⎪⎨⎪⎧a ,若a ≤b ;b ,若a >b函数f (x )=log 12(3x高考总复习含详解答案-2)*log 2x 的值域为( )A .(-∞,0)B .(0,+∞)C .(-∞,0]D .[0,+∞)[答案] C[解析] ∵a *b =⎩⎪⎨⎪⎧a ,若a ≤b ,b ,若a >b .而函数f (x )=log 12(3x -2)与log 2x 的大致图象如右图所示,∴f (x )的值域为(-∞,0].(理)定义max{a 、b 、c }表示a 、b 、c 三个数中的最大值,f (x )=max{⎝⎛⎭⎫12x,x -2,log 2x (x >0)},则f (x )的最小值所在范围是( )A .(-∞,-1)B .(-1,0)C .(0,1)D .(1,3)[答案] C[解析] 在同一坐标系中画出函数y =⎝⎛⎭⎫12x,y =x -2与y =log 2x 的图象,y =⎝⎛⎭⎫12x 与y =log 2x 图象的交点为A (x 1,y 1),y =x -2与y =log 2x 图象的交点为B (x 2,y 2),则由f (x )的定义知,当x ≤x 1时,f (x )=⎝⎛⎭⎫12x,当x 1<x <x 2时,f (x )=log 2x ,当x ≥x 2时,f (x )=x -2,∴f (x )的最小值在A 点取得,∵0<y 1<1,故选C.10.(文)(2010·江西吉安一中)如图,已知四边形ABCD 在映射f :(x ,y )→(x +1,2y )作用下的象集为四边形A 1B 1C 1D 1,若四边形A 1B 1C 1D 1的面积是12,则四边形ABCD 的面积是()A .9B .6C .6 3D .12[答案] B[解析] 本题考察阅读理解能力,由映射f 的定义知,在f 作用下点(x ,y )变为(x +1,2y ),∴在f 作用下|A 1C 1|=|AC |,|B 1D 1|=2|BD |,且A 1、C 1仍在x 轴上,B 1、D 1仍在y 轴上,故S ABCD =12|AC |·|BD |=12|A 1C 1|·12|B 1D 1|=12SA 1B 1C 1D 1=6,故选B.(理)设函数f (x )=⎩⎪⎨⎪⎧x 2+bx +c x ≤02 x >0,若f (-4)=f (0),f (-2)=-2,则关于x 的方程f (x )=x 的解的个数为( )A .1B .2C .3D .4[答案] C[解析] 解法1:当x ≤0时,f (x )=x 2+bx +c . ∵f (-4)=f (0),f (-2)=-2,∴⎩⎪⎨⎪⎧ (-4)2+b ·(-4)+c =c (-2)2+b ·(-2)+c =-2,解得⎩⎪⎨⎪⎧b =4c =2, ∴f (x )=⎩⎪⎨⎪⎧x 2+4x +2 x ≤02 x >0,当x ≤0时,由f (x )=x 得,x 2+4x +2=x , 解得x =-2,或x =-1; 当x >0时,由f (x )=x 得,x =2, ∴方程f (x )=x 有3个解.解法2:由f (-4)=f (0)且f (-2)=-2可得,f (x )=x 2+bx +c 的对称轴是x =-2,且顶点为(-2,-2),于是可得到f (x )的简图如图所示.方程f (x )=x 的解的个数就是函数图象y =f (x )与y =x 的图象的交点的个数,所以有3个解.二、填空题11.(文)(2010·北京东城区)函数y =x +1+lg(2-x )的定义域是________. [答案] [-1,2)[解析] 由⎩⎪⎨⎪⎧x +1≥02-x >0得,-1≤x <2.(理)函数f (x )=x +4-x 的最大值与最小值的比值为________. [答案]2[解析] ∵⎩⎪⎨⎪⎧x ≥04-x ≥0,∴0≤x ≤4,f 2(x )=4+2x (4-x )≤4+[x +(4-x )]=8,且f高考总复习含详解答案2(x )≥4,∵f (x )≥0,∴2≤f (x )≤22,故所求比值为 2.[点评] (1)可用导数求解;(2)∵0≤x ≤4,∴0≤x 4≤1,故可令x 4=sin 2θ(0≤θ≤π2)转化为三角函数求解.12.函数y =cos x -1sin x -2 x ∈[0,π]的值域为________.[答案] ⎣⎡⎦⎤0,43 [解析] 函数表示点(sin α,cos α)与点(2,1)连线斜率.而点(sin α,cos α)α∈[0,π]表示单位圆右半部分,由几何意义,知y ∈[0,43].13.(2010·湖南湘潭市)在平面直角坐标系中,横坐标、纵坐标均为整数的点称为整点,如果函数f (x )的图象恰好通过n (n ∈N *)个整点,则称函数f (x )为n 阶整点函数,有下列函数①f (x )=sin2x ②g (x )=x 3 ③h (x )=⎝⎛⎭⎫13x ④φ(x )=ln x .其中是一阶整点函数的是________.(写出所有正确结论的序号) [答案] ①④[解析] 其中①只过(0,0)点,④只过(1,0)点;②过(0,1),(1,1),(2,8)等,③过(0,1),(-1,3)等.14.(文)若f (a +b )=f (a )·f (b )且f (1)=1,则f (2)f (1)+f (3)f (2)+…+f (2012)f (2011)=________.[答案] 2011[解析] 令b =1,则f (a +1)f (a )=f (1)=1,∴f (2)f (1)+f (3)f (2)+…+f (2012)f (2011)=2011. (理)设函数f (x )=x |x |+bx +c ,给出下列命题: ①b =0,c >0时,方程f (x )=0只有一个实数根; ②c =0时,y =f (x )是奇函数; ③方程f (x )=0至多有两个实根.上述三个命题中所有的正确命题的序号为________. [答案] ①②[解析] ①f (x )=x |x |+c=⎩⎪⎨⎪⎧x 2+c ,x ≥0-x 2+c ,x <0, 如右图与x 轴只有一个交点.所以方程f (x )=0只有一个实数根正确. ②c =0时,f (x )=x |x |+bx 显然是奇函数.③当c =0,b <0时,f (x )=x |x |+bx =⎩⎪⎨⎪⎧x 2+bx ,x ≥0-x 2+bx ,x <0如右图方程f (x )=0可以有三个实数根. 综上所述,正确命题的序号为①②. 三、解答题15.(文)(2010·深圳九校)某自来水厂的蓄水池存有400吨水,水厂每小时可向蓄水池中注水60吨,同时蓄水池又向居民小区不间断供水,t 小时内供水总量为1206t 吨,(0≤t ≤24).(1)从供水开始到第几小时时,蓄水池中的存水量最少?最少水量是多少吨?(2)若蓄水池中水量少于80吨时,就会出现供水紧张现象,请问在一天的24小时内,有几小时出现供水紧张现象.[解析] (1)设t 小时后蓄水池中的水量为y 吨, 则y =400+60t -1206t (0≤t ≤24) 令6t =x ,则x 2=6t 且0≤x ≤12,∴y =400+10x 2-120x =10(x -6)2+40(0≤x ≤12); ∴当x =6,即t =6时,y min =40,即从供水开始到第6小时时,蓄水池水量最少,只有40吨. (2)依题意400+10x 2-120x <80, 得x 2-12x +32<0,解得4<x <8,即4<6t <8,∴83<t <323;∵323-83=8,∴每天约有8小时供水紧张.(理)某物流公司购买了一块长AM =30米,宽AN =20米的矩形地块AMPN ,规划建设占地如图中矩形ABCD 的仓库,其余地方为道路和停车场,要求顶点C 在地块对角线MN 上,B 、D 分别在边AM 、AN 上,假设AB 长度为x 米.(1)要使仓库占地ABCD 的面积不少于144平方米,AB 长度应在什么范围内? (2)若规划建设的仓库是高度与AB 长度相同的长方体形建筑,问AB 长度为多少时仓库的库容最大?(墙体及楼板所占空间忽略不计)高考总复习含详解答案[解析] (1)依题意得三角形NDC 与三角形NAM 相似,所以DC AM =ND NA ,即x 30=20-AD20,AD =20-23x ,矩形ABCD 的面积为S =20x -23x 2 (0<x <30),要使仓库占地ABCD 的面积不少于144平方米, 即20x -23x 2≥144,化简得x 2-30x +216≤0,解得12≤x ≤18. 所以AB 长度应在[12,18]内.(2)仓库体积为V =20x 2-23x 3(0<x <30),V ′=40x -2x 2=0得x =0或x =20, 当0<x <20时,V ′>0,当20<x <30时V ′<0, 所以x =20时,V 取最大值80003m 3,即AB 长度为20米时仓库的库容最大.16.(2010·皖南八校联考)对定义域分别是Df ,Dg 的函数y =f (x ),y =g (x ),规定: 函数h (x )=⎩⎪⎨⎪⎧f (x )g (x ),当x ∈Df 且x ∈Dg ,f (x ),当x ∈Df 且x ∉Dg ,g (x ),当x ∈Dg 且x ∉Df .(1)若函数f (x )=1x -1,g (x )=x 2,写出函数h (x )的解析式;(2)求问题(1)中函数h (x )的值域;(3)若g (x )=f (x +α),其中α是常数,且α∈[0,π],请设计一个定义域为R 的函数y =f (x ),及一个α的值,使得h (x )=cos4x ,并予以证明.[解析] (1)由定义知,h (x )=⎩⎪⎨⎪⎧x 2x -1,x ∈(-∞,1)∪(1,+∞),1,x =1.(2)由(1)知,当x ≠1时,h (x )=x -1+1x -1+2,则当x >1时,有h (x )≥4(当且仅当x =2时,取“=”); 当x <1时,有h (x )≤0(当且仅当x =0时,取“=”). 则函数h (x )的值域是(-∞,0]∪{1}∪[4,+∞).(3)可取f (x )=sin2x +cos2x ,α=π4,则g (x )=f (x +α)=cos2x -sin2x ,于是h (x )=f (x )f (x +α)=cos4x .(或取f (x )=1+2sin2x ,α=π2,则g (x )=f (x +α)=1-2sin2x .于是h (x )=f (x )f (x +α)=cos4x ).[点评] 本题中(1)、(2)问不难求解,关键是读懂h (x )的定义,第(3)问是一个开放性问题,乍一看可能觉得无从下手,但细加观察不难发现,cos4x =cos 22x -sin 22x =(cos2x +sin2x )(cos2x -sin2x )积式的一个因式取作f (x ),只要能够找到α,使f (x +α)等于另一个因式也就找到了f (x )和g (x ).17.(文)某种商品在30天内每件的销售价格P (元)与时间t (天)的函数关系如图所示:该商品在30天内日销售量Q (件)与时间t (天)之间的关系如表所示:(1)(2)在所给直角坐标系中,根据表中提供的数据描出实数对(t ,Q )的对应点,并确定日销售量Q 与时间t 的一个函数关系式;(3)求该商品的日销售金额的最大值,并指出日销售金额最大的一天是30天中的第几天?(日销售金额=每件的销售价格×日销售量)[解析] (1)P =⎩⎪⎨⎪⎧t +20 (0<t <25,t ∈N *)-t +100 (25≤t ≤30,t ∈N *) (2)图略,Q =40-t (t ∈N *) (3)设日销售金额为y (元),则y =⎩⎪⎨⎪⎧-t 2+20t +800 (0<t <25,t ∈N *)t 2-140t +4000 (25≤t ≤30,t ∈N *)高考总复习含详解答案=⎩⎪⎨⎪⎧-(t -10)2+900 (0<t <25,t ∈N *)(t -70)2-900 (25≤t ≤30,t ∈N *) 若0<t <25(t ∈N *),则当t =10时,y max =900;若25≤t ≤30(t ∈N *),则当t =25时,y max =1125.由1125>900,知y max =1125,∴这种商品日销售金额的最大值为1125元,30天中的第25天的日销售金额最大. (理)(2010·广东六校)某西部山区的某种特产由于运输的原因,长期只能在当地销售,当地政府通过投资对该项特产的销售进行扶持,已知每投入x 万元,可获得纯利润P =-1160(x -40)2+100万元(已扣除投资,下同),当地政府拟在新的十年发展规划中加快发展此特产的销售,其规划方案为:在未来10年内对该项目每年都投入60万元的销售投资,其中在前5年中,每年都从60万元中拨出30万元用于修建一条公路,公路5年建成,通车前该特产只能在当地销售;公路通车后的5年中,该特产既在本地销售,也在外地销售,在外地销售的投资收益为:每投入x 万元,可获纯利润Q =-159160(60-x )2+1192·(60-x )万元,问仅从这10年的累积利润看,该规划方案是否可行?[解析] 在实施规划前,由题设P =-1160(x -40)2+100(万元),知每年只需投入40万,即可获得最大利润100万元,则10年的总利润为W 1=100×10=1000(万元)实施规划后的前5年中,由题设P =-1160(x -40)2+100知,每年投入30万元时,有最大利润P max =7958(万元) 前5年的利润和为7958×5=39758(万元) 设在公路通车的后5年中,每年用x 万元投资于本地的销售,而剩下的(60-x )万元用于外地区的销售投资,则其总利润为W 2=[-1160(x -40)2+100]×5+(-159160x 2+1192x )×5=-5(x -30)2+4950. 当x =30时,W 2=4950(万元)为最大值,从而10年的总利润为39758+4950(万元). ∵39758+4950>1000, ∴该规划方案有极大实施价值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学函数的概念(一)精选题
一、求值
1、已知2
2
()1x f x x =+,则111(1)(2)(3)(4)234f f f f f f f ⎛⎫
⎛⎫
⎛⎫
++
++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
的值为_________
2、已知函数3
()1
x f x x +=
+,记1(1)(2)(4)(8)(1024),2f f f f f m f ⎛⎫+++++=+ ⎪⎝⎭
L 111481024f f f n ⎛⎫⎛⎫
⎛⎫++⋯+= ⎪ ⎪ ⎪⎝⎭
⎝⎭
⎝⎭
,则m n +=__________
3、已知函数2
2
1()1x f x x
+=-,则111(2019)(2018)(2)232019f f f f f f ⎛⎫⎛⎫
⎛⎫
++++++⋯+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
L =_________
4、已知函数1
()ln f x x x x
=-+,则111(100)(99)(1)=23100f f f f f f ⎛⎫⎛⎫
⎛⎫++++++⋯+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
L _________
二、分段函数
1 (15全国1文)已知函数1222,1
()log (1),1
x x f x x x -⎧-≤=⎨-+>⎩,且()3f a =-,则(6)f a -=_________
2 (15山东理10)设函数31,1()2,1x
x x f x x -<⎧=⎨≥⎩
,则满足()
(())2f a f f a =的a 的取值范围是__________
3 (14全国1文,15)设函数113e ,1(),1
x x f x x x -⎧<⎪
=⎨⎪≥⎩,则使得()2f x …成立的x 的取值范围为________
4 (17山东文9
)设函数01()2(1),1
x f x x x <<=-≥⎪⎩,若()(1)f a f a =+,则
1f a ⎛⎫
= ⎪⎝⎭
_______
三、具体函数的定义域
1 (15湖北文6
)函数256
()lg 3
x x f x x -+=-的定义域为_________
2 (19
河南联考)函数()ln(1)f x x =+的定义域为________
3 (18
西南名校联盟)设函数y =A ,函数ln(2)y x =-的定义域为B ,则A B ⋂=________
4 函数()
22()log 21f x mx mx =-+的定义域为R ,则实数m 的取值范围为________
5 函数(
)
2
2
2()log 1(1)1f x m x m x ⎡⎤=-+++⎣⎦
的值域为R ,则实数m 的取值范围为________
6
函数2
()43
f x ax ax =++的定义域为R ,则实数a 的取值范围是________
7 (18上海长宁4月二模10
)已知函数())f x ax =的定义域为R ,则实数a 的取值范围是_______
四、抽象函数的定义域 1
已知函数()f x =(2)y f x =+的定义域为_______
2 已知(1)f x +的定义域是[1,3],则(21)f x -的定义域是________
3 设函数()lg(1)f x x =-,则函数(())f f x 的定义域为________
4(19山东模考)已知函数()f x 的定义域为[3,6]
,则函数y =
________
5 已知2
()x f x ax b
=+,方程()12f x x =-有两个根123,4x x ==。

(1)求函数()f x 的解析式;
(2)设1k >,解关于x 的不等式(1)()2k x k
f x x
+-<-.
五、待定系数法求解析式
1 已知()f x 为一次函数,且(())43f f x x =+,则()f x 的解析式为________
2 对于函数()f x ,若存在0x ∈¡,使()00f x x =,则称0x 是()f x 的一个不动点,已知函数
2()f x x bx c =++的不动点为-1和2,求函数()f x 的解析式.
3 已知函数2
1,0()21,1
z m mx x m f x m x -+<<⎧⎪
=⎨⎪+<⎩„满足()298f m =。

(1)求函数()f x 的解析式;
(2
)解不等式()18
f x >+。

六、换元法求解析式 1 已知2
211f x x x x
⎛⎫+=+ ⎪⎝⎭,则函数()f x 的解析式为_______
2 函数35
(1)2
x f x x ++=-,则()f x =_______
3 函数(ln )34f x x =+,则函数()f x 的解析式为_______
七、方程组法求解析式 1 已知112()2(0)2f x f x x x ⎛⎫+=+≠ ⎪
⎝⎭
,则(2)f =
2 已知12()21x f f x x x +⎛⎫
-= ⎪-⎝⎭
,则()f x =
3 已知1()11(0f x f x x x ⎛⎫
+-=+≠ ⎪⎝⎭
且1)x ≠,则()f x =
4 若()f x 对于任意实数x 恒有()2()31f x f x x --=-,则()f x =
5 已知()f x 的定义域为{|0}x x ≠,满足133()51f x f x x ⎛⎫+=+ ⎪
⎝⎭
,则函数()f x 的解析式为。

相关文档
最新文档