水轮发电机的飞轮力矩和机组的惯性时间常数
水轮机组运行参数
机组运行参数
1水轮发电机组技术参数
1.1水轮机技术参数
1.2发电机技术参数
1.2.2水轮发电机各部温度整定
1推力轴承双螺杆泵及高压减载装置基本参数
3发电机中性点接地变参数
2调速器系统主要技术参数
2.1调速柜设备主要参数:
2.2调速器技术参数
4主变技术参数
1.1.主变技术参数
1.1.1.主变主要技术参数
1.1.
2.冷却条件变化时负载特性表
1.1.3.主变分接开关技术参数。
1.1.4.主变冷却器主要技术参数
1.2.18kV 干式变主要技术参数1.2.1.18kV 干式变额定值
5.1快速闸门
5.2 快速闸门液压系统见表1-2
6压缩空气系统主要技术参数
7技术供水减压阀
7.2泄压安全阀
7.3滤水器主要参数
8、10kV 干式变参数
1.2.3.10kV 干式变额定值
1.2.4.干式变压器过负荷能力。
1.2.5.干式变线圈温度与风机运行状态关系表
1.2.6.照明变有载调压装置主要技术参数
1设备主要技术参数
1.1500kV GIS设备主要参数。
1.1.1SF6气室中含水量PPM参数(见表1):
1.1.2500kV GIS组合电器设备参数(见表3):
1.1.3隔离开关、检修接地开关、快速接地开关、电压互感器、电流互感器、SF6/空气出线套管性能参数(见表3~表6)
1.2发电机出口断路器GCB主要技术参数
1.3封闭母线IPB。
水轮发电机电磁计算单SFW3200-8-1730
水轮发电机计算单发电机型号:设计时间 :2011-10-29 16:01:58=======================================================================序号名称变量结果单位=======================================================================一. 基本数据1.1 额定数据1.101 额定功率 Pn 2000 (kW)1.102 额定功率因素 cosθn .81.103 额定容量 SN 2500 (kVA)1.104 额定电压 UN 6300 (V)1.105 相电压 Uθ 3637.307 (V) 1.106 额定电流 IN 229.114 (A) 1.107 相电流 Iθ 229.114 (A) 1.108 额定转速 nN 750 (r/min) 1.109 飞逸转速 nr 4 (r/min)1.110 额定频率 fN 50 (Hz)1.111 极数 2p 81.112 相数 M 31.113 飞轮力矩 GD2 737.895 (kN.m) 1.114 无功功率 Pr 1500.0000 (kW) 1.115 机械时间常数 Tmec 5686.403 (s) 1.115 重量估算 Gr 5.645 (t)1.2 定子铁芯和转子磁极铁芯尺寸1.201 定子铁芯外径 Dl 173 (cm)1.202 定子铁芯内径 Di 132 (cm)1.203 定子槽宽度 bs 1.68 (cm)1.204 定子槽高度 hs 7.48 (cm)1.205 定子槽楔高度 hk .5 (cm)1.206 定子线圈单边绝缘厚度δi .265 (cm)1.207 定子铁芯径向通风槽宽度及通风槽数 bvnv 9 (cm)1.208 无通风槽的定子铁芯长度 l 45 (cm)1.209 各段铁芯长度不相等时相邻通风槽的平均距离 tv 5.4 (cm)1.3 定子绕组数据1.301 定子槽数 Z 1081.302 每极每相槽数 q 4.51.303 每项并联支路数 a 11.304 每槽有效导体数 Ns 61.305 每支路电流 Ia 229.114 (A)1.306 定子线圈线规2.24x4.751.307 定子槽电流 Is 1374.684 (A) 1.308 电负荷 A 358.1979 (A/cm) 1.309 绕组节距 Y 111.310 短距系数β .8151.311 每相串联匝数 Wθ 1081.312 每支路有效导体截面积 Ac 61 (mm)1.313 定子绕组的电流密度 J 3.756 (A/mm) 1.314 热负荷 AJ 1345.3913 (A/cm.mm) 1.315 定子铁芯总长度 lt 54 (cm)1.316 定子绕组端部每半匝平均长度 lE 78.0079 (cm) 1.317 定子绕组每匝平均长度 lc 264.016 (cm) 1.318 定子绕组每相电阻 r(15) .082007 (Ω) 1.319 定子绕组每相电阻 r(75) .101689 (Ω)1.4 励磁绕组数据1.404 励磁绕组铜线线规 af 3.15 (mm)1.405 励磁绕组铜线线规 bf 22.4 (mm)1.406 励磁绕组铜线截面积 Af 70.56 (mm)1.407 励磁绕组每极匝数 Wf 53.51.408 励磁绕组每极匝数长度(单排线圈) lcf 199.5 (cm)1.409 励磁绕组电阻 Rf(15) .2123 (Ω)1.410 励磁绕组电阻 Rf(75) .2633 (Ω)1.411 励磁绕组电阻 Rf(120) .3015 (Ω)1.412 励磁绕组电阻 Rf(130) .31 (Ω)1.413 极弧半径 Rp 56.7516 (cm)2.106 极靴宽度 bp 36 (cm)2.126 极靴高度 hp 5.5 (cm)2.127 极身宽度 bm 23.5 (cm)2.128 极身高度 hm 21 (cm)1.5 阻尼绕组数据1.401 阻尼条节距 t2 3.07 (cm)1.402 阻尼绕组槽开口宽度 bsh 3 (mm)1.403 阻尼绕组槽开口高度 hsh 3 (mm)1.413 每极阻尼条数 nB 71.414 阻尼条直径 dB 14 (mm)1.415 圆阻尼条截面积 AB 1.5386 (cm)1.416 阻尼条长度 lB 73 (cm)1.417 阻尼环厚度 aR 10 (mm)1.418 阻尼环宽度 bR 50 (mm)1.419 阻尼环截面积 AR 500 (mm)1.420 阻尼环平均直径 DR 1304 (mm)1.421 直轴阻尼绕组电阻(标幺值) RDd* .021.422 交轴阻尼绕组电阻(标幺值) RDq* .0154二. 空载磁势计算2.1 磁路计算2.101 定子齿顶处齿距 t13.8378 (cm) 2.102 极距η 51.836 (cm) 2.103 气隙δ .8 (cm)2.104 比值δ/η .01542.105 比值δmax/δ 1.52.107 极弧系数αp .6942.108 定子1/3齿高处齿距 t1/33.9828 (cm) 2.109 定子1/2齿高处齿距 t1/24.0553 (cm) 2.110 定子齿顶处齿宽 bt 2.1578 (cm) 2.111 定子1/3齿高处齿宽 bt1/3 2.3028 (cm) 2.112 定子1/2齿高处齿宽 bt1/2 2.3753 (cm) 2.113 定子轭高 hj 12.52 (cm) 2.114 定子轭磁路长 Lj 62.9884 (cm) 2.115 定子铁芯叠压系数 KFE .942.116 定子铁芯有效长度 lef 42.3 (cm)2.117 比值 lt/η 1.04172.118 定子铁芯边缘段阶梯形高度 a1 0 (cm)2.119 定子铁芯边缘段阶梯形宽度 c1 0 (cm)2.120 定子铁芯计算长度 Lt' 54 (cm)2.121 主极极靴长度 lp 54 (cm)2.122 主极极身长度 lm 54 (cm)2.123 主极极靴计算长度 lp' 55.6 (cm)2.124 轴向气隙计算长度 l0 54.8 (cm)2.125 计算气隙δ' .933 (cm) 2.129 磁极压板厚度δp 4.5 (cm)2.130 磁极铁芯计算长度 lm' 58.5 (cm)2.131 磁极结构尺寸 ap 6.25 (cm)2.132 磁极结构尺寸 dt3.8455 (cm) 2.133 磁极结构尺寸 cp 12.8173 (cm) 2.134 磁极结构尺寸ηm 15.148 (cm) 2.135 定子齿重 GFet 633.1094 (kg) 2.136 定子轭重 GFej 2164.694 (kg) 2.137 磁极压板截面积 Ap 74.025 (cm) 2.138 磁极铁芯截面积 Am 1378.98 (cm)2.2 空载特性计算2.201 绕组基波短距系数 Kp1 .95792.202 绕组基波分布系数 Kd1 .956262.203 绕组基波系数 Kdp1 .9162.204 基波磁通θ1 .1656 (Wb)2.205 磁场波形系数 kθ .98582.206 极弧磁通系数 kλ .92022.207 空载额定电压时的每极磁通θ .1632 (Wb)2.208 空载额定电压时极靴部分的磁通θλ .1502 (Wb) 2.209 极靴上气隙的平均磁通密度 Bδ .7614 (T)2.210 定子1/3齿高处的磁通密度 Bt1/3 1.6458 (T)2.211 定子1/2齿高处的磁通密度 Bt1/2 1.5958 (T)2.212 定子轭的磁通密度 Bj 1.5408 (T)2.213 定子齿的气隙系数 kδ1 1.14622.214 定子铁芯径向通风槽的气隙系数 kδ2 1.07282.215 转子阻尼绕组槽的气隙系数 kδ3 1.02482.216 总气隙系数 kδ 1.26012.217 定子齿的磁位降 Ft 1092.08 (A)2.218 定子轭的磁位降 Fj 2519.536 (A) 2.219 磁极漏磁系数ζm 1.17482.220 极身根部磁通θm .1917 (Wb)2.221 极身根部的磁通密度 Bm 1.3902 (T)2.222 极靴的漏磁系数ζp 1.05762.223 极身上部的磁通θp .173 (Wb)2.224 极身上部的磁通密度 Bp 1.255 (T)2.225 磁极的平均磁通密度 Bm1/2 1.3564 (T)2.226 磁极的磁位降 Fm 1139.5 (A)2.227 转子轭与磁极接缝处的磁位降 Fj2 695.1 (A)2.228 气隙磁位降 Fδ 14322.5224 (A) 2.229 额定电压下的空载磁位降 Ff0 19768.7384 (A) 2.230 定子绕组漏抗 Xζ .0637三. 负载磁势计算3.1 短路和额定千伏安cosθ=0时的磁势计算3.101 短路电流为额定电流时的磁位降 Fk 13561.8953 (A) 3.102 短路比 Kc 1.45773.103 定子绕组总漏抗 Xζt .10823.104 cosθ=0时对应额定电压Uθ的每极磁通θ' .1736 (Wb)3.105 气隙平均磁通密度 Bδ' .8099 (T)3.106 空气隙的磁位降 Fδ' 15234.8449 (A) 3.107 定子轭的磁通密度 Bj' 1.6389 (T)3.108 定子轭的磁位降 Fj' 4383.9926 (A) 3.109 定子齿的磁通密度 Bt1/3 1.7506 (T)3.110 定子齿的磁位降 Ft1/3 1675.52 (a)3.111 磁极漏磁系数ζm' 1.30563.112 极靴的漏磁系数ζp' 1.10083.113 极身根部的磁通密度 Bm' 1.6963 (T)3.114 极身上部的磁通密度 Bp' 1.4385 (T)3.115 磁极的平均磁通密度 Bm1/2 1.6319 (T)3.116 磁极的磁位降 Fm' 2803.7 (A)3.117 转子轭与磁极接缝处的磁位降 Fj2' 848.15 (A)3.118 额定千伏安.cosθ=0过励时的总磁位降Σ 37595.7581 (A)3.2 用图解法确定额定负载时的磁势3.201 额定励磁磁动势 Ffn 33018.0919 (A)四. 励磁数据4.01 空载额定电压时的励磁电流 If0 184.7546 (A) 4.02 额定负载时的励磁电流 Ifo 308.5803 (A) 4.03 额定负载时励磁绕组的电流密度 Jf 4.3733 (A/cm) 4.04 空载时励磁绕组的滑环电压 Uf0 39.2234 (V)4.05 额定负载时励磁绕组的滑环电压 UfN 95.6599 (V)4.06 集电环上的励磁电压增长速度ΔUf 191.3198 (V/s) 4.07 直流励磁机的额定电压 Uf 105.2259 (V) 4.08 直流励磁机的额定电流 If 339.4383 (A) 4.09 直流励磁机的额定功率 Pf 35.7177 (kW) 4.10 励磁系统的顶置电压 Ufmax 191.3198 (V) 4.11 直流励磁机的最大励磁电流 Ifmax 877.6251 (A) 4.12 直流励磁机的瞬时最大功率 Pfmax 167.9071 (kW)五. 损耗和效率5.1 空载损耗5.101 空载额定电压时定子齿中铁耗 PFet 3.4261 (kW)5.102 空载额定电压时定子轭中铁耗 PFej 8.3511 (kW)5.103 空载额定电压时极靴表面附加损耗(叠片或实心磁极) PFepo 2.8552 (kW)5.104 空载时总损耗 PFe 14.6324 (kW)5.2 短路损耗5.201 并联股线间的环流系数 Kr .0062725.202 并联股线间的环流系数ε .374985.203 涡流损耗系数 Ks .01055.204 定子绕组费立德系数 KF 1.01685.205 短路电流为额定电流时磁场三次谐波在定子齿中的磁通密度 B3 2805.0193 (T) 5.206 短路电流为额定电流时磁场三次谐波在定子齿中引起的附加损耗 Pt3 1.7286 (kW) 5.207 额定电流时定子绕组铜耗 Pcu 16.014 (kW) 5.208 额定电流时双层定子绕组铜耗 Pcus .2686 (kW) 5.209 短路电流为额定电流时定子磁场中齿谐波在极靴表面及阻尼绕组中产生的附加损耗 Ppt .1143 (kW) 5.210 短路电流为额定电流时定子绕组磁势中高次谐波在极靴表面产生的附加损耗 Pkv .0558 (kW) 5.211 短路电流为额定电流时在定子此压板及端盖上的附加损耗 Pad .2395 (kW) 5.212 短路电流为额定电流时的总损耗 Pk 18.4208 (kW)5.3 励磁损耗5.301 额定负载,额定电压额定功率因数时的励磁损耗 Pcuf 25.6891 (kW)5.4 机械损耗(摩擦损耗及通风损耗)5.401 风摩损耗 Pfv 11.4305 (kW) 5.402 总机械损耗(包括风摩损耗) Pmec 51.4305 (kW)5.5 效率5.501 总损耗Σ 84.4837 (kW) 5.502 发电机额定负载时的效率η 95.947六. 温度计算6.1 定子温度计算6.101 铁耗在定子内圆产生的单位热负载 W1 .7241 (W/cm) 6.102 铜耗在定子内圆产生的单位热负载 W2 .342 (W/cm) 6.103 铜耗在线圈表面产生的单位热负载 W3 .0679 (W/cm) 6.104 铁芯对空气的温升θFe 33.8543 (K) 6.105 线圈绝缘温度降θi 11.246 (K) 6.106 线圈端部表面对空气的温升θE 24.9225 (K)6.107 定子有效部分的最高温升θmax 45.1 (K)6.108 定子线圈对空气的平均温升θcu 39.2131 (K)6.2 转子温度计算6.201 励磁损耗在磁极线圈侧表面产生的单位热负载 W2' 1.0985 (W/cm) 6.202 转子线圈的电负荷 A2 868.8972 (A/cm) 6.203 转子线圈的表面热系数 W〃 .0195 (W/cm℃) 6.204 转子线圈对空气的温升θf 56.3333 (K)七.经济指标7.01 发电机定子有效铁重 GFe 2797.8034 (kg) 7.02 定子绕组铜重 Gcu 464.4031 (kg) 7.03 励磁绕组铜重 Gcuf 536.2104 (kg) 7.04 阻尼条重量 GB 55.9792 (kg) 7.05 阻尼环重量 GR 36.4416 (kg) 7.06 发电机有效铜重 Gcut 1093.0343 (kg) 7.07 发电机单位容量有效铁重量 gfe 1.1191 (kg)7.08 发电机单位容量有铜铁重量 gcu .1858 (kg)八. 电抗和时间常数的计算8.1 电抗的计算8.101 定子绕组矩形波磁动势 Fa 12012.8686 (At) 8.102 定子绕组直轴电枢反应系数 Kad 1.0538.103 定子绕组电枢反应直轴磁动势 Fad 12649.550625 (At) 8.104 直轴电枢反应电抗 Xad .8831938.105 定子交轴与直轴电枢反应基波磁通之比 Kq .498.106 交轴电枢反应电抗 Xaq .4890468.107 定子绕组漏抗 Xζ .06378.108 直轴同步电抗 Xd .9468938.109 交轴同步电抗 Xq .5527468.110 极靴之间漏磁导λpl .4481658.111 极身之间漏磁导λml .7624778.112 磁极端面之间漏磁导λmb .1486328.113 磁极总漏磁导λm+p 1.3592748.114 瞬变过程磁极总漏磁导Λ 1.0026048.115 励磁绕组总电抗 Xζ2 1.0064728.116 励磁绕组漏抗 Xζf .1232798.117 直轴瞬变电抗 Xd' .1718798.118 交轴瞬变电抗 Xq' .5527468.119 阻尼绕组直轴漏抗(开口槽) Xζd .0794768.120 阻尼绕组交轴漏抗 Xζq .059607 8.121 直轴超瞬变电抗 Xd〃 .098062 8.122 交轴超瞬变电抗 Xq〃 .116831 8.123 负序电抗(当短路时) X2 .107036 8.124 负序电抗(外接大电抗时) X2 .005728 8.125 零序电抗 X0 .031276 8.126 定子绕组电阻(标幺值) R* .006405 8.127 励磁绕组电阻(标幺值) Rf* .0014168.2 时间常数的计算8.201 定子绕组开路时励磁绕组的时间常数 Tdo' 2.2636 (s) 8.202 定子绕组和励磁绕组开路时直轴阻尼绕组的时间常数 TDdo' .1533 (s) 8.203 定子绕组开路时交轴阻尼绕组的时间常数 TDqo' .1135 (s) 8.204 定子绕组短路时励磁绕组的时间常数 Td' .4109 (s) 8.205 定子绕组开路时,励磁绕组短路时直轴阻尼绕组的时间常数 Tdo〃 .0299 (s) 8.206 定子绕组及励磁绕组短路时直轴阻尼绕组的时间常数 Td〃 .0171 (s) 8.207 定子绕组短路时交轴阻尼绕组的时间常数 Tq〃 .024 (s) 8.208 励磁绕组短路时定子绕组的时间常数 Ta .0532 (s) 8.209 机端三相短路时瞬变电流衰减时间常数 Td3' .4109 (s) 8.210 机端三相短路时超瞬变电流衰减时间常数 Td3〃 .0171 (s) 8.211 机端三相短路时定子电流非周期分量衰减时间常数 Ta3 .053 (s) 8.212 机端两相短路时瞬变电流衰减时间常数 Td2' .599 (s) 8.213 机端两相短路时超瞬变电流衰减时间常数 Td2〃 .022 (s) 8.214 机端两相短路时非周期分量衰减时间常数 Ta2 .0532 (s) 8.214 机端单相短路时瞬变电流衰减时间 Td1' .647 (s) 8.214 机端单相短路时超瞬变电流衰减时间 Td1〃 .0228 (s)。
某电站50 MW水轮发电机数学建模和仿真分析
2020年第12期2020Number12水电与新能源HYDROPOWERANDNEWENERGY第34卷Vol.34DOI:10.13622/j.cnki.cn42-1800/tv.1671-3354.2020.12.012收稿日期:2020-09-05作者简介:柳呈祥ꎬ男ꎬ助理工程师ꎬ主要从事水电站励磁㊁直流系统调试㊁检修㊁维护工作ꎮ某电站50MW水轮发电机数学建模和仿真分析柳呈祥ꎬ张元栋ꎬ程诗龙ꎬ黄柯维(中国长江电力股份有限公司三峡水力发电厂ꎬ湖北宜昌㊀443133)摘要:以某电站50MW水轮发电机组为研究对象ꎬ对电机进行了模型参数计算ꎬ建立了发电机的数学模型ꎻ应用Matlab软件中的simulink工具ꎬ以建立的数学模型为基础搭建了凸极水轮发电机仿真模型ꎬ并对所建模型并网后的运行特性进行仿真研究ꎬ验证了所建模型的正确性ꎮ关键词:水轮发电机ꎻ参数计算ꎻMatlabꎻ数学模型中图分类号:TM312㊀㊀㊀文献标志码:A㊀㊀㊀文章编号:1671-3354(2020)12-0049-05MathematicalModelingandSimulationAnalysisofa50MWHydro ̄turbineGeneratorUnitLIUChengxiangꎬZHANGYuandongꎬCHENGShilongꎬHUANGKewei(ThreeGorgesHydropowerPlantꎬChinaYangtzePowerCo.ꎬLtd.ꎬYichang443133ꎬChina)Abstract:Amathematicalmodelisconstructedfora50MWhydro ̄turbinegeneratorunitandthemodelparametersarecalculated.ThenꎬasimulationmodelisdevelopedinSimulinktoolboxinMatlabbasedonthemathematicalmodel.Theoperationcharacteristicsofthemodelaresimulatedandthecorrectnessofthemodelisverified.Keywords:hydro ̄turbinegeneratorunitꎻparametercalculationꎻMatlabꎻmathematicalmodel㊀㊀同步发电机是电力系统的心脏ꎬ直接影响电力系统的的稳定运行ꎮ由于电机非线性㊁强耦合㊁多变量的特点ꎬ电机的动态特性复杂ꎬ而电机的动态性能对电力系统的动态稳定非常重要ꎬ所以对电机的模型进行深入的研究是十分必要的[1]ꎮ对于同步电机的数学模型主要有abc轴和dq轴两种参考坐标系ꎬabc坐标系可以完整反映气隙基波和谐波磁场的电磁关系ꎬ但是电感参数变化会给此坐标系下的计算和分析造成不便ꎻdq轴坐标系只计基波磁场的作用ꎬ可以实现定子绕组㊁转子绕组和阻尼绕组的电感解耦ꎬ目前来说ꎬ通常采用dq轴坐标进行电机建模ꎮ本文以某电站凸机同步发电机为例ꎬ建立了发电机在dq轴下的数学模型ꎬ并对此模型进行了Matlab/Simulink仿真ꎬ最后对仿真波形进行分析ꎬ验证了模型的正确性ꎮ1㊀发电机数学模型1.1㊀dq坐标系下的电机有名值方程为了建立同步发电机模型ꎬ必须对实际电机作必要的简化假设:1)定子三相绕组结构上完全相同ꎬ在空间上相差120ʎ电角度ꎮabc三相绕组对其轴线而言结构对称ꎮ2)电机转子在结构上是完全对称的ꎮ转子各绕组如果有电流i流过ꎬ只考虑正弦基波分量ꎮ3)对于电机沿直轴或交轴的磁路ꎬ如果磁势波是对称于直轴或交轴正弦分布的ꎬ则磁密波也对称于直轴或者交轴正弦分布ꎬ或者说对于磁密波只计其基波分量[2]ꎮdq坐标系下的电机暂态方程适应转子的旋转和凸极效应ꎬ所以一般选用dq坐标系建模ꎮ电压和磁链方程如下ꎮ94水电与新能源2020年第12期电压方程:ud=pψd-ωψq-riduq=pψq+ωψd-riquf=pψf+rfif0=pψD+rDiD0=pψQ+rQiQ(1)式中:ud㊁uq㊁uf分别为dq轴电压和励磁绕组的电压ꎻψd㊁ψq㊁ψf㊁ψD㊁ψQ分别为各绕组磁链ꎻid㊁iq㊁if㊁iD㊁iQ分别为各绕组中流过的电流瞬时值ꎻr㊁rf㊁rD㊁rQ分别为各绕组电阻ꎻω为转子电角速度ꎻp为微分算子ꎬp=ddtꎮ磁链方程:㊀ψdψFψDæèçççöø÷÷÷=LdMfMDKMfLfMRKMDMRLDéëêêêêùûúúúú-idifiDéëêêêêùûúúúú㊀ψqψQæèçöø÷=LdMQKMQLQéëêêùûúú-idiQéëêêùûúú(2)式中:Ld㊁Lq分别为dq同步电感系数ꎻLf㊁LD㊁LQ分别为励磁和阻尼绕组自感系数ꎻMR为励磁和阻尼D绕组自感系数ꎻMf㊁MD㊁MQ分别为定子和转子绕组互感系数幅值ꎮ1.2㊀dq坐标系下的标幺值方程用有名值来进行同步电机的分析时ꎬ存在量级差异较大的情况ꎬ用归算到自身容量基值下的标幺值表示则更加合理ꎮ因此ꎬ对电机有名值方程还需进行标幺化ꎮ对有名值方程进行规范化的过程就是标幺化的过程ꎬ首先要确定有关变量的基准值ꎮ发电机定子侧基准电压UB㊁基准电流IB㊁基准容量SB㊁基准频率fB和基准角频率ωB为[3]㊀㊀UB=2UR㊀㊀IB=2IR㊀㊀SB=SR=3URIR=32UBIB㊀㊀fB=50Hz㊀㊀ωB=2πfb式中:UR为发电机额定相电压有效值ꎻIR为发电机额定相电流有效值ꎻSR为发电机额定容量ꎮ定子侧绕组基准磁链ψB㊁基准自感系数LB和时间基准值tB关系为ψB=UBtBψB=LBIB转子f㊁D和Q各绕组变量分别取以下基准值UfB=KFUBUDB=KDUBUQB=KQUBüþýïïïψfB=KFψBψDB=KDψBψQB=KQψBüþýïïïIfB=321KFIBIDB=321KDIBIQB=321KQIBüþýïïïïïïïSFB=SDB=SQB=SR式中:KF㊁KD为励磁和阻尼D绕组对定子d绕组的等效匝比ꎻKQ为阻尼Q绕组对定子q绕组的等效匝比ꎮ经过规范化后的磁链方程为ψdψBψfψfBψDψDBæèçççççççöø÷÷÷÷÷÷÷=LdLBMf23KFLBMD23KDLB23MfKFLBLf23KF2LBMR23KDKFLB23MDKDLBMR23KFKDLBLD23KD2LBéëêêêêêêêêêêêêêùûúúúúúúúúúúúúú-idIBif321KFIBiD321KDIBéëêêêêêêêêêêùûúúúúúúúúúúψqψBψqψQBæèççççöø÷÷÷÷=LqLBMQ23KQLB23MDKQLBLQ23KQ2LBLQéëêêêêêêêêùûúúúúúúúú-iqIBiQ321KQIBéëêêêêêêùûúúúúúú(3)由于电感标幺值与电抗标幺值相等ꎬ可以不区分ꎬ上式可改写为ψd∗ψf∗ψD∗æèçççöø÷÷÷=Xd∗Xad∗Xad∗Xad∗Xf∗XR∗Xad∗XR∗XD∗éëêêêêùûúúúú-idifiDéëêêêêùûúúúúψq∗ψQ∗æèçöø÷=Xq∗Xaq∗Xaq∗XQ∗éëêêùûúú-iqiQéëêêùûúú(4)电压方程为05柳呈祥ꎬ等:某电站50MW水轮发电机数学建模和仿真分析2020年12月ud∗=ddt∗(ψd∗)-ω∗ψq∗-r∗id∗uq∗=ddt∗(ψq∗)+ω∗ψd∗-r∗iq∗uf∗=ddt∗(ψf∗)+rf∗if∗uD∗=ddt∗(ψD∗)+rD∗iD∗=0uQ∗=ddt∗(ψQ∗)+rQ∗iQ∗=0(5)由于后续分析的电气量均为标幺值ꎬ将∗省略ꎮ电机参数一般以运算电抗和实用参数给出ꎬ其中dq轴运算电抗为Xd(p)=ψd-idXq(p)=ψq-iq由式(4)和(5)可求得:㊀㊀Xd(p)=Xd-B(p)A(p)A(p)=p2(XDXf-Xad2)+p(XDrf+XfrD)+rDrfB(p)=p2(XD+Xf-2Xad)Xad2+p(rf+rD)Xad2㊀㊀Xq(p)=X1+Xaq(XQ1+rQp)Xaq+(XQ1+rQp)(6)除以上电磁方程ꎬ还有转子运动方程2Hdωdt=Tm-TeTe=ψdiq-ψqid(7)式中:H为机组惯性时间常数ꎻTm为机械力矩ꎻTe为电磁转矩ꎮ2㊀标幺值选定和仿真参数计算表1为某电站发电机主要电气参数ꎬ由式(4)(5) (7)搭建电机模型需知道发电机定子绕组㊁转子绕组和阻尼绕组的电抗值㊁电阻值ꎬ还需知道机组惯性时间常数ꎮ由于建模采用标幺值系统ꎬ应对发电机电气参数进行标幺化ꎬ本节对发电机标幺值选定和发电机参数进行分析和计算ꎮ定子绕组基准值选择[4-5]SaB=SN=58.8MVAUaB=2UR=2ˑ10500/3=8573.2VIaB=2IR=4574.3A表1 发电机主要电气参数表项目额定工况发电机功率PN/MW50功率因数cosφN0.85发电机容量SN/MVA58.8额定电压UN/kV10.5额定电流IN/A3234.5额定转速nN/(r min-1)272.7额定频率fN/Hz50直轴同步电抗Xd(不饱和值)/p.u.1.058直轴瞬变电抗Xᶄd(不饱和值)/p.u.0.307直轴超瞬变电抗Xᵡd/p.u.0.203交轴同步电抗Xq/p.u.0.675交轴超瞬变电抗Xᵡq/p.u.0.214定子绕组漏抗X1/p.u.0.119d轴短路暂态时间常数Tᶄd/s1.962d轴开路暂态时间常数Tᶄd0/s6.76d轴短路次暂态时间常数Tᵡd/s0.0441d轴开路次暂态时间常数Tᵡd0/s0.0665q轴短路超瞬变时间常数Tᵡq/s0.0502q轴开路超瞬变时间常数Tᵡq0/s0.15796空载励磁电流If0/A593额定励磁电流IfN/A1067额定励磁电压UfN/V164定子绕组电阻Ra/Ω0.00645励磁绕组电阻Rf/Ω0.1307飞轮力矩GD2/tm21850faB=50HzωB=2πfB=314.16rad/sZaB=RaB=XaB=1.8742ΩLaB=XaB/ωB=5.966ˑ10-3HψaB=LaBIaB=27.29Wb励磁绕组基准值选择SfB=SfB=SN=58.8MVALdf=UBωBif|if=593A=0.04602HXad∗=Xad∗-X1∗=0.939IfB=XadIBωBLdf=(Xd-X1)IBωBLdf=556.8A15水电与新能源2020年第12期UfB=SBIfB=105.6kVZfB=RfB=XfB=189.7ΩLfB=XfB/ωB=0.6038HψfB=LfBIfB=336.2Wb定转子之间的互感基值选择LafB=23LaBLfB=0.049HLfaB=23LafB=0.0735H力矩基值TB=SaBωmB=npSaBωeB=11ˑ58.8ˑ106314.16=2.06ˑ106N m由电机实用参数可继续求解得到电机模型参数[6](由于模型建立在标幺值基础上ꎬ后续如无特别说明均省略符号∗):Xad=Xd-X1=0.939Xaq=Xq-X1=0.556Xf=Xad2Xd-Xᶄd=1.174XD=2.559XQ=0.671r=3.441ˑ10-3rf=5.528ˑ10-3rD=0.0865rQ=3.162ˑ10-3转动惯量J=14GD2ˑ103=462.5ˑ103kg m2机组惯性时间常数H=12JωmB2SaB=3.21s至此ꎬ电机仿真所需所有建模参数均已求得ꎮ3㊀仿真模型3.1㊀模型搭建如图1所示ꎬ按照前面两节的电机电压方程㊁磁链方程㊁功率方程㊁电磁力矩方程和转子运动方程搭建电机模型ꎮ明显地ꎬ当考虑定子绕组㊁转子绕组和励磁绕组的电磁暂态过程以及转子的机械过渡过程时ꎬ发电机为七阶模型ꎬ完整的反映了电机系统的物理特性ꎮ电机模型采用标幺值系统ꎬ与上节的计算和分析对应ꎮ励磁系统采用Simulink自带的ExcitionSystemꎬ控制方式为PID+PSS2Bꎮ变压器选择Three-phaseTrans ̄formerꎬ容量选择60MVAꎬ一二次侧电压为10.5kV/35kVꎮ输电线路选择3-PhaseSeriesRLCBranch(电阻0.003Ωꎬ电感为0.005H)ꎮ无穷大系统用3-phaseSource模块(10000MVA35kV)和3-phaseparallelRLCload模块组成ꎮ图1㊀发电机Simulink仿真模型图25柳呈祥ꎬ等:某电站50MW水轮发电机数学建模和仿真分析2020年12月3.2㊀仿真波形搭建好仿真模型后ꎬ可以对电机暂态过程进行模拟仿真ꎮ机械功率输出Pm=1(p.u.)ꎬ给定电压Vref=1(p.u.)ꎮ励磁电流If㊁励磁电压Uf㊁dq轴电压和电流㊁电磁功率Pe和输出功率Peo的仿真波形如图2-图4所示ꎮ图2㊀If㊁Uf㊁Ud和Uq仿真波形图(Pm=1ꎬVref=1)图3㊀id和iq仿真波形图(Pm=1ꎬVref=1)从图中可知ꎬ励磁电压㊁励磁电流随时间趋于稳定并达到额定值ꎮUd和Uq的稳定值分别为0.647(p.u.)和0.763(p.u.)ꎮUd2+Uq2稳定值刚好趋于图4㊀Pe和Peo仿真波形图(Pm=1ꎬVref=1)电压额定值ꎮ电磁功率和电磁输出功率趋于1(p.u.)ꎬ和给定的机械功率平衡ꎬ因为模型中未考虑摩擦转矩作用ꎬ这与理论分析的结果是一致的ꎮ综合以上发电机电气量仿真波形ꎬ本文搭建的发电机模型正确ꎬ可真实反映发电机电气和机械特性ꎮ4㊀结㊀语发电机系统是一个典型非线性㊁强耦合的高阶系统ꎬ动态性能复杂ꎬ所以对发电机的建模力求精确ꎮ本文介绍了建立发电机dq轴坐标系下数学模型的基本方法ꎬ接着对某电站的电机参数进行了分析和计算ꎬ搭建了基于实际凸机水轮发电机的模型ꎬ最后通过Mat ̄lab/Simulink仿真验证了模型的正确性ꎮ参考文献:[1]余贻鑫ꎬ陈礼义.电力系统的安全性和稳定性[M].北京:科学出版社ꎬ1988[2]黄家裕ꎬ岑文辉.同步电动机基本理论及其动态行为分析[M].上海:上海交通大学出版社ꎬ1989[3]高景德ꎬ张麟征.电机过渡过程的基本理论及分析方法[M].北京:科学出版社ꎬ1982[4]韩富春ꎬ闫根弟.暂态稳定数字仿真中发电机数学模型的研究[J].太原理工大学学报ꎬ2005ꎬ36(1):75-78[5]宋宏志.不同工况下大型水轮发电机电磁参数的计算[D].北京:华北电力大学ꎬ2011[6]倪以信ꎬ陈寿孙ꎬ张宝霖.动态电力系统的理论和分析[M].北京:清华大学出版社ꎬ200235。
水轮机知识
水轮机知识1.什么是水力发电?答:水力发电是利用水作为传递能量的介质来发电的。
依据一定的自然条件,或拦河筑坝,抬高上游水位;或采用引水的方式,来集中河段中的自然落差,形成发电所需要的水头。
水头表示单位重量的水体所具有的势能。
当已经形成水头的水经由压力水管流过安装在水电厂厂房内的水轮机而排至水电厂的下游时,水流带动水轮机的转轮旋转,使水能转变为水轮机的旋转机械能。
水轮机转轮带动发电机转子旋转,由于磁场切割导体,从而在发电机的定子绕组上产生感应电动势。
当发电机与外电路接通时,发电机就向外供电了。
这样,水轮机的旋转机械能又通过发电机转变为电能。
这就是水力发电的过程。
为了实现这种能量的连续转换而修建的水工建筑物和所安装的发电设备及其附属设备的总体,就是水电厂(站)。
水电厂(站)安装的设备主要有水轮机、水轮发电机、变压器、开关设备和辅助设备等,还有为保证各种设备正常运行而设置的测量、监视、控制、保护、信号等电气设备。
2.检修前应做好的准备工作有哪些?答:认真做好检修前的各项准备工作,是完成检修任务的首要条件。
(1)人员的组织。
充分做好动员工作,组织好各班组的劳动力,平衡施工进度,编制班组作业计划,组织劳动竞赛。
将工作任务分解,落实到人。
每一个工作面都应由技术比较全面、熟悉设备和系统的人担任工作负责人。
工作负责人不仅应对所担负的工作全面负责,还应是安全监护人。
全体施工人员应在了解全面工作的基础上弄清楚自己应做的工作,即熟悉图纸,熟悉设备,了解自己所检修设备的工作原理、拆装和修理的方法。
(2)工器具准备。
工器具是完成检修工作任务的物质基础。
检修前应根据检修项目,检查专用工具(包括安全用具)是否齐全完好;检查必需的工具是否足够;专用机械、起重设备和其他起重机械有无缺陷,是否可用。
如果有问题应及时处理,必要时还应对起重设备进行一些试验,以确保其完好可用。
(3)物资准备。
做好物资准备,包括材料、备品、安全用具、消防器材等。
(整理)水轮发电机基本知识介绍
水轮发电机基本知识介绍一. 关于发电机电磁设计水轮发电机电磁设计的任务是按给定的容量、电压、相数、频率、功率因数、转速等额定值和其他技术要求来确定发电机的有效部分尺寸、电磁负荷、绕组数据及性能参数等。
水轮发电机电气参数的选择,主要依据电力系统对电站电气参数和主接线的要求,同时根据《水轮发电机基本技术条件》、《导体和电器设备选择设计技术规定》等相关规范来选择,当然也要根据具体电站的要求。
在电磁设计过程中考核的几个主要参数:磁密,定、转子线圈温升,短路比,主要电抗,效率,飞轮力矩。
二. 电磁设计需要输入的基本技术数据(一)额定容量、有功功率、无功功率和功率因数的关系Φ--发电机输出电流在时间相位上滞后于电压的相位角额定容量S=√3U N I N =22Q P有功功率P=√3U N I N cos φ=S ·cos φ无功功率Q=√3U N I N sin φ=S ·sin φcos φ= SP (二)发电机的电磁计算需要具备以下基本的额定数据:功率/容量,功率因数,电压,转速(极数),频率,相数,飞轮力矩(转运惯量)1. 额定容量(视在功率)或者额定功率(有功功率)S=φcos P (kV A / MV A ) P=水轮机额定出力×发电机效率 (kW / MW )发电机的容量大小更直接反映发电机的发电能力。
有功功率结合功率因数才能完整反映发电机的输出功率能力。
2. 额定功率因数cos φ发电机有功功率一定时,cos φ的减小,可以提高电力系统稳定运行的功率极限,提高发电机的稳定运行水平;同时由于增大了发电机的容量,发电机造价也增加。
相反,提高额定功率因数,可以提高发电机有效材料的利用率,并可提高发电机的效率。
近年来由于电力系统容量的增加,系统装设同步调相机和电力电容器来改善其功率因数,以及远距离超高压输电系统使线路对地电容增大,发电机采用快速励磁系统提高稳定性,使发电机额定功率因数有可能提高。
水轮发电机转动惯量
水轮发电机转动惯量shullun fodlonl一zhuondong guonl旧ng 水轮发电机转动惯.(rotational inertia of hydrogenerator)水枪发电机转动惯盆是发电机转动部分的重tG与其惯性直径D平方的乘积,用GDZ表示,也称为转动部分的飞轮力矩。
转动惯量表明电力系统出现大干扰时,水轮发电机组转动部分保持原来运动状态的能力,所以对电力系统的暂态过程和动稳定有很大影响。
转动惯t对水轮机调节保证计算也有很大影响,转动惯t大,机组甩负荷后的转速上升率如保持一定值,则可允许较大的压力上升率,从而可以减小引水钢管直径或允许增加钢管长度,甚至不设调压井.但增大转动惯t将增加发电机重量和造价,也延长了机组的起动时间。
当水轮发电机基本尺寸确定后,转动惯量GDZ值可按下列经验公式计算GDZ=kD户·”1. 式中D为定子铁芯内径,m‘l:为定子铁芯长度,m;h 为经验系数,一般可按表选取。
经脸系傲裹┌────────┬────┬────┬────┐ │机纽转迫(r/成.) │<100 │100~375 │>375 │ ├────────┼────┼────┼────┤ │经玻系狱《k) │5 .2~5.5│5.1~5。
3│4.5~5.0 │ └────────┴────┴────┴────┘ 大容量低转速水轮发电机组的转动惯t最大已达450000 tf·mZ(4410 kN·mZ)水轮发电机转动惯量目录1 介绍2 结论1 介绍2 结论水轮发电机转动惯量水轮发电机转动惯量及惯性时间常数较小,故机组甩负荷时的转速上升率月值较大,一般大于45%,飞逸转速可达额定转速的2.5一3.5倍。
水轮发电机转动惯量- 介绍水轮发电机转动惯量与同容量立式水轮发电机相比,水轮机的转轮直径可缩小,因此灯泡式机组额定转速可提高1。
%以上.发电机内径可减少25%以上,整个机组的重量(包括水轮机)可减轻25%,是较经济合理的一种机型,多用于工作水头范围为3一25m的低水头水电站。
水轮机调速器培训教程
三联水电水轮机数字调速器(培训教材)武汉三联水电控制设备有限公司2004年10月15日目录第一章水轮机调节的基本任务3一、水轮机调节系统的结构4二、水轮机调节系统的特点4第二章水轮机调速系统的标准和特性7一、水轮机调速系统的标准7二、水轮机调速系统的特性8三、水轮机调速器的动态特征9四、水轮机调节系统的动态特性13第三章水轮机调速器的控制算法15一、PID控制算法15二、桨叶控制器18第四章水轮机微机调速器的硬件23第五章水轮机微机调速器的形式27一、调速器的发展27二、调速器的分类28三、冗余式可编程调速器29第六章水轮机微机调速器的功能和运行34一、参数可调范围35二、功能要求36三、软件49第七章水轮机微机调速器的机械液压执行机构58一、比例伺服阀+数字阀+机械开限/纯手动组成机械冗余结构58二、步进式机械液压系统59第八章水轮机微机调速器的故障处理63一、空载频率摆动63二、负载漂移63三、接力器抖动64四、切换故障65五、甩负荷65六、与水头有关的故障66七、自检66第一章水轮机调节的基本任务水轮发电机组把水能转变为电能供生产、生活使用。
用户在用电过程中除要求供电安全可靠外,对电网电能质量也有十分严格的要求。
按我国电力部门规定,电网的额定频率为50Hz(赫兹),大电网允许的频率偏差为±0.2Hz。
对我国的中小电网来说,系统负荷波动有时会达到其容量的5%~10%;而且即使是大的电力系统,其负荷波动也往往会达到其总容量的2%~3%。
电力系统负荷的不断变化,导致了系统频率的波动。
因此,不断地调节水轮发电机组的输出功率,维持机组的转速(频率)在额定转速(频率)的规定范围内,就是水轮机调节的基本任务。
水轮机调速器是水电站发电机组的重要辅助设备,他与电站那二次回路或计算机监控系统相配合,完成水轮发电机组的开机、停机、增减负荷、紧急停机等任务。
水轮机调速器还可以与其他装置一起完成自动发电控制(AGC)、成组控制、按水位调节等任务。
水轮发电机组惯性比率对调节系统稳定性的影响
水轮发电机组惯性比率对调节系统稳定性的影响摘要:水轮机调节系统是由水轮机控制系统和被控制系统组成的闭环系统,其稳定性始终是一个重要问题。
在水轮机调节系统中,水流惯性时间常数Tw与机组惯性时间常数Ta 的比值称为水轮发电机组惯性比率R1,可综合反映系统水流惯性与机组机械惯性之间的相关特性。
通过统计分析Ta /Tw,指出Tw、Ta的比值是调速器参数设计的重要依据,也是影响调节系统动态特性的重要参数,并提出混流式机组的Ta /Tw>2.0~2.5;通过分析统计资料,指出《水轮机调速器与油压装置技术条件》(JB627-79)中的相关要求偏严,建议PI 型调速器的Tw不大于2.5s,PID调速器的Tw不大于4.0s,Tw /Ta不大于0.4,我国后续颁布的相关标准和规范大多采用Tw/Ta不大于0.4的规定。
随着水轮机调速器技术的不断进步,其适用范围不断扩大,与调速器相关的国家标准的适用范围也进一步提升,《水轮机调速系统技术条件》(GB/T9652.1-2019)将适用条件改为机组惯性比率R1不大于1.2。
目前,常规类型的水电站机组在电网中仍占很大比重,这些类型的水电站机组的惯性比率往往不会太大,而机组惯性比率又是影响调节系统动态特性的重要参数。
因此,本文针对水轮发电机组惯性比率对水轮机调节系统稳定性的影响,选取了一种加速度PID 型水轮机调节系统的数学模型,通过研究不同机型和不同水流惯性时间常数下水轮机调节系统的稳定性,分析水电站合理的机组惯性比率,并给出电站设计的相关建议。
关键词:水轮发电机组;惯性比率;调节系统稳定性引言水轮机的转轮作为水轮机的重要核心部件,其性能的优劣一方面决定机组的效率,另一方面也对机组稳定性具有关键性的作用。
早期由于制造技术的发展限制,转轮上冠、下环与叶片制造以手工铸造铲磨为主,由于叶片与上冠、下环结构过渡区是转轮力学性能上的薄弱区域,因此在机组运行中此区域极易出现裂纹问题。
水轮发电机组调节系统调试中的常见故障分析
水轮机组运行参数
机组运行参数
1水轮发电机组技术参数
1.1水轮机技术参数
1.2发电机技术参数
1.2.2水轮发电机各部温度整定
1推力轴承双螺杆泵及高压减载装置基本参数
3发电机中性点接地变参数
2调速器系统主要技术参数
2.1调速柜设备主要参数:
2.2调速器技术参数
4主变技术参数
1.1.主变技术参数
1.1.1.主变主要技术参数
1.1.
2.冷却条件变化时负载特性表
1.1.3.主变分接开关技术参数。
1.1.4.主变冷却器主要技术参数
1.2.18kV 干式变主要技术参数1.2.1.18kV 干式变额定值
5.1快速闸门
5.2 快速闸门液压系统见表1-2
6压缩空气系统主要技术参数
7技术供水减压阀
7.2泄压安全阀
7.3滤水器主要参数
8、10kV 干式变参数
1.2.3.10kV 干式变额定值
1.2.4.干式变压器过负荷能力。
1.2.5.干式变线圈温度与风机运行状态关系表
1.2.6.照明变有载调压装置主要技术参数
1设备主要技术参数
1.1500kV GIS设备主要参数。
1.1.1SF6气室中含水量PPM参数(见表1):
1.1.2500kV GIS组合电器设备参数(见表3):
1.1.3隔离开关、检修接地开关、快速接地开关、电压互感器、电流互感器、SF6/空气出线套管性能参数(见表3~表6)
1.2发电机出口断路器GCB主要技术参数
1.3封闭母线IPB。
调速器知识
一调理系统参数1水流惯性时间常数 T w水流惯性时间常数是指在额定工况下,表征过水管道中水流惯性的特色时间,其表达式22LV为T a J r GD n r T w Q r LM r3580N r gH r S gH r式中 T w为水流惯性时间常数,Q r为水轮机设计流量,H r为水轮机设计水头,S为每段过水管道的截面面积,L为相应每段过水管道的长度,V为响应每段过水管道的流速,G为重力加快度T w表示过水管道水流的惯性,它是水轮机主动力矩变化存在滞后的主要原由,也是造成调理系统不稳固和动向质量恶化的主要要素。
在其余条件不变时,T w越大,水流惯性越大,水击作用越显着,则调理过程的振幅越大,振荡次数越多,调理时间越长,以致最后高出稳固范围。
2机组惯性时间常数机组惯性时间常数是指机组在额定转速时的动量矩与额定转矩之比。
其表达式为式中 T a为机组惯性时间常数,Jωr为额定转速机遇组的动量矩,2GD为机组飞轮力矩,M r为机组额定转矩,N r为发电机额定功率,n r为机组额定转速T a的物理意义是:在与发出额定功率相当的额定转矩下,机组由静止达到额定转速所需要的时间。
T a越大,越有益于调理系统的稳固,并且在调理过程中能够奏效转速的偏差和减缓转速的变化,但有可能使调理时间变长。
若T a过小,将使调理系统难以稳固。
3 永态转差系数b p、永态调差系数e p调理系统的静特征有两种状况:图1( a)为无差静特征,表示机组卖力无论为什么值,调理系统均保持机组转速n0,即静态偏差为零。
图1( b)为有差静特征,当机组卖力增大时,调理系统将保持较低的机组转速,即静态偏差不为零,永态调差系数e p定义为调速系统静特征曲线图上某一规定点的斜率的负数。
(反应为功率反应)图 1( c)也为有差静特征,它以接力器行程Y 为横坐标,以机组转速n 为纵坐标(反应为导叶反应)。
永态转差系数b p为x f x fb p e p0 1.0y=Y/Y max0 1.0p=P/P r图1(b)有差静特征图1(c)有差静特征永态转差系数b p 是电力系统各机组负荷分派的重点参数,依据电厂在系统的作用不一样,各电厂调速器的b p 有所不一样。
水轮机组运行参数
机组运行参数
1水轮发电机组技术参数
1.1水轮机技术参数
1.2发电机技术参数
1.2.2水轮发电机各部温度整定
1推力轴承双螺杆泵及高压减载装置基本参数
3发电机中性点接地变参数
2调速器系统主要技术参数
2.1调速柜设备主要参数:
2.2调速器技术参数
4主变技术参数
1.1.主变技术参数
1.1.1.主变主要技术参数
1.1.
2.冷却条件变化时负载特性表
1.1.3.主变分接开关技术参数。
1.1.4.主变冷却器主要技术参数
1.2.18kV 干式变主要技术参数1.2.1.18kV 干式变额定值
5.1快速闸门
5.2 快速闸门液压系统见表1-2
6压缩空气系统主要技术参数
7技术供水减压阀
7.2泄压安全阀
7.3滤水器主要参数
8、10kV 干式变参数
1.2.3.10kV 干式变额定值
1.2.4.干式变压器过负荷能力。
1.2.5.干式变线圈温度与风机运行状态关系表
1.2.6.照明变有载调压装置主要技术参数
1设备主要技术参数
1.1500kV GIS设备主要参数。
1.1.1SF6气室中含水量PPM参数(见表1):
1.1.2500kV GIS组合电器设备参数(见表3):
1.1.3隔离开关、检修接地开关、快速接地开关、电压互感器、电流互感器、SF6/空气出线套管性能参数(见表3~表6)
1.2发电机出口断路器GCB主要技术参数
1.3封闭母线IPB。
2023年水电自动装置检修工第二版中级工理论题库
(11-044)电力职业技能鉴定考试《水电自动装置检修工(第二版)》中级工理论题库一、选择题(请将对的答案的代号填入括号内,每题1分,共100题)1. 处在静止状态的水中,各点位置高度和测压管高度之()为一常数。
(A)积; (B)商; (C)和; (D)差。
答案:C2. 电路换路瞬间电流不能发生突变的元件是()。
(A)电阻元件; (B)电感元件; (C)电容元件; (D)热敏元件。
答案:B3. 半导体中的自由电子是指()。
(A)价电子; (B)组成共价键的电子; (C)与空穴复合的电子; (D)挣脱共价键束缚的电子。
答案:D4. 当受压面不是水平放置时,静水总压力作用点()受压面的形心。
(A)高于; (B)等于; (C)低于; (D)或高于或低于。
答案:C5. 在交流电路中,容抗与频率成()。
(A)正比; (B)反比; (C)非线性; (D)二次函数关系。
答案:B6. R1和R2为串联两电阻,已知R1=5R2,若R1上消耗功率为1W,则R2上消耗功率为()。
(A)5W; (B)20W; (C)0.2W; (D)10W。
答案:C7. 两只电阻并联时,其上的功率比为9:4;若将它们串联,则两电阻上的功率比为()。
(A)9:4; (B)3:2; (C)4:9; (D)2:3。
8. 一只220V/60W的灯泡与一只220V/45W的灯泡串联接于300V电源上,则()。
(A)60W灯泡较亮; (B)45W灯泡较亮; (C)同样亮; (D)都不亮。
答案:B9. 在开关的位置中,表达是实验位置的英语单词是()。
(A)OPEN; (B)CLOSE; (C)TEST; (D)CONNECTED。
答案:C10. 电压表A的电阻是2023Ω,电压表B的电阻是400Ω,量程都是15V,当它们串联在12V的电源上,电压表B的读数将是()。
(A)12V; (B)10V; (C)2V; (D)1V。
答案:C11. 在正弦交流纯电感电路中,电压、电流的数值关系是()。
浅析水轮机调保计算
浅析水轮机调保计算作者:黎丽来源:《科技风》2016年第21期摘要:水轮机调保计算能够将调节系统稳定、机组惯性力矩、水流惯性力矩三者之间的问题予以协调解决,并且能够为飞轮力矩、导叶关闭规律、导叶关闭时间的确定打下良好的基础。
本文以洞巴水电站为例,深入探讨了水轮机调保计算,具有一定的参考价值。
关键词:水轮机;调保;计算水轮机调保计算主要研究水轮机组超负荷或者甩负荷时调节系统的过渡过程特征,计算出尾水管的最大真空度、蜗壳的压力变化,以及水轮机组的转速变化,本文以洞巴水电站为例,就水轮机调保计算进行探讨。
1 洞巴水电站的基本参数1)额定水头:74.0m;2)最大水头:87.0m;3)机组台数:3台;4)单机设计流量:36.3m3/s;5)三机设计流量:108.9m3/s;6)水轮机型号:HLA630-LJ-220;7)额定转速:300r/min(东风电机厂提供);8)机组转动惯量:GD2=550t·m2(东风电机厂提供);9)水锤压力波传播速度:C=1342.8m/s(水工提供)。
2 水轮机在额定水头(74m)下额定负荷时∑LiVi值由于该电站是联合供水,所以只计算引水管最长的1#机,其结果:1)平均流速计算:Vcp =≈4.705(m/s);2)水流惯性时间常数Tw≈3.568(秒);因为TW =3.568秒小于4.0秒,所以,不必设置调压设备。
3)导叶总关闭时间TS。
根据TW=3.568秒,并按机组甩负荷时允许压力上升值ξmax=0.5(水头在100米以下时)。
压力管道的特性系数ρ≈ 4.055。
A:查曲线表选取TS=10秒时:机组速率上升值为:≈0.433修正值:βmax=1.1βm=1.1×0.433≈0.4763B:查曲线表选取TS=11秒时:机组速率上升值为:≈0.44731修正值:βmax =1.1βm =1.1×0.44731≈0.4920C:查曲线表选取TS=12秒时:机组速率上升值为:≈0.4609修正值:βmax =1.1βm =1.1×0.4609≈0.5073 水轮机调保计算成果表洞巴水电站压力输水管系统采用一管三机联合供水方式,主管由直径为5.5m的引水隧洞和压力钢管组成,主管后接三条支管,分别给三台机组供水。
水轮机控制策略分析与研究论文:水轮机微机调速器控制策略分析与研究
水轮机控制策略分析与研究论文:水轮机微机调速器控制策略分析与研究摘要:水轮机调速器分为机械液压型、电气液压型和微机调速器,前两种只能采用常规PI或PID控制策略,难以满足和提高大型水轮机组或孤立电网带负荷机组调节系统的控制品质和要求,因此变参数PID调节、自适应控制、模糊控制等复杂和更高级的控制策略只能依靠计算机来完成,由于水轮机调节系统是一个具有非线性、时变性的非最小相位系统,采用线性理论分析和设计的调速器无法得到满意的结果,因此对微机调速器的结构和控制策略进行对比分析,从中找出较合适的控制结构和策略。
关键词:水轮机;微机调速器;控制策略;非线性;智能控制1水轮机调节系统组成水轮机调速器的基本任务就是根据电力系统负荷的变化来调节导叶开度y使水轮机调整出力mt,进而调整发电机组的有功功率输出,并维持机组转速x(频率)在规定的范围内。
水轮机调节系统主要由调速器和被控对象组成。
被控对象由水轮机组段系统和发电机系统组成;水轮机组段系统除了水轮机本体外还包括水力系统,如有压引水道、调压井及尾水等;发电机系统包括机械惯性、电压调节和电气3部分组成。
因此控制系统是一个集水力、机械、电气为一体的复杂系统[1]。
在实际工程中,系统数学模型的建立可以合并和忽略一些不重要的参数,当把水击作为刚性水击考虑时,引水系统为单机单管,不考虑水流摩擦损失时,水轮机组段的传递函数为[2]:Gt(s) = ey1-e Tws1+eqhTws(1)Ts=LQrg HrSe =eqyehey-eqh式中:Tw为水流惯性时间常数;ey、eh为接力器行程、水头对力矩的传递系数;eqy、eqh为接力器行程、水头对流量的传递系数。
调速器电液机构传递函数为:Gy(s) =1Tys+1(2)式中:Ty为接力器时间常数。
发电机系统常用的数学模型有一阶、二阶、三阶和高阶,在分析水轮机调节系统时可以采用一阶模型,其传递函数为:Gs(s) =1Tas+en(3)en= eg-exTa=GD2n2r3 580Preg= mg x式中:Ta为机组惯性时间常数;GD2为水轮发电机飞轮力矩(kN·m),包括发电机转子、水轮机转轮和大轴、水轮机转轮区水流三部分的力矩;eg为发电机负荷自调整系数;ex为机组转速对力矩的传递系数。
水轮发电机值班员技能鉴定计算题
4。
1。
4 计算题(计算结果保留小数点后两位)La5D1001 绕制一个1k Ω的电烙铁芯,试求需要截面积0.02mm 2的镍铬线多长?(ρ=1.5Ω·mm 2/m )解:由公式R =ρL /S 得:L =RS /ρ=0。
02×1 000/1.5=13.33(m )答:需13.33m 长的镍铬线。
La5D1002 有一根长100m 、截面积为0。
1mm 2的导线,求它的电阻值是多少?(ρ=0.017 5Ω·mm 2/m)解:R =ρL /S =0.017 5×100/0。
1=17.5(Ω) 答:电阻值为17.5Ω。
La4D1003 一只轮船,船体自重500t ,允许最大载货量为2000t ,问该船的排水量是多少立方米?解:因为是漂浮,则有:F 浮=G Σ F 浮=ρgV 排所以:ρgV 排=G 船+G 货V 排=G gρ+船水=3(500+2000)1000g110g⨯⨯⨯⨯=2500(m 3) 答:该船的排水量是2500m 3。
La4D2004 某水轮发电机组,带有功负荷80MW ,无功负荷-60Mvar,问功率因数是多少?解:S =100(MV A)cos ϕ=P /S =0.8答:功率因数为0。
8。
La4D4005 将下列二进制数化为十进制数:① (1001)=?② (101111)=? 解:(1001)2=(9)10 (101111)2=(47)10答:二进制数1001、101111分别为十进制数9、47。
La4D5006 将下列十进制数化为二进制数:①(18);②(256)。
解:(18)10 =(10 010)2 (256)10= (100 000 000)2答:十进制数18、256分别为十进制数10 010、100 000 000.G 货La3D3007 如图D-1(a )所示的电路中,电源内阻r =0,R 1=2Ω,R 2=R 3=3Ω,R 4=1Ω,R 5=5Ω,E =2V ,求支路电流I 1、I 2、I 4。
调速器知识
调速器知识文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-一调节系统参数1 水流惯性时间常数wT水流惯性时间常数是指在额定工况下,表征过水管道中水流惯性的特征时间,其表达式为223580r rar rJ GD nTM Nω==rwr rLVQ LTgH S gH==∑∑式中wT为水流惯性时间常数,Qr为水轮机设计流量,Hr为水轮机设计水头,S为每段过水管道的截面面积,L为相应每段过水管道的长度,V为响应每段过水管道的流速,G为重力加速度wT表示过水管道水流的惯性,它是水轮机主动力矩变化存在滞后的主要原因,也是造成调节系统不稳定和动态品质恶化的主要因素。
在其他条件不变时,wT越大,水流惯性越大,水击作用越显着,则调节过程的振幅越大,振荡次数越多,调节时间越长,以至最后超出稳定范围。
2 机组惯性时间常数机组惯性时间常数是指机组在额定转速时的动量矩与额定转矩之比。
其表达式为式中Ta为机组惯性时间常数,Jωr为额定转速时机组的动量矩,GD2为机组飞轮力矩,Mr为机组额定转矩,Nr为发电机额定功率,n r 为机组额定转速T a 的物理意义是:在与发出额定功率相当的额定转矩下,机组由静止达到额定转速所需要的时间。
T a 越大,越有利于调节系统的稳定,而且在调节过程中能够见效转速的偏差和减缓转速的变化,但有可能使调节时间变长。
若T a 过小,将使调节系统难以稳定。
3永态转差系数b p 、永态调差系数e p调节系统的静特性有两种情况:图1(a )为无差静特性,表示机组出力不论为何值,调节系统均保持机组转速n 0,即静态误差为零。
图1(b )为有差静特性,当机组出力增大时,调节系统将保持较低的机组转速,即静态误差不为零,永态调差系数e p 定义为调速系统静特性曲线图上某一规定点的斜率的负数。
(反馈为功率反馈)图1(c )也为有差静特性,它以接力器行程Y 为横坐标,以机组转速n 为纵坐标 (反馈为导叶反馈)。
水轮发电机组值班员基础理论知识模拟18
[模拟] 水轮发电机组值班员基础理论知识模拟18简答题第1题:水电站技术供水的净化有哪两类?试分别简述其所用设备的工作原理。
_____参考答案:技术供水的净化,一类为清除污物,一类为清除泥沙。
清除污物的设备是滤水器。
它是通过让水流经过一定孔径的滤网来净化水的。
清除泥沙的设备有水力旋流器和沉淀池。
水力旋流器让水流进入旋流器内高速旋转,在离心力的作用下,沙颗粒趋向器壁,并旋转向下,达到清除泥沙的目的。
沉淀池是一个矩形水池,水由进口缓慢流到出口,流速很小,这样水中的悬浮物和泥沙便沉到池底。
详细解答:第2题:油劣化的根本原因是什么?加速油劣化的因素有哪些?_____参考答案:油劣化的根本原因是油和空气中的氧起了作用,油被氧化了。
加速油劣化的因素有水分、温度、空气、天然光线、电流和其他因素,如金属的氧化作用、检修后清洗不良等。
详细解答:第3题:厂用变压器的分接头有何作用?_____参考答案:变压器分接头的作用是改变变压器绕组的匝数比(即变比)而达到改变二次侧电压的目的。
通过调整厂用变压器的分接头,可保证厂用母线电压质量。
详细解答:第4题:轴电流有什么危害?_____参考答案:由于电流通过主轴、轴承、机座而接地,从而在轴颈和轴瓦之间产生小电弧的侵蚀作用,破坏油膜使轴承合金逐渐黏吸到轴颈上去,破坏轴瓦的良好工作面,引起轴承的过热,甚至把轴承合金熔化。
此外,由于电流的长期电解作用,也会使润滑油变质发黑,降低润滑性能,使轴承温度升高。
详细解答:第5题:哪些设备应作机动性检查?_____参考答案:自然条件变化(如洪水、台风等)后受影响的设备;新投产和新检修后刚投运的设备;操作后的设备;存在较严重缺陷的设备;事故处理后或受其影响的设备;发生过故障的同类型设备。
详细解答:第6题:什么是变压器绝缘老化的“六度法则”?_____参考答案:当变压器绕组绝缘温度在80~130℃范围内,温度每升高6℃,其绝缘老化速度将增加一倍,即温度每升高6℃,绝缘寿命就降低1/2,这就是绝缘老化的“六度法则”。
水轮发电机的飞轮力矩和机组的惯性时间常数
水轮发电机的飞轮力矩和机组的惯性时间常数一.水轮发电机的飞轮力矩绕定轴转动的物体都具有一定的转动惯量,转动惯量是物体在转动中的惯性大小的量度,即反映物体维持原有运动状态的能力。
转动惯量_,是指刚体内各质点的质量与其到转轴距离平方的乘积之和。
由转动惯量的定义可以看出,在质量相同的情况下,转动惯量与质量的分布有关,另外还与转轴的位置有关。
在一定大小的力矩作用下,转动惯量越大,角加速度越小,也就是角速度越不容易改变。
利用转动物体的这种性质,可以减少机组转速的周期性波动,并且在机组发生甩负荷时,机组的转速不至于急剧上升。
转动惯量对水轮发电机组的稳定,以及电力系统的稳定都有着极其重要的作用;因此,水轮发电机组的转动部分需要有一定的转动惯量。
一些小型机组因为转动部分的质量不够大,往往需要装设一个飞轮来增加转动惯量。
工程上往往用飞轮力矩GD2来代替转动惯量,而飞轮力矩并不等于转动陨量,它们之间的关系近似为GD2=4gJ。
转动部分的重量与其惯性直径平方的乘积称为飞轮力矩GD2,对于给定的刚体和转轴,它是一个常数。
GD2不能简单的看成是转子重量乘以某一直径的平方;只有在均质圆环的特殊情况下,才可以近似是这种关系。
由于飞轮力矩主要集中在发电机的转子,转子的飞轮力矩约占整个机组飞轮力矩的90%左右;所以常用发电机转子的飞轮力矩来代表机组转动部分的飞轮力矩。
如果飞轮力矩过大,不但使发电机的重量和尺寸加大,制造成本提高,并且还会恶化机组的调节性能,因而对电力系统的暂态过程和动态稳定也有很大的影响。
反之,若飞轮力矩太小,为限制转速上升率,则要求导叶加快关闭速度,这将使水轮机的引水压力管道的水压上升率升高。
因此GD2的值与机组的转速上升率、水压上升率,以及调节时间等参数相互矛盾又相互制约着。
当发电机的基本尺寸决定以后,GD2的数值可以按经验公式估算GD2= KD3.48L式中D——定子铁芯内径,m;L ――定子铁芯长度,m;K --- 经验系数,见表1-1表1-1 K值表二。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水轮发电机的飞轮力矩和机组的惯性时间常数
一.水轮发电机的飞轮力矩
绕定轴转动的物体都具有一定的转动惯量,转动惯量是物体在转动中的惯性大小的量度,即反映物体维持原有运动状态的能力。
转动惯量_,是指刚体内各质点的质量与其到转轴距离平方的乘积之和。
由转动惯量的定义可以看出,在质量相同的情况下,转动惯量与质量的分布有关,另外还与转轴的位置有关。
在一定大小的力矩作用下,转动惯量越大,角加速度越小,也就是角速度越不容易改变。
利用转动物体的这种性质,可以减少机组转速的周期性波动,并且在机组发生甩负荷时,机组的转速不至于急剧上升。
转动惯量对水轮发电机组的稳定,以及电力系统的稳定都有着极其重要的作用;因此,水轮发电机组的转动部分需要有一定的转动惯量。
一些小型机组因为转动部分的质量不够大,往往需要装设一个飞轮来增加转动惯量。
工程上往往用飞轮力矩GD2来代替转动惯量,而飞轮力矩并不等于转动陨量,它们之间的关系近似为GD2=4gJ。
转动部分的重量与其惯性直径平方的乘积称为飞轮力矩GD2,对于给定的刚体和转轴,它是一个常数。
GD2不能简单的看成是转子重量乘以某一直径的平方;只有在均质圆环的特殊情况下,才可以近似是这种关系。
由于飞轮力矩主要集中在发电机的转子,转子的飞轮力矩约占整个机组飞轮力矩的90%左右;所以常用发电机转子的飞轮力矩来代表机组转动部分的飞轮力矩。
如果飞轮力矩过大,不但使发电机的重量和尺寸加大,制造成本提高,并且还会恶化机组的调节性能,因而对电力系统的暂态过程和动态稳定也有很大的影响。
反之,若飞轮力矩太小,为限制转速上升率,则要求导叶加快关闭速度,这将使水轮机的引水压力管道的水压上升率升高。
因此GD2的值与机组的转速上升率、水压上升率,以及调节时间等参数相互矛盾又相互制约着。
当发电机的基本尺寸决定以后,GD2的数值可以按经验公式估算
GD2=KD3.48L
式中D——定子铁芯内径,m;
L——定子铁芯长度,m;
K——经验系数,见表1-1。
表1-1 K 值表
转速(r/min)54.6~93.8 100~375 >375
K 4.7~5.1 4.9~5.3 5.1~5.5
二。
.机组的惯性时间常数
这是一个与转动惯量相联系的量,表示机组在额定转矩作用下,把转子从静止状态加速到额定转速所需的时间,用Tmec表示,单位为秒(s)。
Tmec的大小就表征了机组本身惯性的大小,可按下式计算
式中PN--额定功率,也有用额定容量(kV A)代替,kW;
nN——额定转速,r/min;
GD2——飞轮力矩,tm2。
从式中可以看出,惯性时间常数与飞轮力矩成正比,与额定转速的平方成正比,而与额定容量成反比。
我国水轮发电机组的惯性时间常数取值范围见表1-2。
表1-2 惯性时间常数的取值范围
额定转速(r/min) 750~428.6 375~200 <200
Tmec (s)
3~6 4~8 6~10。