数学建模软件LinDoLinGo的简介(修改版)

合集下载

LINDO与LINGO软件介绍

LINDO与LINGO软件介绍
15
查看模型的统计信息, 用Reports/statistics查看模型的统计信息, 查看模型的统计信息
第一行:模型有 行 约束4行),2个变量 个变量, 个整数变量 个整数变量( 个 变量 变量), 第一行:模型有5行(约束 行), 个变量,0个整数变量(0个0-1变量), 不是二次规划. 不是二次规划 第二行:非零系数10个 约束中非零系数6个 其中 个为1或 , 其中5个为 第二行:非零系数 个,约束中非零系数 个(其中 个为 或-1),模型密度 密度=非零系数 行数* 变量数+ 为0.667(密度 非零系数 行数*(变量数+1)]) . 密度 非零系数/[行数 变量数 第三行的意思:按绝对值看,系数最小、最大分别为1和 第三行的意思:按绝对值看,系数最小、最大分别为 和8. 第四行的意思:模型目标为极大化;小于等于、等于、 第四行的意思:模型目标为极大化;小于等于、等于、大于等于约束分别有 广义上界约束(GUBS)不超过 个;变量上界约束 不超过2个 变量上界约束(VUBS)不 2、0、2个;广义上界约束 不超过 不 少于0 所谓GUBS,是指一组不含有相同变量的约束;所谓 少于0个。所谓 ,是指一组不含有相同变量的约束;所谓VUBS,是 , 指一个蕴涵变量上界的约束,如从约束X1+X2-X3=0可以看出,若X3=0,则 可以看出, 指一个蕴涵变量上界的约束,如从约束 可以看出 , X1=0,X2=0(因为有非负限制),因此 ),因此 是一个VUBS约束。 约束。 , (因为有非负限制),因此X1+X2-X3=0是一个 是一个 约束 第五行的意思:只含1个变量的约束个数=0 冗余的列数=0 第五行的意思:只含1个变量的约束个数 0个;冗余的列数 0个

版本信息,可以通过 查询.我们还 版本信息,可以通过help/about查询 我们还 查询 可以查到允许的变量个数、约束个数、 可以查到允许的变量个数、约束个数、整数 变量个数、非零系数个数等. 变量个数、非零系数个数等

Lingo简介

Lingo简介

6. “ltx”:Lindo格式的模型文件;
7. “mps”:MPS(数学规划系统) Lingo软件模型一般由5部分组成: 1. 集合段(SETS):“SETS:”开始,“ENDSETS”结束; 2. 目标与约束段; 3. 数据段(DATA):“DATA:”开始,“ENDDATA”结束; 4. 初始化段(INIT):“INIT:”开始,“ENDINIT”结束;
无限
800 3200
无限
4000 16000
无限
Lindo/Lingo 软件简介
Lindo是英文Linear INteractive and Discrete Optimizer 字母的缩写,可求解线性规划(LP)和二次规划(QP)。
Lingo是英文Linear INteractive and General Optimizer 字母的缩写,除了具有Lindo所有功能之外,还可以用于求 解非线性规划(NLP),也可用于一些线性和非线性方程 的求解等。
Lindo/Lingo 软件简介
Lindo/Lingo内部求解器: 1. 直接求解程序(Direct Solver)
2. 线性优化求解程序(Linear Solver)
3. 非线性优化求解程序(Nonlinear Solver) 4. 分支定界管理程序(Branch and Bound Manager)
Lindo/Lingo 软件简介
美国芝加哥大学 Linus Schrage 教授于1980年前后开发 的一套专门用于求解最优化问题的软件包。 软件包括:Lindo、Lingo、Lindo API以及What’sBest! 这四款软件分为演示版(试用版)和正式版,两者的区别 在于求解问题的规模不同。正式版又可以分为求解包 (Solver Suite)、高级版(Super)、超级版(Hyper)、 工业版(Industrial)、扩展版(Extended)。

优化建模入门与LINGOLINDO简介

优化建模入门与LINGOLINDO简介

优化建模
整数规划问题对应的松弛问题
取消整数规划中决策变量为整数的限制(松弛),对 应的连续优化问题称为原问题的松弛问题 整数规划问题 最优解
最优解 凸多边形的某个顶点
求解LP的基本思想
凸多面体的某个顶点
思路:从可行域的某一顶点开始,只需在有限多个 顶点中一个一个找下去,一定能得到最优解。
LP的通常解法是单纯形法(G. B. Dantzig, 1947)
优化建模
LP其他算法
内点算法(Interior point method)
• 20世纪80年代人们提出的一类新的算法——内点算法 • 也是迭代法,但不再从可行域的一个顶点转换到另一个 顶点,而是直接从可行域的内部逼近最优解。
f ( x)
优化建模
s.t.
hi ( x) 0, i 1,...,m g j ( x) 0, j 1,...,l
整数规划问题的分类
• 整数线性规划(ILP) 目标和约束均为线性函数 • 整数非线性规划(NLP) 目标或约束中存在非线性函数 • 纯(全)整数规划(PIP) 决策变量均为整数 • 混合整数规划(MIP) 决策变量有整数,也有实数 • 0-1规划 决策变量只取0或1
决策变量:周一至周日每天(新)聘用人数 x1, x2,x7 目标函数:7天(新)聘用人数之和 约束条件:周一至周日每天需要人数
设系统已进入稳态(不是开始的几周) 连续工作5天 周一工作的应是(上)周四至周一聘用的 x4 x5 x6 x7 x1 50
min s.t. z x1 x2 x3 x4 x5 x6 x7 x1 x4 x5 x6 x7 50
优化建模
优化问题的一般形式
优化问题三要素:决策变量;目标函数;约束条件 目标函数 约 束 条 件

运筹学软件(LINGO)简介

运筹学软件(LINGO)简介

目标与约束段
对于产品数量的平衡方程而言, 由于下标I=1时的约束关系 与I=2,3,4时有所区别(因为定义的变量INV是不包含INV(0)), 因 此把I=1的约束关系单独写出“INV(1)=10+RP(1)+OP(1)-DEM(1);”, 而对I=2,3,4对应的约束, 增加了一个逻辑表达式来刻划: @FOR(QUARTERS(I)|I#GT#1: INV(I)=INV(I-1)+RP(I)+OP(I)-DEM(I););
② 变量定界函数 @GIN(X): @BIN(X): @FREE(X): 限制X为整数. 限制X为0或1. 取消对X的符号限制.
@BND(L,X,U): 限制 L ≤ X ≤ U .
注: 有关其它函数的介绍, 请参考LINGO的帮助文件.
4、运算符说明 ① 运算符 算数运算符: +(加法), -(减法或负号), *(乘法), /(除法), ^(求幂). 关系运算符: <(即<=,小于等于), >(即>=,大于等于). 注:优化模型中的约束一般没有严格小于、严格大于关系. =(等于),
逻辑运算符: #AND#(与), #EQ#(等于), #OR#(或), #NE#(不等于), #NOT#(非); #GT#(大于).
#GE#(大于等于), #LT#(小于),#LE#(小于等于).
注: 逻辑运算的结果为“真”(TRUE)和“假”(FALSE), LINGO 中用数字1代表TRUE, 其它值都是FALSE.
2、状态窗口说明(例1)
Variables(变量数量) Total(变量总数) Nonlinear(非线性变量) Integer(整数数量)
注:由于LINGO对中文操作系 统的兼容性不好, 所以有些 显示字符和单词被截掉了.

lindo与lingo软件简介

lindo与lingo软件简介

Reduced Cost 0.8823973E-07 0.000000
Slack or Surplus Dual Price -7.161290 -1.000000 0.9677434E-01 0.000000 0.000000 -1.032258
2007-4-16 21
例 8
max f 98 x1 277 x2 x 0.3 x1 x2 2 x
2 1 2 2 2 3
model: min=-3*x1^2-x2^2-2*x3^2; x1^2+x2^2+x3^2-3=0; -x1+x2>=0; end
lifengbing 2007-4-16 18
运行结果如下:
Local optimal solution found at iteration: 37 Objective value: -6.000000
演示
Variable Value X1 0.9999995 X2 0.9999992
Reduced Cost 0.000000 0.000000
Row Slack or Surplus Dual Price 1 -1.000000 -1.000000
lifengbing
2007-4-16
15
例 5
2 1
2 2
x1 x2 100 x1 2 x2 x , x Z 1 2
model: max=98*x1+277*x2-x1^2-0.3*x1*x2-2*x2^2; x1+x2<100; x1<2*x2; @gin(x1); @gin(x2); end
lifengbing 2007-4-16 22

数学建模Lingo软件简介

数学建模Lingo软件简介

版本类型 总变量数 整数变量数 非线性变量数 约束数
演示版 求解包 高级版 超级版 工业版 扩展版
300 500 2000 8000 32000 无限
30 50 200 800 3200 无限
30 50 200 800 3200 无限
150 250 1000 4000 16000 无限
Lingo(Linear Interactive and General Optimizer),即交互 式的线性和通用优化求解器,可求解线性规划,也可以求解非 线性规划,还可以用于一些线性和非线性方程组的求解等。 Lingo软件的最大特),而且执行速度很快。Lingo实际上还是最 优化问题的一种建模语言,包括许多常用的数学函数共建立优 化模型时调用,并可以接受其它数据文件。
2. 建立LINDO/LINGO优化模型需要注意的几个基本问题
1. 尽量使用实数优化模型,尽量减少证书约束和整数变 量的个数;
2. 尽量使用光滑优化模型,尽量避免使用非光滑函数; 3. 尽量使用线性优化模型,尽量减少非线性约束和非线 性变量的个数; 4. 合理设定变量的上下界,尽可能给出变量的初始值; 5. 模型中使用的单位的数量级要适当。
演示版和正式版的基本功能是类似的,只是试用版能够
求解问题的规模受到严格限制,对于规模稍微大些的问题就不 能求解。即使对于正式版,通常也被分成求解包(solver suite)、 高级版(super)、超级版(hyper)、工业版(industrial)、扩展版 (extended)等不同档次的版本,不同档次的版本的区别也在于 能够求解的问题的规模大小不同,下表给出了不同版本 LINGO程序对求解规模的限制:
LINDO,LINGO,LINDO API 和 What’s Best! 在最优化软件的市场上占有很大的份额,尤其在供微机上使用 的最优化软件的市场上,上述软件产品具有绝对的优势。根据 LINDO公司主页()上提供的信息,位列 全球《财富》杂志500强的企业中一半以上使用上述产品,其 中位列全球《财富》杂志25强企业中有23家使用上述产品。读 者可以从上述主页下载上面4种软件的演示版和大量应用例子。

4-1 LINGO软件简介

4-1 LINGO软件简介

选项卡—— 通用求解器
对偶计算内容: 对偶价格及敏 感性分析
选项卡—— 线性求解器
求解时的算法: 自动选择算法 原始单纯形法 对偶单纯形法 内点法
1.3 建立线性优化模型

优化问题题
max Z = 140X 1 + 100X 2 0.9 X 1 + 0.5 X 2 632.5 X 1 + X 2 1000 X1 , X 2 0
Reduced Cost

基变量的reduce cost 值应为0,对于非基 变量Xj相应的reduce cost值表示Xj增加一 个单位(此时假定其他非基变量保持不变) 时目标函数减小的量(max 型问题)。 Rreduce Cost 值为0时,表示微小扰动不
影响目标函数。
Dual Price
8.0试用版,最多可求解包括300个变量 和150个约束的线性规划问题。 目前LINGO的较新版本为9.0(2005)
LINGO 的求解机制与结果类型

求解机制: LINGO 的求解线性规划问题采用单纯形法 或内点法 结果类型 不可行(No feasible solution) 可行(Feasible) 有最优解(Optimal Solution) 解无界(Unbounded Solution)
灵敏度分析的内容: 目标函数系数在什么范围变化时(此时假 定其它系数保持不变),最优解不变化 约束右端项在什么范围变化时(此时假定 其它系数保持不变),对应项约束的对偶 价格(边际值)不变。 对偶问题
Min W 632.5Y 1 1000Y 2 0.9Y 1 1.0Y 2 140 0.5Y 1 1.0Y 2 100 Y1 , Y 2 0
对本例而言: (约束1)在500~900范围内变化时,对 偶价格(边际值)不变=100 (约束2)在702.8 ~1265范围内变化时, (边际值)不变=50

LINGO软件介绍

LINGO软件介绍

例:邮局一周中每天需要不同数目的雇员,设周一 至少20人,周二至少16人,13,16,19,14,12人,又 规定应聘者需连续工作5天,问邮局每天聘多少雇 员才能既满足需求,又使聘用总人数最少。 min =s1+s2+s3+s4+s5+s6+s7; s1+s4+s5+s6+s7>=20; !周1雇员数; s1+s2+s5+s6+s7>=16; !周2雇员数; s1+s2+s3+s6+s7>=13; !周3雇员数; s1+s2+s3+s4+s7>=16; !周4雇员数; s1+s2+s3+s4+s5>=19; !周5雇员数; s2+s3+s4+s5+s6>=14; !周6雇员数; s3+s4+s5+s6+s7>=12; !周7雇员数;
五个基本的组成部分: 1.变量定义; 2.数据输入; 3.目标函数; 4.约束; 5.变量取值范围。
结束。 (1) 每条语句后必须使用分号“;”结束。问题 ) 每条语句后必须使用分号“ 模型必须由MODEL命令开始,END结束。 命令开始, 结束。 模型必须由 命令开始 结束 命令来作为输入问题模型的开始, (2) 用MODEL命令来作为输入问题模型的开始, ) 命令来作为输入问题模型的开始 格式为MODEL:statement (语句)。 语句)。 格式为 : (3) 目标函数必须由“min =”或“max =”开头。 开头。 ) 目标函数必须由“ 或 开头 (4) 数字与变量之间 变量与变量之间要使用运 ) 数字与变量之间,变量与变量之间要使用运 算符。 如 号等 号等) 算符。(如*号等

LINGO软件介绍

LINGO软件介绍

(1) LINGO 软件介绍LINGO 是一种专门用于求解数学规划问题的软件包。

LINGO 主要用于求解线性规划、非线性规划、二次规划、动态规划和整数规划等问题,也可以用于求解一些线性和非线性方程组及代数方程求根等。

LINGO 中包含了一种建模语言和大量的常用函数,可供使用者在建立数学规划问题的模型时调用。

(2) 示例例如,用LINGO 求解线性规划问题:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧==≥≥+≥+≥+≥+≥+++≥++++++++++=4,3,2,1;2,1,01002001100170010002000..153751511572521min 241423132212211124232221141312112423222114131211j i x x x xx x x x x x x x x x x x x t s x x x x x x x x z ij只需要打开LINGO ,然后按照下面的操作进行即可。

1、 模型的输入当打开LINGO 后,屏幕将出现如图1所示的窗口。

标题为“LINGO ”的窗口是主窗口,它包含所有的其他窗口以及所有命令菜单和工具栏。

里面的空白窗口用于输入LINGO 的程序代码,代码格式如下:MODEL:图1min=21*x11+25*x12+7*x13+15*x14+51*x21+51*x22+37*x23+15*x24; x11+x12+x13+x14>=2000; x21+x22+x23+x24>=1000; x11+x21>=1700;x12+x22>=1100;x13+x23>=200; x14+x24>=100; END2、 执行从Solve 菜单选择Solve 命令,或者在窗口顶部的工具栏里按Solve 按钮,LINGO 就会先对模型进行编译,检查模型是否具有数学意义以及是否符合语法要求。

如果模型不能通过这一步检查,会看到报错信息,并指出出错的语句。

数学建模软件LinDoLinGo的简介(修改)

数学建模软件LinDoLinGo的简介(修改)

X——表示变量X可取任意实数值。 GIN X——表示变量X只取非负整数值。 INT X——表示变量X只能取0或1。 SLB X value——表示变量X以value为下界。 SUB X value——表示变量X以value为上界。 FREE m——表示问题的前m个变量为自由变量 GIN m——表示问题前m个变量为非负整数值 INT m——表示问题前m个变量为0-1变量。
LINGO 示例
查看简单例子
LINHGO程序
Lindo模型到Lingo模型的转换
“ST”在Lingo模型中不再需要,所以删除了; 在每个系数与变量之间增加了运算符“*”;
将目标函数的表示方式从“MAX”变成“MAX=”;
每行(目标、约束和说明语句)后面均增加了一
个分号“;”; 约束的名字被放ngo中模型以“Model:”开始,以“END”结束。 对简单模型,这两个语句也可以省略。
LINDO/LINGO软件 使用简介
LinDo/LinGo简介
LINDO(Linear Interactive and Discrete Optimizer),即“交互式的线性和离散优化求解 器”,可以用来求解线性规划(LP)和二次规划 (QP); LINGO(Linear Interactive and General Optimizer),即“交互式的线性和通用优化求解 器”,除了用来求解线性规划(LP)、二次规划 (QP)和非线性规划,还可用于线性和非线性方程 组的求解。 最大的特色:允许决策变量是整数(即整数规划,包 括0-1规划)。
Lindo求解整数规划
Lindo求解整数规划程序
LP OPTIMUM FOUND AT STEP 2 OBJECTIVE VALUE = 998.811951

lingo-lindo简介

lingo-lindo简介

Lingo、lindo简介一、软件概述 (1)二、快速入门 (4)三、Mathematica函数大全--运算符及特殊符号 (11)参见网址: /一、软件概述(一)简介LINGO软件是由美国LINDO系统公司研发的主要产品。

LINGO是Linear Interactive and General Optimizer的缩写,即交互式的线性和通用优化求解器。

LINGO可以用于求解非线性规划,也可以用于一些线性和非线性方程组的求解等,功能十分强大,是求解优化模型的最佳选择。

其特色在于内置建模语言,提供十几个内部函数,可以允许决策变量是整数(即整数规划,包括 0-1 整数规划),方便灵活,而且执行速度非常快。

能方便与EXCEL,数据库等其他软件交换数据。

LINGO实际上还是最优化问题的一种建模语言,包括许多常用的函数可供使用者建立优化模型时调用,并提供与其他数据文件(如文本文件、Excel 电子表格文件、数据库文件等)的接口,易于方便地输入、求解和分析大规模最优化问题。

(二)LINGO的主要特点:Lingo 是使建立和求解线性、非线性和整数最佳化模型更快更简单更有效率的综合工具。

Lingo 提供强大的语言和快速的求解引擎来阐述和求解最佳化模型。

1 简单的模型表示LINGO 可以将线性、非线性和整数问题迅速得予以公式表示,并且容易阅读、了解和修改。

LINGO的建模语言允许您使用汇总和下标变量以一种易懂的直观的方式来表达模型,非常类似您在使用纸和笔。

模型更加容易构建,更容易理解,因此也更容易维护。

2 方便的数据输入和输出选择LINGO 建立的模型可以直接从数据库或工作表获取资料。

同样地,LINGO 可以将求解结果直接输出到数据库或工作表。

使得您能够在您选择的应用程序中生成报告。

3 强大的求解器LINGO拥有一整套快速的,内建的求解器用来求解线性的,非线性的(球面&非球面的),二次的,二次约束的,和整数优化问题。

lindo和lingo简介

lindo和lingo简介

LINDO和LINGO是美国LINDO系统公司开发的一套专门用于求解最优化问题的软件包。

LINDO 用于求解线性规划和二次规划,LINGO除了具有LINDO的全部功能外,还可以用于求解非线性规划,也可以用于一些线性和非线性方程组的求解以及代数方程求根等。

LINDO和LINGO软件的最大特色在于可以允许优化模型中的决策变量是整数(即整数规划),而且执行速度很快。

LINGO实际上还是最优化问题的一种建模语言,包括许多常用的函数可供使用者建立优化模型时调用,并提供与其它数据文件(如文本文件、EXCEL电子表格文件、数据库文件等)的接口,易于方便地输入、求解和分析大规模最优化问题。

由于这些特点,LINDO和LINGO软件在教学、科研和工业、商业、服务等领域得到广泛应用。

1)目标函数及各约束条件之间一定要有“Subject to (ST) ”分开。

2)变量名不能超过8个字符。

3)变量与其系数间可以有空格,单不能有任何运算符号(如乘号“*”等)。

4)要输入<=或>=约束,相应以<或>代替即可。

5)一般LINDO中不能接受括号“()“和逗号“,“,例:400(X1+X2) 需写成400X1+400X2;10,000需写成10000。

6)表达式应当已经过简化。

不能出现 2 X1+3 X2-4 X1,而应写成-2X1+3 X2。

用LINDO求解施工中的线性规划(LP)问题1 引言线性规划是现代化管理的常用工具与方法,在施工过程中,很多实际问题,如配(下)料,运输(土石方调配),施工机具车辆调度,施工场地的合理设点,成品、半成品、原材料的合适库存量规划问题等等,都需要运用线性规划方法求得最优方案。

线性规划一般需要先确定要求的未知变量和目标函数,然后找出所有的约束条件,表示为线性方程或不等式,建立问题的数学模型,对于变量数目和约束条件较少的情况可用手工计算,较多的情况则需运用计算机来求解。

2 LINDO介绍LINDO是Linear INteractive and Discrete Optimizer字首的缩写形式,是由Linus Schrage 于1986年开发的优化计算软件包。

LINGO软件的简介与使用

LINGO软件的简介与使用

LINGO软件的使用
运算符的优先级: 优先级 运算符 最高 #NOT# —(负号) ^ * / + —(减法) #EQ# #NE# #GT# #GE# #LT# #LE# #AND# #OR# <(=) = >(=) 最低
LINGO软件的使用
常用函数: ABS(X) 绝对值函数 COS(X) 余弦函数 EXP(X) 指数函数 FLOOR(X) 取整函数 LOG(X) 自然对数函数 MOD(X,Y) 模函数 POW(X,Y) 指数函数 SIGN(X) 符号函数 SIN(X) 正弦函数 SQR(X) 平方函数 SQRT(X) 平方根函数 TAN(X) 正切函数 BIN(X) 限定0-1变量 FREE(X) 取消符号限制 GIN(X) 限制整数 等等还有很多~
absx绝对值函数cosx余弦函数expx指数函数floorx取整函数logx自然对数函数modxy模函数powxy指数函数signx符号函数sinx正弦函数sqrx平方函数sqrtx平方根函数tanx正切函数binx限定01变量freex取消符号限制ginx限制整数等等还有很多lingosolverstatus求解程序状态框
LINGO软件的使用
Solver Status 求解程 序状态框: Model 模型类型 State 解的状态 Objective 最优值 Infeasibility 不满足约 束总数 Iterations 迭代次数
பைடு நூலகம்
LINGO软件的使用
Solution Report 解答报告: 解的状态 Objective value 最优值 Extended solver steps 特 殊求解程序运行步数 Total solver iterations 迭 代次数

LINDO LINGO使用简介

LINDO LINGO使用简介

1 LINDO菜单命令和语句1.1菜单命令我们可以从类似于其它Windows程序的便捷菜单访问LINDO的命令。

主菜单包括屏幕顶部的6个子菜单,它们列出了各种命令。

当单击其中一个子菜单——File、Edit、Solve、Reports、Window或Help时,将出现了一个包含各种命令的下拉菜单。

你可以像在大多数windows程序中那样选择命令——或者用鼠标单击命令,或者在适当的子菜单亮显时,按命令名中带下划线的字母。

许多命令还有快捷键(F2、Ctrl+Z等)。

为了增加方便性,还可以利用位于屏幕顶部工具栏中的图标访问一些最常用的命令。

下面简要介绍各种菜单命令,并列出了可以应用的快捷键和图标。

1.File(文件)菜单File菜单命令能够以各种方法操纵LINDO数据文件。

可以使用这个命令打开、关闭、保存和打印文件,并且可以执行LINDO独有的各种任务。

下面将描述File命令。

命令说明New F2 创建用于输入数据的新窗口。

Open F3 打开已有的文件。

利用对话框可以选择各种文件类型和位置。

View F4 打开已有的文件,仅进行浏览。

不对文件进行修改。

Save F5 保存窗口。

可以保存输入数据(模型)、Reports窗口或命令窗口。

可以下列格式保存数据:*.LTX,可以利用字处理软件进行编辑的文本格式;*.LPK,以“填充”格式保存编译模型,但是不进行特殊的格式化或解释;*.MPS,与机器无关的工业标准格式,用于在LINDO和其它LP软件之间传递LP问题。

Save As F6 利用指定的文件名保存活动窗口。

这特别适合于重命名已修改的文件,同时能够保持原始文件不受影响。

Close F7 关闭活动窗口。

如果窗口包含新的输入数据,将询问你是否保存修改。

Print F8 把活动窗口发送到打印机。

Printer Setup…F9 选择打印机和打印格式的各种选项。

Log Output…F10 把通常发送到Reports窗口的所有后续屏幕活动发送到文本文件中。

数学软件LINDO简介

数学软件LINDO简介

决策变量个数n和 决策变量个数 和 约束条件个数m较大 多元函数 约束条件个数 较大 条件极值 最优解在可行域 的边界上取得
重点在模型的建立和结果的分析
主讲: 主讲:夏师
4.1 奶制品的生产与销售
企业生产计划 空间层次 工厂级:根据外部需求和内部设备,人力, 工厂级:根据外部需求和内部设备,人力,原料等 条件,以最大利润为目标制订产品生产计划; 条件,以最大利润为目标制订产品生产计划; 车间级:根据生产计划,工艺流程, 车间级:根据生产计划,工艺流程,资源约束及费 用参数等,以最小成本为目标制订生产批量计划. 用参数等,以最小成本为目标制订生产批量计划. 时间层次 若短时间内外部需求和内部资源等不随时间变化, 若短时间内外部需求和内部资源等不随时间变化,可 制订单阶段生产计划 否则应制订多阶段生产计划. 单阶段生产计划, 制订单阶段生产计划,否则应制订多阶段生产计划. 本节课题
(目标函数不变 目标函数不变) 目标函数不变
64.000000 8.000000 16.000000 RIGHTHAND SIDE RANGES CURRENT ALLOWABLE ALLOWABLE RHS INCREASE DECREASE 50.000000 480.000000 100.000000 10.000000 53.333332 INFINITY 6.666667 80.000000 40.000000
至多100公斤 1 公斤A 至多 公斤
制订生产计划, 制订生产计划,使每天净利润最大
30元可增加 桶牛奶,3元可增加 小时时间,应否投 元可增加1桶牛奶 元可增加1小时时间 元可增加 桶牛奶, 元可增加 小时时间, 资?现投资150元,可赚回多少? 现投资 元 可赚回多少? B1,B2的获利经常有 的获利经常有10%的波动,对计划有无影响? 的波动, 的波动 对计划有无影响?

LINGO软件介绍

LINGO软件介绍

关于LINGO软件的其它介绍
三、LINGO中的集 四、集循环函数 五、集操作函数
六、运用定义集的方法求解规划问题
由于时间关系所限,更主要是涉及的内容 有相当的难度,所以关于LINGO软件的以 上四方面的介绍只能从略。有兴趣的读者 可以自学有关内容。
21
上机作业
再现教材P165-167的程序文件: ex_1.lg4、 ex_2.lg4 、 ex_3max.lg4 以及 ex_3min.lg4 要求:提交程序文件和相应的截图文件(图形 文件格式为 JPG格式,文件名自定)
二、用LINGO解决基本的线性规划问题和二次规划问题
例3 求解二次规划问题:
解法一:直接使用LINGO最大化过程:
max=98*x1+277*x2-x1^2-0.3*x1*x2-2*x2^2; x1 + x2 <= 100; x1 <= 2*x2; @gin(x1);@gin(x2);
15
二、用LINGO解决基本的线性规划问题和二次规划问题
3
一、LINGO介绍
LINGO的主要功能特色为: 1. 既能求解线性规划问题,也有一定求解非 线性规划问题的能力; 2. 输入模型简练直观; 3. 运行速度快、计算能力强;
4
一、LINБайду номын сангаасO介绍
LINGO的主要功能特色为: 4. 内置建模语言,提供几十个内部函数,从 而能以较少的语句,较直观的方式描述较大规 模的优化模型; 5. 将集合的概念引入编程语言,很容易将实 际问题转换为LINGO模型; 6. 能方便地与Excel、数据库等其他软件交换 数据。
7
二、用LINGO解决基本的线性规划问题和二次规划问题
我们编辑程序并求解后,得到LINGO Model窗口、 Solution report窗口和Solver status窗口如下:

Lingo、Lindo软件

Lingo、Lindo软件
③ 变量可以放在约束条件右端,同时数字也可以放在 约束条件左边;
④ Lingo模型语句由一系列语句组成,每一个语句都必 须以“;”结尾;
⑤ Lingo中以“!”开始的是说明语句,说明语句也以 “ ;” 结束。
Lingo/Lindo软件介绍 ---Lingo
➢在Lingo中建立的优化模型可以引用大量的内部函数这些函 数都以@符号打头,其用法比较简单,我们一一列出:
整数模型
线性规划
二次规划
Lindo
非线性规划 Lingo
Lingo/Lindo软件介绍
➢Lindo是英文Linear Interactive and Discrete
Optimizer字首的缩写,即“交互式的线性和离散优化 求解器”,可以用来求解线性规划(LP)和二次规划 (QP);
➢Lingo是英文Linear Interactive and General
⑦ Lindo中以“!”开始的是说明语句,说明语句也以“ ;” 结束。
Lingo/Lindo软件介绍 ---Lindo
➢下面我们用一个例子来说明Lindo中三个变量范围限制命令(FREE、SBU、 SLB)的作用和使用方法:
例-2 max 2x 3y 4z S.T. 4x 3y 2z 10
➢该软件包功能强大,版本也很多,而我们 使用的只
是演示版(试用版),演示版与正式版功能基本上是
类似的,只是能够求解问题的规模受到限制,总变量数 不超过30个,这在我们目前的使用过程中,基本上是 足够。
Lingo/Lindo软件介绍 Lingo/Lindo软件求解的优化模型类型见下图:
优化模型
连续模型
Interrupt 中断求解程序 Solver
Close 关闭该窗口

LINDO-LINGO简介及使用方法

LINDO-LINGO简介及使用方法

欢迎访问华中数学建模网 1.LINDO、LINGO一、软件简介LINDO是一种专门用于求解数学规划问题的软件包。

由于LINDO执行速度很快、易于方便输入、求解和分析数学规划问题。

因此在数学、科研和工业界得到广泛应用。

LINDO主要用于解线性规划、非线性规划、二次规划和整数规划等问题。

也可以用于一些非线性和线性方程组的求解以及代数方程求根等。

LINDO中包含了一种建模语言和许多常用的数学函数(包括大量概论函数),可供使用者建立规划问题时调用。

一般用LINDO(Linear Interactive and Discrete Optimizer)解决线性规划(LP—Linear Programming)。

整数规划(IP—Integer Programming)问题。

其中LINDO 6 .1 学生版至多可求解多达300个变量和150个约束的规划问题。

其正式版(标准版)则可求解的变量和约束在1量级以上。

LINDO则用于求解非线性规划(NLP—NON—LINEAR PROGRAMMING)和二次规则(QP —QUARATIC PROGRAMING)其中LINGO 6.0学生版最多可版最多达300个变量和150个约束的规则问题,其标准版的求解能力亦再10^4量级以上。

虽然LINDO和LINGO不能直接求解目标规划问题,但用序贯式算法可分解成一个个LINDO和LINGO能解决的规划问题。

要学好用这两个软件最好的办法就是学习他们自带的HELP文件。

下面拟举数例以说明这两个软件的最基本用法。

(例子均选自张莹《运筹学基础》)例1.(选自《运筹学基础》P54.汽油混合问题,线性规划问题)一种汽油的特性可用两个指标描述:其点火性用“辛烷数”描述,其挥发性用“蒸汽压力”描述。

某炼油厂有四种标准汽油,设其标号分别为1,2,3,4,其特性及库存量列于下表1中,将上述标准汽油适量混合,可得两种飞机汽油,某标号为1,2,这两种飞机汽油的性能指标及产量需求列于表2中。

Lingo软件的介绍

Lingo软件的介绍

最优解不变时目标函 数系数允许变化范围
(约束条件不变) x1系数范围(64,=72 增加为303=90, 在允许范围内
• A1获利增加到 30元/kg,应否改变生产计划?
不变!
影子价格有意义(不变)时约束右端的允许 变化范围 结果解释
Ranges in which the basis is unchanged: Objective Coefficient Ranges Current Allowable Allowable Variable Coefficient Increase Decrease X1 72.00000 24.00000 8.000000 X2 64.00000 8.000000 16.00000 Righthand Side Ranges Row Current Allowable Allowable RHS Increase Decrease 原料最多增加10 MILK 50.00000 10.00000 6.666667 时间最多增加53 TIME 480.0000 53.33333 80.00000 CPCT 100.0000 INFINITY 40.00000 充分条件 !
LINDO API: LINDO Application Programming Interface (V2.0)
演示(试用)版、学生版、高级版、超级版、工业版、 扩展版… (求解问题规模和选件不同)
回顾-优化模型
实际问题中 Min(或Max) z f ( x ), x ( x1 , x n )T 的优化模型 s.t. g i ( x) 0, i 1,2, m x~决策变量 数学规划 线性规划(LP) 0-1整数规划 二次规划(QP) 一般整数规划 非线性规划(NLP) f(x)~目标函数 gi(x)0~约束条件

LINGO软件介绍

LINGO软件介绍

基本模型
获利24元/kg 0.8kg B1 获利16元/kg 获利32元/kg 0.75kg B2 x3 kg B1, x4 kg B2 获利44元/kg
变量 目标 函数 约束 条件
x5 kg A1加工B1, x6 kg A2加工B2 利润 原料 供应 劳动 时间
max z 24x1 16x2 44x3 32x4 3x5 3x6
• 35元可买到1桶牛奶,要买吗?
35 <48, 应该买! 2元!
• 聘用临时工人付出的工资最多每小时几元?
敏感性分析 (“LINGO|Ranges” )
Ranges in which the basis is unchanged: Objective Coefficient Ranges Current Allowable Allowable Variable Coefficient Increase Decrease X1 72.00000 24.00000 8.000000 X2 64.00000 8.000000 16.00000 Righthand Side Ranges Row Current Allowable Allowable RHS Increase Decrease MILK 50.00000 10.00000 6.666667 TIME 480.0000 53.33333 80.00000 CPCT 100.0000 INFINITY 40.00000
例1 加工奶制品的生产计划 问 题
1桶 牛奶 或 12h 3kgA1 4kgA2 获利24元/kg 获利16元/kg
8h 每天: 50桶牛奶 时间480h
至多加工100kgA1
制订生产计划,使每天获利最大 • 35元可买到1桶牛奶,买吗?若买,每天最多买多少? • 可聘用临时工人,付出的工资最多是每小时几元? • A1的获利增加到 30元/kg,应否改变生产计划?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

优化模型的基本类型
若x的一个或多个分量只取离散数值,则优 化模型称为离散优化,或称为组合优化。 如果x的一个或多个分量只取整数数值,称 为整数规划,并可以进一步明确地分为纯 整数规划(x的所有分量只取整数数值)和 混合整数规划(x的部分分量只取整数数 值)。特别地,若x的分量中取整数数值的 范围还限定为只取0或1,则称0-1规划。 此外,整数规划也可以分成整数线性规划 和整数非线性规划。
LINDO/LINGO软件 使用简介
LinDo/LinGo简介
LINDO(Linear Interactive and Discrete Optimizer),即“交互式的线性和离散优化求解 器”,可以用来求解线性规划(LP)和二次规划 (QP);
LINGO(Linear Interactive and General Optimizer),即“交互式的线性和通用优化求解 器”,除了用来求解线性规划(LP)、二次规划 (QP)和非线性规划,还可用于线性和非线性方程 组的求解。
最大的特色:允许决策变量是整数(即整数规划,包 括0-1规划)。
优化建模的一般形式
优化模型是一种特殊的数学模型,优化建 模方法是一种特殊的数学建模方法。
优化模型一般有以下三个要素: 1)决策变量 2)目标函数 3)约束条件
优化建模的一般形式
优化模型从数学上可表述成如下一般形式:
opt z f (x)
连续优化
优化
整数规划
线性规划
二次规划
非线性规划
问题求解的难度增加
优化模型的简单分类和求解难度
简单例子
max
z 2x 3y;
s.t.
4x 3y 10; 3x 5y 12; x, y 0.
返回
LINDO程序
Lindo输入格式注意事项
1、Lindo中的变量名由字母和数字组成, 但必须以字母开头,且长度不能超过8个字 符。Lindo中不区分大小写字母,包括 lindo中本身的关键字(如MAX、MIN等) 也不区分大小写。
1
s.t. hi (x) 0 (i 1,2,, me )
2
g j (x) 0 ( j me 1, me 2,, me m) 3
注意:opt是最优化(optimize)的意思,可以是
min(求极小)或max(求极大)两者之一;s.t.
是“受约束于”(subject to)的意思。
优化模型的基本类型
简单例子程序运行状态窗口
求解器运行状态窗口显示的相应信息及其含义
名称
含义
Status(当前状态)
显示当前求解状态:“optimal”表示以及达到最优解:其他可能的 显示还有三个:feasible,Infeasible,Unbounded.
Iterations(迭代次数)
Objective(当前的目标值)
Lindo输入格式注意事项
3、在Lindo模型的任何地方都可以用 “title”语句对输入的模型命名,用法是在 title后面写出其名字(最多72个字符,可 以有汉字),在程序中单独占一行。请看 下面两个例子:
title Example Model for chapter 2 title 第二章的第一个例子
“END”语句后面用命令“free”(设定自由变量) 取消变量的非负假定。其用法是“free”后面跟变量 名。
Lindo输入格式注意事项
8、可以在模型的“END”语句后面用命令“SUB” (即设置上界(set upper bound)的英文缩写) 设定变量的上界,用命令“SLB”(即设置下届 (set lower bound)的英文缩写)设定变量的 下界。如: sub x1 10 !作用等价于“x1<=10” slb x2 20 !作用等价于“x2>=20” 但用”SUB“和”SLB“表示的上下界约束不计入 模型的约束,因此Lindo也不能给出其松紧判断 和敏感Lindo中变量不能出现在一个约束条件的右端 (即约束条件右端只能是常数);变量与其系数间 可以有空格(甚至回车),但不能有任何运算符号 (包括乘号“*”等);
5、Lindo中不能接受括号“()”和逗号“、”等任 何符号(除非在注释语句中);
6、Lindo中表达式应当已经经过化简; 7、Lindo中已假设所有变量非负。可在模型的
当模型中决策变量x的所有分量取值均为连 续数值(即实数)时,优化模型称为连续 优化,即数学规划。此时,若f、hi、gj都 是线性函数,称为线性规划;若f、hi、gj 至少有一个是非线性函数,则称为非线性 规划。特别地,若f是一个二次函数,而hi、 gj都是线性函数,则称为二次规划,它是一 种相对比较简单的非线性规划。
Lindo输入格式注意事项
2、Lindo中对优化模型的目标和约束用行号 (行名)进行标识,这些表示会在将来的求 解报告中用到。用户没有指定行号(行名) 时,系统将自动产生行号,行号或行名总是 以“)”结束,放在相应的约束之前;行号或 行名可以和变量名一样命名,也可以只用数 字命名,但长度同样不能超过8个字符。为了 方便将来阅读求解结果报告,建议用户总是 自觉地对每个约束进行命名。行名中甚至可 以含有中文字符,但行名结束标志字符,即 右括号“)”必须是英文字符,否则会出现错 误。
Lindo输入格式注意事项
9、数值均衡化及其他考虑:如果约束系数 矩阵中各非零元的绝对值的数量级差别很 大(相差1000倍以上),则称其为数值不 均衡的。为了避免数值不均衡引起的计算 问题,使用者应尽可能自己对矩阵的行列 进行均衡化。
10、简单错误的检查和避免
“END”后的一些表述
FREE X——表示变量X可取任意实数值。 GIN X——表示变量X只取非负整数值。 INT X——表示变量X只能取0或1。 SLB X value——表示变量X以value为下界。 SUB X value——表示变量X以value为上界。 FREE m——表示问题的前m个变量为自由变量 GIN m——表示问题前m个变量为非负整数值 INT m——表示问题前m个变量为0-1变量。
相关文档
最新文档