平行四边形中的翻折问题--课件
平行四边形中的翻折问题 课件
轴 对 称 F E
D
轴对称性质: 1.图形的全等性:重合部分是全等图形,对应边角相等. 2.点的对称性:对称点连线被对称轴(折痕)垂直平分.
合作探究
例1:在平行四边形ABCD的纸片中,AC⊥AB,AC与 BD相交于O,将△ABC沿对角线AC翻转180°,得 到△AB′C. (1)判断△AEC的形状并证明.
例1:在平行四边形ABCD的纸片中,AC⊥AB,AC与 BD相交于O,将△ABC沿对角线AC翻转180°,得到 △AB′C. (2)若平行四边形的面积S=10,求△AEC的面积 = .
例2:把一个矩形如图折叠,使顶点B和D重合, 折痕为EF (1)图中有那些相等的线段
例2:把一个矩形如图折叠,使顶点B和D重合, 折痕为EF (2)若矩形的长为9,宽为3,你能求出哪些线 段的长.
课堂小结
全等性
轴对称 本 质
对称性
折
折叠问题 精 髓
重结果
叠
利用Rt△方程思想利用股定理思考题 :在一张长方形ABCD纸片中,AD=25cm, AB=20cm.现将这张纸片按如下列图示方式折叠, 分别求折痕的长. (1) 如图1, 折痕为AE; (2) 如图2, 折痕为EF.
(图2)
四边形中的折叠问题+应用题
四边形中的折叠问题+应用题四边形中的折叠问题折叠可以带来全等图形,在平行四边形中,对角线把它分成全等的三角形,因此在四边形中经常会遇到折叠问题。
解决此类问题的关键是要注意观察折叠前后的图形,发现它们之间的关系,找到边、角中的变量和不变量,寻找全等三角形,同时还会经常综合运用到四边形的有关知识。
一、例题讲解基准1例如图,将一张对边平行的纸条先沿ef卷曲,点a、b分别落到a'、b'处,线段fb?与ad处设点m,再将纸条的另一部分cfmd沿mn卷曲,点c、d分别落到c'、d'处,且使md?经过点f.(1)澄清:四边形mnfe就是平行四边形;(2)当甩折角∠bfe?度时,四边形mnfe是菱形.(将答案直接填写在横线上)(1)澄清:△fac就是等腰三角形;(2)若ab=4,bc=6,求△fac的周长和面积.bcacnc'fd'ba'b'dmea基准2例如图,把矩形纸片abcd沿对角线ac卷曲,点b落到点e处为,ec与ad平行于点f.efd例3如图,将矩形abcd沿直线ae折叠,顶点d恰好落在bc边上f点处,已知ce?6cm,ab?16cm,求bf的长.adec落在ad上的点c?处,例4在梯形纸片abcd中,ad∥bc,ad?cd,将纸片沿过点d的直线折叠,使点折痕de交bc于点e,连结c?e.bcf(1)澄清:四边形cdc?e就是菱形;(2)若bc?cd?ad,试判断四边形abed的形状,并加以证明16.例如图,矩形纸片abcd中,ab=3cm,bc=4cm.现将a,c重合,并使纸片折叠压平,设折痕为ef,试求af的长和重叠部分△aef的面积.18.例如图,e就是矩形abcd的边ad上一点,且be=ed,p就是对角线bd上任一一点,pf⊥be,pg⊥ad,像距分别为f、g.求证:pf+pg=ab.分式方程和不等式应用题:1.(2021?德阳)某商场分两批购进同一种电子产品,第二批单价比第一批单价多10元,两批购进的数量和所用资金见下表:第一批第二批供货数量(件)所用资金(元)x2x1600034000(1)该商场两次共供货这种电子产品多少件?(2)如果这两批电子产品每件售价相同,除产品购买成本外,每天还需其他销售成本60元,第一批产品平均值每天销售10件.售罄后,因市场变化,第二批电子产品比第一批平均值每天太少销售2件,商场为了并使这两批电子产品全部售罄后总利润不高于20%,那么该商场每件电子产品的售价至少应属多少元?2.(2021?河池)大众服装店今年4月用4000元购进了一款衬衣若干件,上市后很快售完,服装店于5月初又购进同样数量的该款衬衣,由于第二批衬衣进货时价格比第一批衬衣进货时价格提高了20元,结果第二批衬衣进货用了5000元.(1)第一批衬衣发货时的价格就是多少?(2)第一批衬衣售价为120元/件,为保证第二批衬衣的利润率不低于第一批衬衣的利润率,那么第二批衬衣每件售价至少是多少元?3.(2021?防城港)上个月某超市供货了两批相同品种的水果,第一批用了2000元,第二批用了5500元,第二批供货水果的重量就是第一批的2.5倍,且市场价比第一批每千克多1元.(1)谋两批水果共供货了多少千克?(2)在这两批水果总重量正常损耗10%,其余全部售完的情况下,如果这两批水果的售价相同,且总利润率不低于26%,那么售价至少定为每千克多少元?二元一次方程组和不等式的应用领域:1.茶叶作为一种饮料不仅清香可口,而且具有独特的药用价值,特别是绿茶中含有较多的叶酸,对人的健康很有帮助,某批发茶商第1次用39万元购进a、b两种品牌绿茶,销售完后获得利润6万元,它们的进价和售价如下表:(总利润=单件利润×销售量)价格商品a12001350b10001200市场价(元/件)售价(元/件)(1)该茶商第1次供货a、b两种绿茶各多少件?(2)该茶商第2次以原价购进a、b两种绿茶,购进b种绿茶的件数不变,而购进a种绿茶的件数是第1次的2倍,a种绿茶按原价销售,而b种绿茶打折销售,若两种绿茶销售完毕,要使得第2次经营活动获得利润不少于75000元,则b种绿茶最低售价为每件多少元?2.(2021?通辽)某商场用36000元供货甲、乙两种商品,销售回去后共买进6000元.其中甲种商品每件市场价120元,售价138元;乙种商品每件市场价100元,售价120元.(1)该商场供货甲、乙两种商品各多少件?(2)商场第二次以原进价购进甲、乙两种商品,购进乙种商品的件数不变,而购进甲种商品的件数是第一次的2倍,甲种商品按原售价出售,而乙种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于8160元,乙种商品最低售价为每件多少元?3.为了防控甲型h7n9禽流感,某校积极主动展开校园环境消毒,出售了甲、乙两种消毒液共100瓶,其中甲种6元/瓶,乙种9元/瓶.(1)如果购买这两种消毒液共用780元,求甲、乙两种消毒液各购买多少瓶?(2)该校准备再次购买这两种消毒液(不包括已购买的100瓶),使乙种瓶数是甲种瓶数的2倍,且所需费用不多于1200元(不包括780元),求甲种消毒液最多能再购买多少瓶?二次函数周长最轻问题:例如图,△abc的三个顶点座标分别为a(-2,0)、b(6,0)、c(0,?23),2抛物线y=ax+bx+c(a≠0)经过a、b、c三点。
平行四边形的判定(2)(课件)-八年级数学下册(人教版)
一组对边平行且相等的四边形是平行四边形吗?
如图,在四边形ABCD中,AB∥CD,AB=CD.
求证:四边形ABCD是平行四边形.
证明:连接AC.
∵ AB∥CD
∴ ∠1=∠2
又∵ AB=CD,AC=CA
∴ △ABC≌△CDA (SAS)
∴ BC=DA
∴ 四边形ABCD的两组对边分别相等,它是平行四边形.
BQ=_________cm;CQ=_________cm.
15-2t
(3)当t为何值时,四边形PDCQ是平行四边形?
解:(3)∵AD//BC
∴当DP=CQ时,四边形PDCQ是平行四边形.
∴12-t=2t
解得t=4
∴t=4s时,四边形PDCQ是平行四边形.
平行四边形判定定理4:一组对边平行且相等的四边形是平行四边形.
t
12-t
AP=_________cm;DP=_________cm;
BQ=_________cm;CQ=_________cm.
2t
15-2t
(1)用含t的代数式表示:
12-t
t
AP=_________cm;DP=_________cm;
2t
BQ=_________cm;CQ=_________cm.
4.如图,在□ABCD中,E,F分别是边BC,AD上的点,有下列条件:
①AE//CF;②BE=FD;③∠1=∠2;④AE=CF.若要添加其中一个条件,使四边
形AECF一定是平行四边形,则添加的条件可以是( B )
A.①②③④
B.①②③
C.②③④
D.①③④
5.已知四边形ABCD,有以下四个条件:①AB//CD;②AB=CD;③BC// AD;④
解决特殊平行四边形中折叠问题的4种方法
解决特别平行四边形中折叠问题的4种方法►方法一用方程思想解决特别平行四边形中的折叠问题1、如图1-ZT-1,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上、若AB=6,BC=9,则BF的长为()图1-ZT-1A、4 B、3 2C、4、5D、52、把一张矩形纸片(矩形ABCD)按如图1-ZT-2所示的方式折叠,使顶点B和点D重合,折痕为EF、若AB=3 cm,BC=5cm,则重叠部分△DEF的面积是________cm2、:学*科*网Z*X*X*K]图1-ZT—23。
如图1-ZT—3,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且点D落在对角线D′处、若AB=3,AD=4,则ED的长为()图1—ZT-3A、\f(3,2)B、3C。
1D。
\f(4,3)[来源:1]4。
如图1-ZT-4,折叠矩形ABCD的一边AD,使点D落在BC边上的点F处,已知折痕AE=5 5 cm,且EC∶FC=BF∶AB=3∶4、那么矩形ABCD的周长为________cm、图1—ZT-45、如图1-ZT—5,在矩形ABCD中,点E在边CD上,将该矩形沿AE折叠,使点D落在边BC上的点F处,过点F作FG∥CD,交AE于点G,连接DG、(1)求证:四边形DEFG为菱形;(2)若CD=8,CF=4,求CEDE的值。
图1-ZT-5►方法二用数形结合思想解决特别平行四边形中的折叠问题6。
如图1—ZT—6,在矩形ABCD中,AB=4,BC=6,E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()图1-ZT-6A、95B。
\f(12,5)C、\f(16,5)D、\f(18,5)7。
如图1—ZT-7,在平面直角坐标系中,将矩形AOCD沿直线AE折叠(点E在边DC上),折叠后顶点D恰好落在边OC上的点F处、若点D的坐标为(10,8),则点E的坐标为________、图1-ZT-78、如图1-ZT-8,在矩形ABCD中,AB=6 cm,E,F分别是边BC,AD上一点,将矩形ABCD沿EF折叠,使点C,D分别落在点C′,D′处、若C′E⊥AD,则EF的长为________cm。
平行四边形中的翻折问题--课件复习课程
合作探究
例1:在平行四边形ABCD的纸片中,AC⊥AB,AC与 BD相交于O,将△ABC沿对角线AC翻转180°,得 到△AB′C.
(1)判断△AEC的形状并证明.
例1:在平行四边形ABCD的纸片中,AC⊥AB,AC与 BD相交于O,将△ABC沿对角线AC翻转180°,得到 △AB′C. (2)若平行四边形的面积S=10,求△AEC的面积 =.
(图2)
此课件下载可自行编辑修改,仅供参考! 感谢您的支持,我们努力做得更好!谢谢
例2:把一个矩形如图折叠,使顶点B和D重合, 折痕为EF
(1)图中有那些相等的线段
例2:把一个矩形如图折叠,使顶点B和D重合, 折痕为EF (2)若矩形的长为9,宽为3,你能求出哪些线 段的长.
课堂小结
全等性
轴对称
本
质
重过程
ห้องสมุดไป่ตู้
折
折叠问题
对称性
重结果 叠
利用Rt△
精 髓 方程思想
利用勾股定理
思考题 :在一张长方形ABCD纸片中,AD=25cm, AB=20cm.现将这张纸片按如下列图示方式折叠, 分别求折痕的长. (1) 如图1, 折痕为AE; (2) 如图2, 折痕为EF.
九年级数学 第一章 特殊平行四边形专题课堂(二)特殊平行四边形中的折叠问题
证明:由折叠可知△MOP≌△MNP,∴OM=MN,∠OMP=∠NMP =21 ∠OMN=30°=∠B,∠MOP=∠MNP=90°,∴∠BOP=∠MOP =90°.∵OP=OP,∴△MOP≌△BOP(AAS).∴MO=BO=21 BM.∴MN =21 BM
FG=AF= 2 ,∴DG=FG= 2 ,DF= DG2+FG2 =2,∴AD=AF+DF = 2 +2.由折叠可知∠AEF=∠GEF,∠BEC=∠HEC,∴∠AEF+∠BEC =90°,∵∠AEF+∠AFE=90°,∴∠BEC=∠AFE,在△AEF 与△BCE
∠AFE=∠BEC, 中,∠A=∠B=90°, ∴△AEF≌△BCE(AAS),∴BE=AF= 2 ,∴AB
则 AC 的长是( B )
A.3 3 B.6 C.4 D.5
第7题图
8.如图,将边长为 6 cm 的正方形纸片 ABCD 折叠,使点 D 落在 AB 边中点 E 处,点 C 落在点 Q 处,折痕为 FH,则线段 AF 的长是___94____cm.
第8题图
9.如图,正方形纸片ABCD的边长AB=12,E是DC上一点,CE=5,折叠 正方形纸片使点B和点E重合,折痕为FG,则FG的长为____1_3_.
折痕BE,BF,则∠EBF的大小为( C)
A.15° B.30° C.45° D.60°
第2题图
3.如图,在菱形ABCD中,∠A=120°,E是AD上的点,沿BE折叠△ABE,
点A恰好落在BD上的点F处,连接CF,那么∠BFC的度数是( ) C
A.60° B.70° C.75° D.80°
第3题图
6.如图,将矩形 ABCD 沿 EF 折叠,使顶点 C 恰好落在 AB 边的中
点 C′上.若 AB=6,BC=9,则 BF 的长为( A )
平行四边形中的折叠问题课件.
平行四边形中的折叠问题课件.一、教学内容本节课我们将探讨《几何》教材第四章第三节“平行四边形中的折叠问题”。
内容详细涉及平行四边形的性质,尤其是通过折叠操作来探讨平行四边形对角线的性质、对边关系以及角的关系。
二、教学目标1. 理解并掌握平行四边形的基本性质,尤其是通过折叠操作呈现的性质。
2. 学会运用折叠方法解决平行四边形中的相关问题,提高空间想象力和逻辑思维能力。
3. 能够将平行四边形的折叠问题与其他几何知识相结合,形成综合解决问题的能力。
三、教学难点与重点教学难点:通过折叠操作推导出平行四边形对角线的性质以及与角度的关系。
教学重点:平行四边形的基本性质及其在折叠问题中的应用。
四、教具与学具准备教具:多媒体课件、平行四边形模型、剪刀、尺子、量角器。
学具:每组一份平行四边形纸张模型、剪刀、尺子、量角器。
五、教学过程1. 实践情景引入(5分钟)利用多媒体展示生活中常见的平行四边形折叠实例,如包装盒、纸飞机等,引导学生观察并思考折叠后的性质变化。
2. 知识讲解(15分钟)通过课件和模型,讲解平行四边形的基本性质,以及折叠操作对平行四边形的影响。
3. 例题讲解(10分钟)选取一道典型例题,讲解如何运用折叠方法解决平行四边形中的问题。
4. 随堂练习(10分钟)学生独立完成两道练习题,巩固折叠问题的解法。
5. 小组讨论(10分钟)学生分组讨论解题过程中遇到的问题,分享解题心得。
六、板书设计1. 平行四边形的性质2. 折叠操作对平行四边形的影响3. 例题及解题步骤4. 练习题及答案七、作业设计1. 作业题目:(1)已知平行四边形ABCD,对角线AC、BD相等,求证:四边形ABCD是矩形。
(2)将一个平行四边形沿对角线折叠,得到一个三角形,求证:这个三角形的面积等于原平行四边形面积的一半。
2. 答案:(1)根据平行四边形性质,对角线相等,故四边形ABCD是矩形。
(2)设平行四边形ABCD的面积为S,折叠后得到的三角形面积为S',则S' = 1/2 S。
平行四边形中的折叠问题课件.
平行四边形中的折叠问题课件.一、教学内容本节课我们将探讨人教版八年级数学上册第四章《平行四边形》中的折叠问题。
具体内容包括:平行四边形的性质,折叠后图形的特点,以及如何通过折叠解决问题。
重点章节为4.3节“平行四边形的判定”。
二、教学目标1. 让学生掌握平行四边形的基本性质,并能运用这些性质解决折叠问题。
2. 培养学生空间想象力和逻辑思维能力,提高解决实际问题的能力。
3. 通过折叠实践活动,让学生体会数学与生活的联系,激发学习兴趣。
三、教学难点与重点难点:平行四边形折叠后图形的形状变化,以及如何利用性质解决问题。
重点:平行四边形的性质及判定方法,折叠问题的解决方法。
四、教具与学具准备教具:平行四边形模型、折叠示例图、多媒体课件。
学具:剪刀、彩纸、直尺、圆规。
五、教学过程1. 实践情景引入(5分钟)让学生动手折叠一张平行四边形纸片,观察折叠后的形状变化,引导学生发现数学问题。
2. 例题讲解(15分钟)讲解折叠问题中涉及到的平行四边形性质,并通过例题演示解题方法。
例题:一个平行四边形沿着一条对角线折叠,求折叠后图形的周长。
3. 随堂练习(10分钟)让学生独立完成练习题,巩固所学知识。
练习题:一个平行四边形沿着一条高折叠,求折叠后图形的面积。
4. 小组讨论(5分钟)分组讨论折叠问题的解题方法,促进学生交流与合作。
6. 知识拓展(5分钟)介绍平行四边形折叠在生活中的应用,激发学生兴趣。
六、板书设计1. 平行四边形的性质2. 折叠问题的解决方法3. 例题及解答步骤七、作业设计1. 作业题目:(1)一个平行四边形沿着一条对角线折叠,求折叠后图形的周长和面积。
(2)一个平行四边形沿着一条高折叠,求折叠后图形的周长和面积。
2. 答案:(1)周长:原平行四边形的周长;面积:原平行四边形面积的一半。
(2)周长:原平行四边形的周长;面积:原平行四边形面积的一半。
八、课后反思及拓展延伸本节课通过折叠实践活动,让学生掌握了平行四边形性质在折叠问题中的应用。
2024年平行四边形中的折叠问题课件
2024年平行四边形中的折叠问题课件.一、教学内容本节课我们将探讨教材第十二章“几何变换”中的折叠问题,特别是平行四边形的折叠。
详细内容包括:理解平行四边形的基本性质,掌握折叠过程中的对称性和不变量,运用这些性质解决折叠问题。
二、教学目标1. 理解平行四边形的性质,并能运用性质解决折叠问题。
2. 通过折叠活动,培养学生的空间想象能力和逻辑思维能力。
3. 提高学生运用数学知识解决实际问题的能力。
三、教学难点与重点教学难点:理解折叠过程中平行四边形的对称性和不变量。
教学重点:平行四边形性质的应用,折叠问题的解决方法。
四、教具与学具准备1. 教具:多媒体课件,平行四边形的模型。
2. 学具:剪刀,彩纸,尺子,圆规。
五、教学过程1. 实践情景引入:展示生活中的折叠实例,如纸飞机、纸盒等,让学生感受折叠在生活中的应用。
2. 知识讲解:(1)回顾平行四边形的性质。
(2)介绍折叠过程中平行四边形的对称性和不变量。
3. 例题讲解:(1)给出一个平行四边形折叠问题,引导学生分析问题,找出关键信息。
(2)示范解题过程,强调平行四边形性质的应用。
4. 随堂练习:让学生独立解决一个类似的折叠问题,巩固所学知识。
5. 小组讨论:学生分组讨论解决折叠问题的方法,分享解题心得。
六、板书设计1. 平行四边形的性质2. 折叠过程中的对称性和不变量3. 折叠问题的解题步骤七、作业设计答案:折叠后的形状为一个三角形。
2. 作业题目:已知平行四边形ABCD,对角线AC、BD相交于点O,沿对角线AC折叠,求折叠后的形状。
答案:折叠后的形状为一个三角形。
八、课后反思及拓展延伸1. 反思:本节课通过实践情景引入,让学生感受到了折叠的趣味性。
在讲解过程中,注重引导学生运用平行四边形的性质解决问题。
2. 拓展延伸:鼓励学生探究其他多边形的折叠问题,培养学生的探究意识和创新精神。
重点和难点解析1. 实践情景引入的选择与设计。
2. 知识讲解中对平行四边形性质的回顾与强调。
折叠(翻折)在证明(解题)中的应用
第一讲;折叠(翻折)在证明(解题)中的应用一,知识点回顾;折叠具有什么样的性质?二,例题讲解;将平行四边形纸片ABCD按如图方式折叠,使点C与A重合,点D落到处,折痕为EF。
(1)求证:△ABE≌△A F。
(2)连接CF,判断四边形AECF是什么特殊四边形?证明你的结论。
证明:(1)由折叠可知:∠D=∠D′,CD=AD′,∠C=∠D′AE∵四边形ABCD是平行四边形∴∠B=∠D,AB=CD,∠C=∠BAD∴∠B=∠D′,AB=AD′∠D′AE=∠BAD,即∠1+∠2=∠2+∠3∴∠1=∠3∴△ABE≌△A D′F.(2)四边形AECF是菱形由折叠可知:AE=EC,∠4=∠5∵四边形ABCD是平行四边形,∴AD∥BC∴∠5=∠6.∴∠4=∠6.∴AF=AE∵AE=EC,∴AF=EC又∵AF∥EC∴四边形AECF是平行四边形∵AF=AE∴四边形AECF是菱形.三.巩固练习;1,如图:把一个矩形如图折叠,使顶点B和D重合,折痕为EF.(1)找出图中的全等三角形.(2)△DEF是什么三角形,并证明.(3)连接BE,判断四边形BEDF是什么特殊四边形,BD与EF有什么关系?并证明.2,如图,将平行四边形ABCD纸片沿EF折叠,使点C与点A重合,点D落在点G处,(1)求证:AE=AF;(2)求证:△ABE≌△AGF.3,已知,一张矩形纸片ABCD,把顶点A和C叠合在一起,得折痕EF(如图).(1)猜猜四边形AECF是什么特殊四边形,并证明你的猜想;(2)若AB=9cm,BC=3cm,求折痕EF的长.4.将矩形纸片ABCD按如图所示折叠,EF为折痕,点B与点P(点P在DC边上)重合.(1)当BC与CP重合(如图甲)时,四边形BFPE是形;(2)当BC与CP不重合时,分别指出图乙、丙中的四边形BFPE是什么特殊四边形,并选择两图之一给出证明.5,如图,将一张矩形纸片(矩形ABCD)按如图方式折叠,使顶点B和D重合,折痕为EF.(1)连接EB,求证:四边形EBFD是菱形;(2)若AB=3,BC=9,求重叠部分三角形DEF的面积.6.如图,将平行四边形ABCD纸片沿EF折叠,使点C与点A重合,点D落在点G处.(1)求证:△ABE≌△AGF;(2)连接AC,若平行四边形ABCD的面积为8,23ECBC,求AC•EF的值.7,如图,四边形ABCD为平行四边形纸片.把纸片ABCD折叠,使点B恰好落在CD边上,折痕为AF.且AB=10cm、AD=8cm、DE=6cm.(1)求证:平行四边形ABCD是矩形;(2)求BF的长;(3)求折痕AF长.四,中考链接;8,(2014•临沂)对一张矩形纸片ABCD进行折叠,具体操作如下:第一步:先对折,使AD与BC重合,得到折痕MN,展开;第二步:再一次折叠,使点A落在MN上的点A′处,并使折痕经过点B,得到折痕BE,同时,得到线段BA′,EA′,展开,如图1;第三步:再沿EA′所在的直线折叠,点B落在AD上的点B′处,得到折痕EF,同时得到线段B′F,展开,如图2.(1)证明:∠ABE=30°;(2)证明:四边形BFB′E为菱形.9,(2010•荆门)将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展平纸片,如图(1);再次折叠该三角形纸片,使得点A与点D重合,折痕为EF,再次展平后连接DE、DF,如图2,证明:四边形AEDF是菱形.10,(2012•深圳)如图,将矩形ABCD沿直线EF折叠,使点C与点A重合,折痕交AD于点E,交BC于点F,连接AF、CE,(1)求证:四边形AFCE为菱形;(2)设AE=a,ED=b,DC=c.请写出一个a、b、c三者之间的数量关系式11,(2014•鼓楼区一模)将一张长方形纸片按照图示的方式进行折叠:①翻折纸片,使A与DC边的中点M重合,折痕为EF;②翻折纸片,使C落在ME上,点C的对应点为H,折痕为MG;③翻折纸片,使B落在ME上,点B的对应点恰与H重合,折痕为GE.根据上述过程,求长方形纸片的长宽之比AB BC?12,(2014•山西)课程学习:正方形折纸中的数学.动手操作:如图1,四边形ABCD是一张正方形纸片,先将正方形ABCD 对折,使BC与AD重合,折痕为EF,把这个正方形展平,然后沿直线CG折叠,使B点落在EF上,对应点为B′.数学思考:(1)求∠CB′F的度数;(2)如图2,在图1的基础上,连接AB′,试判断∠B′AE与∠GCB′的大小关系,并说明理由;解决问题:(3)如图3,按以下步骤进行操作:第一步:先将正方形ABCD对折,使BC与AD重合,折痕为EF,把这个正方形展平,然后继续对折,使AB与DC重合,折痕为MN,再把这个正方形展平,设EF和MN相交于点O;第二步:沿直线CG折叠,使B点落在EF上,对应点为B′,再沿直线AH折叠,使D点落在EF上,对应点为D′;第三步:设CG、AH分别与MN相交于点P、Q,连接B′P、PD′、D′Q、QB′,试判断四边形B′PD′Q的形状,并证明你的结论.13,(2013-2014第一学期鼓楼区八年级数学期中检测试卷第16题)即(2013•绍兴数学中考试题)矩形ABCD中,AB=4,AD=3,P,Q是对角线BD上不重合的两点,点P关于直线AD,AB的对称点分别是点E、F,点Q关于直线BC、CD的对称点分别是点G、H.若由点E、F、G、H构成的四边形恰好为菱形,则PQ的长为14,(2013-2014第一学期鼓楼区八年级数学期中检测试卷第24题)即(2014•南通通州区一模)如图,在四边形ABCD中,AB=DC,E、F分别是AD、BC 的中点,G、H分别是对角线BD、AC的中点.(1)求证:四边形EGFH是菱形;(2)若AB=1,则当∠ABC+∠DCB=90°时,求四边形EGFH的面积.。
最新人教版数学八年级下册第十八章《平行四边形-数学活:平行四边形中的翻折变换》优质教学课件
∴∠ABC=90°.
∴∠3=90°-60°=30°,
∴∠1=∠2=∠3=30°
在图中,你能找出所有30°的角吗?60°的角呢?还有其他度数的角吗?
G
还有120 ° 和150 °的角
利用折纸得到60°、30°、15°的角
【综合与实践】在线上教学中,教师和学生都学习到了新知识,掌握了许多新技能.例如教材八年级下册的数学活动--折纸,就引起了许多同学的兴趣.在经历图形变换的过程中,进一步发展了同学们的空间观念,积累了数学活动经验.实践发现:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;再一次折叠纸片,使点A落在EF上的点N处,并使折痕经过点B,得到折痕BM,把纸片展平,连接AN,如图①.
八年级 下册
第18章 平行四边形
——数学活动:平行四边形中的翻折变换
学习目标: 1.能折出60°,30°,15°的角,学会应用。 2.通过折叠活动,加深对轴对称、全等三角形、特 殊的三角形、四边形等知识的认识; 3.经历折叠、观察、推理、交流、反思等数学活动 过程,积累数学活动经验.学习重点: 折纸做60°,30°,15°的角,学会应用.
D
6.矩形ABCD中,点E在边AB上,将矩形ABCD沿直线DE折叠,点A恰好落在边BC上的点F处,若AD=10,CD=6,则BE=____。
19.3.2平行四边形中的折叠问题优质教案
19.3.2 平行四边形中折叠问题优质教案一、教学内容本节课,我们将深入探讨教材第19章第3节第2部分,关于平行四边形中折叠问题。
具体内容包括:理解平行四边形性质,掌握折叠过程中各边和角关系,以及运用这些性质解决实际问题。
二、教学目标1. 理解并掌握平行四边形性质。
2. 学会运用折叠方法,解决平行四边形相关问题。
3. 培养学生空间想象能力和逻辑思维能力。
三、教学难点与重点教学难点:理解平行四边形折叠过程中各边和角关系。
教学重点:掌握平行四边形性质,并运用其解决实际问题。
四、教具与学具准备1. 教具:平行四边形模型、剪刀、尺子、圆规。
2. 学具:每人一份平行四边形纸张、剪刀、尺子、圆规。
五、教学过程1. 实践情景引入向学生展示一个平行四边形模型,提问:“如何通过折叠,将这个平行四边形变成一个矩形?”邀请学生上台演示,并分享他们思考过程。
2. 例题讲解讲解平行四边形性质,如对边平行且相等,对角相等。
以一个具体折叠问题为例,引导学生运用性质,解决问题。
3. 随堂练习让学生分组讨论,解决教材中折叠问题。
指导学生运用所学知识,分析问题,得出结论。
4. 课堂小结强调在解决折叠问题时,要注意边和角关系。
六、板书设计1. 平行四边形性质对边平行且相等对角相等2. 折叠问题解决方法确定折叠前后关系运用性质,推导出答案七、作业设计1. 作业题目1)一个平行四边形,将其沿对角线折叠,求折叠后得到图形面积。
2)已知一个平行四边形,求将其折叠成一个矩形所需最小折叠次数。
2. 答案作业1:折叠后得到图形为两个全等三角形,根据全等三角形性质,可求出面积。
作业2:最少折叠两次,先将平行四边形沿一条对角线折叠,再沿另一条对角线折叠。
八、课后反思及拓展延伸1. 反思:本节课通过折叠问题,让学生深入理解平行四边形性质,提高学生空间想象能力和逻辑思维能力。
2. 拓展延伸:引导学生思考,如何将平行四边形折叠成一个正方形?鼓励学生进行课外探究,提高他们自主学习能力。
四边形中的折叠问题+应用题
FE DABC四边形中的折叠问题折叠可以带来全等图形,在平行四边形中,对角线把它分成全等的三角形,因此在四边形中经常会遇到折叠问题。
解决此类问题的关键是要注意观察折叠前后的图形,发现它们之间的关系,找到边、角中的变量和不变量,寻找全等三角形,同时还会经常综合运用到四边形的有关知识。
一、例题讲解例1 如图,将一张对边平行的纸条先沿EF 折叠,点A 、B 分别落在'A 、'B 处,线段FB '与AD 交于点M ,再将纸条的另一部分CFMD 沿MN 折叠,点C 、D 分别落在'C 、'D 处,且使MD '经过点F . (1)求证:四边形MNFE 是平行四边形; (2)当翻折角BFE =∠ 度时,四边形MNFE 是菱形.(将答案直接 填写在横线上)例2 如图,把矩形纸片ABCD 沿对角线AC 折叠,点B 落在点E 处,EC 与AD 相交于点F.(1)求证:△FAC 是等腰三角形;(2)若AB=4,BC=6,求△FAC 的周长和面积.例3如图,将矩形ABCD 沿直线AE 折叠,顶点D 恰好落在BC 边上F 点处,已知cm CE 6=,cm AB 16=,求BF 的长.例4 在梯形纸片ABCD 中,AD BC ∥,AD CD >,将纸片沿过点D 的直线折叠,使点C 落在AD 上的点C '处,折痕DE 交BC 于点E ,连结C E '.(1)求证:四边形CDC E '是菱形;(2)若BC CD AD =+,试判断四边形ABED 的形状, 并加以证明16.如图,矩形纸片ABCD 中,AB =3 cm ,BC =4 cm .现将A ,C 重合,使纸片折叠压平,设折痕为EF ,试求AF 的长和重叠部分△AEF 的面积.18.如图,E 是矩形ABCD 的边AD 上一点,且BE =ED ,P 是对角线BD 上任意一点,PF ⊥BE ,PG ⊥AD ,垂足NEFMD'A'B'C'ABCDF E DC B A分别为F、G.求证:PF+PG=AB.分式方程和不等式应用题:1.(2011•德阳)某商场分两批购进同一种电子产品,第二批单价比第一批单价多10元,两批购进的数量和所用资金见下表:购进数量(件)所用资金(元)第一批x 16000第二批2x 34000(1)该商场两次共购进这种电子产品多少件?(2)如果这两批电子产品每件售价相同,除产品购买成本外,每天还需其他销售成本60元,第一批产品平均每天销售10件.售完后,因市场变化,第二批电子产品比第一批平均每天少销售2件,商场为了使这两批电子产品全部售完后总利润不低于20%,那么该商场每件电子产品的售价至少应为多少元?1200135010001200B A 售价(元/件)进价(元/件)价格商品2.(2011•河池)大众服装店今年4月用4000元购进了一款衬衣若干件,上市后很快售完,服装店于5月初又购进同样数量的该款衬衣,由于第二批衬衣进货时价格比第一批衬衣进货时价格提高了20元,结果第二批衬衣进货用了5000元.(1)第一批衬衣进货时的价格是多少?(2)第一批衬衣售价为120元/件,为保证第二批衬衣的利润率不低于第一批衬衣的利润率,那么第二批衬衣每件售价至少是多少元?3.(2011•防城港)上个月某超市购进了两批相同品种的水果,第一批用了2000元,第二批用了5500元,第二批购进水果的重量是第一批的2.5倍,且进价比第一批每千克多1元. (1)求两批水果共购进了多少千克?(2)在这两批水果总重量正常损耗10%,其余全部售完的情况下,如果这两批水果的售价相同,且总利润率不低于26%,那么售价至少定为每千克多少元?二元一次方程组和不等式的应用:1.茶叶作为一种饮料不仅清香可口,而且具有独特的药用价值,特别是绿茶中含有较多的 叶酸,对人的健康很有帮助,某批发茶商第1次用39万元购进A 、B 两种品牌绿茶,销售完 后获得利润6万元,它们的进价和售价如下表:(总利润=单件利润×销售量)(1)该茶商第1次购进A 、B 两种绿茶各多少件?(2)该茶商第2次以原价购进A 、B 两种绿茶,购进B 种绿茶的件数不变,而购进A 种绿 茶的件数是第1次的2倍,A 种绿茶按原价销售,而B 种绿茶打折销售,若两种绿茶销售完毕, 要使得第2次经营活动获得利润不少于75000元,则B 种绿茶最低售价为每件多少元?2.(2012•包头)某商场用36000元购进甲、乙两种商品,销售完后共获利6000元.其中甲种商品每件进价120元,售价138元;乙种商品每件进价100元,售价120元. (1)该商场购进甲、乙两种商品各多少件?(2)商场第二次以原进价购进甲、乙两种商品,购进乙种商品的件数不变,而购进甲种商品的件数是第一次的2倍,甲种商品按原售价出售,而乙种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于8160元,乙种商品最低售价为每件多少元?3. 为了防控甲型H7N9禽流感,某校积极进行校园环境消毒,购买了甲、乙两种消毒液共100瓶,其中甲种6元/瓶,乙种9元/瓶.(1)如果购买这两种消毒液共用780元,求甲、乙两种消毒液各购买多少瓶? (2)该校准备再次购买这两种消毒液(不包括已购买的100瓶),使乙种瓶数是甲种瓶数的2倍,且所需费用不多于1200元(不包括780元),求甲种消毒液最多能再购买多少瓶?二次函数周长最小问题:如图,△ABC 的三个顶点坐标分别为A (-2,0)、B (6,0)、C (0,32 ),抛物线y=ax 2+bx+c (a ≠0)经过A 、B 、C 三点。
中考数学《特殊平行四边形》专题复习课件(共32张PPT)
你的结论。
7.如图,OABC是一张放在平面直角坐标系中的 矩形纸片,O为原点,点A在x轴上,点C在y 轴上,OA=10,OC=6。
(1)如图①,在OA上选取一点G,将△COG 沿CG翻折,使点O落在BC边上,设为E, 求折痕CG所在直线的解析式。
谢谢观赏
You made my day!
我们,还在路上……
⑵当x为何值时,⊿PBC的周长最 小,并求出此时y的值
❖1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月5日星期六2022/3/52022/3/52022/3/5 ❖2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于 独立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/52022/3/52022/3/53/5/2022 ❖3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/52022/3/5March 5, 2022 ❖4、享受阅读快乐,提高生活质量。2022/3/52022/3/52022/3/52022/3/5
一、四边形的分类及转化
两组对边平行 平行四边形
任意四边形
一组对边平行
梯形
另一组对边不平行
矩形
菱 形
正方形
等腰梯形
直角梯形
二、几种特殊四边形的性质:
项目 四边形
对边
角
对角线
对称性
对角相等
平行且相等
平行四边形
邻角互补
四个角
矩形 平行且相等 都是直角
平行
对角相等
特殊平行四边形的折叠问题
特殊平行四边形的折叠问题一,基础热身例1,如图,将矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上F点处,已知CE=3cm,AB=8 cm,则图中阴影部分面积为 __________cm2.例2,如图,将矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上F处,已知CE=3,AB=8,则BF= _________例3,如图(上题),将矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上F点处,已知DE=5,AB=8,则BF=_______ 例4,如图(上题),将矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上F点处,已知CE=6,AB=16,则BF= ________例5,如图,将矩形ABCD沿直线AE折叠,顶点D恰好落在ABC边上F点处,已知CE=4cm,AB=9cm,则矩形ABCD的面积为_________m2.例6,如图(上题),将矩形ABCD沿直线AE折叠,使点D+落在BC边上的点F处,若已知∠BAF=60°,则∠DAE度数是()A, 15° B,30° C, 45° D,60°二,菱形中的折叠问题例7,如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A′MN,连结A′C,则A′C长度的最小值________,例8,如图,在菱形纸片ABCD 中,∠A=60°将纸片折叠,点A,D 分别落在A ′,D ′处,且 A ′D ′经过点B ,EF 为折痕.当D ′F⊥CD时,=___________三,矩形中的折叠问题例9,如图,在矩形纸片ABCD 中,AB=8cm ,把矩形纸片沿直线AC 折叠,点B 落在点E 处,AE 交DC 于点F ,若AF =则AD 的长为_______。
例10,如图,已知矩形纸片ABCD ,点E 是AB 的终点,点G 是BC 上的一点,∠BEG >60°.现沿直线EG 将折叠,使B 落在纸片上的H 处,连接AH ,则与∠BEG 相等的角的个数为_______。
平行四边形中的折叠问题含答案
平行四边形中的折叠问题一、新课导入(一)学习目标熟练掌握平行四边形的性质与判定,并能运用相关性质、判定解决平行四边形中的折叠问题.(二)预习导入1.如图,将▱ABCD沿对角线BD折叠,点A落在点A′处,若∠A=55°,∠ABD=45°,则∠A′BC的大小为().A.30°B.35°C.40°D.45°2.如图,将矩形纸片ABCD折叠,使点D与点B重合,点C落在C'处,折痕为EF,若AB=1,BC=2,则△ABE和△BC'F的周长之和是________.二、典型问题知识点一:在折叠中求角度和边长例1如图,矩形ABCD中,点M,N分别在AD、BC边上.将矩形ABCD沿MN翻折,点C恰好落在AD边上的点F处.若MD=1,∠MNC=60°,则∠EFM的度数为_______,AB的长为________.分析:由折叠变换可得EF=CD,MD=EM=1,∠MNC=∠FNM=60°,∠C=∠EFN=90°,由平行线的性质可得∠FMN=∠MNC=60°,即可求得∠EFM的度数,由直角三角形的性质可求得EF的长,即为AB的长.知识点二:在折叠中判定平行四边形例2如图,已知矩形ABCD,将纸片折叠,使顶点A与C重合,折痕EF分别于DC,AB 交于E,F.求证:E,A,F,C四点构成的四边形为菱形.分析:连接AE,AC,AC交EF于O,由折叠的性质得,AO=CO,EF⊥AC,根据全等三角形的性质得到AF=CE,则即可得解.三、阶梯训练A组:基础练习1.如图,将平行四边形ABCD沿对角线BD折叠,使点A落在点A'处.若∠1=∠2=50°,则∠A'为_________.2.把矩形ABCD按如图方式折叠,使顶点B和点D重合,折痕为EF.若AB=4cm,BC=8cm,则DF的长度是________cm.3.如图,▱ABCD中,点E在边AD上,以BE为折痕,将△ABE向上翻折,点A正好落在CD上的点F,若△FDE的周长为8,△FCB的周长为22,则FC的长为_________.4.如图,将菱形纸片ABCD折叠,使点B落在AD边的点F处,折痕为CE,若∠D=80°,则∠ECF的度数是__________.5.在▱ABCD中,点E为AB边的中点,连接CE,将△BCE沿着CE翻折,点B落在点G 处,连接AG并延长,交CD于F.求证:四边形AECF是平行四边形.6.准备一张矩形纸片,按如图操作:将△ABE沿BE翻折,使点A落在对角线BD上的M 点,将△CDF沿DF翻折,使点C落在对角线BD上的N点.(1)求证:四边形BFDE是平行四边形;(2)若四边形BFDE是菱形,BE=2,求菱形BFDE的面积.B组:拓展练习7.如图,已知正方形纸片ABCD,M,N分别是AD,BC的中点,把BC边向上翻折,使点C恰好落在MN上的P点处,BQ为折痕,则∠PBQ的度数为_________.8.如图,菱形纸片ABCD中,∠A=60°,点P是AB边的中点,折叠纸片,使点C落在直线DP上的C处,折痕为经过点D的线段DE.则∠DEC的度数为_________.9.如图,正方形ABCD的边长AB=12,翻折AD到GN分别交CD于点M,交BC于点N,BN=5,连接AN.(1)求△AEN的面积;(2)试判断EF与AN的关系,并说明理由.平行四边形中的折叠问题答案预习导入1.B.2.6.例130°,3.例2连接AE,AC交EF于O.由折叠的性质得,AO=CO,EF⊥AC,∴AE=CE,AF=CF.∵AB∥CD,∴∠ECO=∠OAF.在△AOF与△COE中,∠ 쫠⩊=∠ ,쫠 = ,∠쫠 ⩊=∠ ,∴△AOF≌△COE.∴AF=CE.∴AE=AF=CE=CF.∴E,A,F,C四点构成的四边形为菱形.1.105°.2.5.3.7.4.40°.5.证明:∵四边形ABCD是平行四边形,∴AE∥FC.∵点E是AB边的中点,∴AE=BE.∵将△BCE沿着CE翻折,点B落在点G处,∴BE=GE,∠CEB=∠CEG.∴AE=GE.∴∠FAE=∠AGE.∵∠BEG=∠FAE+∠AGE,∴∠FAE=12∠BEG.又∵∠CEB=∠CEG=12∠BEG,∴∠FAE=∠CEB.∴AF∥EC.∴四边形AECF是平行四边形.6.(1)证明:∵四边形ABCD是矩形,∴∠A=∠C=90°,AB=CD,AB∥CD.∴∠ABD=∠CDB.由翻折变换的性质可知,∠ABE=∠EBD,∠CDF=∠FDB,∴∠EBD=∠FDB.∴EB∥DF.∵ED∥BF,∴四边形BFDE为平行四边形.(2)∵四边形BFDE为菱形,∴∠EBD=∠FBD.∵∠EBD=∠ABE,∴∠EBD=∠FBD=∠ABE.∵四边形ABCD是矩形,∴∠ABC=90°.∴∠EBD=∠FBD=∠ABE=30°.∴AB=3.∴菱形BFDE的面积S=DE×AB=23.7.30°.8.75°.9.(1)∵四边形ABCD是正方形,∴∠B=90°.由折叠的性质,得NE=AE.设NE=AE=x,则BE=AB-AE=12-x.在Rt△ABN中,由勾股定理,得52+(12-x)2=x2,解得x=16924.∴AE=16924.∴△AEN的面积=12AE×BN=84548.(2)EF⊥AN,EF=AN,理由如下:作FH⊥AB于H,如图所示.则FH=AD=AB,∠EFH+∠FEH=90°.由折叠的性质,得EF⊥AN,∴∠NAB+∠FEH=90°.∴∠EFH=∠NAB.在△EFH和△NAB中,∠ ⩊h=∠ 쫠 ,⩊h=쫠 ,∠⩊h =∠ =90°,∴△EFH≌△NAB.∴EF=AN.。
平行四边形中的翻折问题 课件
例2:把一个矩形如图折叠,使顶点B和D重合, 折痕为EF (2)若矩形的长为9,宽为3,你能求出哪些线 段的长.
课堂小结
全等性
轴对称
本
质
重过程
折
折叠问题
对称性
重结果 叠
利用Rt△
精 髓 方程思想
利用勾股定理
思考题 :在一张长方形ABCD纸片中,AD=25cm, AB=20cm.现将这张纸片按如下列图示方式折叠, 分别求折痕的长. (1) 如图1, 折痕为AE; (2) 如图2, 折痕为EF.
(1)判断△AEC的形状并证明.
例1:在平行四边形ABCD的纸片中,AC⊥AB,AC与 BD相交于O,将△ABC沿对角线AC翻转180°,得到 △AB′C. (2)若平行四边形的面积S=10,求△AEC的面积 =.
例2:把一个矩形如图折叠,使顶点B和D重合, 折痕为EF
(1)图中有那些相等的线段
(图2)
医学资料
• 仅供参考,用药方面谨遵医嘱
平行四边形中的翻折问 题 课件
A
A
D 翻 实质
E折
轴 对 称F
D
Bቤተ መጻሕፍቲ ባይዱ
FC
E
轴对称性质:
1.图形的全等性:重合部分是全等图形,对应边角相等. 2.点的对称性:对称点连线被对称轴(折痕)垂直平分.
合作探究
例1:在平行四边形ABCD的纸片中,AC⊥AB,AC与 BD相交于O,将△ABC沿对角线AC翻转180°,得 到△AB′C.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课堂小结
全等性
折
利用Rt△
轴对称 本 质 折叠问题
对称性
重结果 叠
精 髓 方程思想
利用勾股定理
思考题 :在一张长方形ABCD纸片中,AD=25cm, AB=20cm.现将这张纸片按如下列图示方式折叠, 分别求折痕的长. (1) 如图1, 折痕为AE; (2) 如图2, 折痕为EF.
(图2)
例1:在平行四边形ABCD的纸片中,AC⊥AB,AC与 BD相交于O,将△ABC沿对角线AC翻转180°,得到 △AB′C. (2)若平行四边形的面积S=10,求△AEC的面积 =.
例2:把一个矩形如图折叠,使顶点B和D重合, 折痕为EF
(1)图中有那些相等的线段
例2:把一个矩形如图折叠,使顶点B和D重合, 折痕为EF (2)若矩形的长为9,宽为3,你能求出哪些线 段的长.
A
A
D 翻 实质
E折
轴 对 称F
D
B
FC
E
轴对称性质:
1.图形的全等性:重合部分是全等图形,对应边角相等. 2.点的对称性:对称点连线被对称轴(折痕)垂直平分.
合作探究
例1:在平行四边形ABCD的纸片中,AC⊥AB,AC与 BD相交于O,将△ABC沿对角线AC翻转180°,得 到△AB′C.
(1)判断△AEC的形状并证明.