63塔吊十字形基础的计算
塔吊十字梁地基稳定性验算计算书
十字交叉梁天然基础计算书计算依据:《塔式起重机混凝土基础工程技术规程》(JGJ/T 187-2009)《地基基础设计规范》(GB50007-2011)《建筑结构荷载规范》(GB50009-2012)《建筑安全检查标准》(JGJ59-2011)《混凝土结构设计规范》(GB50010-2010)一、参数信息1.塔吊参数2.梁参数3.地基参数4.土层参数二、塔吊抗倾覆稳定性验算1.自重荷载以及起重荷载1)塔机自重标准值:Fkl =G+G1+G2+G3+G4=251+37.4+3.8+19.8+89.4=401.40kN2)起重荷载标准值:F qk=60.00kN3)竖向荷载标准值:F k= F k1+ F qk=401.40+60.00=461.40kN4)基础及其上土自重标准值:G k=G11+G21=609.06+0.00=609.06kN 2.风荷载计算1)工作状态下塔机塔身截面对角线方向所受风荷载标准值①塔基所受风均布线荷载标准值(ω=0.20 kN/m2)q sk =0.8×α×βz×μS×μZ×ω×α×B×H/H=0.8×1.2×1.59×1.95×1.32×0.20×0.35×1.6 =0.44kN/m②塔机所受风荷载水平合力标准值F vk = qsk·H=0.44×43=18.92kN③基础顶面风荷载产生的力矩标准值M sk =0.5 Fvk·H=0.5×18.92×43=406.82kN·m2)非工作状态下塔机塔身截面对角线方向所受风荷载标准值①塔机所受风线荷载标准值(深圳市ω′=0.75kN/m2)q sk ′=0.8×α×βz×μs×μz×ω′×α×B×H/H=0.8×1.2×1.69×1.95×1.32×0.75×0.35×1.6 =1.75kN/m②塔机所受风荷载水平合力标准值F vk ′=qsk′·H=1.75×43=75.42kN③基础顶面风荷载产生的力矩标准值M sk ′=0.5 Fvk′·H=0.5×75.42×43=1621.52kN·m3.基础顶面倾覆力矩计算1)工作状态下塔机倾覆力矩标准值M k =M1+M2+M3+M4+0.9(M5+Msk)=(37.4×22)+(3.8×11.5)+(-19.8×6.3)+(-89.4×11.8)+0.9×(m ax(60×11.5,10×50)+406.82)=673.98kN·m2)非工作状态下塔机倾覆力矩标准值Mk ′=M1+M3+M4+Msk′=(37.4×22)+(-19.8×6.3)+(-89.4×11.8)+1621.52=1264.66kN·m比较上述两种工况的计算,可知塔机在非工作状态时对基础传递的倾覆力矩最大,故应按非工作状态的荷载组合进行地基基础设计。
塔吊基础设计计算书(单桩63)
塔吊基础设计(单桩)计算书1.计算参数(1)基本参数采用2台QTZ63塔式起重机,1台45米、1台40米,塔身尺寸1.63m,承台面标高-12.20m。
(2)计算参数1)塔机基础受力情况基础荷载P(kN) M(kN.m)F k FhM MZ503.80 35.00 1500.00 200.00MkFM zkF =F =M =zM =基础顶面所受垂直力基础顶面所受水平力基础所受扭矩基础顶面所受倾覆力矩hF h塔吊基础受力示意图比较桩基础塔机的工作状态和非工作状态的受力情况,塔机基础按工作状态计算如图:F k =503.80kN,Fh=35.00kN,M=1500.00+35.0×1.10=1538.50kN.mF k ‘=503.80×1.35=680.13kN,Fh,=35.00×1.35=47.25kN,Mk=(1500.00+35.0×1.10)×1.35=2076.98kN.m2)桩顶以下岩土力学资料序号地层名称厚度 L(m)极限侧阻力标准值q sik(kPa ) 岩石饱和单轴抗压强度标准值f rk (kPa) q sik*ιi(kN/m) 抗拔系数λiλi q sik*ιi(kN/m)1 粘性土 1.9 55.00 100.00 104.50 0.7073.15 2 粉质粘土 0.9 95.00 150.00 85.50 0.70 59.85 3 强风化 6.2 120.00 245.00 148.00 0.70 103.88 4 中风化1.10 200.00420.00 174.40 0.70 121.8 桩长10.10∑q sik*ιi512.40∑λi q sik*ιi358.683)基础设计主要参数基础桩采用1根φ1400人工挖孔灌注桩,桩顶标高-12.20m ,桩端设扩大头,桩端入中风化 1.10m ;桩混凝土等级C30,f C =14.30N/mm 2 ,E C =3.00×104N/mm 2;f t =1.43N/mm 2,桩长10.10m ;钢筋HRB335,f y =300.00N/mm 2 ,E s =2.00×105N/mm 2;承台尺寸长(a)=3.50m 、宽(b)=3.50m 、高(h)=1.20m ;桩中心与承台中心重合,面标高-12.20m ;承台混凝土等级C30,f t =1.43N/mm 2,f C =14.30N/mm 2,γ砼=25kN/m 3。
63塔吊基础施工方案计算书
塔吊基础设计计算书编制:____________________审核:_____________________审批:_____________________、1#塔吊设计:1、塔吊选择:本塔吊采用塔吊生产厂家提供的QTZ63型塔吊,塔吊基础长宽均为5m,高1m。
基础砼强度等级采用C35级,钢筋采用HRB400级。
QTZ63型塔式起重机主要性能及参数如下:2、技术参数:Fv=425(KN)M=630KN.m Fh=68KN3、确定基础尺寸:由地勘报告知,1#塔机基底所处位置地基承载力为160kpa,原厂家设计塔吊基础对地基承载力要求不小于200kpa,大于本工程的160kpa,故需在基础下部设一扩大的钢筋砼平台,以增大基底面积.暂定平台尺寸为5000X 5000X 1000,做地基承载力验算.4、力学演算天然基础尺寸为b x b x h=5n K5mx 1.3m砼基础的重力Fg=5X 5X 1 x 25=625KN地面容许压应力[P B]=160KPa2 2 2HRB400: f y 360N/mm ,C35: f c 16.7N/mm,f t 1.57N/mm4.1、地基承载力演算地基承载力为:f=25 m2x 160KPa/10=400吨塔吊结构自重:Fv=31吨塔吊基础自重:Fg=25x 1.35 x 2.5=84.37 吨f=216 吨〉F二Fv+Fg=31+84.37=115.37 吨所以,地基承载力能满足塔吊使用要求。
4. 2塔吊抗倾覆演算e=0.751m<b/3=5/3=1.67m 满足要求4.3、偏心荷载下地面压应力验算:P2F;Fg 2 31;84'7 87.95kN/m2<160kP 满足要求3l(b e) 3 5 (5 0.7512 21.2 M F h hF F g1.2 630 68 1.35310 84370.751kN/m24.4、抗剪强度验算:按GB50007-2002《建筑地基基础设计规范》公式(8.4.9 )1800刁3 3V S (310 843.7)/4 288.43KN 0.7 hs f t b w h o 0.7 0.946 1.57 10 2 1 2.080 10 KN满足要求。
63塔吊天然基础(手算)
QTZ63塔吊基础的计算书(天然地基)一. 基本参数塔吊型号:QTZ63, 自重F1=47.67kN,起重荷载F2=60.00kN,塔吊倾覆力距M=1796.00kN.m,塔吊起重高度H=74.89m,塔身宽度B=1.60m,混凝土强度等级:C30,钢筋强度等级:HRB335级基础埋深D=3.00m,基础厚度h=1.35m,基础宽度Bc=6.00m,荷载分项系数:1.2、1.4二. 最不利工况塔机固定在基础上,在塔机未采用附着装置以前,对基础产生的载荷值时,基础所受的荷载最大。
(非工作状态)P---基础所受的垂直力 513 KNH1、H2---基础所受的水平力 73.5 KNM1、M2---基础所受的倾覆力矩 1796 KN.m三. 塔吊基础地基承载力计算依据《建筑地基基础设计规范》(GB50007-2002)第5.2条承载力计算。
当不考虑附着时的基础设计值计算公式:当考虑附着时的基础设计值计算公式:当考虑偏心距较大时的基础设计值计算公式:式中 F──塔吊作用于基础的竖向力(包括塔吊自重,压重和最大起重荷载)F=1.2×513=615.6kN;G──基础自重与基础上面的土的自重G=1.2×(25.0×B c×B c×H c+20.0×B c×B c×D) =4050.00kN;B c──基础底面的宽度,取B c=6.00mW──基础底面的抵抗矩,W=B c×B c×B c/6=36.00m3M──倾覆力矩,包括风荷载产生的力距和最大起重力距M=1.4×1796.00=2514.40kN.ma──合力作用点至基础底面最大压力边缘距离(m),按下式计算:a=6.00/2-2514.40/(615.6+4050.00)=2.46m经过计算得到:无附着的最大压力设计值 P max=(615.6+4050.00)/6.002+2514.40/36.00=199.44kPa无附着的最小压力设计值 P min=(615.6+4050.00)/6.002-2514.40/36.00=59.76kPa有附着的压力设计值 P=(615.6+4050.00)/6.002=129.6kPa偏心距较大时压力设计值 P kmax=2×(615.6+4050.00)/(3×6.00×2.46)=210.73kPa 三. 地基基础承载力验算地基基础承载力特征值计算依据《建筑地基基础设计规范》GB 50007-2002第5.2.3条。
塔吊基础设计计算
筑龙网WW W.ZH U L ON G.C OM(一)塔吊基础设计计算 1、根据塔吊使用说明书,十字梁设计为1100×1500、砼C25,适当配置钢筋,本基础坐落在5根桩上,即本塔吊基础设计, 2、基础十字梁钢筋设计根据塔吊使用说明书,十字梁所受的荷载为F1=F2=150KN 截面尺寸为1100×1500,砼为C25假如十字梁双排钢筋为5Φ25验算如上草图,M max F ×a =150×3.00=450KN.M 查表:ρ=0.26%As =ρ×b ×h =0.26%×1100×1500=4290mm 2A 设=4908mm 2 >As =4290mm 2故十字梁双排配筋满足要求。
3、 稳定验算以知条件:基础所受的垂直荷载 476KN基础所受的水平荷载 24KN 基础所受的倾翻力矩 1220KN 基础所受的扭矩 185 KN.mm 基础设计重量 610 KN.mm计算塔吊在非工作情况下是否稳定筑龙网WW W.ZH U L ON G.C OMe =(M+H ×h )/(V+G )≤Le/3=(185×103×24103×50)/(476×103+610×103)=1.28<=2.03L/3 故基础满足要求 五、塔吊稳定验算:(1) 塔吊在工作情况下有荷载稳定验算:K1=[G ×(c-h ×sina+b )-v ×(a-h )÷gt] ÷[Q ×(a-b )]=1.534>1.15 取a =0(2) 非工作下的稳定验算(取W3=2KN/M 风载按12级台风取) K2=[G1×(b+c1-h1×sina )] ÷[G2×C2-b + h2×sina+W3×P3]]=1.39>1.15故:塔吊在工作和非工作下均能保持稳定。
塔吊十字交叉梁天然基础计算书
十字交叉梁天然基础计算书本计算书主要计算依据:施工图纸、《建筑结构荷载规范》(GB50009-2001)、《建筑地基基础设计规范》(GB50007-2002)、《混凝土结构设计规范》(GB50010-2002)、《塔式起重机设计规范》(GB/T13752-1992)、《建筑安全检查标准》(JGJ59-99)、本工程用《塔吊使用说明书》、地质勘探报告和施工现场总平面布置图等。
基本参数1、塔吊基本参数塔吊型号:QTZ63;塔吊自重Gt:450.8kN;标准节长度b:2.5m;最大起重荷载Q:60kN;塔身宽度B:2.5m;主弦杆材料:角钢/方钢;塔吊起升高度H:101m;主弦杆宽度c:250mm;非工作状态时:额定起重力矩Me:600kN·m;基础所受的水平力P:20kN;工作状态时:额定起重力矩Me:600kN·m;基础所受的水平力P:50kN;2、风荷载基本参数所处城市:浙江杭州市风荷载高度变化系数μz:1.02 ;地面粗糙度类别:D类密集建筑群,房屋较高;非工作状态时,基本风压ω0:0.45kN·m;工作状态时,基本风压ω0:0.45kN·m;3、基础基本参数交叉梁截面高度h1:1m;交叉梁宽t:0.5m;基础底面宽度Bc:6m;基础底板厚度h2:0.4m;基础上部中心部分正方形边长a1:4m;混凝土强度等级:C35;承台混凝土保护层厚度:50mm;基础埋置深度d:0.6m;十字交叉梁上部钢筋直径:25mm;十字交叉梁上部钢筋型号:HRB335;十字交叉梁底部钢筋直径:25mm;十字交叉梁底部钢筋型号:HRB335;十字交叉梁箍筋直径:10mm;十字交叉梁箍筋型号:HPB235;十字交叉梁箍筋肢数:6;十字交叉梁腰筋直径:20mm;十字交叉梁腰筋型号:HRB335;基础底板钢筋直径:20mm;基础底板钢筋型号:HRB335;4、地基基本参数地基承载力特征值f ak:325kN/m2;基础宽度的地基承载力修正系数ηb:0.3;基础埋深的地基承载力修正系数ηd:1.3;基础底面以下土的重度γ:20kN/m3;基础底面以上土的加权平均重度γm:22kN/m3;地基承载力设计值f a:345.86kN/m2;非工作状态下荷载计算一、塔吊对交叉梁中心作用力的计算1、塔吊竖向力计算塔吊自重:G=450.800kN;塔吊最大起重荷载:Q=60.000kN;作用于塔吊的竖向力:F=1.2×G+1.2×Q=1.2×450.800+1.2×60.000=612.960kN;2、塔吊弯矩计算总的最大弯矩值M max=1.4×1199.20=1678.88kN·m;二、塔吊抗倾覆稳定验算基础抗倾覆稳定性按下式计算:e = M/(F+G)≤20.5Bc/3式中e──偏心距,即地面反力的合力至基础中心的距离;M──作用在基础上的弯矩;F──作用在基础上的垂直载荷;G──混凝土基础重力,G = 25×1.2×25.697=770.91kN;Bc──为基础的底面宽度;计算得:e=1678.880/(612.960+770.910)=1.213m < 20.5×6.000/3=2.828m;基础抗倾覆稳定性满足要求!三、地基承载力验算e = M/(F+G)=1678.88/(612.96+770.91)=1.213 ≥Bc/6=6/6=1地面压应力计算:P max=[a (F + G)]/(20.5B c3/18-B c2a+3×20.5B c a2-3a3)式中F──作用在基础上的垂直载荷;G──混凝土基础重力;a──合力作用点至基础底面最大压力边缘距离(m),按下式计算:a =Bc/20.5-M max/(F+G)=6.000/20.5-1678.880/(612.960+770.910)=3.030m;不考虑附着基础设计值:P max=[3.03(612.96+770.91)]/(20.5×63/18-62×3.03+3×20.5×6×3.032-3×3.033)=72.117kPa;地基承载力特征值计算依据《建筑地基基础设计规范》(GB50007-2002)第5.2.3条,计算公式如下:f a = f ak+ηbγ(Bc-3)+ηdγm(d-0.5)式中f a--修正后的地基承载力特征值;f ak--地基承载力特征值,按本规范第5.2.3条的原则确定,取325.000kN/m2;ηb、ηd--基础宽度和埋深的地基承载力修正系数;γ--基础底面以上土的重度,地下水位以下取浮重度,取γ=20.000kN/m3;Bc--基础底面宽度,当基宽小于3m按3m取值,大于6m按6m取值,取Bc=6.000m;γm--基础底面以上土的加权平均重度,地下水位以下取浮重度,取γm=22.000kN/m3;d--基础埋置深度(m) ,取d=0.600m;解得修正后的地基承载力特征值:f a=345.860kPa;实际计算取的地基承载力设计值为:f a=345.860kPa;地基承载力特征值f a大于有附着时压力设计值P max= 72.117kPa,满足要求!四、基础受冲切承载力验算依据《建筑地基基础设计规范》(GB50007-2002)第8.2.7条。
【免费下载】QTZ63 塔吊天然基础的计算书
QTZ63 塔吊天然基础的计算书 (一)参数信息 塔吊型号:QTZ63,自重(包括压重),最大KN F 5.5638.910)65.1140(31=⨯⨯++=起重荷载,塔吊额定力距M=710KN ·M ,塔吊起重高度H=15.00M ,塔身宽KN F 602=度B=1.5M ,基础宽度b=1.755m ,混凝土强度等级:C35,基础埋深D=0.5M ,基础最小厚度h=1.35m ,基础最小宽度。
M B C 5= (二)塔吊基础承载力计算 根据《塔式起重机混凝土基础工程技术规范》JGJ/T 187-2009,塔机在独立状态时,作用于基础的荷载应包括塔机作用于基础顶的竖向基础荷载值()、水平荷载标准值K F ()、倾覆力矩(包括塔机自重、起重荷载、风荷载引起的力矩)荷载标准值,扭矩VK F 荷载标准值()以及基础和其上覆盖土的自重荷载标准值(),见图 2。
K T K G 矩形基础地基承载力计算应符合以下规定: 1、基础底面压力应符合以下要求: 1)当轴心荷载作用时: (1)a K f P ≤ 式中:—荷载效应标准组合下,基底的平均竖向压力(KN )。
—荷载效应标准组合K P 下,基底的最大竖向压力(KN )。
—地基承载力。
a f 2)当偏心荷载作用时: (2)max k P 2.1≤a f —荷载效应标准组合下,基底的平均竖向压力(KN )。
max k P 、管路敷设技术通过管线敷设技术,不仅可以解决吊顶层配置不规范问题,而且可保障各类管路习题到位。
在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。
管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。
线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。
塔吊基础计算
QTZ63塔吊天然基础的计算书(一)参数信息塔吊型号:QTZ63,自重(包括压重)F1=450.80kN,最大起重荷载F2=60.00kN,塔吊倾覆力距M=630.00kN.m,塔吊起重高度=70.00m,塔身宽度B=1.50m,混凝土强度等级:C35,基础埋深D=5.00m,基础最小厚度h=1.35m,基础最小宽度Bc=5.00m。
(二)基础最小尺寸计算基础的最小厚度取:H=1.35m基础的最小宽度取:Bc=5.00m(三)塔吊基础承载力计算依据《建筑地基基础设计规范》(GB50007-2002)第5.2条承载力计算。
计算简图:当不考虑附着时的基础设计值计算公式:当考虑附着时的基础设计值计算公式:当考虑偏心距较大时的基础设计值计算公式:式中 F──塔吊作用于基础的竖向力,它包括塔吊自重,压重和最大起重荷载,F=1.2×510.8=612.96kN;G──基础自重与基础上面的土的自重,G=1.2×(25.0×Bc×Bc×Hc+20.0×Bc×Bc×D) =4012.50kN;Bc──基础底面的宽度,取Bc=5.00m;W──基础底面的抵抗矩,W=Bc×Bc×Bc/6=20.83m3;M──倾覆力矩,包括风荷载产生的力距和最大起重力距,M=1.4×630.00=882.00kN.m;a──合力作用点至基础底面最大压力边缘距离(m),按下式计算:a=5.00/2-882.00/(612.96+4012.50)=2.31m。
经过计算得到:无附着的最大压力设计值 Pmax=(612.96+4012.50)/5.002+882.00/20.83=227.35kPa 无附着的最小压力设计值 Pmin=(612.96+4012.50)/5.002-882.00/20.83=142.68kPa 有附着的压力设计值 P=(612.96+4012.50)/5.002=185.02kPa偏心距较大时压力设计值 Pkmax=2×(612.96+4012.50)/(3×5.00×2.31)=267.06kPa(四)地基基础承载力验算地基承载力设计值为:fa=270.00kPa地基承载力特征值fa大于最大压力设计值Pmax=227.35kPa,满足要求!地基承载力特征值1.2×fa大于偏心距较大时的压力设计值Pkmax=267.06kPa,满足要求!据安徽省建设工程勘察设计院《岩土工程勘察报告》,Ⅰ#塔吊参227号孔,Ⅱ#塔吊参243号孔,Ⅲ#塔吊参212号孔,Ⅳ#塔吊参193号孔,Ⅵ#塔吊参118号孔,Ⅶ#塔吊参108号孔。
63基础承受荷载计算
一、基础承受荷载计算、分析4=10kNQTZ63塔机竖向荷载简图塔机处于独立状态〔无附墙〕时,其受力为最不利状态,因此取塔吊独立计算高度40m时进行分析,分工作状态和非工作状态两种工况分别进行荷载组合,塔吊型号为QTZ63,最大起重量1.00T,最大起重力矩69T·m,最大吊物幅度56m。
根据《建筑地基基础设计标准》GB50007-2011第8.5条规定,验算桩基承载力时,取荷载效应的标准组合值;验算基础强度取荷载效应的基本组合值。
承台大小都为5000×5000×1300mm。
1.1自重1.1.1 塔机自重标准值1401.00KF kN1.1.2 基础自重标准值FK2=5.0X5.0X25=625KN1.1.3 起重荷载标准值q 60.00K F =kN1.2 风荷载计算1.2.1 工作状态下塔机对角线方向所受风荷载标准值计算1 塔机所受风均布线荷载标准值〔0.20O ω=2kN/m 〕00.8/SK z S Z O q bH H αβμμωα=0.8 1.2 1.59 1.95 1.320.200.35 1.60.44=⨯⨯⨯⨯⨯⨯⨯=2kN/m2 塔机所受风荷载水平合力标准值 F SK =q sk ·H=0.44x40=17.6kN3 基础顶面风荷载产生的力矩标准值 M SK =0.5F SK ·H=0.5x17.6x40=352kN m ⋅1.2.2 非工作状态下塔机对角线方向所受风荷载标准值计算1 塔机所受风线荷载标准值〔马鞍山0.4O ω'=2kN/m 〕0.8/SKz S Z O q bH H αβμμωα''=0.8 1.2 1.64 1.95 1.320.40.35 1.60.91=⨯⨯⨯⨯⨯⨯⨯=kN/m2 塔机所受风荷载水平合力标准值 F SK ’=q sk ’·H=0.91x40=36.4kN3 基础顶面风荷载产生的力矩标准值 M SK =0.5F SK ·H=0.5x36.4x40=800kN m ⋅ 1.3 塔机的倾翻力矩塔机自身产生的倾翻力矩,向前〔起重臂方向〕为正,向后为负。
塔吊计算书(十字交叉梁基础计算书)
塔吊计算书(十字交叉梁基础计算书)一、塔吊的基本参数信息塔吊型号: QTG40;塔吊起升高度H: 40.800m;塔吊倾覆力矩M: 858.86kN.m;塔身宽度B: 2.500m;塔吊自重G: 287.83kN;最大起重荷载Q: 46.600kN;桩间距l: 3m;桩直径d: 0.010m;桩钢筋级别: II级钢;混凝土强度等级: C30;交叉梁截面宽度: 0.9m;交叉梁截面高度: 0.600m;交叉梁长度: 6m;桩入土深度: 0.010m;保护层厚度: 100.000mm。
标准节长度a:2.5m;额定起重力矩:400kN·m;基础所受的水平力:30kN;主弦杆材料:角钢/方钢;宽度/直径c:120mm;地面粗糙度类别为 D类密集建筑群,房屋较高,风荷载高度变化系数μz=0.84 。
二、塔吊对交叉梁中心作用力的计算1. 塔吊自重G=287.83kN2. 塔吊最大起重荷载Q=46.6kN作用于塔吊的竖向力 F=1.2×287.83+1.2×46.6=401.32kN塔吊倾覆力矩M= 1.4 ×858.86 = 1202.40kN·m三、交叉梁最大弯矩和桩顶竖向力的计算计算简图:十字交叉梁计算模型(最大弯矩M方向与十字交叉梁平行)。
两段梁四个支点力分别为:RA=N/4+qL/2+3M/2L RB=N/4+qL/2-3M/2LRC=N/4+qL/2 RD=N/4+qL/2两段梁的最大弯矩分别为:M1=N(L-b)2/16L+qL2/24+M/2 M2=N(L-b)2/16L+qL2/24得到最大支座力为 Rmax=RB, Rmin=RA,最大弯矩为 Mmax=M1。
b =21/2B=21/2×2.500 =3.54 m,L = 21/2l=21/2×3.000 =4.243m交叉梁自重:q=25×0.900×0.600=13.500 kN/m桩顶竖向力:Rmax=N/4+q×L/2+3M/(2L)=401.320/4+13.500×4.243/2+3×1202.404/(2×4.243) = 554.05kNRmin=N/4+q×L/2-3M/(2L)=401.320/4+13.500×4.243/2-3×1202.404/(2×4.243) = -296.11kN交叉梁得最大弯矩 Mmax:Mmax=N(L-b)2/(16×L)+q×L2 /24+M/2=401.320×(4.243-3.540)2/(16×4.243)+13.500×4.2432/24 + 1202.404/2=614.25kN.m四、交叉梁截面主筋的计算依据《混凝土结构设计规范》(GB50010-2002)第7.2条受弯构件承载力计算。
(最新整理)QTZ63塔吊基础计算书
QTZ63塔吊基础计算书编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(QTZ63塔吊基础计算书)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为QTZ63塔吊基础计算书的全部内容。
合肥西湖花苑桂雨苑、南屏苑工程塔吊基础方案一、工程概况合肥宋都西湖花苑工程位于安徽省合肥市政务文化新区习友路与怀宁路交叉口。
本工程中桂雨苑共12幢住宅楼及地下车库,南屏苑共4幢住宅楼,框架异型柱结构6~18层,车库为地下一层。
其中桂雨苑1~10#楼6层,总高度22.20米;桂雨苑11#、南屏苑1、2、4#楼11层,总高度38。
80 米;南屏苑3#楼9层,总高度33。
00 米;桂雨苑12#楼18层,总高度59.10 米.室内地面标高±0.000相当于黄海标高42.950米.二、塔吊概况本工程主体结构施工时共设塔吊7台,布设位置和塔吊编号见平面布置图。
Ⅰ#、Ⅱ#塔吊采用浙江虎霸建设机械有限公司生产のQTZ63型塔吊,该塔吊独立式起升高度为40米,附着式起升高度达140米,工作臂长50米,最大起重量6吨,额定起重力矩为63吨米,最大起重力矩为76吨米.Ⅲ#、Ⅳ#、Ⅵ#、Ⅶ#塔吊采用烟台市建设机械厂生产のQTZ63型塔吊,该塔吊独立式起升高度为40米,附着式起升高度达140米,工作臂标准臂长45米,加长臂50米,最大起重量6吨,额定起重力矩为760千牛米,最大起重力矩为860千牛米.Ⅴ#塔吊采用浙江省建筑机械公司生产のQTZ60型塔吊,该塔吊独立式起升高度为40。
1米,附着式起升高度达100米,工作臂长45米,额定起重力矩600千牛•米(60吨•米),最大额定起重量6吨.桂雨苑12#楼工程结构最大高度59。
QTZ63塔吊基础计算
QTZ63塔吊基础计算首先,我们需要确定QTZ63塔吊的荷载。
QTZ63塔吊的额定起重量为6吨,工作半径为3-50米。
其最大起重力矩为630kN·m。
此外,需要考虑塔吊的自重,在设计中通常取其额定载荷的50%作为塔吊的自重。
其次,我们需要确定所在地的土壤承载力。
土壤承载力指的是土壤能够承受的最大荷载。
一般情况下,土壤承载力是根据地质调查和试验得到的,常用单位是千帕(kPa)。
常见的土壤承载力有0-50kPa(砂土)、50-100kPa(黏土)等。
接下来,我们要进行塔基尺寸的计算。
塔基的尺寸需要根据塔吊的荷载和土壤承载力来确定。
一般来说,塔基的底面积要满足荷载与土壤承载力之间的平衡,即荷载应该小于等于土壤承载力乘以塔基底面积。
根据QTZ63塔吊的荷载和土壤承载力,我们可以计算出塔基的尺寸。
以一个具体的示例来说明,假设QTZ63塔吊的荷载为6吨,土壤承载力为50kPa。
由于塔基是一个正方形,可以假设塔基边长为B。
那么,塔基的底面积为B×B,荷载为6吨,转换为千牛(kN)为60kN。
根据平衡条件,我们可以得到以下不等式:60kN≤50kPa×(B×B)进一步计算可得:12kN/m²≤(B×B)/1000由此得出:则B≥ 109.54 mm根据以上计算,我们可以确定塔基边长至少为110 mm。
然后,我们需要考虑塔吊的施工工艺。
对于QTZ63塔吊的基础施工,通常采用的是钢筋混凝土预制桩基础和钢筋混凝土台阶式基础。
塔吊基础的施工工艺需要提前进行设计和准备,确保在施工中能够满足稳固和安全要求。
最后,要注意基础设计要遵守相关的国家和地方法规及标准,例如中国的《建筑结构荷载规范》、《地基与地基处理技术规程》等。
这些法规和标准对于塔吊基础设计提供了详细的要求和规范,确保塔吊基础的稳定和安全。
综上所述,QTZ63塔吊基础计算的关键在于确定荷载、土壤承载力和塔基尺寸。
塔吊十字梁板式基础专项施工方案含计算书
???????十字梁板式基础计算书工程信息:工程名称:未命名工程;方案编制人:张工;编制日期:2019-11-28。
施工单位:建科研施工;建设地点:和平西桥;地上层数:13;地下层数:3层;建筑高度:40米;建筑面积:10000m2;建设单位:建科研建设公司;设计单位:建科研设计院;监理单位:建科研监理公司;勘查单位:建科研勘察院;总工期:360天;结构类型:框架;计算依据:依据《塔式起重机混凝土基础工程技术规程》(JGJ/T187-2009)、《塔式起重机设计规范》(GB/T13752-2017)、《混凝土结构设计规范》(GB50010-2010)、《建筑地基基础设计规范》(GB50007-2011)、《建筑结构荷载规范》(GB50009-2012)编制。
一、参数信息1)塔吊基本参数塔吊型号:QTZ63,塔吊最大起吊高度H0=40m,塔身宽度B=1.6m;2)塔机自重参数塔身自重G0=251kN,起重臂自重G1=37.4kN,小车和吊钩自重G2=3.8kN,平衡臂自重G3=19.8kN,平衡块自重G4=89.4kN,最大起重荷载Q max=60kN,最小起重荷载Q max=10kN;3)塔机尺寸参数起重臂重心到塔身中心的距离R G1=22m,小车和吊钩重心到塔身中心的距离R G2=11.5m,平衡臂重心到塔身中心的距离R G3=6.3m,平衡块重心到塔身中心的距离R G4=11.8m,最大起重荷载到塔身中心的距离R Qmax=11.5m,最小起重荷载到塔身中心的距离R Qmin=50m;4)塔吊承台参数承台长度b=8m,承台宽度l=1.1m,承台高度h=2m,十字梁腋宽度a=1m,承台混凝土强度等级:C35,承台混凝土自重=25kN/m3,承台上部覆土厚度d=1.5m,承台上部覆土重度=17kN/m3;5)塔吊基础参数地基承载力特征值f a=150kN/m2,基础宽度地基承载力修正系数ηb=0.3,基础埋深地基承载力修正系数ηd=1.6,基础埋深地基承载力修正系数γ=25kN/m3,基础底面以上的土的加权平均重度γm=25kN/m3,承台埋置深度D=1.5m,修正后的地基承载力特征值f a=227.5kN/m2;6)风荷载参数塔身桁架杆件类型为:型钢或方钢管,地面粗糙度类型为:B类城市郊区,塔机计算高度h=43m,塔身前后片桁架平均充实率α0=0.35,塔身风向系数α=1.2,基本风压W0=0.45kN/m2(工程所在地:北京,取50年一遇),风荷载高度变化系数μz=1.32,风荷载体型系数μs=1.95,风荷载风振系数βz=1.65;7)十字梁基础配筋参数基础配筋:使用HPB235钢筋计算简图:二、荷载计算1、自重荷载及起重荷载1)塔机自重标准值F k1=251+37.4+3.8+19.8+89.4=401.4kN;2)基础自重标准值基础底面积:A=2×8×1.1-1.1×1.1+2×1×1=18.39m2G k=18.39×(2×25+1.5×17)=1388.44kN;3)起重荷载标准值F qk=60kN;2、风荷载计算计算公式如下:1)工作状态下塔机塔身截面对角线方向所受风荷载标准值a. 塔机所受风均布线荷载标准值工作状态下ω0=0.2kN/m2μz=1.32μs=1.95βz=1.59α0=0.35α=1.2计算结果:ωk=0.65kN/m2q sk=0.44kN/mb. 塔机所受风荷载水平合力标准值F vk=q sk×H=18.92kNc. 基础顶面风荷载产生的力矩标准值M sk=0.5F vk×H=406.78kN·m2)非工作状态下塔机塔身截面对角线方向所受风荷载标准值a. 塔机所受风均布线荷载标准值非工作状态下ω0=0.45kN/m2(北京,取50年一遇)μz=1.32μs=1.95βz=1.65α0=0.35α=1.2计算结果:ωk=1.53kN/m2q'sk=1.03kN/mb. 塔机所受风荷载水平合力标准值F'vk=q'sk×H=44.29kNc. 基础顶面风荷载产生的力矩标准值M'sk=0.5F'vk×H=952.24kN·m3、塔机的倾覆力矩塔机自身产生的倾覆力矩,向前(起重臂方向)为正,向后为负。
塔吊十字梁式基础结构安全计算书
十字梁式基础计算书计算依据:1、《塔式起重机混凝土基础工程技术规程》JGJ/T187-20092、《混凝土结构设计规范》GB50010-20103、《建筑地基基础设计规范》GB 50007-2011一、塔机属性1、塔机传递至基础荷载标准值基础布置图基础底面积:A=2bl-l2+2a2=2×8.5×1.8-1.82+2×1.82=33.84m2基础中一条形基础底面积:A0=bl+2(a+l)a=8.5×1.8+2×(1.8+1.8)×1.8=28.26m2 基础及其上土的自重荷载标准值:G k=AhγC=33.84×1.5×25=1269kN基础及其上土的自重荷载设计值:G=1.35G k=1.35×1269=1713.15kN1、偏心距验算条形基础的竖向荷载标准值:F k''=(F k+G k)A0/A=(562+1269)×28.26/33.84=1529.08kNF''=(F+G)A0/A=(758.7+1713.15)×28.26/33.84=2064.258kNe=(M k+F Vk·h)/ F k''=(2322+86×1.5)/1529.08=1.603m≤b/4=8.5/4=2.125m满足要求!2、基础偏心荷载作用应力(1)、荷载效应标准组合时,基础底面边缘压力值e=1.603m>b/6=8.5/6=1.417m合力作用点至基础底面最大压力边缘的距离:a=b/2-e=8.5/2-1.603=2.647m P kmin=0P kmax=2F k''/(3la)=2×1529.08/(3×1.8×2.647)=213.944kPa(2)、荷载效应基本组合时,基础底面边缘压力值P max=2F''/(3la)=2×2064.258/(3×1.8×2.647)=288.824kPa3、基础轴心荷载作用应力P k=(F k+G k)/A=(562+1269)/33.84=54.108kN/m24、基础底面压应力验算(1)、修正后地基承载力特征值f a=f ak+ηdγm(d-0.5)=160+1.6×19.3×(1.5-0.5)=190.88kPa(2)、轴心作用时地基承载力验算P k=54.108kPa≤f a=190.88kPa满足要求!(3)、偏心作用时地基承载力验算P kmax=213.944kPa≤1.2f a=1.2×190.88=229.056kPa满足要求!5、基础抗剪验算基础有效高度:h0=H-δ-D/2=1500-50-25/2=1438mm塔身边缘至基础底边缘最大反力处距离:a1=(b-20.5B)/2=(8.5-20.5×1.8)/2=2.977m 塔身边缘处基础底面地基反力标准值:P k1=(1-a1/3a)P kmax=(1-2.977/(3×2.647))×213.944=133.735kPa基础自重在基础底面产生的压力标准值:P kG=G k / A=1269 / 33.84=37.5kPa基础底平均压力设计值:P=γ((P kmax+P k1)/2-P kG)=1.35×(( 213.944+133.735)/2-37.5)=184.058kPa基础所受剪力:V=pa1l=184.058×2.977×1.8=986.365kN6、软弱下卧层验算基础底面处土的自重压力值:p c=dγm=1.5×19.3=28.95kPa下卧层顶面处附加压力值:p z=lb(P k-p c)/(2(b+2ztanθ)2)=1.8×8.5×(64.791-28.95)/(2×(8.5+2×2×tan20°)2)=2.766kPa软弱下卧层顶面处土的自重压力值:p cz=zγ=2×20=40kPa软弱下卧层顶面处修正后地基承载力特征值f az=f azk+ηdγm(d+z-0.5)=130.00+1.60×19.30×(2.00+1.50-0.5)=222.64kPa作用在软弱下卧层顶面处总压力:p z+p cz=2.766+40=42.766kPa≤f az=222.64kPa 满足要求!7、地基变形验算倾斜率:tanθ=|S1-S2|/b'=|25-20|/8500=0.0006≤0.001满足要求!四、基础配筋验算基础底均布荷载设计值:q1=pl=184.058×1.8=331.305kN/m塔吊边缘弯矩:M=q1a12/2=331.305×2.9772/2=1468.306kN·m2、基础配筋计算(1)、基础梁底部配筋αS1= M/(α1f c lh02)=1468.306×106/(1×16.7×1800×14382)=0.024ζ1=1-(1-2αS1)0.5=1-(1-2×0.024)0.5=0.024γS1=1-ζ1/2=1-0.024/2=0.988A s1=M/(γS1h0f y1)=1468.306×106/(0.988×1438×300)=3445mm2最小配筋率:ρ=max(0.2,45f t/f y1)=max(0.2,45×1.57/300)=max(0.2,0.236)=0.236% 基础底需要配筋:A1=max(3445,ρlh0)=max(3445,0.0024×1800×1438)=6096mm2 基础梁底实际配筋:A s1'=7854mm2≥A1=6096mm2满足要求!(2)、基础梁上部配筋基础梁上部实际配筋:A s2'=4562mm2≥0.5A s1'=3927mm2满足要求!(3)、基础梁腰筋配筋梁腰筋按照构造配筋HRB335 6Φ14(4)、基础梁箍筋配筋箍筋抗剪截面高度影响系数:βh=(800/h0)0.25=(800/1438)0.25=0.8640.7βh f t lh0=0.7×0.864×1.57×103×1.8×1.438=2456.755kN≥V=986.365kN按构造规定选配钢筋!配箍率验算ρsv=nA sv1/(ls)=4×113.097/(1800×200)=0.126%≥ρsv,=0.24f t/f yv=0.24×1.57/300=0.126%min满足要求!(5)、基础加腋处配筋基础加腋处,顶部与底部配置水平构造筋Φ12@200mm、竖向构造箍筋Φ8@200mm,外侧纵向筋Φ10@200mm。
63A塔吊基础计算书
63A塔吊基础计算书一、塔吊的基本参数信息塔吊型号:QTZ63, 塔吊起升高度H=101.00m,塔吊倾覆力矩M=630.00kN.m, 混凝土强度等级:C30,塔身宽度B=1.60m, 基础以上土的厚度D=0.00m,自重F1=450.80kN, 基础承台厚度Hc=1.35m,最大起重荷载F2=60.00kN, 基础承台宽度Bc=5.00m,桩钢筋级别:II级钢, 桩直径=0.60m,桩间距a=3.50m, 承台箍筋间距S=200.00mm,承台砼的保护层厚度=50.00mm。
二、塔吊基础承台顶面的竖向力和弯矩计算塔吊自重(包括压重)F1=450.80kN,塔吊最大起重荷载F2=60.00kN,作用于桩基承台顶面的竖向力F=1.2×(F1+F2)=612.96kN,塔吊的倾覆力矩M=1.4×630.00=882.00kN。
三、矩形承台弯矩及单桩桩顶竖向力的计算图中x轴的方向是随机变化的,设计计算时应按照倾覆力矩M最不利方向进行验算。
1. 桩顶竖向力的计算依据《建筑桩技术规范》JGJ94-94的第5.1.1条。
其中 n──单桩个数,n=4;F──作用于桩基承台顶面的竖向力设计值,F=612.96kN;G──桩基承台的自重G=1.2×(25×Bc×Bc×Hc/4+20×Bc×Bc×D/4)=1.2×(25×5.00×5.00×1.35+20×5.00×5.00×0.00)=1012.50kN;Mx,My──承台底面的弯矩设计值,取882.00kN.m;xi,yi──单桩相对承台中心轴的XY方向距离a/2=1.75m;Ni──单桩桩顶竖向力设计值(kN);经计算得到单桩桩顶竖向力设计值,最大压力:N=(612.96+1012.50)/4+882.00×1.75/(4× 1.752)=532.37kN。
塔式起重机地基基础的设计计算和十字型基础设计实例概要.
塔式起重机地基基础的设计计算1、前言塔式起重机(以下简称塔机)地基基础的设计应根据工程地质勘察资料,综合考虑工程结构类型及布置、施工条件、环境影响、使用条件和工程造价等因素,做到因地制宜且安全经济地设计计算。
塔机基础的设计应按独立状态下的工作状态和非工作状态的荷载分别计算。
塔机基础工作状态的荷载应包括塔机和基础的自重荷载、起重荷载、风荷载,并应计入可变荷载的组合系数,其中起重荷载不应计入动力系数;非工作状态下的荷载应包括塔机和基础的自重荷载、风荷载。
塔机在独立状态时,所承受的风荷载等水平荷载及倾覆力矩、扭矩对基础的作用效应最大;附着状态(安装附墙装置后)时,塔机虽然增加了标准节自重,但对基础设计起控制作用的各种水平荷载及倾覆力矩、扭矩等主要由附墙装置承担,故附着状态可不计算。
目前各工程项目塔机的地基基础均按塔机制造商提供的基础图施工,由于这些塔机基础图在全国各地使用中所处的风荷载、工程地质差异很大,当使用地的风荷载很大时就会不安全,而在风荷载较小地区就会导致浪费保守,例如利用天然地基承载的塔机基础图常注明地基承载力特征值不得小于200KN/m2,实际上不符合因地制宜的设计原则。
下面根据国家行业标准《塔式起重机混凝土基础工程技术规程》JGJ/T187-2009,通过实例说明塔机独立状态下地基基础科学合理的设计计算。
2、塔机竖向荷载分析塔机的竖向荷载F K包括:塔身自重G0、起重臂自重G1、小车和吊钩自重G2、平衡臂自重G3、平衡块自重G4、最大起重荷载Q max、最小起重荷载Q min、塔机各分部重心至塔身中心的距离R Gi、最大或最小起重荷载至塔身中心相应的最大距离R Qi。
将塔机各构件自重及起重荷载分别计算的目的在于分析计算竖向荷载作用下的倾覆力矩,常用的QTZ60塔机竖向荷载如图1所示。
=10kN 4图1 QTZ60塔机竖向荷载简图3、塔机风荷载分析3.1 塔机风荷载取值的基本规定塔机工作状态的基本风压应按0.20 kN/m2取用,风荷载作用方向应按起重力矩同向计算;非工作状态的基本风压应按现行国家标准《建筑结构荷载规范》GB50009中给出的50年一遇的风压取用,且不小于0.35kN/m2,风荷载作用方向应从平衡臂吹向起重臂。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
十字形基础的计算书依据《塔式起重机混凝土基础工程技术规程》(JGJ/T 187-2009)。
一. 参数信息
本计算书依据塔吊规范JGJ187-2009进行验算。
二. 荷载计算
1. 自重荷载及起重荷载
1) 塔机自重标准值
F k1=540kN
2) 基础以及覆土自重标准值
G k=(2×8×1.3-1.3×1.3-4×0.5×0×0)×0.9×25=429.98kN
3) 起重荷载标准值
F qk=60kN
2. 风荷载计算
1) 工作状态下塔机塔身截面对角线方向所受风荷载标准值
a. 塔机所受风均布线荷载标准值 (Wo=0.2kN/m2)
W k=0.8×1.59×1.95×1.245×0.2=0.62kN/m2
q sk=1.2×0.62×0.35×2.5=0.65kN/m
b. 塔机所受风荷载水平合力标准值
F vk=q sk×H=0.65×35.00=22.70kN
c. 基础顶面风荷载产生的力矩标准值
M sk=0.5F vk×H=0.5×22.70×35.00=397.21kN.m
2) 非工作状态下塔机塔身截面对角线方向所受风荷载标准值
a. 塔机所受风均布线荷载标准值 (本地区 Wo=0.30kN/m2)
W k=0.8×1.62×1.95×1.245×0.30=0.94kN/m2
q sk=1.2×0.94×0.35×2.5=0.99kN/m
b. 塔机所受风荷载水平合力标准值
F vk=q sk×H=0.99×35.00=34.69kN
c. 基础顶面风荷载产生的力矩标准值
M sk=0.5F vk×H=0.5×34.69×35.00=607.05kN.m
3. 塔机的倾覆力矩
工作状态下,标准组合的倾覆力矩标准值
M k=-200+0.9×(890+397.21)=958.49kN.m
非工作状态下,标准组合的倾覆力矩标准值
M k=-200+607.05=407.05kN.m
三. 地基承载力计算
依据《塔式起重机混凝土基础工程技术规程》(JGJ/T 187-2009)第4.1.3条承载力计算1. 荷载计算
梁的计算简图如下:(图中 B=8000mm,L1=3540mm,L2=2233mm)
交叉梁基础底面积: A=2×8×1.3-1.3×1.3-4×0.5×0×0=19.11m2条基加腋基础底面积:A0=8×1.3+(1.3+1.3+0×2)×0×2=10.4m2
塔机工作状态下:
当轴心荷载作用时:
=(600+429.98)/19.11=53.90kN/m2
当偏心荷载作用时:
=(600+429.98)×10.4/19.11=560.53kN
=(958.49+22.70×0.9)/560.53=1.75m≤b/4=2.00m满足要求! 由于偏心距e>b/6=1.33m,所以按大偏心计算:
=2×560.53/[3×1.3×(4-1.75)]=127.55kN/m2
由于梁底荷载为三角形荷载,所以按下式计算P1:
=127.55×[3×(4-1.75)-2.2325]/[3×(4-1.75)]=85.43kN/m2塔机非工作状态下:
当轴心荷载作用时:
=(540+429.98)/19.11=50.76kN/m2
当偏心荷载作用时:
=(540.00+429.98)×10.4/19.11=527.88kN
=(407.05+34.69×0.9)/527.88=0.83m≤b/4=2.00m满足要求! 由于偏心距e≤b/6=1.33m,所以按小偏心计算:
=527.88/(8×1.3)+(407.05+34.69×0.9)/13.87=82.36kN/m2
=527.88/(8×1.3)-(407.05+34.69×0.9)/13.87=19.15kN/m2
由于梁底荷载为梯形荷载,所以按下式计算P1:
=19.15+(8-2.2325)×(82.36-19.15)/8=64.72kN/m2
四. 基础配筋计算
比较上述两种工况的计算,可知本案塔机在工作状态时,基础截面弯矩最大,故应按工作状态的荷载组合进行基础设计
1. 基础弯矩计算:
基础自重在基础底面产生的压力标准值
P kG=G k/A=429.98/19.11=22.5kN/m2
基底均布荷载设计值
=1.35×[(127.55+85.43)/2-22.50]×1.3=147.41 kN/m
1-1截面弯矩设计值
M1=q1×L22/2=147.41×2.232/2=367.34kN.m
2. 纵向钢筋面积计算
依据《混凝土结构设计规范》GB 50010-2010
式中α1──系数,当混凝土强度不超过C50时,α1取为1.0,当混凝土强度等级为C80时,α1取为0.94,期间按线性内插法确定
f c──混凝土抗压强度设计值
h0──承台的计算高度
经过计算得αs=367.34×106/(1.00×16.70×1.30×103×8502)=0.023419 ξ=1-(1-2×0.023419)0.5=0.023700
γs=1-0.023700/2=0.988150
As=367.34×106/(0.988150×850×360.00)=1214.86mm2
实际选用钢筋为:钢筋直径20mm,钢筋根数为4
十字梁基础实际配筋面积为A s0 = 3.14×202/4 × 4=1257mm2
实际配筋面积大于计算需要配筋面积,满足要求!
3. 基础箍筋面积计算
最大剪力设计值:
V max=q1×L2=147.41×2.23=329.09kN
依据《混凝土结构设计规范》(GB50010-2010)的第6.3.3条。
我们考虑承台配置箍筋的情况,斜截面受剪承载力满足下面公式:
式中βh──承台受冲切承载力截面高度影响系数;βh=0.985
b──承台的计算宽度,b=1300mm
h0──承台计算截面处的计算高度,h0=850mm
f y──钢筋受拉强度设计值,f y=360N/mm2
S──箍筋的间距,S=200mm
经过计算基础已满足抗剪要求,只需构造配箍筋!
五. 地基基础承载力验算
修正后的地基承载力特征值为:f a=160.00kPa
轴心荷载作用:由于 f a≥P k=53.90kPa 所以满足要求!
偏心荷载作用:由于1.2×f a≥P kmax=127.55kPa 所以满足要求!塔吊计算满足要求!。