八年级数学上册几何证明题有难度
初二数学上册证明练习题
初二数学上册证明练习题证明一:直线平分角的性质假设在平面内有一条直线l,它能够将某个角分成两个相等的角。
我们需要证明直线l是这个角的平分线。
证明过程:设直线l与角所在的直线交于点A,角的两个边分别为线段AB和线段AC。
由于直线l平分这个角,所以∠BAC = ∠CAD。
现在我们需要证明∠BAC = ∠CAD = 1/2∠BAD,即直线l是角BAD的平分线。
根据几何定理,若两个角的两边分别与另一条直线相交,并且这两个交点分别是直线上的两个不同点,则这两个角相等,即∠BAC = ∠CAD。
因此,根据几何定理,我们证明了直线l将角BAD平分,即直线l 是角BAD的平分线。
证明二:等腰三角形底角相等的性质假设在平面内有一个等腰三角形ABC,其中AB = AC。
我们需要证明∠B = ∠C。
证明过程:设等腰三角形ABC的顶点为A,底边上的点为D,连接线段BD和线段CD。
由于等腰三角形的定义,我们知道AB = AC,而又根据等腰三角形的性质,BD = CD。
因此,△ABD和△ACD为等腰三角形,并且它们的底边相等。
根据几何定理,等腰三角形的顶角相等,或者说∠BAD = ∠CAD。
又由于直线l平分∠BAC,所以∠BAD = ∠CAD = 1/2∠BAC。
将上述两个等式结合起来,我们得到∠B = ∠BAD - ∠BAD =1/2∠BAC - 1/2∠BAC = 0。
因此,我们证明了等腰三角形底角相等,即∠B = ∠C。
通过以上两个证明例子,我们提供了初二数学上册中涉及证明的练习题的解答过程。
证明的过程需要根据给定的条件和已知的几何定理,运用逻辑推理和几何关系展开。
熟练掌握这些证明方法,有助于培养学生的逻辑思维和几何推理能力,提升数学学科素养。
希望以上的解答能够帮助到您。
沪教版八年级上册数学第十九章 几何证明含答案(易错题)
沪教版八年级上册数学第十九章几何证明含答案一、单选题(共15题,共计45分)1、如图,在一直角三角形草坪上开辟出一块正方形花圃,正方形中有三个顶点在直角边上,一个顶点落在斜边上,且把斜边分成5米和10米两部分,则剩余草坪面积的总和为()A.15平方米B. 平方米C.25平方米D.50平方米2、如图,直径为10的⊙A经过点C(0,5)和点O(0,0),B是y轴右侧⊙A 优弧上一点,则∠OBC的余弦值为()A. B. C. D.3、如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A.8B.6C.4D.24、如图,已知AB=AD,∠BAD=∠CAE,则增加以下哪个条件仍不能判断△BAC≅△DAE的是()A.AC=AEB.BC=DEC.∠B=∠DD.∠C=∠E5、满足下列条件的三角形中,不是直角三角形的是有()A.三内角之比为3:4:5B.三边长的平方之比为1:2:3C.三边长之比为3:4:5D.三内角比为1:2:36、如图,在△ABC中,∠C=90°,分别以点A,B为圆心,大于AB长为半径作弧,两弧分别交于M,N两点,过M,N两点的直线交AC于点E,若AC=8,BC=6,则AE的长为()A.2B.3C.D.7、如图,在△ABC中,AC的垂直平分线交AB于点D,CD平分∠ACB,若∠A=50°,则∠B的度数为()A.25°B.30°C.35°D.40°8、下列四组线段中,可以构成直角三角形的是()A.6,15,17B.1.5,2,2.5C.5,10,12D.1,,39、如图,正方形ABCD内接于⊙O,AB=2 ,则的长是()A.πB. πC.2πD. π10、三个正方形的面积如下图,正方形A的面积为()A.6B.36C.64D.811、如图:在△ABC中,AB=5cm,AC=4cm,BC=3cm,CD是AB边上的高,则CD=()A.5cmB. cmC. cmD. cm12、如图,在△ABC中,AB=8,BC=10,以B为圆心,任意长为半径画弧分别交BA、BC于点M和N,再分别以M、N为圆心,大于MN长为半径画弧,两弧交于点P,连结BP并延长交AC于点D,若△BDC的面积为20,则△ABD的面积为()A.20B.18C.16D.1213、直角三角形的两条直角边长分别为a和b,斜边长为c,已知c=13,b=5,则a=()A.1B.5C.12D.2514、如图,△ABC中,D,E,两点分别在AC,BC上,DE为BC的中垂线,DB为∠ADE的角平分线。
八年级数学十二道全等几何证明题(难度适中型)
全等几何证明(1)如图,已知点D为等腰直角△ABC一点,∠CAD=∠CBD=15°.E 为AD延长线上的一点,且CE=CA,求证:AD+CD=DE;全等几何证明(2)如图,在正方形ABCD中,F是CD的中点,E是BC边上的一点,且AF平分∠DAE,求证:AE=EC+CD.全等几何证明(3)已知:如图,在梯形ABCD中,AD∥BC,BC=DC,CF平分∠BCD,DF∥AB,BF的延长线交DC于点E.求证:AD=DE.全等几何证明(4)如图,在直角梯形ABCD中,AD⊥DC,AB∥DC,AB=BC,AD与BC延长线交于点F,G是DC延长线上一点,AG⊥BC于E.求证:CF=CG;全等几何证明(5)如图,已知P为∠AOB的平分线OP上一点,PC⊥OA于C,PA=PB,求证AO+BO=2CO全等几何证明(6)已知:如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE ⊥AC于点F,交BC于点G,交AB的延长线于点E,且AE=AC.求证:BG=FG;全等几何证明(7)如图,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB,求证:AC=AE+CD.全等几何证明(7)如图,AD∥BC,AE平分∠BAD,AE⊥BE;说明:AD+BC=AB.全等几何证明(8)将两个全等的直角三角形ABC和DBE如图方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC 所在直线于点F.求证:AF+EF=DE全等几何证明(9)如图,在△ABC中,AD平分∠BAC,AB=AC-BD,则∠B∶∠C的值为多少?全等几何证明(10)已知:如图,P是正方形ABCD点,∠PAD=∠PDA=150.求证:△PBC是正三角形.ADP全等几何证明(11)如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与C BCD相交于F.求证:CE=CF.全等几何证明(12)设P是正方形ABCD一边BC上的任一点,PF⊥AP,CF平分∠DCE.求证:PA=PF.D。
(word完整版)八年级数学几何证明题技巧(含答案),推荐文档
D 几何证明题的技巧1.几何证明是平面几何中的一个重要问题,它有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。
这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。
2.掌握分析、证明几何问题的常用方法:(1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题解决;(2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止;(3)分析综合法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。
3.掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。
在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。
1、证明线段相等或角相等两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。
很多其它问题最后都可化归为此类问题来证。
证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。
例1. 已知:如图1 所示,∆ABC 中,∠C = 90︒,AC =BC,AD =DB,AE =CF 。
求证:DE=DF AEC F B图1分析:由∆ABC 是等腰直角三角形可知,∠A =∠B = 45︒,由D 是AB 中点,可考虑连结CD,易得CD =AD ,∠DCF = 45︒。
从而不难发现∆DCF ≅∆DAE证明:连结CDAC =BC∴∠A =∠B∠ACB = 90︒,AD =DB∴CD =BD =AD,∠DCB =∠B =∠AAE =CF,∠A =∠DCB,AD =CD∴∆ADE ≅∆CDF∴DE =DF说明:在直角三角形中,作斜边上的中线是常用的辅助线;在等腰三角形中,作顶角的平分线或底边上的中EF2 3 1线或高是常用的辅助线。
八年级上册数学难点解析
八年级上册数学难点解析八年级上册数学的学习对于学生来说是一个重要的阶段,其中包含了不少具有挑战性的难点。
接下来,让我们逐一进行解析。
一、三角形全等的判定三角形全等是几何学习中的重要内容。
判定三角形全等的方法有“边边边”(SSS)、“边角边”(SAS)、“角边角”(ASA)、“角角边”(AAS)以及直角三角形中的“斜边、直角边”(HL)。
学生在应用这些判定方法时,容易出现以下错误:1、对判定条件理解不深刻,例如在“边角边”中,没有注意到“角”必须是两边的夹角。
2、不能正确找出全等三角形的对应边和对应角,导致证明过程混乱。
解决方法:1、多做练习题,通过实际操作加深对判定条件的理解。
2、学会根据已知条件,准确地画出图形,标注出对应元素。
二、三角形的内角和与外角定理三角形内角和为 180 度,这是一个基本的定理。
但在实际应用中,学生可能会遇到困难。
例如,在已知两个内角的度数求第三个内角时,出现计算错误。
外角定理指的是三角形的一个外角等于与它不相邻的两个内角之和。
学生容易忽略“不相邻”这个关键词,导致应用错误。
应对策略:1、牢记内角和定理,多进行相关的计算练习,提高计算准确性。
2、对外角定理,通过具体的图形和实例来加深理解。
三、整式的乘法与因式分解这部分内容涉及到较多的公式和运算规则。
在整式乘法中,如幂的运算(同底数幂相乘、幂的乘方、积的乘方),学生容易混淆指数的运算规则。
因式分解是整式乘法的逆运算,常见的方法有提公因式法、公式法(平方差公式、完全平方公式)。
学生在分解因式时,可能出现以下问题:1、没有先考虑提公因式,直接使用公式法。
2、不能正确判断能否使用公式法,以及使用哪种公式。
学习建议:1、熟练掌握各种运算规则和公式,通过大量的练习来巩固。
2、养成先观察式子特点,再选择合适方法进行因式分解的习惯。
四、分式的运算分式的运算包括分式的加减乘除。
在分式加减运算中,通分是关键,但学生可能会在找最简公分母时出错。
初二数学几何证明题(5篇可选)
初二数学几何证明题(5篇可选)第一篇:初二数学几何证明题1.在△ABC中,AB=AC,D在AB上,E在AC的延长线上,且BD=CE,线段DE交BC于点F,说明:DF=EF。
2.已知:在正方形ABCD中,M是AB的中点,E是AB延长线上的一点,MN垂直DM于点M,且交∠CBE的平分线于点N.(1)求证:MD=MN.(2)若将上述条件中的“M是AB的中点”改为“M 是AB上任意一点”其余条件不变,则(1)的结论还成立吗?如果成立,请证明,如果不成立,请说明理由。
3.。
如图,点E,F分别是菱形ABCD的边CD和CB延长线上的点,且DE=BF,求证∠E=∠F。
4,如图,在△ABC中,D,E,F,分别为边AB,BC,CA,的中点,求证四边形DECF为平行四边形。
5.如图,在菱形ABCD中,∠DAB=60度,过点C作CE垂直AC 且与AB的延长线交与点E,求证四边形AECD是等腰梯形?6.如图,已知平行四边形ABCD中,对角线AC,BD,相交与点0,E是BD延长线上的点,且三角形ACE是等边三角形。
1.求证四边形ABCD是菱形。
2.若∠AED=2∠EAD,求证四边形ABCD是正方形。
7.已知正方形ABCD中,角EAF=45度,F点在CD边上,E点在BC边上。
求证:EF=BE+DF第二篇:初二几何证明题1如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交BE的延长线于F,且AF=DCCF.(1)求证:D是BC的中点;(2)如果AB=ACADCF的形状,并证明你的结论AEB第三篇:初二几何证明题初二几何证明题1.已知:如图,在△ABC中,AD⊥BC,垂足为D,BE⊥AC,垂足为E。
M为AB中点,联结ME,MD、ED求证:角EMD=2角DAC证明:∵M为AB边的中点,AD⊥BC,BE⊥AC,∴MD=ME=MA=MB(斜边上的中线=斜边的一半)∴△MED为等腰三角形∵ME=MA∴∠MAE=∠MEA∴∠BME=2∠MAE∵MD=MA∴∠MAD=∠MDA,∴∠BMD=2∠MAD,∵∠EMD=∠BME-∠BMD=2∠MAE-2∠MAD=2∠DAC2.如图,已知四边形ABCD中,AD=BC,E、F分别是AB、CD中点,AD、BC的延长线与EF的延长线交于点H、D求证:∠AHE=∠BGE证明:连接AC,作EM‖AD交AC于M,连接MF.如下图:∵E是CD的中点,且EM‖AD,∴EM=1/2AD,M是AC的中点,又因为F是AB的中点∴MF‖BC,且MF=1/2BC.∵AD=BC,∴EM=MF,三角形MEF为等腰三角形,即∠MEF=∠MFE.∵EM‖AH,∴∠MEF=∠AHF ∵FM‖BG,∴∠MFE=∠BGF∴∠AHF=∠BGF.3.写出“等腰三角形两底角的平分线相等”的逆命题,并证明它是一个真命题这是经典问题,证明方法有很多种,对于初二而言,下面的反证法应该可以接受如图,已知BD平分∠ABC,CE平分∠ACB,BD=CE,求证:AB=AC证明:BD平分∠ABC==>BE/AE=BC/AC==>BE/AB=BC/(BC+AC)==>BE=AB*BC/(BC+AC)同理:CD=AC*BC/(BC+AB)假设AB≠AC,不妨设AB>AC.....(*)AB>AC==>BC+ACAC*BC==>AB*AB/(BC+AC)>AC*BC/(BC+AB)==>BE>CDAB>AC==>∠ACB>∠ABC∠BEC=∠A+∠ACB/2,∠BDC=∠A+∠ABC/2==>∠BEC>∠BDC过B作CE平行线,过C作AB平行线,交于F,连DF则BECF为平行四边形==>∠BFC=∠BEC>∠BDC (1)BF=CE=BD==>∠BDF=∠BFDCF=BE>CD==>∠CDF>∠CFD==>∠BDF+∠CDF>∠BFD+∠CFD==>∠BDC>∠BFC (2)(1)(2)矛盾,从而假设(*)不成立所以AB=AC。
八年级上册数学几何压轴大题
八年级上册数学几何压轴大题以下是一个可能的八年级上册数学几何压轴大题:
题目:已知△ABC中,∠BAC=90°,AB=AC,D是BC的中点,E是AC上一点,连接BE,DE。
求证:BD=BE。
提示:为了证明BD=BE,我们可以按照以下步骤进行:
第一步,连接AD。
由于∠BAC=90°且AB=AC,我们可以得知△ABC 是等腰直角三角形。
因此,∠C=45°。
第二步,根据等腰直角三角形的性质,在等腰直角三角形中,斜边上的中线等于斜边的一半。
所以,BD=AD。
第三步,根据题意,我们知道∠BDE=∠ADE=45°。
同时,由于D 是BC的中点,所以∠CDE=90°。
因此,∠BED=180°-45°-90°=45°。
第四步,根据等腰三角形的性质,在等腰三角形中,两腰之间的夹角等于两底角之和的一半。
所以,∠ABE=∠BED。
第五步,根据全等三角形的判定条件,我们知道如果两个三角形的两边及夹角相等,则这两个三角形全等。
所以,△ABD≌△EBD。
第六步,根据全等三角形的性质,全等三角形的对应边相等。
所以,BD=BE。
综上,我们证明了BD=BE。
沪教版 八年级数学上册 第19章 几何证明 期末复习 易错点专项训练 (含解析)
第19章几何证明期末复习易错点专项训练一.选择题(共11小题)1.下列各命题中,假命题是A.有两边及其中一边上的中线对应相等的两个三角形全等B.有两边及第三边上高对应相等的两个三角形全等C.有两角及其中一角的平分线对应相等的两三角形全等D.有两边及第三边上的中线对应相等的两三角形全等2.下列命题是真命题的是A.两个锐角的和还是锐角B.全等三角形的对应边相等C.同旁内角相等,两直线平行D.等腰三角形既是轴对称图形,又是中心对称图形3.下列语句中,不是命题的是A.如果,那么、互为相反数B.同旁内角互补C.作等腰三角形底边上的高D.在同一平面内,若,,则4.下列命题是真命题的是A.相等的两个角是对顶角B.好好学习,天天向上C.周长和面积相等的两个三角形全等D.两点之间线段最短5.下列所叙述的图形中,全等的两个三角形是A.含有角的两个直角三角形B.腰相等的两个等腰三角形C.边长相等的两个等边三角形D.一个钝角对应相等的两个等腰三角形6.下列各组数据是线段长,其中不能作为直角三角形的三边长的是A.1,1,B.1,C.1,,2D.7.在下列以线段、、的长为边,能构成直角三角形的是A.,,B.,,C.,,D.,,8.已知内一点,如果点到两边、的距离相等,那么点A.在边的高上B.在边的中线上C.在的平分线上D.在边的垂直平分线上9.如图字母所代表的正方形的面积是A.12B.13C.144D.19410.如图,在中,点在边上,垂直平分边,垂足为点,若,且,则的度数是A.B.C.D.11.如图,在中,的垂直平分线交于点,交于点,若,,则的度数为A.B.C.D.二.填空题(共15小题)12.如果点的坐标为,点的坐标为,则.13.如图,在中,,,垂直平分交于,若,则.14.在中,,,,以的边为一边的等腰三角形,它的第三个顶点在的斜边上,则这个等腰三角形的腰长为.15.如图,在中,,平分,,,那么的长是.16.如图,中,平分,,,且的面积为2,则的面积为.17.一株美丽的勾股树如图所示,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形,,,的面积分别为2,5,1,2,则最大的正方形的面积是.18.如图,在中,已知点是边、垂直平分线的交点,点是、角平分线的交点,若,则度.19.如图,中,,,交于点,,则.20.如图,已知直线,含角的三角板的直角顶点在上,角的顶点在上,如果边与的交点是的中点,那么度.21.把两个同样大小含角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个三角尺的直角顶点重合于点,且另外三个锐角顶点,,在同一直线上.若,则.22.如图,三角形三边的长分别为,,,其中、都是正整数.以、、为边分别向外画正方形,面积分别为、、,那么、、之间的数量关系为.23.将一副三角尺如图所示叠放在一起,如果,那么.24.如图,将一根长为的吸管,置于底面直径为,高为的圆柱形水杯中,设吸管露在杯子外面的长度是为,则的取值范围是.25.如图所示,一根长为的吸管放在一个圆柱形杯中,测得杯的内部底面直径为,高为,则吸管露出在杯外面的最短长度为.26.如图,一棵大树在离地面、两处折成三段,中间一段恰好与地面平行,大树顶部落在离大树底部处,则大树折断前的高度是.三.解答题(共4小题)27.已知中,,于点,平分,交于点,于点,说明.28.已知:如图,中,,,,平分交于.求的长.29.如图,在中,,是斜边上的中线,过点作于点,交于点,且.(1)求的度数:(2)求证:.30.已知:如下图,和中,,为的中点,连接、.若,在上取一点,使得,连接交于.(1)求证:.(2)若,,求的长.参考答案一.选择题(共11小题)1.下列各命题中,假命题是A.有两边及其中一边上的中线对应相等的两个三角形全等B.有两边及第三边上高对应相等的两个三角形全等C.有两角及其中一角的平分线对应相等的两三角形全等D.有两边及第三边上的中线对应相等的两三角形全等解:、有两边及其中一边上的中线对应相等的两个三角形全等,可利用证两步全等的方法求得,是真命题;、高有可能在内部,也有可能在外部,是不确定的,不符合全等的条件,原命题是假命题;、有两角及其中一角的平分线对应相等的两三角形全等,可利用证两步全等的方法求得,是真命题;、有两边及第三边上的中线对应相等的两三角形全等,可利用证两步全等的方法求得,是真命题;故选:.2.下列命题是真命题的是A.两个锐角的和还是锐角B.全等三角形的对应边相等C.同旁内角相等,两直线平行D.等腰三角形既是轴对称图形,又是中心对称图形解:、两个锐角的和还是锐角,是假命题,例如;、全等三角形的对应边相等,是真命题;、同旁内角合并,两直线平行,本选项说法是假命题;、等腰三角形是轴对称图形,但不是中心对称图形,本选项说法是假命题;故选:.3.下列语句中,不是命题的是A.如果,那么、互为相反数B.同旁内角互补C.作等腰三角形底边上的高D.在同一平面内,若,,则解:如果,那么、互为相反数;同旁内角互补;在同一平面内,若,,则,它们都是命题,而作等腰三角形底边上的高为描述性的语言,它不是命题.故选:.4.下列命题是真命题的是A.相等的两个角是对顶角B.好好学习,天天向上C.周长和面积相等的两个三角形全等D.两点之间线段最短解:、相等的两个角不一定是对顶角,原命题是假命题;、好好学习,天天向上,不是命题;、周长和面积相等的两个三角形不一定全等,原命题是假命题;、两点之间线段最短,是真命题;故选:.5.下列所叙述的图形中,全等的两个三角形是A.含有角的两个直角三角形B.腰相等的两个等腰三角形C.边长相等的两个等边三角形D.一个钝角对应相等的两个等腰三角形解:、含有角的两个直角三角形,没有指明边相等,所以不一定全等,选项不符合题意;、腰相等的两个等腰三角形,没有指明角相等,所以不一定全等,选项不符合题意;、边长相等的两个等边三角形,利用可得一定全等,选项符合题意;、一个钝角对应相等的两个等腰三角形,没有指明边相等,所以不一定全等,选项不符合题意;故选:.6.下列各组数据是线段长,其中不能作为直角三角形的三边长的是A.1,1,B.1,C.1,,2D.解:、,符合勾股定理的逆定理,故能作为直角三角形的三边长;、,符合勾股定理的逆定理,故能作为直角三角形的三边长;、,符合勾股定理的逆定理,故能作为直角三角形的三边长;、,不符合勾股定理的逆定理,故不能作为直角三角形的三边长.故选:.7.在下列以线段、、的长为边,能构成直角三角形的是A.,,B.,,C.,,D.,,解:、,故不符合勾股定理的逆定理,不能组成直角三角形,故错误;、,故不符合勾股定理的逆定理,不能组成直角三角形,故错误;、,故不符合勾股定理的逆定理,不能组成直角三角形,故错误;、,故符合勾股定理的逆定理,能组成直角三角形,故正确.故选:.8.已知内一点,如果点到两边、的距离相等,那么点A.在边的高上B.在边的中线上C.在的平分线上D.在边的垂直平分线上解:,,,在的角平分线上,故选:.9.如图字母所代表的正方形的面积是A.12B.13C.144D.194解:由题可知,在直角三角形中,斜边的平方,一直角边的平方,根据勾股定理知,另一直角边平方,即字母所代表的正方形的面积是144.故选:.10.如图,在中,点在边上,垂直平分边,垂足为点,若,且,则的度数是A.B.C.D.解:连接,垂直平分边,,,,,,,,故选:.11.如图,在中,的垂直平分线交于点,交于点,若,,则的度数为A.B.C.D.解:的垂直平分线交于点,,,,设,,,,,,故选:.二.填空题(共15小题)12.如果点的坐标为,点的坐标为,则5.解:由两点间的距离公式可得.故答案为:5.13.如图,在中,,,垂直平分交于,若,则.解:垂直平分,,,,,.故答案为.14.在中,,,,以的边为一边的等腰三角形,它的第三个顶点在的斜边上,则这个等腰三角形的腰长为或2.解:如图,在中,,,,,,当时,作,,,,等腰三角形的腰长为2,当时,等腰三角形的腰长为,故答案为或2.15.如图,在中,,平分,,,那么的长是.解:作于,由勾股定理得,,在和中,,,,,在中,,即,解得,,故答案为:.16.如图,中,平分,,,且的面积为2,则的面积为3.解:过作于,于,,,解得,平分,,,,故答案为3.17.一株美丽的勾股树如图所示,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形,,,的面积分别为2,5,1,2,则最大的正方形的面积是10.解:根据勾股定理的几何意义,可得、的面积和为,、的面积和为,,于是,即.故答案是:10.18.如图,在中,已知点是边、垂直平分线的交点,点是、角平分线的交点,若,则36度.解:如图,连接.点是,的垂直平分线的交点,,,,,点是、角平分线的交点,,,,,故答案为36.19.如图,中,,,交于点,,则12.解:中,,,,交于点,,,,.故答案为:12.20.如图,已知直线,含角的三角板的直角顶点在上,角的顶点在上,如果边与的交点是的中点,那么120度.解:是斜边的中点,,,,,,.故答案为120.21.把两个同样大小含角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个三角尺的直角顶点重合于点,且另外三个锐角顶点,,在同一直线上.若,则.解:如图,过点作于,在中,,,,两个同样大小的含角的三角尺,,在中,根据勾股定理得,,,故答案为:.22.如图,三角形三边的长分别为,,,其中、都是正整数.以、、为边分别向外画正方形,面积分别为、、,那么、、之间的数量关系为.解:,,,,是直角三角形,设的三边分别为、、,,,,是直角三角形,,即.故答案为:.23.将一副三角尺如图所示叠放在一起,如果,那么.解:在中,,,,,,,由勾股定理得,,故答案为:.24.如图,将一根长为的吸管,置于底面直径为,高为的圆柱形水杯中,设吸管露在杯子外面的长度是为,则的取值范围是.解:如图,当筷子、底面直径、杯子的高恰好构成直角三角形时,最短,此时,故;当筷子竖直插入水杯时,最大,此时.故答案为:.25.如图所示,一根长为的吸管放在一个圆柱形杯中,测得杯的内部底面直径为,高为,则吸管露出在杯外面的最短长度为2.解:设在杯里部分长为,则有:,解得:,所以露在外面最短的长度为,故吸管露出杯口外的最短长度是,故答案为:2.26.如图,一棵大树在离地面、两处折成三段,中间一段恰好与地面平行,大树顶部落在离大树底部处,则大树折断前的高度是.解:如图,作于点,由题意得:,,,,由勾股定理得:,大树的高度为,故答案为:.三.解答题(共4小题)27.已知中,,于点,平分,交于点,于点,说明.解:,平分,,,,,,,,,,,,.28.已知:如图,中,,,,平分交于.求的长.解:过作于点.中,,,,,,,平分,,,,,,设,则,在中,,解得.故的长是5.29.如图,在中,,是斜边上的中线,过点作于点,交于点,且.(1)求的度数:(2)求证:.解:(1),,,,,,是斜边上的中线,,,,,;(2),,,.30.已知:如下图,和中,,为的中点,连接、.若,在上取一点,使得,连接交于.(1)求证:.(2)若,,求的长.解:(1)和中,,为的中点,,,,,,,;(2),,,,,在中,,,.。
八年级数学几何题证明技巧
辅助线的添加技巧人说几何很困难,难点就在辅助线。
辅助线,如何添?把握定理和概念。
还要刻苦加钻研,找出规律凭经验。
图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
图一图二B C 图三B C图二B图三图五B一、 角平分线专题1.角分线,分两边,对称全等要记全。
(牢记,角平分线就是一个对称轴,所以可以将其中的一个△翻转180度,构造全等。
也可以应用角分线定理作垂直) 基本图形例题:1.已知,CE 、AD 是△ABC 的角平分线,∠B =60°。
求证:AC =AE +CD 。
2.已知,AB =2AC ,∠1=∠2,DA =DB 。
求证:D C ⊥AC 。
3.已知,四边形ABCD 中,ABCD ,∠1=∠2,∠3=∠4。
求证:BC =AB +CD 。
4.已知,在△ABC 中,∠CAB=2∠B ,AE 平分∠CAB 交BC 于E ,AB =2AC 。
求证:(1)∠C =90°;(2)AE=2CE 。
图八D图十一5.已知,在RT △ABC 中,∠A =90°,AB =AC ,BD 是∠ABC 的平分线。
求证:BC =AB +AD 。
6.已知,△ABC 中,∠C =2∠B ,AD 平分∠A 。
求证:AB -AC =CD 。
注意:只要看到平分线上的点,要想到向两边作垂线了(点分线,垂两边)7.已知,在△ABC 中,∠A =90°,AB =AC ,∠1=∠2。
求证:BC =AB +AD 。
8.已知,AB >AD ,∠1=∠2,CD =BC9.已知,A B >AD ,∠1=∠2,C E ⊥AB , AE =21(AB +AD )。
求证:∠D +∠B =180°。
10.已知:∠1=∠2,∠3=∠4,图2求证:AP 平分∠BAC 。
期中真题几何证明40题专练—2023-2024学年八年级数学上册(沪教版)(解析版)
期中真题几何证明40题专练一.解答题(共40小题)1.(2022秋•宝山区校级期中)五边形ABCDE中,AB=AE,AD平分∠CDE,∠B+∠E=180°,求证:BC+DE=CD.【分析】在DC上截取DF=DE,连接AF,先证△ADF≌△ADE,再证△ACF≌△ACB,即可得证结果.【解答】证明:如图,在DC上截取DF=DE,连接AF,∵AD平分∠CDE,∴∠ADF=∠ADE,在△ADF和△ADE中,,∴△ADF≌△ADE(SAS),∴AF=AE,∠FAD=∠EAD,∵AB=AE,∠BAE=∠CAD,∴AB=AF,∠BAC=∠FAC,在△ACF和△ACB中,,∴△ACF≌△ACB(SAS)∴BC=CF,∵CD=CF+DF,∴CD=BC+DE.【点评】本题考查了全等三角形的判定与性质,角平分线的定义,解题的关键是准确作出辅助线构造全等三角形.2.(2022秋•虹口区校级期中)如图,△ABC和△DBC中,∠ACB=∠DBC=90°,E是BC的中点,且ED ⊥AB于点F,且AB=DE.(1)求证:BD=2EC;(2)若BD=10cm,求AC的长.【分析】(1)根据AAS证明△ABC≌△EDB得BD=BC,再根据E是BC的中点,即可得出结论;(2)根据(1)的结论,结合BD=10,即可求出AC的长.【解答】(1)证明:∵ED⊥AB,∠ACB=∠DBC=90°,∴∠BFE=∠DBC=90°,∴∠BEF+∠ABC=∠BDE+∠BEF=90°,∴∠ABC=∠BDE,在△ABC和△EDB中,,∴△ABC≌△EDB(AAS),∴BD=BC,∵E是BC的中点,∴BC=2CE,∴BD=2EC;(2)解:由(1)知,△ABC≌△EDB,∴BE=AC,∵BD=2CE,即BD=2BE,∵BD=10,∴AC=BE=5cm.【点评】本题考查了全等三角形的判定与性质,证明△ABC≌△EDB是解题的关键.3.(2022秋•静安区校级期中)如图,AD是△ABC的高,∠B=2∠C,BD=5,BC=25,求AB的长.【分析】在线段DC上截取DE=BD,连接AE,根据线段垂直平分线的性质得到AB=AE,求得∠B=∠AEB,根据三角形外角的性质得到∠AEB=∠CAE+∠C,求得AE=CE,于是得到结论.【解答】解:如图:在线段DC上截取DE=BD,连接AE,∵AD⊥BC,∴AB=AE,∴∠B=∠AEB,∵∠B=2∠C,∴∠AEB=2∠C,∵∠AEB=∠CAE+∠C,∴∠C=∠CAE,∴AE=CE,∵BD=5,BC=25,∴DE=BD=5,∴AB=AE=CE=BC﹣BD﹣DE=15.【点评】此题主要考查的是等腰三角形的判定和性质,作出辅助线正确构建出等腰三角形是解答此题的关键.4.(2020秋•杨浦区校级期中)如图,在△ABC中,∠ACB=90°,D是AB上一点,且BD=AD=CD,过B作BE⊥CD,分别交AC于点E、交CD于点F.(1)求证:∠A=∠EBC;(2)如果AC=2BC,请猜想BE和CD的数量关系,并证明你的猜想.【分析】(1)证得∠EBC=∠ACD,∠A=∠ACD,则结论可得出;(2)过点D作DG⊥AC于点G,根据ASA证明△DCG≌△EBC,可得出结论.【解答】(1)证明:∵BE⊥CD,∴∠BFC=90°,∴∠EBC+∠BCF=180°﹣∠BFC=90°,∵∠ACB=∠BCF+∠ACD=90°,∴∠EBC=∠ACD,∵AD=CD,∴∠A=∠ACD,∴∠A=∠EBC;(2)解:CD=BE.过点D作DG⊥AC于点G,∵DA=DC,DG⊥AC,∴AC=2CG,∵AC=2BC,∴CG=BC,∵∠DGC=90°,∠ECB=90°,∴∠DGC=∠ECB,在△DGC和△ECB中,,∴△DCG≌△EBC(ASA),∴CD=BE.【点评】此题主要考查了全等三角形的判定与性质,等腰三角形的性质,关键是掌握全等三角形的判定定理.5.(2020秋•徐汇区校级期中)如图,AD∥BC,点E是AB的中点,联结DE并延长交CB的延长线于点F,点G在边BC上,且∠GDF=∠ADF.(1)求证:AD=BF;(2)当点G是FC的中点时,判断△FDC的形状.【分析】(1)由AD与BC平行,利用两直线平行内错角相等,得到一对角相等,再由一对对顶角相等及E 为AB中点得到一对边相等,利用AAS即可得出△ADE≌△BFE,根据全等三角形的性质即可得解;(2)连接EG,根据题意,结合全等三角形的性质得到GE⊥DF,GE是△FDC的中位线,根据三角形中位线的性质即可得出△FDC是直角三角形.【解答】(1)证明:∵AD∥BC,∴∠ADE=∠BFE,∵E为AB的中点,∴AE=BE,在△ADE和△BFE中,,∴△ADE≌△BFE(AAS),∴AD=BF;(2)解:△FDC是直角三角形,理由如下:连接EG,∵∠GDF=∠ADE,∠ADE=∠BFE,∴∠GDF=∠BFE,由(1)△ADE≌△BFE得:DE=FE,即GE为DF上的中线,∴GE⊥DF,∵点G是FC的中点,DE=FE,∴GE∥CD,∴CD⊥DF,∴△FDC是直角三角形.【点评】此题考查了全等三角形的判定与性质,平行线的性质,以及等腰三角形的判定与性质,利用AAS证明△ADE≌△BFE是解本题的关键.6.(2022秋•静安区校级期中)如图,AB=AC,AD=AE,∠BAD=∠CAE,BE与CD相交于点F.求证:(1)∠ADC=∠AEB;(2)FD=FE.【分析】(1)利用AAS证明△ABD≌△ACE即可;(2)连接DE,利用等腰三角形的性质和判定即可证明结论.【解答】证明:(1)∵∠BAD=∠CAE,∴∠BAD+∠EAD=∠CAE+∠DAE,∴∠BAE=∠CAD,在△ABE与△ACD中,,∴△ABE≌△ACD(SAS),∴∠ADC=∠AEB;(2)连接DE,∵AD=AE,∴∠ADE=∠AED,∵∠ADC=∠AEB,∴∠ADC﹣∠ADE=∠AEB﹣∠AED,∴∠FDE=∠FED,∴FD=FE.【点评】本题主要考查了全等三角形的判定与性质,等腰三角形的判定与性质,熟练掌握等腰三角形的性质和判定是解题的关键.7.(2022秋•杨浦区期中)如图,已知AB=AC,∠BEF=∠CFH,BE=CF,M是EH的中点.求证:FM⊥EH.【分析】根据等腰三角形的性质可求∠B=∠C,根据ASA可证△BEF≌△CFH,根据全等三角形的性质可求EF=FH,再根据等腰三角形的性质可证FM⊥EH.【解答】证明:∵AB=AC,∴∠B=∠C,在△BEF与△CFH中,,∴△BEF≌△CFH(ASA),∴EF=FH,∵M是EH的中点,∴FM⊥EH.ASA证明△BEF≌△CFH.8.(2021秋•浦东新区期中)如图,在△ABC中,BD平分∠ABC,∠A=2∠C,求证:BC=AB+AD.【分析】在BC上截取BE=BA,由“SAS”可证△ABD≌△EBD,可得∠BED=∠A,AB=BE,AD=DE,由外角的性质可得∠C=∠EDC,可证EC=ED,即可得结论.【解答】证明:如图,在BC上截取BE=BA,连接DE,∵BD平分∠ABC,∴∠ABD=∠CBD,在△ABD和△EBD中,,∴△ABD≌△EBD(SAS),∴∠BED=∠A,AB=BE,AD=DE,∵∠A=2∠C,∴∠BED=2∠C,∵∠BED=∠C+∠EDC,∴∠C=∠EDC,∴EC=ED,∴BC=BE+EC=AB+AD.【点评】本题考查了全等三角形的判定和性质,添加恰当辅助线构造全等三角形是解题的关键.9.(2021秋•徐汇区校级期中)已知在△ABC中,AB=AC,在边AC上取一点D,以D为顶点,DB为一条边作∠BDF=∠A,点E在AC的延长线上,∠ECF=∠ACB.求证:(1)∠FDC=∠ABD;(2)DB=DF;(3)当点D在AC延长线上时,DB=DF是否依然成立?在备用图中画出图形,并说明理由.【分析】(1)根据角的和差即可得到结论;(2)过D作DG∥BC交AB于G,根据等腰三角形的性质和全等三角形的判定和性质定理即可得到结论;(3)过D作DG∥BC交AB于G,根据平行线的性质得到∠ADG=∠ACB,∠AGD=∠ABC,根据等腰三角形的性质得到∠ABC=∠ACB,根据全等三角形的判定和性质即可得到结论.【解答】(1)证明:∵∠BDC=∠A+∠ABD,即∠BDF+∠FDC=∠A+∠ABD,∵∠BDF=∠A,∴∠FDC=∠ABD;(2)过D作DG∥BC交AB于G,∴∠ADG=∠ACB,∠AGD=∠ABC,∵AB=AC,∴∠ABC=∠ACB,∴∠AGD=∠ADG,∴AD=AG,∴AB﹣AG=AC﹣AD,即BG=DC,∵∠ECF=∠ACB=∠AGD,∴∠DGB=∠FCD,在△GDB与△CFD中,,∴△GDB≌△CFD(ASA),∴DB=DF;(3)仍然成立,如图2,过D作DG∥BC交AB于G,∴∠ADG=∠ACB,∠AGD=∠ABC,∵AB=AC,∴∠ABC=∠ACB,∴∠AGD=∠ADG,∴AD=AG,∴AG﹣AB=AD﹣AC,即BG=DC,∵∠ECF=∠ACB=∠AGD,∴∠DGB=∠FCD,∵∠ACB+∠BCF+∠FCD=180°,∴∠ACB+∠BCF+∠DGB=180°,∵∠DGB=∠ABC.∴∠ACB+∠BCF∠ABC=180°,∵∠A+∠ABC+∠ACB=180°,∴∠A=∠BCF,∵∠BDF=∠A,∴∠BCF=∠BDF,∴∠CBD=∠CFD,∵∠GBD=180°﹣∠ABC﹣∠CBD=180°﹣∠FCD﹣∠CFD=∠FDC,∴∠GBD=∠FDC,在△GDB与△CFD中,,∴△GDB≌△CFD(ASA),∴DB=DF.【点评】本题考查了全等三角形的判定和性质,等腰三角形的判定和性质,平行线的性质,正确的作出辅助线是解题的关键.10.(2022秋•浦东新区期中)如图,已知在△ABC中,AB=AC,点D、E分别在AC、AB上,且AD=AE,点F在BC的延长线上,DB=DF.(1)求证:∠ABD=∠ACE.(2)求证:CE∥DF.【分析】(1)由“SAS”可证△ADB≌△AEC,可得∠ABD=∠ACE;(2)由等腰三角形的性质可得∠=∠F,由外角的性质可得∠ACE=∠CDF,可得结论.【解答】证明:(1)∵△ABC是等边三角形,∴AB=AC,∠ABC=∠ACB=60°,在△ADB和△AEC中,,∴△ADB≌△AEC(SAS),∴∠ABD=∠ACE;(2)∵DB=DF,∴∠DBF=∠F,∵∠ABC=∠ABD+∠DBC,∠ACB=∠F+∠CDF,∴∠ABD=∠CDF,∴∠ACE=∠CDF,∴CE∥DF.【点评】本题考查了全等三角形的判定和性质,等腰三角形的性质,等边三角形的性质,掌握全等三角形的判定方法是本题的关键.11.(2020秋•浦东新区校级期中)已知:如图,点B、F、C、E在同一条直线上,AC∥DF,AC=DF,BF =CE.求证:AB∥DE.【分析】根据线段的和差求出BC=EF,由平行线的性质证得∠ACB=∠DFE,根据SAS定理推出△BAC≌△EDF,根据全等三角形的性质得出∠B=∠E,根据平行线的判定即可证得AB∥DE.【解答】证明:∵BF=CE,∴BF+FC=CE+FC,∴BC=EF,∵AC∥DF,∴∠ACB=∠DFE,在△BAC和△EDF中,,∴△BAC≌△EDF(SAS),∴∠B=∠E,∴AB∥DE.【点评】本题考查了全等三角形的性质和判定,平行线的判定的应用,能推出△BAC和△EDF全等是解此题的关键.12.(2022秋•长宁区校级期中)已知:如图,△ABC中,AD平分∠BAC交BC于点D,CF∥AB且CD平分∠FCA,联结FD并延长交边AB于点E,说明CF=AC﹣AE的理由.【分析】由CF∥AB得∠FCB=∠ABC,由CD平分∠FCA得∠FCB=∠ACB,可得∠ACB=∠ABC,从而得AB =AC,由AD平分∠BAC可得CD=BD,再根据ASA证明△FCD≌△EBD,可得FC=BE,从而可得结论.【解答】解:∵CF∥AB,∴∠FCB=∠ABC,∵CD平分∠FCA,∴∠FCB=∠ACB,∴∠ACB=∠ABC,∴AB=AC,∵AD平分∠BAC,∴CD=BD,在△FCD和△EBD中,,∴△FCD≌△EBD(ASA),∴FC=BE,∵AC=AB=AE+EB=AE+CF,∴CF=AC﹣AE.【点评】本题主要考查了等腰三角形的判定与性质,全等三角形的判定与性质,角平分线的意义等知识,运用ASA证明△FCD≌△EBD是解答本题的关键.13.(2022秋•杨浦区期中)如图1所示,已知点E在直线AB上,点F,G在直线CD上且∠EFG=∠FEG,EF平分∠AEG,如图2所示,H是AB上点E右侧一动点,∠EGH的平分线GQ交FE的延长线于点Q,设∠Q=α,∠EHG=β,(1)若∠HEG=40°,∠QGH=20°,求∠Q的度数;(2)判断:点H在运动过程中,α和β的数量关系是否发生变化?若不变,求出α和β的数量关系;若变化,请说明理由.【分析】(1)先证明,再依据∠HEG=40°,即可得到∠FEG=70°,依据QG平分∠EGH,即可得到∠QGH=∠QGE=20°,根据∠Q=∠FEG﹣∠EGQ进行计算即可;(2)根据∠FEG是△EGQ的外角,∠AEG是△EGH的外角,即可得到∠Q=∠FEG﹣∠EGQ,∠EHG=∠AEG ﹣∠EGH,再根据FE平分∠AEG,GQ平分∠EGH,即可得出,,最后依据∠Q=∠FEG﹣∠EGQ进行计算,即可得到.【解答】解:(1)∵EF平分∠AEG,∴∠AEF=∠GEF,∵∠EFG=∠FEG,∴∠AEF=∠GFE,∴AB∥CD,∵∠HEG=40°,∴,∵QG平分∠EGH,∴∠QGH=∠QGE=20°,∴∠Q=∠FEG﹣∠EGQ=70°﹣20°=50°;(2)点H在运动过程中,α和β的数量关系不发生变化,∵∠FEG是△EGQ的外角,∠AEG是△EGH的外角,∴∠Q=∠FEG﹣∠EGQ,∠EHG=∠AEG﹣∠EGH,又∵FE平分∠AEG,GQ平分∠EGH,∴,,∴∠Q=∠FEG﹣∠EGQ==,即.【点评】本题主要考查了平行线的判定与性质,三角形外角性质的运用,解题的关键是利用三角形的外角性质:三角形的外角等于与它不相邻的两个内角的和.14.(2022秋•宝山区校级期中)如图,在五边形ABCDE中,(1)已知AB=AE,BC=ED,∠B=∠E,F是CD中点,求证:AF⊥CD.(2)已知AB=AE,BC=ED,∠C=∠D,F是CD中点,求证:AF⊥CD.(3)已知∠B=∠E,BC=ED,∠C=∠D,F是CD中点,求证;AF⊥CD.【分析】(1)连接AC,AD,根据全等三角形的判定和性质得出△ABC≌△AED,AC=AD,再由等腰三角形三线合一即可证明;(2)连接BF,EF,BCF≌△EDF,△ABF≌△AEF,∠CFB=∠DFE,∠AFB =∠AFE,结合图形得出∠AFC=∠AFD,即可证明;(3)连接BD,CE交于点G,根据全等三角形的判定和性质得出△BCD≌△EDC,△CGF≌△DGF,∠AFC=∠AFD,结合图形即可证明.【解答】解:(1)如图所示,连接AC,AD,在△ABC与△AED中,,∴△ABC≌△AED(SAS),∴AC=AD,∵F是CD中点,∴AF⊥CD;(2)如图所示,连接BF,EF,∵F是CD中点,∴CF=FD,在△BCF与△EDF中,,∴△BCF≌△EDF(SAS),∴BF=EF,∠CFB=∠DFE在△ABF与△AEF中,,∴△ABF≌△AEF(SSS),∴∠AFB=∠AFE,∴∠AFB+∠CFB=∠DFE+∠AFE,即∠AFC=∠AFD,∵∠AFC+∠AFD=180°,∴∠AFD=90°,∴AF⊥CD;(3)如图所示,连接BD,CE交于点G,∵F是CD中点,∴CF=FD,在△BCD与△EDC中,,∴△BCD≌△EDC(SAS),∴∠CDB=∠DCE,∴CG=DG,在△CGF与△DGF中,,∴△CGF≌△DGF(SAS),∴∠AFC=∠AFD,∵∠AFC+∠AFD=180°,∴∠AFD=90°,∴AF⊥CD.【点评】题目主要考查全等三角形的判定和性质,线段中点的性质及等腰三角形的判定和性质等,理解题15.(2022秋•宝山区校级期中)如图,△ABC和△ABD,AB=AD,点E、F在边BC上,点A、F、D共线,∠BAC=∠AFC,∠EAC=∠FCD,求证:AE=CD.【分析】根据三角形内角和定理得出∠CAD=∠ABC,再由三角形外角的性质及全等三角形的判定和性质即可证明.【解答】证明:∵∠BAC=∠AFC,∴180°﹣∠BAC﹣∠ACB=180°﹣∠AFC﹣∠ACB,即∠CAD=∠ABC,∵∠EAC=∠FCD,∴∠EAC+∠ACB=∠FCD+∠ACB,即∠AEB=∠ACD,在△AEB与△DCA中,,∴△AEB≌△DCA(AAS),∴AE=CD.【点评】题目主要考查全等三角形的判定和性质,三角形内角和定理及外角的性质,熟练掌握全等三角形的判定和性质是解题关键.16.(2022秋•虹口区校级期中)如图,△ABC和△BDE都是等边三角形,且点A、D、E在同一直线上,证明AE=BE+CE.【分析】根据等边三角形的性质,得出∠ABC=∠DBE=60°,AB=CB,BD=BE=DE,再根据角之间的数量关系,得出∠ABD=∠CBE,再根据“边角边”,得出△ABD≌△CBE,再根据全等三角形的性质,得出AD=CE,再根据等量代换,即可得出结论.【解答】证明:∵△ABC和△BDE都是等边三角形,∴∠ABC=∠DBE=60°,AB=CB,BD=BE=DE,∴∠ABC=∠ABD+∠DBC,∠DBE=∠DBC+∠CBE,∴∠ABD=∠CBE,在△ABD和△CBE中,,∴△ABD≌△CBE(SAS),∴AD=CE,∴AE=DE+AD=BE+CE.【点评】本题考查了等边三角形的性质、全等三角形的判定与性质,解本题的关键在熟练掌握相关的性质定理.17.(2022秋•普陀区校级期中)如图,在△ABC中,AD平分∠BAC,E是BC的中点,过点E作FG⊥AD 交AD的延长线于H,交AB于F,交AC的延长线于G.求证:(1)AF=AG;(2)BF=CG.【分析】(1)由FG⊥AD交AD的延长线于H,∠AHF=∠AHG=90°,可根据全等三角形的判定定理“ASA”证明△AHF≌△AHG,得AF=AG;(2)作CL∥AB交FG于点L,则∠AFG=∠CLG,由AF=AG,得∠AFG=∠G,则∠CLG=∠G,得CL=CG,再证明△BEF≌△CEL,得BF=CL,所以BF=CG.【解答】证明:(1)∵AD平分∠BAC,∴∠FAH=∠GAH,∵FG⊥AD交AD的延长线于H,∴∠AHF=∠AHG=90°,在△AHF和△AHG中,,∴△AHF≌△AHG(ASA),∴AF=AG.(2)作CL∥AB交FG于点L,则∠B=∠ECL,∠AFG=∠CLG,∵AF=AG,∴∠AFG=∠G,∴∠CLG=∠G,∴CL=CG,∵E是BC的中点,∴BE=CE,在△BEF和△CEL中,,∴△BEF≌△CEL(ASA),∴BF=CL,∴BF=CG.【点评】此题重点考查全等三角形的判定与性质、等腰三角形的判定与性质、平行线的性质等知识,正确地作出所需要的辅助线构造全等三角形是解题的关键.18.(2022秋•浦东新区期中)如图,已知AB=AC,∠BEF=∠CFH,BE=CF,M是EH的中点.求证:∠EFM=∠HFM.【分析】证明△BEF≌△CFH(ASA),△EFM≌△HFM(SSS)即可求解.【解答】证明:∵AB=AC,∠BEF=∠CFH,BE=CF,∴∠B=∠C,在△BEF和△CFH中,,∴△BEF≌△CFH(ASA),∴EF=FH,∵M是EH的中点,∴EM=HM,FM为公共边,∴△EFM≌△HFM(SSS),∴∠EFM=∠HFM.【点评】本题主要考查全等三角形的判定和性质,掌握三角形全等的判定方法和性质是解题的关键.19.(2017秋•上海期中)如图,在△ABC中,AB=AC,点D、E、F分别在BC、AB、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数.【分析】(1)首先根据条件证明△DBE≌△ECF,根据全等三角形的性质可得DE=FE,进而可得到△DEF是等腰三角形;(2)根据△BDE≌△CEF,可知∠FEC=∠BDE,∠DEF=180°﹣∠BED﹣∠FEC=180°﹣∠DEB﹣∠EDB=∠B即可得出结论,再根据等腰三角形的性质即可得出∠DEF的度数.【解答】(1)证明:∵AB=AC∴∠B=∠C,在△BDE与△CEF中,,∴△BDE≌△CEF(SAS).∴DE=EF,即△DEF是等腰三角形.(2)解:由(1)知△BDE≌△CEF,∴∠BDE=∠CEF∵∠CEF+∠DEF=∠BDE+∠B∴∠DEF=∠B∵AB=AC,∠A=40°∴∠DEF=∠B=70°.【点评】本题考查了全等三角形的判定与性质,等腰三角形的判定与性质,熟知等腰三角形的两个底角相等是解答此题的关键.20.(2022秋•静安区校级期中)已知:如图,AD∥CF,∠A=∠C=90°,DB平分∠ADF,AD+CF=DF.求证:FB平分∠CFD.【分析】在DF上取一点E,使DE=AD,进而利用SAS证明△ADB与△EDB全等,进而证明△FCB与△FEB 全等,进而解答即可.【解答】证明:在DF上取一点E,使DE=AD,∵DB平分∠ADF,∴∠ADB=∠EDB,在△ADB与△EDB中,,∴△ADB≌△EDB(SAS),∴AB=BE,∠BAD=∠BED,AD=DE,∴∠BAD=∠BED=90°,∵AD∥CF,∴∠C=∠A=90°,∵DF=AD+CF,∴EF=DF﹣DE=DF﹣AD=CF,在Rt△BEF与Rt△BCF中,,∴Rt△BEF≌Rt△BCF(HL),∴∠EFB=∠CFB,即FB平分∠CFD.【点评】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.21.(2022秋•静安区校级期中)已知如图,AB=AC,AD=AE,∠BAE=∠CAD,BD与CE相交于点F,求证:FB=FC.【分析】由已知条件证得△ABD≌△ACE,连接BC,要证FB=FC,可利用等式性质来证得.【解答】证明:∵∠BAE=∠CAD(已知),∴∠BAE+∠EAD=∠CAD+∠DAE(等式性质),即∠BAD=∠CAE.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS).∴∠ABD=∠ACE(全等三角形对应角相等),连接BC.∵AB=AC(已知),∴∠ABC=∠ACB(等边对等角).∵∠ABD=∠ACE(已证),∴∠ABC﹣∠ABD=∠ACB﹣∠ACE(等式性质),即∠FBC=∠FCB.∴FB=FC(等角对等边).【点评】本题主要考查了两个三角形的判定和性质,关键是根据SAS证得△ABD≌△ACE.22.(2022秋•闵行区校级期中)如图,已知点A、F、C、D在同一直线上,AB∥DE,AB=DE,AF=CD,求证:BC∥EF.【分析】证△ABC≌△DEF(SAS),得∠BCA=∠EFD,再由平行线的判定即可得出结论.【解答】证明:∵AB∥DE,∴∠A=∠D,∵AF=CD,∴AF+CF=CD+CF,即AC=DF,在△ABC与△DEF中,,∴△ABC≌△DEF(SAS),∴∠BCA=∠EFD,∴BC∥EF.【点评】考查了全等三角形的判定与性质、平行线的判定与性质等知识,熟练掌握平行线的判定与性质,证明三角形全等是解题的关键.23.(2022秋•杨浦区期中)如图,已知△ABC和△CDE都是等边三角形,点D、A、C在同一直线上,延长BA交边DE于点F,联结AE、BD.(1)试说明△ADB≌△F AE的理由;(2)延长EA交BD于点H,求∠DHE的度数.【分析】(1)证△ADF是等边三角形,得AD=FA=DF,∠DFA=60°,再证CD=BF,则AB=FE,然后证∠BAD=∠EFA,进而证△ADB≌△FAE(SAS);(2)由全等三角形的性质得∠ABD=∠FEA,再证∠DHE=∠FEA+∠FAE,即可得出结论.【解答】(1)证明:∵△ABC和△CDE都是等边三角形,∴AB=AC,∠DAF=∠BAC=60CDE=60°,CD=DE,∴△ADF是等边三角形,∴AD=FA=DF,∠DFA=60°,∴AC+AD=AB+FA,即CD=BF,∴BF﹣FA=DE﹣DF,即AB=FE,∵∠BAD=180°﹣∠DAF=180°﹣60°=120°,∠EFA=180°﹣∠DFA=180°﹣60°=120°,∴∠BAD=∠EFA,在△ADB和△FAE中,,∴△ADB≌△FAE(SAS);(2)解:由(1)得:△ADB≌△FAE,∴∠ABD=∠FEA,∵∠DHE=∠ABD+∠BAH,∠FAE=∠BAH,∴∠DHE=∠FEA+∠FAE,∵∠DFA=∠FEA+∠FAE,∴∠DHE=∠DFA=60°.【点评】本题考查了全等三角形的判定与性质、等边三角形的判定与性质等知识,熟练掌握等边三角形的判定与性质,证明三角形全等是解题的关键.24.(2022秋•闵行区期中)如图,点D,E在△ABC的边BC上,AD=AE,BD=CE,求证:∠B=∠C.【分析】方法一:利用全等三角形的性质证明即可.方法二:作AM⊥BC于M.证明AN垂直平分线段BC 即可;【解答】证明方法一:∵AD=AE,∴∠ADE=∠AED,∵∠ADE+∠ADB=∠AED+∠AEC=°,∴∠ADB=∠AEC,在△ABD和△ACE中,∴△ABD≌△ACE(SAS),∴∠B=∠C.证明方法二:作AM⊥BC于M.∵AD=AE,∴DM=EM,∵BD=CE,∴DM+BD=EM+CE,即:BM=CM,又∵AM⊥BC,即AM为BC的垂直平分线,∴AB=AC,∴∠B=∠C.【点评】本题考查全等三角形的判定和性质,等腰三角形的判定和性质,线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.25.(2022秋•普陀区期中)已知:如图,在四边形ABCD中,BC=DC,点E在边AB上,∠EBC=∠EDC.(1)求证:EB=ED.(2)当∠A=90°,求证:∠BED=2∠BDA.【分析】(1)由BC=DC,得出∠CBD=∠CDB,再由∠EBC=∠EDC,推出∠EBD=∠EDB,即可得出结论;(2)由三角形内角和定理得出∠BDA+∠ABD=90°=∠A,再由(1)得∠EBD=∠EDB,则∠BDA+∠EDB=∠A,然后由三角形的外角性质即可得出结论.【解答】证明:(1)∵BC=DC,∴∠CBD=∠CDB,∵∠EBC=∠EDC,∴∠EBC﹣∠CBD=∠EDC﹣∠CDB,即∠EBD=∠EDB,∴EB=ED;(2)∵∠A=90°,∴∠BDA+∠ABD=90°=∠A,由(1)得:∠EBD=∠EDB,∴∠BDA+∠ABD=∠BDA+∠EDB=∠A,∴∠BED=∠A+∠ADE=∠BDA+∠EDB+∠ADE=∠BDA+∠BDA=2∠BDA.【点评】本题考查了等腰三角形的判定与性质、三角形内角和定理、三角形外角的性质等知识,熟练掌握等腰三角形的判定与性质是解题的关键.26.(2021秋•奉贤区校级期中)在△ABC中,AB=AC,点D是直线BC上的一点(不与点B、C重合),以AD为腰右侧作等腰三角形△ADE,且AD=AE,∠BAC=∠DAE,连接CE.(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE=度.(2)设∠BAC=α,∠BCE=β.①点D是在线段BC上移动时,如图2,则α、β之间有怎样的数量关系?试说明理由.②点D是在射线CB上移动时,则α、β之间有怎样的数量关系?试直接写出结论.【分析】(1)证明△BAD≌△CAE,得∠B=∠ACE,即可证明;(2)①与(1)同理证明△BAD≌△CAE,得∠ABD=∠ACE,则∠BAC+∠BCE=∠BAC+∠BCA+∠ACE=∠BAC+∠BCA+∠B=180°;②同理证明△ADB≌△AEC,得∠ABD=∠ACE,由∠ABD=∠BAC+∠ACB,则∠BAC=∠BCE.【解答】解:(1)∵∠BAC=∠DAE,∴∠BAD=∠CAE,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS),∴∠B=∠ACE,∴∠BCE=∠ACB+∠ACE=90°,故答案为:90;(2)①α+β=180°,理由如下:∵∠BAC=∠DAE,∴∠BAD=∠CAE,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS),∴∠ABD=∠ACE,∵∠BAC+∠ABD+∠BCA=180°,∴∠BAC+∠BCE=∠BAC+∠BCA+∠ACE=∠BAC+∠BCA+∠B=180°,∴α+β=180°;②α=β,理由如下:∵∠DAE=∠BAC,∴∠DAB=∠EAC,在△ADB与△AEC中,,∴△ADB≌△AEC(SAS),∴∠ABD=∠ACE,∵∠ABD=∠BAC+∠ACB,∴∠BAC=∠BCE,∴α=β.【点评】本题主要考查了等腰三角形的性质,全等三角形的判定与性质,三角形外角的性质等知识,证明△ADB≌△AEC是解题的关键.27.(2021秋•浦东新区期中)如图,在△ABC中,AD平分∠BAC,DE∥AC,过点E作EF⊥AD于点O,交BC的延长线于F,连接AF,求证:AF=DF.【分析】根据平行线的性质和等腰三角形的判定和性质解答即可.【解答】证明:∵DE∥AC,∴∠EDA=∠DAC,∵AD平分∠BAC,∴∠EAD=∠DAC,∴∠EAD=∠EDA,∴AE=DE,∵EF⊥AD,∴EF垂直且平分AD,∴F在AD的垂直平分线上,∴AF=DF.【点评】此题考查等腰三角形的判定和性质,关键是根据平行线的性质和等腰三角形的判定和性质解答.28.(2020秋•浦东新区期中)如图,已知在△ABC中,AB=AC,D是AB上一点,延长AC至点E,使CE =BD.联结DE交BC于点F,求证:DF=EF.【分析】过点D作DG∥AC交BC于点G,由“AAS”可证△DFG≌△ECF,可得DF=EF.【解答】证明:如图,过点D作DG∥AC交BC于点G,∵AB=AC,∵DG∥AC,∴∠ACB=∠DGB,∠DGF=∠ECF,∴∠ACB=∠DGB=∠B,∴DG=DB,∵CE=BD,∴DG=CE,在△DFG和△EFC中,,∴△DFG≌△EFC(AAS)∴DF=EF.【点评】本题考查了全等三角形的判定和性质、等腰三角形的判定与性质等知识,添加恰当辅助线构造全等三角形是解题的关键.29.(2022秋•奉贤区校级期中)如图,点A、B、C、D在同一直线上,BE∥DF,∠A=∠F,AB=FD.求证:AE=FC.【分析】根据BE∥DF,可得∠ABE=∠D,再利用ASA求证△ABC和△FDC全等即可.【解答】证明:∵BE∥DF,在△ABE和△FDC中,,∴△ABE≌△FDC(ASA),∴AE=FC.【点评】此题主要考查全等三角形的判定与性质和平行线的性质等知识点的理解和掌握,此题的关键是利用平行线的性质求证△ABC和△FDC全等.30.(2020秋•普陀区期中)如图,已知AB=AC,BD=CD,过点D作DE⊥AB交AB的延长线于点E、DF ⊥AC交AC的延长线于点F,垂足分别为点E、F.(1)求证:∠DBE=∠DCF.(2)求证:BE=CF.【分析】(1)连接AD,证△ABD≌△ACD(SSS),得∠ABD=∠ACD,即可得出结论;(2)证△BDE≌△CDF(AAS),即可得出结论.【解答】证明:(1)连接AD,如图:在△ABD和△ACD中,,∴△ABD≌△ACD(SSS),∴∠ABD=∠ACD,∴∠DBE=∠DCF.(2)∵DE⊥AB,DF⊥AC,∴∠E=∠F=90°,由(1)得:∠DBE=∠DCF,在△BDE和△CDF中,,∴△BDE≌△CDF(AAS),∴BE=CF.【点评】本题考查了全等三角形的判定和性质等知识;熟练掌握全等三角形的判定与性质是解题的关键.31.(2017秋•静安区期中)如图,在△ABC中,D为AB的中点,F为BC上一点,DF∥AC,延长FD至E,且DE=DF,联结AE、AF.(1)求证:∠E=∠C;(2)如果DF平分∠AFB,求证:AC⊥AB.【分析】(1)根据SAS证明△AED与△BFD全等,再利用等量代换证明即可;(2)根据角平分线的定义和等腰三角形的性质进行证明即可.【解答】证明:(1)∵D为AB的中点,∴BD=AD,在△AED与△BFD中,,∴△AED≌△BFD(SAS),∴∠E=∠DFB,∵DF∥AC,∴∠C=∠DFB,∴∠C=∠E;(2)∵DF平分∠AFB,∴∠AFD=∠DFB,∵∠E=∠DFB,∴∠AFD=∠AED,∵ED=DF,∴∠DAF+∠AFD=90°,∵EF∥AC,∴∠AFD=∠FAC,∴∠DAF+∠FAC=90°,∴AC⊥AB.【点评】本题考查了全等三角形的判定与性质,关键是根据平行线的性质、全等三角形的判定与性质等知识进行解答.32.(2021秋•浦东新区期中)如图1,在△ABC中,∠A=120°,∠C=20°,BD平分∠ABC,交AC于点D.(1)求证:BD=CD.(2)如图2,若∠BAC的角平分线AE交BC于点E,求证:AB+BE=AC.(3)如图3,若∠BAC的外角平分线AE交CB的延长线于点E,则(2)中的结论是否成立?若成立,给出证明,若不成立,写出正确的结论.【分析】(1)根据∠A=120°,∠C=20°,可得∠ABC的度数,再根据BD平分∠ABC,可得∠DBC=∠C=20°,进而可得结论;(2)如图2,过点E作EF∥BD交AC于点F,证明△ABE≌△AFE,可得BE=EF=FC,进而可得AB+BE=AC;(3)如图3,过点A作AF∥BD交BE于点F,结合(1)和AE是∠BAC的外角平分线,可得FE=AF=AC,进而可得结论BE﹣AB=AC.【解答】(1)证明:∵∠A=120°,∠C=20°,∴∠ABC=180°﹣120°﹣20°=40°,∵BD平分∠ABC,∴∠ABD=∠DBC=ABC=20°,∴∠DBC=∠C=20°,∴BD=CD;(2)证明:如图2,过点E作EF∥BD交AC于点F,∴∠FEC=∠DBC=20°,∴∠FEC=∠C=20°,∴∠AFE=40°,FE=FC,∴∠AFE=∠ABC,∵AE是∠BAC的平分线,∴∠BAE=∠FAE,在△ABE和△AFE中,,∴△ABE≌△AFE(AAS),∴BE=EF,∴BE=EF=FC,∴AB+BE=AF+FC=AC;(3)(2)中的结论不成立,正确的结论是BE﹣AB=AC.理由如下:如图3,过点A作AF∥BD交BE于点F,∴∠AFC=∠DBC=20°,∴∠AFC=∠C=20°,∴AF=AC,∵AE是∠BAC的外角平分线,∴∠EAB=(180°﹣∠ABC)=30°,∵∠ABC=40°,∴∠E=∠ABC﹣∠EAB=10°,∴∠E=∠FAE=10°,∴FE=AF,∴FE=AF=AC,∴BE﹣AB=BE﹣BF=EF=AC.【点评】本题考查了全等三角形的判定与性质,解决本题的关键是掌握全等三角形的判定与性质.33.(2022秋•奉贤区校级期中)(1)已知:如图①,△ABC是等边三角形,AD、CE分别平分∠BAC、∠ACB,AD、CE相交于点F,猜想:线段EF、DF之间有怎样的数量关系?并证明你的猜想.(2)已知:如图②,在△ABC中,∠B=60°,AD、CE分别平分∠BAC、∠ACB,AD、CE相交于点F,猜想:上述(1【分析】(1)证明△EAC≌△DCA(ASA),可得EC=DA,然后根据线段的和差即可得结论;(2)在CA上截取CG=CD,证明△CDF≌△CGF(SAS),可得DF=GF,∠DFC=∠GFC,再证明△AEF≌△AGF(ASA),可得EF=GF,进而可得结论.【解答】解:(1)EF=DF,证明:∵△ABC是等边三角形,∴∠BAC=∠BCA=60°,∵AD、CE分别平分∠BAC、∠ACB,∴∠FAC=BAC,∠FCA=BCA,∴∠FAC=∠FCA,∴FA=FC,在△EAC和△DCA中,,∴△EAC≌△DCA(ASA),∴EC=DA,∵FA=FC,∴EF=DF;(2)EF=DF仍成立,理由如下:如图,在CA上截取CG=CD,在△CDF和△CGF中,,∴△CDF≌△CGF(SAS),∴DF=GF,∠DFC=∠GFC,∵∠DFC=∠FAC+∠FCA=BAC+BCA=60°,∴∠GFC=60°,∠AFE=60°,∴∠AFC=180°﹣(∠FAC+∠FCA)=180°﹣(BAC+BCA)=180°﹣60°=120°,∴∠AFG=120°﹣60°=60°,∴∠AFE=∠AFG,在△AEF和△AGF中,,∴△AEF≌△AGF(ASA),∴EF=GF,∴EF=DF.【点评】本题考查了角平分线的性质,全等三角形的判定与性质,三角形的内角和定理,遇到角平分线,作角平分线上的点到两边的距离构造出全等三角形是解题的关键.34.(2021秋•台江区期中)如图,在△ABE中,AB=AE,AD=AC,∠BAD=∠EAC,BC、DE交于点O.求证:(1)△ABC≌△AED;(2)OB=OE.【分析】(1)利用SAS ABC≌△AED;(2)根据全等三角形的性质得到∠ABC=∠AED,根据等腰三角形的性质得到∠ABE=∠AEB,得到∠OBE=∠OEB,根据等腰三角形的判定定理证明.【解答】证明:(1)∵∠BAD=∠EAC,∴∠BAD+∠DAC=∠EAC+∠DAC,即∠BAC=∠EAD,在△BAC和△EAD中,,∴△BAC和≌EAD;(2)∵△BAC≌△EAD,∴∠ABC=∠AED,∵AB=AE,∴∠ABE=∠AEB,∴∠OBE=∠OEB,∴OB=OE.【点评】本题考查的是全等三角形的判定和性质、等腰三角形的性质,掌握全等三角形的判定定理和性质定理是解题的关键.35.(2022秋•宝山区校级期中)如图,已知在△ABC中,AB=AC,点D、E分别在边AB、AC上,且AD =AE.(1)求证:DE∥BC;(2)如果F是BC延长线上一点,且∠EBC=∠EFC,求证:DE=CF.【分析】(1)根据等腰三角形的性质和三角形内角和证明即可;(2)根据AAS证明△BDE与△EFC全等即可.【解答】证明:(1)∵AB=AC,∴∠ABC=∠ACB,∵AD=AE,∴∠ADE=∠AED,∵∠A=∠A,∴∠ADE=∠ABC,∴DE∥BC;(2)∵∠EBC=∠EFC,∠ABC=∠ACB,∴∠DBE+∠EBC=∠CEF+∠EFC,∴∠DBE=∠CEF,∠DEB=∠EFC,在△BDE与△EFC中,,∴△BDE≌△EFC(AAS),∴DE=CF.【点评】本题考查了等腰三角形的性质的运用,平行线的性质的运用,全等三角形的判定语言性质的运用,解答时证明三角形全等是关键.36.(2022秋•浦东新区期中)已知:如图,AB=DC,AC=BD.求证:∠B=∠C.【分析】连接AD,利用SSS判定△ABD≌△DCA,根据全等三角形的对应角相等即证.【解答】解:如图,连接AD,在△ABD和△DCA中,,∴△ABD≌△DCA(SSS),∴∠B=∠C.【点评】本题考查三角形全等的判定方法和三角形全等的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.37.(2022秋•徐汇区校级期中)已知:如图,在△ABC中,∠ACB=90°,AD为△ABC的外角平分线,交BC的延长线于点D,且∠B=2∠D.求证:AB+AC=CD.【分析】过点D作DE⊥AB,垂足为点E,由“在角的平分线上的点到这个角的两边的距离相等”可知DE=DC,再证明Rt△ACD≌Rt△AED,由此可得AC=AE,在证明BE=DE即可.【解答】证明:过点D作DE⊥AB,垂足为点E,又∵∠ACB=90°(已知),∴DE=DC(在角的平分线上的点到这个角的两边的距离相等).在Rt△ACD和Rt△AED中∴Rt△ACD≌Rt△AED(H.L).∴AC=AE,∠CDA=∠EDA.∵∠B=2∠D(已知),∴∠B=∠BDE.∴BE=DE.又∵AB+AE=BE,∴AB+AC=CD.【点评】本题考查了全等三角形的判定与性质,关键是作辅助线使得AB与AC在同一条直线上才好证AB+AC =CD.38.(2021秋•徐汇区校级期中)如图,AB⊥BC,DC⊥BC,垂足分别是点B、C,点E是线段BC上一点,且AE⊥DE,AE=ED,如果BE=3,AB+BC=11,求AB的长.【分析】求出∠A=∠DEC,∠B=∠C=90°,根据AAS证△ABE≌△ECD,推出AB=CE,求出AB+BC=2AB+BE =11,把BE=3代入求出AB即可.【解答】解:∵AB⊥BC,DC⊥BC,垂足分别是点B、C,∴∠B=∠C=90°.∴∠A+∠AEB=90°,∵AE⊥DE,∴∠AED=90°,∵∠AEB+∠AED+∠DEC=180°,∴∠AEB+∠DEC=90°,∴∠A=∠DEC,∵在△ABE和△ECD中,,∴△ABE≌△ECD(AAS),∴AB=CE,∵BC=BE+CE=BE+AB,∴AB+BC=2AB+BE=11,∵BE=3,∴AB=4.【点评】本题考查了全等三角形的性质和判定,三角形的内角和定理,注意:全等三角形的对应边相等,全等三角形的判定定理有SAS,ASA,AAS,SSS.39.(2022秋•奉贤区校级期中)△ABC为等边三角形,D为AB边上的任意一点.连接CD.(1)在BD的左侧,以BD为一边作等边三角形BDE(尺规作图,保留作图痕迹,不写作法);(2)连接AE,试说明:CD=AE.【分析】(1)可以分别以B、D为圆心,以BD为半径作弧,相交于E;(2)由已知条件,证明△BCD≌△EAB即可.【解答】(1)解:如图:(2)证明:连接AE,如图,∵在△BCD与△BAE中,,∴△BCD≌△BAE(SAS)∴CD=AE.【点评】此题主要考查等边三角形的作法以及性质的运用,还涉及到全等三角形的判定,综合性强.求得三角形全等是正确解答本题的关键.40.(2022秋•静安区校级期中)如图①,点M为锐角三角形ABC内任意一点,连接AM、BM、CM.以AB 为一边向外作等边三角形△ABE,将BM绕点B逆时针旋转60°得到BN,连接EN.(1)求证:△AMB≌△ENB;。
初二数学上册有难度练习题
初二数学上册有难度练习题初二数学上册是学生们进入中学后所学习的第一个数学课程,其中包含了一些具有一定难度的练习题。
这些难度较高的题目旨在挑战学生的数学思维和解决问题的能力,并为他们提供更深入的学习机会。
下面我们将介绍一些常见的初二数学上册有难度的练习题。
1. 数字序列题数字序列题是初二数学上册中常见的有难度的题型之一。
这类题目通常要求学生找出数字的规律,推理下一个数字的值。
例如,以下是一个简单的数字序列题:2, 5, 10, 17, 26, ?这个数字序列的规律是每个数字都是前一个数字与序号之和的平方。
按照这个规律,下一个数字应为 37。
2. 几何问题几何问题也是初二数学上册有难度的练习题的一部分。
这类题目要求学生利用几何知识进行计算或推导。
例如,以下是一个几何问题:在一个正方形中,一个圆刚好和正方形的四个顶点相切,求这个圆的面积。
学生需要知道正方形的对角线的长度等于正方形边长的根号2倍,并且圆与正方形顶点的接触点将正方形分成了4个等腰直角三角形。
通过计算这个等腰直角三角形的面积,并乘以4,就可以得到圆的面积。
3. 符号题符号题也是初二数学上册有难度的练习题中的一类。
这类题目要求学生理解并正确运用数学符号。
例如,以下是一个符号题:已知 a > 3,b < 2,判断以下哪个表达式为真:A. a + b > 5B. a - b > 2C. a * b < 6D. a / b > 1学生需要根据不等式的性质和已知条件,分别计算每个表达式的值并进行比较,找到符合题目要求的正确答案。
4. 证明题证明题在初二数学上册的有难度练习题中也经常出现。
这类题目要求学生能够利用已知条件和数学定理进行推导和证明。
例如,以下是一个证明题:证明:对于任意正整数 n,n^3 - n 为偶数。
学生需要运用数学归纳法或其他适当的证明方法,将该等式变形并证明对于任意正整数 n,n^3 - n 都是偶数。
八年级数学上册三角形的几何证明及答案解析
人教版初中数学三角形的相关证明练习1.△ABC中,AD是高,AE 、BF是角平分线,∠BAC=50°,∠C=62°,求:∠DAC和∠BOA的度数。
2.已知△ABC中,一条中线将三角形分成周长分别为9cm和15cm的两部分,求三角形的腰长和底边长。
3.在△ABC中,BD是三角形的高线,求证:∠CBD=1∠A24.如图,AD和AF分别是钝角三角形ABC和ABE的高,若AD=AF,AC=AE,求证:BC=BE.5.如图,将Rt△ABC沿AB边平移得到Rt△DEF,已知BE=5,EF=8,CG=3,求图中四边形ACDG的面积。
6.△ABC中,∠DAC=2x,∠ABC=3x,∠ACB=4x,求:∠BAD的度数。
7.如图所示,△ABC是等腰三角形,AB=AC,CD是∠BCA的角平分线,EF∥BC,延长CD到E,连接EF,∠A=∠ECF=20°,求∠CFE。
8.在△ABC中,∠C=2∠CAD=45°,BD=2AC,求∠B的度数。
9.如图,等腰直角△ABC中,AE平分∠BAC,且AE⊥CF,求证:AD=2CE.10.如图,在△ABC中,E是BC边的中点,AB=5,AE=2,AC=3,求BC的长度。
参考答案1.解:∵AD是△ABC的高,∠C=62°,∴∠ADC=90°,∠DAC=180°-∠ADC-∠C=180°-90°-62°=28°∵∠BAC=50°∴∠ABC=180°-∠BAC-∠C=68°又∵BF平分∠ABC∴∠ABF=12∠ABC=12x68°=34°∵AE平分∠BAC∴∠BAE=12∠BAC=12x50°=25°∴∠BOA=180°-∠ABF-∠BAE=180°-34°-25°=121°2.解:设腰长为xcm,①腰长与腰长的一半是9cm时,x+1/2x=9,解得x=6,所以,底边=15﹣1/2×6=12,∵6+6=12,∴6cm、6cm、12cm不能组成三角形;②腰长与腰长的1/2是15cm时,x+1/2x=15,解得x=10,∴底边=9﹣1/2×10=4,∴三角形的腰为10cm,底边长为4cm.3.证明:如图,过A作∠BAC的角平分线AE,∠BAC∴∠CAE=12∵AB=AC,∴AE⊥BC∴∠CAE+∠C=90°∵BD是高,∴∠BDC=90°∴∠BDC+∠C=90°∠BAC∴∠CAE=∠DBC,∠DBC=124.证明:∵AD,AF分别是两个钝角△ABC和△ABE的高,且AD=AF,AC=AE,∴Rt△ADC≌Rt△AFE(HL).∴CD=EF.∵AD=AF,AB=AB,∴Rt△ABD≌Rt△ABF(HL).∴BD=BF.∴BD-CD=BF-EF.即BC=BE.5.解:∵直角△DEF是平移得到的,∴S△DEF=S△ABC∴S△DEF-S△DBG=S△ABC-S△DGBS梯形BEFG=S四边形ADGCBG=EF-CG=5=32.5 ∴S四边形ADGC=S梯形BEFG=(8+5)x5x126.解7.解:已知AB=AC,所以∠B=∠ACB=½(180°-20°)=80°又CE平分∠ACB,∠ECF=20°所以∠BCD=40°,∠ACF=20°又EF∥BC,所以FEC=40°所以∠CFE=180°-20°-40°=120°8.解:过A作AE⊥BC于E,过D作DF⊥AC于F,BD=2x设AC=x,AE=√2∠CAD=∠DAE=22.5°,可证△ADE≌△ADF(AAS),得AE=AF=√2则CF=(2−√2)x,CD=(√2-1)x,BC=BD+CD=(√2+1)x2则有BC/AC=AC/CD=√2+1,得△ACD~△BCA,则∠B=∠CAD=22.5°9.证明:如图,延长AB,CE交于F,∵AE平分∠BAC,AE⊥CF,∴∠FAE=∠CAE,∠AEF=∠CAE=90°且AE=AE,则△AEF≌△AEC,CF,∴CE=CF=12在△ABD和△CBF中,∠FAE+∠F=90°,∠F+∠FCB=90°,∴∠FAE=∠FCB,AB=BC,∴△ABD≌△CBF,则CF=AD, AD=2CE10.解:如图,延长AD至E,使DE=AD,∵D是中点,则:BD=DC,∠BDE=∠ADC,AD=DE=2,∴△BDE≌△CAD,BE=AC=3,AE=2AD=4,又∵AB=5,∴△ABE是直角三角形∴在△BED中,BD²=DE²+BE²,解得BD=√22+32=√13∴BC=2BD=2√13。
第19章 几何证明易错题专练-八年级数学上册期末考试高分直通车(沪教版)
第19章几何证明易错题专练1.下列命题中,属于公理的有().A.三角形的内角和为180°B.两条直线被第三条直线所截,内错角相等C.等腰三角形两个底角相等D.在所有联结两点的线中,线段最短【难度】★【答案】D【解析】公理是人们从长期的实践中总结出来的真命题.它们可以作为判断其他命题真假的原始依据,D是公理,A、B、C都是定理.【总结】考查对公理的判断.2.把下列命题改写成“如果……,那么……”的形式:(1)等边对等角;如果____________________,那么______________________________;(2)同角的补角相等;如果____________________,那么______________________________;(3)平行于同一条直线的两条直线互相平行;如果____________________,那么______________________________;(4)全等三角形对应边相等;如果____________________,那么______________________________.【难度】★★【解析】(1)如果一个三角形中有两条边相等,那么这两条边所对的角相等;(2)如果两个角是同一个角的补角,那么这两个角相等;(3)如果两条直线平行于同一条直线,那么这两条直线平行;(4)一对全等三角形中,如果两条边是这对全等三角形的对应边,那么这两条边相等.【总结】考查命题“如果……那么……”形式的改写,注意加入适当的描述性的语句,使得语句更通顺好理解.3.已知,如图,E是等腰△ABC的腰AC上任意一点,DE⊥BC,垂足为D,延长DE交BA的延长线于点F.求证:△AEF为等腰三角形.【难度】★★【解析】∵△ABC是等腰三角形,∴C∠∵DE⊥BC,B∠=∴︒∠90DECF∠C∴DEC∠,又∵AEF∠,=DEC∠==+∠=∠90B∠F,︒+∴AEFAE=,即△AEF为等腰三角形.∠,∴AF=F∠【总结】考察角度之间关系的转换以及等腰三角形的性质和判定.4.已知,在直角△ABC中,AB=AC,∠BAC=90°,直线AE是经过点A的任一直线,BD⊥AE于点D,CE⊥AE于点E,若BD≠CE,试问:(1)AD与CE的大小关系如何?并证明;(2)DE、BD、CE的数量关系如何?并证明.【难度】★★【答案】(1)相等,证明见解析;(2)CE BD DE -=,证明见解析.【解析】(1)∵︒=∠+∠90EAC BAE ,ECA EAC ∠+∠=90°∴ECA BAE ∠=∠. ∵ECA BAE ∠=∠,ADB AEC ∠=∠,AC AB =∴()S A A CEA ADB ..≌△△, ∴CE AD =.(2)CE BD DE -=.由(1)可得:AE BD =,∵AE BD =,CE AD =,DE AD AE =-,∴CE BD DE -=【总结】考察全等三角形的判定和性质的综合运用.5.求证:等腰三角形的顶点到两腰中线的距离相等.【难度】★★【解析】如图,已知△ABC 中,AB=AC ,D 为AC 的中点,E 为AB 的中点,过A 作CE 的垂线,垂足为N ,过A 作BD 的垂线,垂足为M .求证:AM =AN证明:∵AC AB =,AE AD =,BAC BAC ∠=∠ ∴ACE ABD ≌△△,∴ACE ABD ∠=∠∵AC AB =,AMB ANC ∠=∠,ACE ABD ∠=∠ ∴ACN ABM ≌△△,∴AM =AN【总结】考察全等三角形的判定和性质的综合运用.6.如图,△ABC 中,点D 是BC 的中点,过点D 的直线交AB 于点E ,交AC 的延长 线于点F ,且BE =CF .求证:AE=AF .【难度】★★【解析】过C 作CM ∥AB 交EF 于M ∵CM ∥AB ,∴DBE MCD ∠=∠∵BD CD =,BDE CDM ∠=∠,DBE MCD ∠=∠ ∴BED CMD ≌△△ ∴EB CM = ∵BE =CF ,∴CM =CF ∴CMF F ∠=∠∵CM ∥AB ∴CMF FEA ∠=∠ ∴F FEA ∠=∠ ∴AE=AF .【总结】考察平行线辅助线的添加以及平行线的性质和全等三角形性质的综合运用.7.如图,△ABC 中,点D 、E 分别在BC 、AC 的延长线上,且C 是AE 的中点,∠B +∠D =180°,求证:AB =DE .【难度】★★【解析】过A 作AM ∥ED 交BD 于M ∵AM ∥ED , ∴E CAM ∠=∠∵CE CA =,E CAM ∠=∠,DCE ACM ∠=∠ ∴ECD ACM ≌△△ ∴AM ED = ∵AM ∥ED ,∴D AMC ∠=∠ ∵∠B +∠D =180°,∴∠B +∠AMC =180°,∵∠AMB +∠AMC =180°,∴AMB B ∠=∠ ∴AM AB =∵AM ED =,∴AB =DE .【总结】考察平行线辅助线的做法.8.已知,如图△ABC 中,AB =5,AC =3,则中线AD 的取值范围是_______.【难度】★★【答案】41<<AD .【解析】延长AD 至点E ,使得ED AD =,联结BE ∵ED AD =,EDB ADC ∠=∠,DC BD = ∴EDB ADC ≌△△ ∴3==BE AC∵BE AB AE BE AB +<<- ∴82<<AE ∵AD AE 2= ∴41<<AD【总结】考察倍长中线辅助线的添加方法以及三角形三边关系的判定.9.如图,△ABC 中,BD =DC =AC , E 是DC 的中点,求证:AD 平分∠BAE .【难度】★★【解析】延长AE 至点F ,使得EF =AE ,联结DF ∵EF AE =,DEF AEC ∠=∠,EC DE = ∴FED AEC ≌△△∴DF AC =,CDF C ∠=∠∵DC =AC , ∴CDA CAD ∠=∠∵C DAC ADB ∠+∠=∠,CDF ADC ADF ∠+∠=∠ ∴ADF ADB ∠=∠∵BD =AC ,DF AC =, ∴DF BD =∵DF BD =,ADF ADB ∠=∠,DA AD =, ∴AFD ABD ≌△△∴DAF BAD ∠=∠,即AD 平分∠BAE .【总结】考察倍长中线辅助线的添加方法以及三角形全等的判定与性质的运用.10.如图,已知AD 是△ABC 的角平分线,∠B =2∠C .求证:AB +BD =AC .【难度】★★【解析】在AC 上截取一点E ,使得AE=AB ,联结DE .∵AE AB =,CAD BAD ∠=∠,AD AD = ∴()S A S AED ABD ..≌△△ ∴AED B ∠=∠,DE BD =∵C B ∠=∠2,∴C AED ∠=∠2 ∵EDC C AED ∠+∠=∠,∴EDC C ∠=∠,∴EC ED = ∵DE BD =,∴EC BD = ∵EC AE AC +=,AB AE =,EC ED = ∴AB +BD = AC .【总结】考察截长补短辅助线的添加及运用.11.如图,在三角形ABC 中,∠ABC =2∠C ,AD ⊥BC ,求证:AB +BD =DC .【难度】★★【解析】在CD 上截取一点E 使得DE=DB ,联结AE ∵DE BD =,ADE ADB ∠=∠,DA AD = ∴ADE ADB ≌△△ ∴AE AB =,AEB ABC ∠=∠∵∠ABC =2∠C ,∴AEB C ∠=∠2∵C CAE C AEB ∠=∠+∠=∠2,∴CAE C ∠=∠,∴AE CE =∵AE AB =,∴CE AB = ∵DE +CE = CD ,CE AB =,DE BD =,∴AB +BD =DC .【总结】考察截长补短的辅助线的添加.12.如图,AD 是△ABC 的角平分线,AC =AB +BD ,∠C =30°.求∠BAC 的度数.【难度】★★【解析】在CA 上截取一点E 使得AE=AB ,联结DE ∵AE BA =,DAE BAD ∠=∠,DA AD = ∴ADE ADB ≌△△ ∴DE BD =,B AED ∠=∠∵AC =AB +BD ,AE=AB ,AC =AE +EC , ∴DB CE =∵DE BD =,∴DE CE = ∴CDE C ∠=∠ ∴CCDE C AED ∠=∠+∠=∠2 ∵AEB B ∠=∠,∴∠B =2∠C .∴︒=∠-︒=∠-∠-︒=∠903180180C C B BAC .【总结】考察截长补短的辅助线的添法.13.已知:如图,正方形ABCD 中,E 、F 分别是AD 、DC 上的点,且AE +CF =EF ,求证:∠EBF =45°.【难度】★★【解析】证明:延长FC 至点G ,使得AE CG =,联接BG .∵BA =BC ,BCG BAE ∠=∠,AE CG =∴BCG ABE ≌△△ ∴BE BG ABE CBG =∠=∠,∵AE +CF =EF ,AE =CG , ∴FG EF =∵FG EF =,FB BF =,BG BE =∴BGF BEF ≌△△ ∴GBF EBF ∠=∠∵︒=∠+∠90EBC ABE ,CBG ABE ∠=∠ ∴︒=∠+∠90EBC CBG ,即︒=∠90EBG ∵GBF EBF EBG ∠+∠=∠,GBF EBF ∠=∠ ∴∠EBF =45°.【总结】考察截长补短辅助线的添法及全等三角形性质的运用.14.已知:如图,在△ABC 中,AB =AC ,点D 是AB 上一点,E 是AC 延长线上一点,联结DE 交BC 于点M ,DM =ME ,求证:BD=CE .【难度】★★【解析】过D 作DF ∥AE 交BC 于F∵DF ∥AE ,∴MCE DFM ∠=∠ ∵DM =ME ,MCE DFM ∠=∠,DMF EMC ∠=∠∴DFM ECM ≌△△ ∴CE FD = ∵DF ∥AE ,∴ACB DFB ∠=∠∵AB =AC ,∴∠B =∠ACB , ∴DFB B ∠=∠ ∴DF DB = ∵CE FD =,∴BD=CE .【总结】考察平行线辅助线的做法.15.如图所示,正方形ABCD 中,∠EAF =45°,AP ⊥EF 于点P ,求证:AP =AB .【难度】★★★【解析】延长EB 至点G ,使得DF BG =,连接AG∵ADF ABE ∠=∠,DF BG =,AD AB = ∴AFD AEB ≌△△∴BAG DAF AG AF ∠=∠=,. ∵︒=∠45EAF ∴︒=∠+∠45EAB DAF∵,∴︒=∠+∠45GAB EAB ,即︒=∠45EAG ∴EAG FAE ∠=∠∵AG AF =,EAG FAE ∠=∠,AE AE = ∴AEG AEF ≌△△∴GEA FEA ∠=∠, ∵GEA FEA ∠=∠,AE AE =,ABE APE ∠=∠ ∴ABE APE ≌△△ ∴AP =AB .【总结】考察截长补短辅助线的添法.16.如图,已知△ABC 中,AB =AC ,AB 的垂直平分线DE 交BC 于点D ,且DC =AC , 求△ABC 各角的度数.【难度】★★【答案】∠B =∠C =36°,∠BAC =108°.【解析】因为ADC ABC BAD ∠=∠+∠,又DC =AC ,所以∠DAC =∠ADC ,又因为DE 垂直平分AB , 所以∠ABC =∠BAD ,∠DAC =2∠B ,所以∠BAC =3∠B ,所以∠B +∠BAC +∠C =5∠B=180°, 所以∠B =∠C =180÷5=36°,∠BAC =108°.【总结】考查线段垂直平分线性质定理的综合运用.17.如图,已知在四边形ABCD 中,对角线BD 平分∠ABC ,且∠BAD 与∠BCD 互补,求证:AD =CD .【难度】★★【解析】在BC 上截取BE =AB ,连接DE BAG DAF ∠=∠∵BD平分∠ABC,∴∠ABD =∠DBC,又∵BD =BD∴△ABD≌△EBD,∴∠BAD =∠BED,AD =DE∵∠BAD与∠BCD互补,∴∠BED与∠BCD互补又∵∠BED与∠CED互补,∴∠CED =∠BCD ∴DE =CD,∴AD =CD【总结】考查角平分线性质定理的运用.18.已知,如图AP、BP分别平分∠DAB、∠CBA,PE、PF分别垂直AD、BC,垂足为E、F.求证:点P在EF的垂直平分线上.【难度】★★【解析】过P作PH⊥AB于点H,则PE=PH,PH=PF∴PE=PF∵PE⊥AD,PF⊥BC∴点P在EF的垂直平分线上【总结】考查垂直平分线性质定理及其逆定理的综合运用.19.(1)经过点A、B的圆的圆心的轨迹是_____________;(2)到直线m距离等于a的点的轨迹是_____________________;(3)以线段AB为腰,点B为底角顶点的等腰三角形另一顶点的轨迹是___________________.【难度】★★【解析】(1)线段AB的垂直平分线;(2)平行于直线m且到直线m的距离为a的两条直线;(3)以B为圆心,AB长为半径的圆,去除AB所在直线与圆的交点.【总结】本题主要考查最常见的三种轨迹.20.已知:如图,AC⊥BC,AD⊥BD,AD=BC,CE⊥AB,DF⊥AB,垂足分别是E、F,求证:CE=DF.【难度】★★【解析】AC⊥BC,AD⊥BD,90ACB BDA∴∠=∠=︒在RT ACB和RT BDA中,AB BA BC AD=⎧⎨=⎩RT ACB∴≌RT BDA(.H L)CAB DBA∴∠=∠(全等三角形对应角相等),AC BD=(全等三角形对应边相等)CE⊥AB,DF⊥AB 90AEC BFD∴∠=∠=︒在RT AEC和RT BFD中AEC BFDCAB DBAAC BD∠=∠⎧⎪∠=∠⎨⎪=⎩,RT AEC∴≌RT BFD(..A A S)CE DF∴=(全等三角形对应边相等)【总结】考查直角三角形全等判定及三角形全等判定定理的综合应用.21.在直角△ABC 中,AB =AC ,∠BAC =90°,直线l 为经过点A 的任一直线,BD ⊥l 于点D ,CE ⊥l 于点E ,若BD >CE ,试问:(1)AD 与CE 的大小关系如何?请说明理由;(2)线段BD 、DE 、CE 之间的数量关系如何?你能说明清楚吗?试一试.【难度】★★★【答案】(1)AD CE =;(2)BD CE DE =+.【解析】(1)90BAC ∠=︒,90BAD CAE ∴∠+∠=︒,BD l CE l ⊥⊥,, 90BDA AEC ∴∠=∠=︒,90DBA BAD ∴∠+∠=︒, DBA EAC ∴∠=∠在RT ABD 和RT CAE 中, BDA AEC AB CA DBA EAC ∠=∠⎧⎪=⎨⎪∠=∠⎩, RT ABD ∴≌RT CAE (..A S A )AD CE ∴=(全等三角形对应边相等)(2)BD CE DE =+AD CE =,又AE AD DE =+ ,AE CE DE ∴=+RT ABD ≌RT CAE , BD AE ∴= BD CE DE ∴=+.【总结】考查全等三角形的应用及线段间的等量代换.22.如图,已知,四边形ABCD 中,∠ABC =∠ADC =90°,M 、N 分别是AC 、BD 中点.求证:MN ⊥BD .【难度】★★【解析】联结MD 、MB .90ABC ADC ∠=∠=︒,M 分别是AC 中点1122BM AC DM AC ∴==,(直角三角形斜边上中线等于斜边的一半) BM DM ∴=, N 是BD 中点, MN BD ∴⊥(等腰三角形三线合一).【总结】考查直角三角形斜边中线性质及等腰三角形三线合一性质的综合运用.23.如图,在梯形ABCD 中,AD //BC ,M 、N 分别是AD 、BC 的中点,若∠B 与∠C 互余,则MN 与(BC -AD )的关系是什么?【难度】★★ 【答案】()12MN BC AD =-. 【解析】过点M 分别作////ME AB MF DC ,,交BC 于点E 、FB MEFC MFE ∴∠=∠∠=∠,, ∠B 与∠C 互余, 90MEF MFE ∴∠+∠=︒,90EMF ∴∠=︒,即MEF 为直角三角形.在梯形ABCD 中,AD //BC ,////ME AB MF DC ,,AM BE DM CF ∴==,,M 、N 分别是AD 、BC 的中点, AM DM BN CN ∴==,()BC AD BC BE CF EF ∴-=-+=,EN FN = 12MN EF ∴=, ()12MN BC AD ∴=-. 【总结】考查直角三角形斜边中线性质的应用.24.已知:如图,在△ABC 中,BA =BC ,∠B =120°,AB 的垂直平分线MN 交AC 于D ,求证:12AD DC =.【难度】★★【解析】连接BD∵BA =BC ,∠B =120°, ∴︒=∠=∠30C A ∵AB 的垂直平分线MN 交AC 于D ,∴DB AD =, ∴︒=∠=∠30DBA A ∵∠B =120°,∴︒=︒-︒=∠9030120DBC∵︒=∠30C ,︒=∠90DBC ,∴DC BD 21=∵DB AD =,∴DC AD 21= 【总结】考察线段垂直平分线的性质和直角三角形性质的综合运用.25.如图在△ABC 中,∠ACB =90°,在AB 上截取AE =AC ,BD =BC ,则∠DCE =_________.【难度】★【答案】45°【解析】180DCE CDE CED ∠=︒-∠-∠ 180********B A ︒-∠︒-∠=︒-- 452A B ∠+∠==︒. 【总结】本题主要考查等边对等角及三角形内角和定理的综合运用.26.如图在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,∠A =30°,则AD =_____AB【难度】★ 【答案】43. 【解析】∵︒=∠+∠90ACD A ,︒=∠+∠90ACD BCD ,∴︒=∠=∠30A BCD∵︒=∠90ACB ,∠A =30°,∴AB BC 21= ∵︒=∠90BDC ,︒=∠30BCD ,∴BC BD 21=,∴AB BD 41=,∴AB AD 43=【总结】考察直角三角形的性质的运用.27.(1)直角三角形两边长为3和4,则此三角形第三边长为_________;(2)直角三角形两直角边长为3和4,则此三角形斜边上的高为_________;(3)等腰三角形两边长是2、4,则它腰上的高是____________.【难度】★★【答案】(1)5或7;(2)512;(3)215. 【解析】(1)3和4可以是两直角边长,也可以是一个直角边和斜边;(2)由勾股定理可得:斜边长为5,则由等面积法可知:三角形斜边上的高为512543=⨯; (3)∵2、2、4不能构成三角形,所以三角形的三边长为4、4、2,作等腰三角底边上的高,则由等腰三角形三线合一性质和勾股定理可得:底边上的高为15,则由等面积法可知:此三角形腰上的高为2154152=⨯. 【总结】考察等腰三角形的性质和勾股定理的应用,注意分类讨论.28.已知已直角三角形的周长为,斜边上的中线为2,求这个直角三角形的面积.【难度】★★ 【答案】52. 【解析】∵斜边上的中线为2,所以斜边长为4.∵直角三角形的周长为,∴两直角边之和为26.∵斜边长为4,则两直角边的平方和为16,∴设两直角边分别为x y ,,则有⎩⎨⎧=+=+261622y x y x ,解得:()()52222=+-+=y x y x xy ,∴直角三角形的面积为25. 【总结】考察勾股定理和直角三角形性质的应用,解题时注意方法的运用.29.如图,公路MN 和公里PQ 在点P 处交汇,且∠QPN =30°,点A 处有一所中学,AP =160米,假设拖拉机行驶时,周围100米以内会受到噪音的影响,那么拖拉机在MN 上沿PN 方向行驶时,学校是否会受到噪音的影响?请说明理由;如果受影响,已知拖拉机的速度是18千米/时,那么学校受影响的时间是多少秒?【难度】★★【答案】24秒.【解析】过A 做AB ⊥MN ,垂足为B .在Rt △ABP 中,∠QPN =30°,160=AP ,∴8021==AP AB ∵80<100,所以学校会受到噪音的影响.假设在C 处开始受到噪音影响,在D 处开始不受影响,∴100100==AD CA ,由勾股定理可得:60==BD CB ∴受影响的路程为120米=0.12千米∴学校受影响的时间为秒2436001812.0=⨯. 【总结】考察勾股定理和直角三角形性质的应用,解题时注意对题意的分析.30.如图,已知在△ABC 中,∠B =90°,AB =BC ,AD 是BC 边上的中线,EF 是AD 的垂直平分线,交AB 于点E ,交AC 于点F ,求AE :BE 的值.【难度】★★【答案】5:3.【解析】连接ED ,∵EF 是AD 的垂直平分线,∴ED AE =设2==BC AB ,x ED AE ==,则x BE -=2∵222ED BD BE =+,∴()22212x x =+-,解得:45=x .则434522=-=-=x BE , ∴3:543:45:==BE AE . 【总结】考察勾股定理和线段垂直平分线性质的综合运用.31.已知直角坐标平面内的点A (4,1)、B (6,3),在坐标轴上求点P ,使PA =PB .【难度】★★【答案】()70P ,或()07P ,. 【解析】①当点P 在x 轴上时,设()0P x ,,∵PA =PB ,∴()()22223614+-=+-x x ,7=x ,∴()70P ,②当点P 在y 轴上时,设()0P y ,,∵PA =PB ,∴()()22226341+-=+-y y ,7=y ,∴()07P ,∴满足条件的P 点的坐标为()70P ,或()07P ,. 【总结】考察两点之间距离公式的应用,由于点P 在坐标轴上,注意分类讨论.32.已知等腰直角三角形ABC 斜边BC 的长为2,DBC ∆为等边三角形,那么A 、D 两点的距离为_______.【难度】★★【答案】13-=AD 或13+.【解析】∵CD BD AC AB ==,,∴DA 垂直平分BC .设DA 交BC 于E ,∵等腰直角三角形ABC 斜边BC 的长为2,∴1=AE∵DBC ∆为等边三角形,∴根据勾股定理和直角三角形的性质可得:3=DE当A 点在DBC ∆内部时,13-=AD ;当A 点在DBC ∆外部时,13+=AD .【总结】考察勾股定理和直角三角形的性质的综合运用,注意分类讨论.33.如图,一根长度为50CM 的木棒的两端系着一根长度为70CM 的绳子,现准备在绳子上找一点,然后将绳子拉直,使拉直后的绳子与木棒构成一个直角三角形,求满足条件的点有几个,并且这个点将绳子分成的两段各有多长?【难度】★★【答案】满足条件的点有2个,一段长为30厘米,一段长为40厘米.【解析】设其中的一段长为x cm ,则另一段长为()cm x -70 ∴()2225070=-+x x ,解得:4030或=x .∴满足条件的点有2个,一段长为30厘米,一段长为40厘米.【总结】考察勾股定理的应用,注意两个点的考虑.。
人教版八年级数学上册 第11章 三角形几何证明专题练习题(无答案)
C A B C DE P 图 ⑴八年级数学(上)几何证明专题练习题1、 已知:在⊿ABC 中,∠A=900,AB=AC ,在BC 上任取一点P ,作PQ ∥AB 交AC 于Q ,作PR∥CA 交BA 于R ,D 是BC 的中点,求证:⊿RDQ 是等腰直角三角形。
2、 已知:在⊿ABC 中,∠A=900,AB=AC ,D 是AC 的中点,AE ⊥BD ,AE 延长线交BC 于F ,求证:∠ADB=∠FDC 。
3、 已知:在⊿ABC 中BD 、CE 是高,在BD 、CE 或其延长线上分别截取BM=AC 、CN=AB ,求证:MA ⊥NA 。
4、已知:如图(1),在△ABC 中,BP 、CP 分别平分∠ABC 和∠ACB ,DE 过点P 交AB 于D ,交AC 于E ,且DE ∥BC .求证:DE -DB=EC .5、在Rt △ABC 中,AB =AC ,∠BAC =90°,O 为BC 的中点。
(1)写出点O 到△ABC 的三个顶点A 、B 、C 的距离的大小关系(不要求证明);(2)如果点M 、N 分别在线段AB 、AC 上移动,在移动中保持AN =BM ,请判断△OMN 的形状,并证明你的结论。
6、如图,△ABC 为等边三角形,延长BC 到D ,延长BA 到E ,AE=BD , 连结EC 、ED ,求证:CE=DE7、如图,等腰三角形ABC 中,AB =AC ,∠A =90°,BD 平分∠ABC ,DE ⊥BC 且BC =10,求△DCE 的周长。
8.如图所示,已知AD 是∠BAC 的平分线,EF 垂直平分AD 交BC 的延长线于点F ,交AD 于点E ,连接AF ,求证:∠B=∠CAF 。
A B COM N9.如图所示,AD 是∠BAC 的平分线,DE ⊥AB ,DF ⊥AC ,垂足分别为E ,F ,连接EF ,EF 与AD 交于点G ,求证:AD 垂直平分EF 。
C10.如图所示,已知点D 是等边三角形ABC 的边BC 延长线上的一点,∠EBC=∠DAC ,CE ∥AB 。
八年级数学十二道全等几何证明题 难度适中型
八年级数学十二道全等几何证明题难度适中型 The document was prepared on January 2, 2021全等几何证明(1)如图,已知点D为等腰直角△ABC内一点,∠CAD=∠CBD=15°.E 为AD延长线上的一点,且CE=CA,求证:AD+CD=DE;全等几何证明(2)如图,在正方形ABCD中,F是CD的中点,E是BC边上的一点,且AF平分∠DAE,求证:AE=EC+CD.全等几何证明(3)已知:如图,在梯形ABCD中,AD∥BC,BC=DC,CF平分∠BCD,DF∥AB,BF的延长线交DC于点E.求证:AD=DE.全等几何证明(4)如图,在直角梯形ABCD中,AD⊥DC,AB∥DC,AB=BC,AD与BC延长线交于点F,G是DC延长线上一点,AG⊥BC于E.求证:CF=CG;全等几何证明(5)如图,已知P为∠AOB的平分线OP上一点,PC⊥OA于C,PA=PB,求证AO+BO=2CO全等几何证明(6)已知:如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于点F,交BC于点G,交AB的延长线于点E,且AE=AC.求证:BG=FG;全等几何证明(7)如图,在△ABC 中,∠ABC=60°,AD 、CE 分别平分∠BAC 、∠ACB ,求证:AC=AE+CD .全等几何证明(7)如图,AD ∥BC ,AE 平分∠BAD ,AE ⊥BE ;说明:AD+BC=AB . 全等几何证明(8)将两个全等的直角三角形ABC 和DBE 如图方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E 落在AB 上,DE 所在直线交AC 所在直线于点F .求证:AF+EF=DE全等几何证明(9) 如图,在△ABC 中,AD 平分∠BAC ,AB =AC -BD ,则∠B ∶∠C 的值为多少全等几何证明(10)已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150.求证:△PBC 是正三角形.全等几何证明(11)如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . A B CD A P CDB求证:CE=CF.设P是正方形ABCD DCE.求证:PA=PF.。
八年级上册数学竞赛试题(几何证明)
八年级上册数学竞赛试题(几何证明)班级 : 姓名:1、如图;已知AE AD ⊥;AB AF ⊥;AF AB =;AE AD =;AD ∥BC ;AD BC =;求证:AC EF =BE 2、已知:如图△ABC 中;AM 是BC 边上的中线。
求证:)(21ACAB AM +<3、如图;在△ABC 中;A=108°;AB=AC ;BD 是角平分线.求证:BC=AB+CD.4、小明是这样完成“作∠MON 的平分线”这项作业的:“如图;①以O 为圆心;任意长为半径画弧;分别交OM ;ON 于点A ;B ;②分别作线段OA ;OB 的垂直平分线l 1;l 2(垂足分别记为C ;D );记l 1与l 2的交点为P ;③作射线OP ;则射线OP 为∠MON 的平分线.”你认为小明的作法正确吗?如果正确;请你给证明;如果不正确;请指出错在哪里.5、如图①;E、F分别为线段AC上的两个动点;且DE⊥AC于E;BF⊥AC于F;若AB=CD;AF=CE;BD交AC于点M.(1)求证:MB=MD;ME=MF(2)当E、F两点移动到如图②的位置时;其余条件不变;上述结论能否成立?若成立请给予证明;若不成立请说明理由.6、在△ABC中;AB=AC;点D是直线BC上一点(不与B、C重合);以AD为一边在AD的右侧作△ADE;使AD=AE;∠DAE=∠BAC;连接CE.(1)如图1;当点D在线段BC上;如果∠BAC=90°;则∠BCE= _________ 度;(2)设∠BAC=α;∠BCE=β.①如图2;当点D在线段BC上移动;则α;β之间有怎样的数量关系?请说明理由;②当点D在直线BC上移动;则α;β之间有怎样的数量关系?并选择其中一种证明你的结论.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学上册几何证明题(提高题)
1.如图,在平面上将△ABC 绕 B 点旋转到△A/BC/的位置时,AA/∥BC,∠ABC=700,则∠CBC/为度.
2.如图,△ABE 和△ADC 是△ABC 分别沿着AB、AC 边翻折1800形成的,若∠1:∠2:∠3=28:5:3,则∠a 的度数为
3.将直角三角形(∠ACB 为直角)沿线段CD 折叠使B 落在B/处,若∠ACB/=50°,则∠ACD 度数为______.
4.如图,已知BD 平分∠ABC,DE⊥AB 于E,S△ABC=36cm2,AB=18cm,BC=12cm,则DE 的长为
5.如图,∠DEF=360,AB=BC=CD=DE=EF,求∠A 的度数。
6.已知△ABC≌△A/B/C/,△ABC 的三边为3、m、n,△A/B/C/的三边为5、p、q,若△ABC的各边都是整数,则m+n+p+q 的最大值为__________
7.长为L 的一根绳,恰好可围成两个全等三角形,则其中一个三角形的最长边x的取值范围为( )
8.已知,如图,下列三角形中,AB=AC,则经过三角形的一个顶点的一条直线能够将这个三角形分成两个小等腰三角形的是()
A.①③④
B.①②③④
C.①②④
D.①③
9.如图,ΔABC 和ΔBDE 是等边三角形,D 在AE 延长线上。
求证:BD+DC=AD。
10.如图,已知AB>AD, ∠BAC=∠FAC,CD=BC.求证:∠ADC+∠B=1800.
11.如图,在△ABC 中,D,E 分别为AB,AC 边中点,连接CD、BE 并分别延长至F、G,使BE=EG,CD=DF,连接FA,GA.求证:AF=AG.
12.如图,△ABC 中,∠BAC=900,AB=AC,BD 是∠ABC 的平分线,BD 的延长线垂直于过C 点的直线于E,
直线CE 交BA 的延长线于F.求证:BD=2CE.
13.如图,已知△ABC中,AD平分∠BAC,E、F 分别在 BD、AD 上.DE=CD,EF=AC.求证:EF∥AB.
14.如图,∠A+∠D=1800,BE 平分∠ABC,CE平分∠BCD,点 E在 AD上.
(1)探讨线段AB、CD 和BC 之间的等量关系;(2)探讨线段BE 与CE 之间的位置关系.
15.已知AB=4,AC=2,D 是BC 中点,AD 是整数,求AD的长.
16.已知,E 是AB 中点,AF=BD,BD=5,AC=7,求DC的长.
17.如图,在△ABC 中,∠B,∠C相邻的外角的平分线交于点 D.求证:点 D 在∠A 的平分线上.
18.已知,在Rt△ABC 中,∠C=900,AC=BC,AD 为∠BAC 的平分线,DE⊥AB,垂足为C.
求证:△DBE 的周长等于AB的长.
19.已知,如图,在△ABC 中,AD 是∠BAC的角平分线,E、F 分别是AB、AC上的点,且∠EDF+∠EAF=1800.
求证:DE=DF.
20.已知:如图,在△ABC 中,D 为BC 的中点,过D 点的直线GF 交AC 于F,交AC 的平行线BG 于点G,DE⊥GF,并交AB 于点E,连结EG.
(1)求证BG=CF ;(2)试猜想BE+CF 与EF 的大小关系,并加以证明.
21.如图,在ΔABC 中, ∠ABC=60°,AD 、CE 分别平分∠BAC 、∠ACB ,求证:AC=AE+CD 。
22.如图,已知△ABC 的边长为a 的正三角形,△BDC 是顶角∠BDC=1200 的等腰三角形,以D 为顶
点作一个600 角,角的两边分别交AB 于M ,交AC 于N ,连MN 形成△AMN ,求证:△AMN 的周长等于
2a 。
23.如图,P 是等腰三角形ABC 底边 BC 上的任一点,PE ⊥AB 于 E,PF ⊥AC 于F ,BH 是等腰三角形AC 边上的高。
猜想:PE 、PF 和BH 间具有怎样的数量关系?
24.已知等边△ABC 和点P ,设点P 到△ABC 三边的AB 、AC 、BC 的距离分别是h 1,h 2,h 3,△ABC 的高为h ,
请你探索以下问题:
(1)若点P 在一边BC 上(图1),此时h 3=0,问h 1、h 2 与h 之间有怎样的数量关系?请说明理由;
(2)若当点P 在△ABC 内(图2),此时h 1、h 2、h 3 与h 之间有怎样的数量关系?请说明理由;
(3)若点P 在△ABC 外(图3),此时h 1、h 2、h 3 与h 之间有怎样的数量关系?请说明理由
25.如图,在△ABC 中,BD:DC=3:1,AE:CE=1:2,S=48,求四边形ODCE 的面积。
26.如图,△ABC 中,BD:DC=2:1,BE 为△ABC 中线,BE 与AD 交于F 点,S △ABC =36cm 2
,求四边形DCEF 的面积。
27.如图,在△ABC 中,∠B=∠C ,∠BAD=400,并且∠ADE=∠AED ,•求∠CDE 的度数.
28.△ABC 中,AD 、BE 、CF 是角平分线,交点是点 G ,GH ⊥BC 。
求证:∠BGD=∠CGH.
29.已知:如图,∠B=34°,∠D=40°,AM ,CM 分别平分∠BAD 和∠BCD .
(1)求∠M 的大小.
(2)当∠B ,∠D 为任意角时,探索∠M 与∠B ,∠D 间的数量关系,并对你的结论加以证明.
30.一个七边形沿某条直线被剪掉一个角后,得到一个多边形,此多边形的内角和是多少度?
31.一个多边形除了一个内角外其余各内角的和为 2240°,求此内角的度数。
32.一个多边形的所有内角与它的一个外角之和是20600,那么这个外角是多少度?这个多边形的边
数是多少?
33.看图答题:问题:(1)小华在求几边形的内角和?(2)少加的那个角为多少度?
34.如图,在平面直角坐标系中,∠ABO=2∠BAO ,P 为x 轴正半轴上一动点,BC 平分∠ABP ,PC 平分∠APF ,OD 平分∠POE. (1)求∠BAO 的度数;(2)求证:OAP C ∠+
=∠2
1150; (3)P 在运动中,∠C+∠D 的值是否变化,若发生变化,说明理由,若不变求其值。
35.如图所示, MP 和 NQ 分别垂直平分 AB 和 AC .
(1)若∠BAC=105°,求∠PAQ 的度数;(2)若∠PAQ=250,求∠BAC 的度数。
36.如图,在△ABC 中,AB=AC,D 是CB 延长线上一点,∠ADB=600,E 是AD 上一点,且DE=DB ,求证:
AE=BE+BC.
37.△ABC 中,AB=AC,在AB 上取一点D ,在AC 的延长线上取一点E ,使CE=BD ,连结DE 交BC 于G ,求证:DG=GE.
38.在△ABC 中,由A 点向BC 边引高线,垂足D 落在BC 上,如果∠C=2∠B ,求证:AC+CD=BD.
39.在△ABC 中,AB=AC,点D 是直线BC 上一点(不与 B,C 重合),以AD 为一边在AD 的右侧.作△ADE ,使 AD=AE,∠DAE=∠BAC ,连接CE .
(1)如图1,当点D 在线段BC 上,如果∠BAC=900,则∠BCE= 度;
(2)设∠BAC=α,∠BCE=β.
①如图2,当点D在线段 BC上移动,则α,β之间有怎样的数量关系?请说明理由;
②当点D在直线BC上移动,则α,β之间有怎样的数量关系?请直接写出你的结论.
40.如图,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB的中点.
(1)如果点P在线段BC 上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.
①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;
②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?
(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点 P与点Q第一次在△ABC的哪条边上相遇?。