高考立体几何命题分析和复习建议

合集下载

立体几何考点剖析与复习建议

立体几何考点剖析与复习建议
0 )

x
y
1
道 选 择题
4

1
道 填 空题 及
道 解答 题

B

( 2
A


2

0
)

C ( 0

2

全卷 的 1
%左 右

E (0

2

1 )

l
( 2 ,0

, 4 )


我们对


(0

2
1)
2




(2
4 )


2

o )

20 0 8

1 9
套 数学 高考 卷作 了初 步 的统
5
万z
(2
2
,

/ g

c
于 点 G
t
由于
c o
等 拿 筹


复 习建 议
浙 江

故 R
△ A

l
A C
R
t
△ F CE


么 AA

l
C
么 CF E
A

么 CF E 与 么 A CA



于 是

沈 新 权 (特 级 教 师 )
C上E F A

C
与平 面 B E
D


2
条 相 交 直
A

高考立 体几 何试 题

“立体几何”大题的常考题型探究(课件)2023年高考数学二轮复习(全国通用)

“立体几何”大题的常考题型探究(课件)2023年高考数学二轮复习(全国通用)
因为 平面 ,所以 平面 ,所以 为二面角 的平面角.
因为 ,所以 .由已知得 ,故 .又 ,所以 .因为 , , , , ,所以 .
提分秘籍 体积问题考查的本质就是点面距离,解题关键是抓住以下几种方法:
(1)等体积法(仅限三棱锥)转换顶点;
(2)顶点不变,延展或缩小底面,如四棱锥的高即同顶点的三棱锥的高,点 到平面 的距离可看作点 到平面 的距离;
设 ,则 , , .设平面 的法向量为 ,则 即
令 ,则 ,∴平面 的一个法向量为 , .∵直线的方向向量与平面的法向量所成角的余弦值的绝对值即为直线与平面所成角的正弦值,∴直线 与平面 所成角的正弦值等于, ,当且仅当 时取等号.
∴直线 与平面 所成角的正弦值的最大值为 .(法二:定义法)如图2, 平面 , , 平面 .
大题攻略03 平面与平面所成的角
例3 (2021年全国甲卷)已知直三棱柱 中,侧面 为正方形, , , 分别为 和 的中点, 为棱 上的点, .
(1)证明: .(2)当 为何值时,平面 与平面 所成的二面角的正弦值最小?
▶审题微“点”
切入点
(1)常规方法是几何法,不过用几何法较为复杂,根据题目条件建系是最优解法;(2)建系是常规方法,也是最优法
▶审题微“点”
切入点
(1)关键是在平面 内找一条直线与 平行,根据线面平行的判定定理即可证明;(2)将包装盒分割成几个规则的锥体和柱体求解
障碍点
(1)在平面 内找直线与 平行;(2)将不规则的几何体分割或补形成几个规则的几何体
隐蔽点
(1)平面 内与 平行的直线;(2)包装盒的高
[解析] (1)如图1所示,分别取 , 的中点 , ,连接 ,因为 , 为全等的正三角形,所以 , , .

高考数学 立体几何、空间向量试题分析 新人教版

高考数学 立体几何、空间向量试题分析 新人教版

21010年实验区高考试题分析(立体几何、空间向量) 《普通高中数学课程标准(实验)》(以下简称课程标准)是普通高中数学教学和高考命题的依据,与大纲相比较课程标准中很多内容及其要求都发生了变化,立体几何是课标中变化较大的内容之一,在教学中如何应对这种变化呢?本文从2010年实验区高考试题的特点分析立体几何教学的方向。

一、课标与大纲的区别1. 编排方式的变化。

在大纲中,立体几何是作为一个整体安排在必修中,而在课标中将立体几何的内容分为32. 立体几何的学习作为向量的应用。

在大纲中立体几何是在综合几何的观点下进行学习的,在课标中,学生在必修部分学习立体几何初步的知识,立体几何中与位置关系相关的问题是作为向量的应用学习的。

3. 文理学习的内容差别加大。

从上表可以看出,侧重文科的学生只在数学2中学习立体几何初步,之后只在选修1-2“推理与证明”部分学习反证法,就不再学习立体几何。

而侧重理科的学生则要在向量的背景下继续学习立体几何,学习直线的方向向量与平面的法向量,运用向量语言表述线线、线面、面面的垂直、平行关系,用向量方法证明有关线、面位置关系的一些定理(包括三垂线定理),用向量方法解决线线、线面、面面的夹角的计算问题,体会向量方法在研究几何问题中的作用。

可见与大纲相比,课标加强了向量在解决立体几何中的作用。

二、实验区高考试题分析:1. 对基本关系的考查体现了直观感知和操作确认。

(2010年某某理6)设m,l是两条不同的直线,α是一个平面,则下列命题正确的是()例1、这个题目考查了线面基本位置关系的判定,但是其考查的切入点不是知识的再现,而是基于基本知识的分析判断,学生可以根据题目给出的条件用手头的工具进行操作判断,也可以通过想象进行判断。

例2、(2010年某某理6)如图,若Ω是长方体ABCD-1111A B C D 被平面EFCH 截去几何体EFCH 11B C 后得到的几何体,其中E 为线段11A B 上异于1B 的点,F 为线段1BB 上异于1B 的点,且EH//11A D ,则下列结论中不正确...的是( ) A.EH//FG B.四边开EFGH 是矩形 C.Ω是棱柱 D.Ω是棱台【新课标要求:借助长方体模型,在直观认识和理解空间点、线、面的位置关系的基础上,抽象出空间线、面位置关系的定义。

高考立体几何专题复习公开课获奖课件

高考立体几何专题复习公开课获奖课件
(7)假如一种平面与另一种平面垂线平行, 则这两个平面互相垂直
第20页
面面垂直鉴定
假如一种平面通过另一种平面一条 垂线,则这两个平面互相垂直
推论:假如一种平面与另一种平面垂线 平行,则这两个平面互相垂直
第21页
面面垂直性质
假如两个平面垂直,则在一种平面内垂直 于它们交线直线垂直于另一种平面
推论:假如两个相交平面都与另一种平面 垂直,则这两个平面交线 l 垂直于另一种 平面
(3)推论:
假如一种平面内两条相交直线与另一种平面两条 相交直线分别平行,那么这两个平面平行。
第10页
(4)运用线面垂直:
假如两个平面分别垂直于同一条直线,那么这两 个平面平行。
(5)运用面面平行:
假如两个平面都平行于第三个平面,那么这两个 平面平行。
(6)运用距离:
假如一种平面上所有点到另一种平面距离相等, 那么这两个平面平行。
α
a
直线与平 面所成角
βA Pm
αB
二面角
00<θ≤900
00≤ θ≤900
00≤θ ≤1800
空间角计算环节:一作、二证、三算
第34页
空间中角解法小结
1、异面直线所成角措施 (1)平移法(2)补形法
2、直线与平面所成角措施
关键:抓垂足、斜足,找斜线在平面内射影。
3、二面角
找二面角棱,进而找棱两条垂线
第6页
(4)运用垂直
假如一条直线和一种平面分别与另一种平面垂 直,且直线不在这个平面内,则这条直线和这 个平面平行。
(5)运用平行 假如一条直线与两个平行平面中一种平 行且不在另一种平面内,则这条直线与 另一种平面平行。
(6)运用距离

立体几何的命题趋势分析以及复习建议

立体几何的命题趋势分析以及复习建议

命题趋势分析:从近三年来的全国试卷来看,立体几何知识的考查比较全面,往往涉及高中高中立体几何数学基础知识的各个方面,同时又注重对于考生的数学能力的考查,试题往往在平凡中体现创新,从而达到有效选材的效果。

有利于高三数学教学回归课本,回归基础---基本知识、基本技能、基本思想方法,基本活动经验复习使用指导:一轮系统复习:坚持教材为主,资料为辅,教师应当帮助、引导学生梳理、把握知识的联系、发展与变化,将点状的知识块状化、网络化,激活学生的思维。

优化学生的认知结构,使网络的知识体系印到每个学生的大脑里二轮专题复习:进一步优化学生的知识结构,强化学生知识之间的联结,数学概念、公式定理的提取,以及知识的交汇和综合。

帮助学生提炼数学方法,感悟数学思想,优化思维结构,以经典的课本问题、高考问题和资料名题为素材,开展变式的教学,一题多解、一题多变、多题一法一理,凸显知识的成长、生成与发展,优化学生的思维空间,积累提出问题、分析问题和解决问题的经验。

三轮临考复习:抓主干知识的“源”和“流”,突出核心概念的理解、重要的数学定理公式的推导,活化网络化的知识结构,在分析问题与解决问题的过程中,检查运用技能,知识方法的缺陷所在。

我们应知道,数学是关于数与形的科学,数与形的有机结合是数学解题的基本思想,数学是关于模式的科学,这反映了数学解题时,需要进行“模式识别”,需要建构标准的模型,往往遇到的问题是标准模型里的参数是需要待定的,这说明待定系数法属于解题的通性通法。

数学是一种符号,引入符号可以将自然语言转换为符号语言,通过中间量的代换,就能将复杂的问题简单化、陌生的问题熟悉化。

我们要知道,数学题目本身就是“解答这道问题”的信息源,题目中的信息往往通过语言文字、公式符号、数学图形。

以及它们之间的关系间接的告诉我们的。

所以读题、审题一定要逐字逐句看清楚,搞清楚,搞明白,力求从语法结构、逻辑关系、数学含义等方面真正看懂题目,弄清条件是什么(即从何入手)?结论是什么(即向何方向前进)?它们分别和那些知识有联系?从自己掌握的知识模块中提取与之相适应的解答问题的方法,通过已建立的思维链,把知识方法输入大脑,并在大脑里进行整合,找到解题的途径,并注意容易出现错误的点,想出解答方案,只有细致的审题,才能从题目本身获得尽可能多的有用的信息,这是解题思维训练的必经之路,也是提高解答数学问题效益好办法,理应成为我们数学知识,学会数学问题解决的良好习惯。

专题8.7 高考解答题热点题型-立体几何(解析版)

专题8.7 高考解答题热点题型-立体几何(解析版)

高考理科数学一轮复习:题型全归纳与高效训练突破专题8.7高考解答题热点题型---立体几何目录一、题型综述 (1)二题型全归纳 (1)题型一空间点、线、面的位置关系及空. (1)题型二平面图形的折叠问题 (7)题型三立体几何中的探索性问题 (10)三、高效训练突破 (15)一、题型综述立体几何是每年高考的重要内容,基本上都是一道客观题和一道解答题,客观题主要考查考生的空间想象能力及简单的计算能力.解答题主要采用证明与计算相结合的模式,即首先利用定义、定理、公理等证明空间线线、线面、面面的平行或垂直关系,再利用空间向量进行空间角的计算求解.重在考查考生的逻辑推理及计算能力,试题难度一般不大,属中档题,且主要有以下几种常见的热点题型.二题型全归纳题型一空间点、线、面的位置关系及空.1证明点共面或线共面的常用方法(1)直接法:证明直线平行或相交,从而证明线共面.(2)纳入平面法:先确定一个平面,再证明有关点、线在此平面内..(3)辅助平面法:先证明有关的点、线确定平面α,再证明其余元素确定平面β,最后证明平面α,β重合.2.证明空间点共线问题的方法(1)公理法:一般转化为证明这些点是某两个平面的公共点,再根据公理3证明这些点都在这两个平面的交线上(2)纳入直线法:选择其中两点确定一条直线,然后证明其余点也在该直线上.3.证明线共点问题的常用方法先证其中两条直线交于一点,再证其他直线经过该点.4.求异面直线所成角的方法(1)几何法①作:利用定义转化为平面角,对于异面直线所成的角,可固定一条,平移一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上.①证:证明作出的角为所求角.①求:把这个平面角置于一个三角形中,通过解三角形求空间角.(2)向量法建立空间直角坐标系,利用公式|cos θ|=|m ·n ||m ||n |求出异面直线的方向向量的夹角.若向量夹角是锐角或直角,则该角即为异面直线所成角;若向量夹角是钝角,则异面直线所成的角为该角的补角.【例1】如图,AE ①平面ABCD ,CF ①AE ,AD ①BC ,AD ①AB ,AB =AD =1,AE =BC =2.(1)求证:BF ①平面ADE ;(2)求直线CE 与平面BDE 所成角的正弦值;(3)若二面角E -BD -F 的余弦值为13,求线段CF 的长. 【解题思路】由条件知AB ,AD ,AE 两两垂直,可以A 为坐标原点建立空间直角坐标系,用空间向量解决.(1)寻找平面ADE 的法向量,证明BF →与此法向量垂直,即得线面平行.(2)CE →与平面BDE 的法向量所成角的余弦值的绝对值,即为直线CE 和平面BDE 所成角的正弦值;(3)设CF =h ,用h 表示二面角E -BD -F 的余弦值,通过解方程得到线段长.【规范解答】 (1)证明:以A 为坐标原点,AB 所在的直线为x 轴,AD 所在的直线为y 轴,AE 所在的直线为z 轴,建立如图所示的空间直角坐标系.则A (0,0,0),B (1,0,0),设F (1,2,h ).依题意,AB →=(1,0,0)是平面ADE 的一个法向量,又BF →=(0,2,h ),可得BF →·AB →=0,又直线BF ①平面ADE ,所以BF ①平面ADE .(2)依题意,D (0,1,0),E (0,0,2),C (1,2,0),则BD →=(-1,1,0),BE →=(-1,0,2),CE →=(-1,-2,2).设n =(x ,y ,z )为平面BDE 的法向量,则⎩⎪⎨⎪⎧ n ·BD →=0,n ·BE →=0,即⎩⎪⎨⎪⎧-x +y =0,-x +2z =0,不妨令z =1,可得n =(2,2,1). 因此有cos 〈CE →,n 〉=CE →·n |CE →||n |=-49. 所以直线CE 与平面BDE 所成角的正弦值为49. (3)设m =(x 1,y 1,z 1)为平面BDF 的法向量,则⎩⎪⎨⎪⎧ m ·BD →=0,m ·BF →=0,即⎩⎪⎨⎪⎧-x 1+y 1=0,2y 1+hz 1=0, 不妨令y 1=1,可得m =⎝⎛⎭⎫1,1,-2h . 由题意,有|cos 〈m ,n 〉|=|m ·n ||m ||n |=⎪⎪⎪⎪4-2h 3 2+4h2=13, 解得h =87.经检验,符合题意. 所以线段CF 的长为87. 【例2】.如图,在三棱锥P ­ABC 中,P A ①底面ABC ,①BAC =90°.点D ,E ,N 分别为棱P A ,PC ,BC 的中点,M 是线段AD 的中点,P A =AC =4,AB =2.(1)求证:MN ①平面BDE ;(2)已知点H 在棱P A 上,且直线NH 与直线BE 所成角的余弦值为721,求线段AH 的长. 【解析】:如图,以A 为原点,分别以AB →,AC →,AP →的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系.依题意可得A (0,0,0),B (2,0,0),C (0,4,0),P (0,0,4),D (0,0,2),E (0,2,2),M (0,0,1),N (1,2,0).(1)证明:DE →=(0,2,0),DB →=(2,0,-2).设n =(x ,y ,z )为平面BDE 的法向量,则⎩⎪⎨⎪⎧n ·DE →=0,n ·DB →=0,即⎩⎪⎨⎪⎧2y =0,2x -2z =0. 不妨设z =1,可取n =(1,0,1).又MN →=(1,2,-1),可得MN →·n =0.因为MN ①平面BDE ,所以MN ①平面BDE .(2)依题意,设AH =h (0≤h ≤4),则H (0,0,h ),进而可得NH →=(-1,-2,h ),BE →=(-2,2,2).由已知,得|cos 〈NH →,BE →〉|=|NH →·BE →||NH →||BE →|=|2h -2|h 2+5×23=721, 整理得10h 2-21h +8=0,解得h =85或h =12. 所以,线段AH 的长为85或12. 【例3】如图,在几何体ACD -A 1B 1C 1D 1中,四边形ADD 1A 1与四边形CDD 1C 1均为矩形,平面ADD 1A 1①平面CDD 1C 1,B 1A 1①平面ADD 1A 1,AD =CD =1,AA 1=A 1B 1=2,E 为棱AA 1的中点.(1)证明:B 1C 1①平面CC 1E ;(2)求直线B 1C 1与平面B 1CE 所成角的正弦值.【解析】(1)证明:因为B 1A 1①平面ADD 1A 1,所以B 1A 1①DD 1,又DD 1①D 1A 1,B 1A 1∩D 1A 1=A 1,所以DD 1①平面A 1B 1C 1D 1,又DD 1①CC 1,所以CC 1①平面A 1B 1C 1D 1.因为B 1C 1①平面A 1B 1C 1D 1,所以CC 1①B 1C 1.因为平面ADD 1A 1①平面CDD 1C 1,平面ADD 1A 1∩平面CDD 1C 1=DD 1,C 1D 1①DD 1,所以C 1D 1①平面ADD 1A 1.经计算可得B 1E =5,B 1C 1=2,EC 1=3,从而B 1E 2=B 1C 21+EC 21,所以在①B 1EC 1中,B 1C 1①C 1E .又CC 1,C 1E ①平面CC 1E ,CC 1∩C 1E =C 1,所以B 1C 1①平面CC 1E .(2)如图,以点A 为坐标原点,建立空间直角坐标系,依题意得A (0,0,0),C (1,0,1),B 1(0,2,2),C 1(1,2,1),E (0,1,0),则CE →=(-1,1,-1),B 1C →=(1,-2,-1).设平面B 1CE 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧m ·B 1C →=0,m ·CE →=0,即⎩⎪⎨⎪⎧x -2y -z =0,-x +y -z =0,消去x 得y +2z =0, 不妨设z =1,可得m =(-3,-2,1)为平面B 1CE 的一个法向量,易得B 1C 1→=(1,0,-1),设直线B 1C 1与平面B 1CE 所成角为θ,则sin θ=|cos 〈m ,B 1C 1→〉|=⎪⎪⎪⎪⎪⎪m ·B 1C 1→|m |·|B 1C 1→|=⎪⎪⎪⎪⎪⎪-414×2=277,故直线B 1C 1与平面B 1CE 所成角的正弦值为277. 题型二 平面图形的折叠问题【解法】解决平面图形翻折问题的关键是抓住“折痕”,准确把握平面图形翻折前后的两个“不变”.(1)与折痕垂直的线段,翻折前后垂直关系不改变;(2)与折痕平行的线段,翻折前后平行关系不改变.【例1】如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把①DFC 折起,使点C 到达点P 的位置,且PF ①BF .(1)证明:平面PEF ①平面ABFD ;(2)求DP 与平面ABFD 所成角的正弦值.【解题思路】(1)①翻折前后的不变关系,四边形ABFE 是矩形.①证明BF ①平面PEF .①证明平面PEF ①平面ABFD .(2)解法一:①建系:借助第(1)问,过P 作平面ABFD 的垂线为z 轴,垂足为原点,EF 所在直线为y 轴,建系.①求直线DP 的方向向量和平面ABFD 的法向量.①由公式计算所求角的正弦值.解法二:①作:过P 作PH ①EF 交EF 于点H ,连接DH .①证:证明PH ①平面ABFD ,得①PDH 为直线DP 与平面ABFD 所成角.①算:在Rt①PDH 中,PD 的长度是正方形ABCD 的边长,①PHD =90°,易知要求sin①PDH ,关键是求PH ;由此想到判断①PEF 的形状,进一步想到证明PF ①平面PED .【规范解答】(1)证明:由已知可得,BF ①PF ,BF ①EF ,又PF ∩EF =F ,所以BF ①平面PEF .又BF ①平面ABFD ,所以平面PEF ①平面ABFD .(2)解法一:作PH ①EF ,垂足为H .由(1)得,PH ①平面ABFD .以H 为坐标原点,HF →的方向为y 轴正方向,建立如图所示的空间直角坐标系Hxyz ,设正方形ABCD 的边长为2.由(1)可得,DE ①PE .又DP =2,DE =1,所以PE = 3.又PF =1,EF =2,故PE ①PF .所以PH =32,EH =32,则H (0,0,0),P ⎝⎛⎭⎫0,0,32, D ⎝⎛⎭⎫-1,-32,0,DP →=⎝⎛⎭⎫1,32,32,HP →=⎝⎛⎭⎫0,0,32为平面ABFD 的一个法向量. 设DP 与平面ABFD 所成角为θ,则sin θ=|HP →·DP →||HP →||DP →|=343=34. 所以DP 与平面ABFD 所成角的正弦值为34. 解法二:因为PF ①BF ,BF ①ED ,所以PF ①ED ,又PF ①PD ,ED ∩PD =D ,所以PF ①平面PED ,所以PF ①PE ,设AB =4,则EF =4,PF =2,所以PE =23,过P 作PH ①EF 交EF 于点H ,因为平面PEF ①平面ABFD ,所以PH ①平面ABFD ,连接DH ,则①PDH 即为直线DP 与平面ABFD 所成的角,因为PE ·PF =EF ·PH ,所以PH =23×24=3, 因为PD =4,所以sin①PDH =PH PD =34, 所以DP 与平面ABFD 所成角的正弦值为34. 题型三 立体几何中的探索性问题【技巧要点】对命题条件的探索的三种途径途径一:先猜后证,即先观察与尝试给出条件再证明.途径二:先通过命题成立的必要条件探索出命题成立的条件,再证明充分性.途径三:将几何问题转化为代数问题【例1】(2020·湖北“四地七校”联考)在四棱锥P -ABCD 中,底面ABCD 是边长为22的正方形,平面P AC ①底面ABCD ,P A =PC =2 2.(1)求证:PB =PD ;(2)若点M ,N 分别是棱P A ,PC 的中点,平面DMN 与棱PB 的交点为点Q ,则在线段BC 上是否存在一点H ,使得DQ ①PH ?若存在,求BH 的长;若不存在,请说明理由.【解题思路】 (1)要证PB =PD ,想到在①PBD 中,证明BD 边上的中线垂直于BD ,联系题目条件想到用面面垂直的性质证明线面垂直.(2)借助第(1)问的垂直关系建立空间直角坐标系,求平面DMN 的法向量n ,分别依据P ,B ,Q 共线和B ,C ,H 共线,设PQ →=λPB →和BH →=tBC →,利用垂直关系列方程先求λ再求t ,确定点H 的位置.【规范解答】 (1)证明:记AC ∩BD =O ,连接PO ,①底面ABCD 为正方形,①OA =OC =OB =OD =2.①P A =PC ,①PO ①AC ,①平面P AC ①底面ABCD ,且平面P AC ∩底面ABCD =AC ,PO ①平面P AC ,①PO ①底面ABCD .①BD ①底面ABCD ,①PO ①BD .①PB =PD .(2)存在.以O 为坐标原点,射线OB ,OC ,OP 的方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系如图所示,由(1)可知OP =2.可得P (0,0,2),A (0,-2,0),B (2,0,0),C (0,2,0),D (-2,0,0),可得M (0,-1,1),N (0,1,1),DM →=(2,-1,1),MN →=(0,2,0).设平面DMN 的法向量n =(x ,y ,z ),①DM →·n =0,MN →·n =0,①⎩⎪⎨⎪⎧2x -y +z =0,2y =0. 令x =1,可得n =(1,0,-2).记PQ →=λPB →=(2λ,0,-2λ),可得Q (2λ,0,2-2λ),DQ →=(2λ+2,0,2-2λ),DQ →·n =0,可得2λ+2-4+4λ=0,解得λ=13. 可得DQ →=⎝⎛⎭⎫83,0,43. 记BH →=tBC →=(-2t,2t,0),可得H (2-2t,2t,0),PH →=(2-2t,2t ,-2),若DQ ①PH ,则DQ →·PH →=0,83(2-2t )+43×(-2)=0,解得t =12. 故BH = 2.故在线段BC 上存在一点H ,使得DQ ①PH ,此时BH= 2.【例2】如图,在四棱锥P­ABCD中,P A①平面ABCD,底面ABCD为菱形,E为CD的中点.(1)求证:BD①平面P AC;(2)若①ABC=60°,求证:平面P AB①平面P AE;(3)棱PB上是否存在点F,使得CF①平面P AE?说明理由.【解】(1)证明:因为P A①平面ABCD,所以P A①BD.因为底面ABCD为菱形,所以BD①A C.又P A∩AC=A,所以BD①平面P A C.(2)证明:因为P A①平面ABCD,AE①平面ABCD,所以P A①AE.因为底面ABCD为菱形,①ABC=60°,且E为CD的中点,所以AE①CD,所以AB①AE.又AB∩P A=A,所以AE ①平面P AB .因为AE ①平面P AE ,所以平面P AB ①平面P AE .(3)棱PB 上存在点F ,使得CF ①平面P AE .取F 为PB 的中点,取G 为P A 的中点,连接CF ,FG ,EG .则FG ①AB ,且FG =12AB . 因为底面ABCD 为菱形,且E 为CD 的中点,所以CE ①AB ,且CE =12AB . 所以FG ①CE ,且FG =CE .所以四边形CEGF 为平行四边形.所以CF ①EG .因为CF ①平面P AE ,EG ①平面P AE ,所以CF ①平面P AE .【例3】图1是由矩形ADEB ,Rt①ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,①FBC =60°.将其沿AB ,BC 折起使得BE 与BF 重合,连接DG ,如图2.(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ①平面BCGE ;(2)求图2中的二面角B -CG -A 的大小.【解析】:(1)证明:由已知得AD ①BE ,CG ①BE ,所以AD ①CG ,故AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.由已知得AB ①BE ,AB ①BC ,故AB ①平面BCGE .又因为AB ①平面ABC , 所以平面ABC ①平面BCGE .(2)作EH ①BC ,垂足为H .因为EH ①平面BCGE ,平面BCGE ①平面ABC ,所以EH ①平面ABC .由已知,菱形BCGE 的边长为2,①EBC =60°,可求得BH =1,EH = 3.以H 为坐标原点,HC →的方向为x 轴的正方向,建立如图所示的空间直角坐标系H ­xyz ,则A (-1,1,0),C (1,0,0),G (2,0,3),CG →=(1,0,3),AC →=(2,-1,0).设平面ACGD 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧CG →·n =0AC →·n =0,即⎩⎨⎧x +3z =0,2x -y =0. 所以可取n =(3,6,-3).又平面BCGE 的法向量可取为m =(0,1,0),所以cos n ,m =n ·m |n ||m |=32. 因此二面角B ­CG ­A 的大小为30°.三、高效训练突破1.(2020·深圳模拟)已知四棱锥P­ABCD,底面ABCD为菱形,PD=PB,H为PC上的点,过AH的平面分别交PB,PD于点M,N,且BD①平面AMHN.(1)证明:MN①PC;(2)当H为PC的中点,P A=PC=3AB,P A与平面ABCD所成的角为60°,求AD与平面AMHN所成角的正弦值.【解析】(1)证明:连接AC、BD且AC∩BD=O,连接PO.因为ABCD为菱形,所以BD①AC,因为PD=PB,所以PO①BD,因为AC∩PO=O且AC、PO①平面P AC,所以BD①平面P AC,因为PC①平面P AC,所以BD①PC,因为BD①平面AMHN,且平面AMHN∩平面PBD=MN,所以BD①MN,MN①平面P AC,所以MN①P C.(2)由(1)知BD ①AC 且PO ①BD ,因为P A =PC ,且O 为AC 的中点,所以PO ①AC ,所以PO ①平面ABCD ,所以P A 与平面ABCD 所成的角为①P AO ,所以①P AO =60°,所以AO =12P A ,PO =32P A , 因为P A =3AB ,所以BO =36P A . 以OA →,OD →,OP →分别为x ,y ,z 轴,建立空间直角坐标系,如图所示.设P A =2,所以O (0,0,0),A (1,0,0),B (0,-33,0),C (-1,0,0),D (0,33,0),P (0,0,3),H (-12,0,32), 所以BD →=(0,233,0),AH →=(-32,0,32),AD →=(-1,33,0). 设平面AMHN 的法向量为n =(x ,y ,z ),所以⎩⎪⎨⎪⎧n ·BD →=0,n ·AH →=0,即⎩⎨⎧233y =0,-32x +32z =0, 令x =2,则y =0,z =23,所以n =(2,0,23),设AD 与平面AMHN 所成角为θ,所以sin θ=|cos 〈n ,AD →〉|=|n ·AD →|n ||AD →||=34. 所以AD 与平面AMHN 所成角的正弦值为34. 2.(2020·河南联考)如图所示,在四棱锥P -ABCD 中,底面ABCD 为平行四边形,平面P AD ①平面ABCD ,①P AD 是边长为4的等边三角形,BC ①PB ,E 是AD 的中点.(1)求证:BE ①PD ;(2)若直线AB 与平面P AD 所成角的正弦值为154,求平面P AD 与平面PBC 所成的锐二面角的余弦值. 【解析】:(1)证明:因为①P AD 是等边三角形,E 是AD 的中点,所以PE ①AD .又平面P AD ①平面ABCD ,平面P AD ∩平面ABCD =AD ,PE ①平面P AD ,所以PE ①平面ABCD ,所以PE ①BC ,PE ①BE .又BC ①PB ,PB ∩PE =P ,所以BC ①平面PBE ,所以BC ①BE .又BC ①AD ,所以AD ①BE .又AD ∩PE =E 且AD ,PE ①平面P AD ,所以BE ①平面P AD ,所以BE ①PD .(2)由(1)得BE ①平面P AD ,所以①BAE 就是直线AB 与平面P AD 所成的角.因为直线AB 与平面P AD 所成角的正弦值为154, 即sin①BAE =154 ,所以cos①BAE =14. 所以cos①BAE =AE AB =2AB =14,解得AB =8,则BE =AB 2-AE 2=215.由(1)得EA ,EB ,EP 两两垂直,所以以E 为坐标原点,EA ,EB ,EP 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则点P (0,0,23),A (2,0,0),D (-2,0,0),B (0,215,0),C (-4,215,0),所以PB →=(0,215,-23),PC →=(-4,215,-23).设平面PBC 的法向量为m =(x ,y ,z ),由⎩⎪⎨⎪⎧PB →·m =0,PC →·m =0,得⎩⎨⎧215y -23z =0,-4x +215y -23z =0, 解得⎩⎨⎧x =0,z =5y . 令y =1,可得平面PBC 的一个法向量为m =(0,1,5).易知平面P AD 的一个法向量为n =(0,1,0),设平面P AD 与平面PBC 所成的锐二面角的大小为θ,则cos θ=⎪⎪⎪⎪m ·n |m ||n |=⎪⎪⎪⎪⎪⎪(0,1,5)·(0,1,0)6×1=66. 所以平面P AD 与平面PBC 所成的锐二面角的余弦值为66. 3.(2020·云南师范大学附属中学3月月考)如图,在直三棱柱ABC ­A 1B 1C 1中,①ABC 是边长为2的正三角形,AA 1=26,D 是CC 1的中点,E 是A 1B 1的中点.(1)证明:DE ①平面A 1BC;(2)求点A 到平面A 1BC 的距离.【解析】 (1)证明:如图取A 1B 的中点F ,连接FC ,FE .因为E ,F 分别是A 1B 1,A 1B 的中点,所以EF ①BB 1,且EF =12BB 1. 又在平行四边形BB 1C 1C 中,D 是CC 1的中点,所以CD ①BB 1,且CD =12BB 1,所以CD ①EF ,且CD =EF . 所以四边形CFED 是平行四边形,所以DE ①CF .因为DE ①/平面A 1BC ,CF ①平面A 1BC ,所以DE ①平面A 1BC .(2)法一:(等体积法)因为BC =AC =AB =2,AA 1=26,三棱柱ABC ­A 1B 1C 1为直三棱柱,所以V 三棱锥A 1-ABC =13S ①ABC ×AA 1=13×34×22×26=2 2. 又在①A 1BC 中,A 1B =A 1C =27,BC =2,BC 边上的高h = A 1B 2-⎝⎛⎭⎫12BC 2=33, 所以S ①A 1BC =12BC ·h =3 3. 设点A 到平面A 1BC 的距离为d ,则V 三棱锥A -A 1BC =13S ①A 1BC ×d =13×33×d =3d . 因为V 三棱锥A 1-ABC =V 三棱锥A -A 1BC ,所以22=3d ,解得d =263, 所以点A 到平面A 1BC 的距离为263. 法二:(向量法)由题意知,三棱柱ABC ­A 1B 1C 1是正三棱柱.取AB 的中点O ,连接OC ,OE .因为AC =BC ,所以CO ①AB .又平面ABC ①平面ABB 1A 1,平面ABC ∩平面ABB 1A 1=AB ,所以CO ①平面ABB 1A 1.因为O 为AB 的中点,E 为A 1B 1的中点,所以OE ①AB ,所以OC ,OA ,OE 两两垂直.如图,以O 为坐标原点,以OA ,OE ,OC 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则C (0,0,3),A (1,0,0),A 1(1,26,0),B (-1,0,0).则BA 1→=(2,26,0),BC →=(1,0,3).设平面A 1BC 的法向量为n =(x ,y ,z ),则由⎩⎪⎨⎪⎧n ①BA 1→,n ①BC →,可得⎩⎪⎨⎪⎧n ·BA 1→=2x +26y =0,n ·BC →=x +3z =0,整理得⎩⎨⎧x +6y =0,x +3z =0,令x =6,则y =-1,z =- 2. 所以n =(6,-1,-2)为平面A 1BC 的一个法向量.而BA →=(2,0,0),所以点A 到平面A 1BC 的距离d =|BA →·n ||n |=6×26+1+2=263. 4.(2020·湖北十堰4月调研)如图,在三棱锥P -ABC 中,M 为AC 的中点,P A ①PC ,AB ①BC ,AB =BC ,PB =2,AC =2,①P AC =30°.(1)证明:BM ①平面P AC ;(2)求二面角B -P A -C 的余弦值.【答案】:见解析(1)证明:因为P A ①PC ,AB ①BC ,所以MP =MB =12AC =1,又MP 2+MB 2=BP 2,所以MP ①MB .因为AB =BC ,M 为AC 的中点,所以BM ①AC , 又AC ∩MP =M ,所以BM ①平面P AC .(2)法一:取MC 的中点O ,连接PO ,取BC 的中点E ,连接EO ,则OE ①BM ,从而OE ①AC . 因为P A ①PC ,①P AC =30°,所以MP =MC =PC =1. 又O 为MC 的中点,所以PO ①AC .由(1)知BM ①平面P AC ,OP ①平面P AC ,所以BM ①PO . 又BM ∩AC =M ,所以PO ①平面ABC .以O 为坐标原点,OA ,OE ,OP 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,如图所示, 由题意知A ⎝⎛⎭⎫32,0,0,B ⎝⎛⎭⎫12,1,0,P ⎝⎛⎭⎫0,0,32,BP →=⎝⎛⎭⎫-12,-1,32,BA →=(1,-1,0), 设平面APB 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·BP→=-12x -y +32z =0,n ·BA →=x -y =0,令x =1,得n =(1,1,3)为平面APB 的一个法向量,易得平面P AC 的一个法向量为π=(0,1,0),cos 〈n ,π〉=55, 由图知二面角B -P A -C 为锐角,所以二面角B -P A -C 的余弦值为55. 法二:取P A 的中点H ,连接HM ,HB ,因为M 为AC 的中点,所以HM ①PC ,又P A ①PC ,所以HM ①P A .由(1)知BM ①平面P AC ,则BH ①P A , 所以①BHM 为二面角B -P A -C 的平面角.因为AC =2,P A ①PC ,①P AC =30°,所以HM =12PC =12.又BM =1,则BH =BM 2+HM 2=52, 所以cos①BHM =HM BH =55,即二面角B -P A -C 的余弦值为55.5.(2020·合肥模拟)如图,在多面体ABCDEF 中,四边形ABCD 是正方形,BF ①平面ABCD ,DE ①平面ABCD ,BF =DE ,M 为棱AE 的中点.(1)求证:平面BDM ①平面EFC ;(2)若DE =2AB ,求直线AE 与平面BDM 所成角的正弦值. 【答案】:见解析(1)证明:连接AC ,交BD 于点N ,连接MN , 则N 为AC 的中点,又M 为AE 的中点,所以MN ①EC . 因为MN ①平面EFC ,EC ①平面EFC , 所以MN ①平面EFC .因为BF ,DE 都垂直底面ABCD ,所以BF ①DE . 因为BF =DE ,所以四边形BDEF 为平行四边形,所以BD ①EF .因为BD ①平面EFC ,EF ①平面EFC , 所以BD ①平面EFC .又MN ∩BD =N ,所以平面BDM ①平面EFC . (2)因为DE ①平面ABCD ,四边形ABCD 是正方形,所以DA ,DC ,DE 两两垂直,如图,建立空间直角坐标系D ­xyz .设AB =2,则DE =4,从而D (0,0,0),B (2,2,0),M (1,0,2),A (2,0,0),E (0,0,4), 所以DB →=(2,2,0),DM →=(1,0,2), 设平面BDM 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·DB →=0,n ·DM →=0,得⎩⎪⎨⎪⎧2x +2y =0,x +2z =0.令x =2,则y =-2,z =-1,从而n =(2,-2,-1)为平面BDM 的一个法向量. 因为AE →=(-2,0,4),设直线AE 与平面BDM 所成的角为θ,则 sin θ=|cos 〈n ·AE →〉|=⎪⎪⎪⎪⎪⎪n ·AE →|n |·|AE →|=4515, 所以直线AE 与平面BDM 所成角的正弦值为4515.6.(2020·河南郑州三测)如图①,①ABC 中,AB =BC =2,①ABC =90°,E ,F 分别为边AB ,AC 的中点,以EF 为折痕把①AEF 折起,使点A 到达点P 的位置(如图①),且PB =BE .(1)证明:EF ①平面PBE ;(2)设N 为线段PF 上的动点(包含端点),求直线BN 与平面PCF 所成角的正弦值的最大值. 【解析】:(1)证明:因为E ,F 分别为边AB ,AC 的中点,所以EF ①BC . 因为①ABC =90°,所以EF ①BE ,EF ①PE ,又BE ∩PE =E ,所以EF ①平面PBE . (2)取BE 的中点O ,连接PO ,因为PB =BE =PE ,所以PO ①BE .由(1)知EF ①平面PBE ,EF ①平面BCFE ,所以平面PBE ①平面BCFE . 又PO ①平面PBE ,平面PBE ∩平面BCFE =BE ,所以PO ①平面BCFE .过点O 作OM ①BC 交CF 于点M ,分别以OB ,OM ,OP 所在的直线为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示,则B ⎝⎛⎭⎫12,0,0,P ⎝⎛⎭⎫0,0,32,C ⎝⎛⎭⎫12,2,0, F ⎝⎛⎭⎫-12,1,0,PC →=⎝⎛⎭⎫12,2,-32, PF →=⎝⎛⎭⎫-12,1,-32,由N 为线段PF 上一动点,得PN →=λPF →(0≤λ≤1),则可得N ⎝⎛⎭⎫-λ2,λ,32(1-λ),BN →=⎝⎛⎭⎫-λ+12,λ,32(1-λ).设平面PCF 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧PC →·m =0,PF →·m =0,即⎩⎨⎧12x +2y -32z =0,-12x +y -32z =0,取y =1,则x =-1,z =3,所以m =(-1,1,3)为平面PCF 的一个法向量.设直线BN 与平面PCF 所成的角为θ, 则sin θ=|cos 〈BN →,m 〉|=|BN →·m ||BN →|·|m |=25·2λ2-λ+1=25·2⎝⎛⎭⎫λ-142+78≤25·78=47035(当且仅当λ=14时取等号),所以直线BN 与平面PCF 所成角的正弦值的最大值为47035.7.(2020·山东淄博三模)如图①,已知正方形ABCD 的边长为4,E ,F 分别为AD ,BC 的中点,将正方形ABCD 沿EF 折成如图①所示的二面角,且二面角的大小为60°,点M 在线段AB 上(包含端点),连接AD .(1)若M 为AB 的中点,直线MF 与平面ADE 的交点为O ,试确定点O 的位置,并证明直线OD ①平面EMC ; (2)是否存在点M ,使得直线DE 与平面EMC 所成的角为60°?若存在,求此时二面角M ­EC ­F 的余弦值;若不存在,说明理由. 【答案】见解析【解析】:(1)因为直线MF ①平面ABFE ,故点O 在平面ABFE 内,也在平面ADE 内, 所以点O 在平面ABFE 与平面ADE的交线(即直线AE )上(如图所示).因为AO ①BF ,M 为AB 的中点,所以①OAM ①①FBM ,所以OM =MF ,AO =BF ,所以AO =2. 故点O 在EA 的延长线上且与点A 间的距离为2. 连接DF ,交EC 于点N ,因为四边形CDEF 为矩形, 所以N 是EC 的中点.连接MN ,则MN 为①DOF 的中位线,所以MN ①OD ,又MN ①平面EMC ,OD ①/ 平面EMC ,所以直线OD ①平面EMC . (2)由已知可得EF ①AE ,EF ①DE ,又AE ∩DE =E ,所以EF ①平面ADE .所以平面ABFE ①平面ADE ,易知①ADE 为等边三角形,取AE 的中点H ,则易得DH ①平面ABFE ,以H 为坐标原点,建立如图所示的空间直角坐标系,则E (-1,0,0),D (0,0,3),C (0,4,3),F (-1,4,0),所以ED →=(1,0,3),EC →=(1,4,3). 设M (1,t ,0)(0≤t ≤4),则EM →=(2,t ,0),设平面EMC 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧m ·EM →=0,m ·EC →=0①⎩⎨⎧2x +ty =0,x +4y +3z =0,取y =-2,则x =t ,z =8-t 3,所以m =⎝ ⎛⎭⎪⎫t ,-2,8-t 3为平面EMC 的一个法向量.要使直线DE 与平面EMC 所成的角为60°,则82t 2+4+(8-t )23=32,所以23t 2-4t +19=32,整理得t 2-4t +3=0, 解得t=1或t =3,所以存在点M ,使得直线DE 与平面EMC 所成的角为60°,取ED 的中点Q ,连接QA ,则QA →为平面CEF 的法向量, 易得Q ⎝⎛⎭⎫-12,0,32,A (1,0,0),所以QA →=⎝⎛⎭⎫32,0,-32.设二面角M -EC -F 的大小为θ, 则|cos θ|=|QA →·m ||QA →|·|m |=|2t -4|3t 2+4+(8-t )23=|t -2|t2-4t +19. 因为当t =2时,cos θ=0,平面EMC ①平面CDEF ,所以当t =1时,cos θ=-14,θ为钝角;当t =3时,cos θ=14,θ为锐角.综上,二面角M -EC -F 的余弦值为±14.。

立体几何在高考中的命题分析-2023届高三数学一轮复习课件

立体几何在高考中的命题分析-2023届高三数学一轮复习课件
积函数的表达式,通过求导或不等式来求最பைடு நூலகம்!
由于 = 与 = ,底面正方形的边长相等,所以当 =
时,此时正四棱锥的底面积与高都是最小值,此时体积
取得最小值。


方法一
通过求导,判断函数的
单调性,来求最值
方法二
也可以通过三元的基本不
等式来求最大值
2、几何图形的内切球、外接球
(2020 年全国统一高考数学试卷(文科)
(2)夹角,距离问题;
(3)空间几何体的体积、表面积计算;
(4)空间几何体与球的组合体;
(5)立体几何与其它知识的交汇。
3、具体措施:
(1)抓源固本,把握通性通法
近年高考命题的一个显著变化是:由知识立意转为能力立意,在知识网络的交汇点处设计试
题,往往遵循大纲又不拘泥于大纲。但是,对高考试卷进行分析就不难发现,许多题目都能
(1)第一问突破原来的“证明”题型,改为考查“距离”
(2) 从以往由已知棱长求值的直接结构变为需要通过给出的
条件得出棱长再求值的间接结构,且隐性考查的空间中垂直关
系的证明不是特别容易;(该题的一个难点)
方法一
A1
C1
B1
D
E
M
几何法对学生的空间
想象能力要求较高,
是学生的一大弱点,
所以学生通常选择向
(2)理解空间中点、线、面的位置关系,能用空间中线面平行、垂直的有关性质与判定
定理进行证明;
(3)能用向量方法证明线线、线面、面面的平行和垂直;
(4)能用向量方法求解线线、线面、面面的夹角问题;
(5)能用向量方法求解点到直线、点到平面的距离问题。
2、关注考查热点:
(1)空间线线、线面、面面的平行和垂直问题;

2020年高考数学专题讲解:立体几何(一)

2020年高考数学专题讲解:立体几何(一)

年级:辅导科目:数学课时数:课题立体几何(一)教学目的教学内容一、知识网络二、命题分析立体几何在高考中考查的主要内容有:空间几何体的性质、线面关系的判定与证明、表面积与体积的运算、空间几何体的识图,空间中距离、角的计算等.从近几年高考来看,一般以2~3个客观题来考查线面关系的判定、表面积与体积、空间中的距离与角、空间几何体的性质与识图等,以1个解答题来考查线面关系的证明以及距离、角的计算.在高考中属于中档题目.而三视图作为新课标的新增内容,在2011年高考中,有多套试卷在此知识点命题,主要考查三视图和直观图,特别是通过三视图来确定原图形的相关量.预计今后高考中,三视图的考查不只在选择题、填空题中出现,很有可能在解答题中与其他知识点结合在一起命题.三、复习建议在2012年高考复习中注意以下几个方面:(1)从命题形式来看,涉及立体几何内容的命题形式最为多变,除保留传统的“四选一”的选择题外,还尝试开发了“多选填空”、“完型填空”、“构造填空”等题型,并且这种命题形式正在不断完善和翻新;解答题则设计成几个小问题,此类题目往往以多面体为依托,第一小问考查线线、线面、面面的位置关系,后面几问考查面积、体积等度量关系,其解题思路也都是“作——证——求”,强调作图、证明和计算相结合.在2012年高考复习中注意以下几个方面:(1)从命题形式来看,涉及立体几何内容的命题形式最为多变,除保留传统的“四选一”的选择题外,还尝试开发了“多选填空”、“完型填空”、“构造填空”等题型,并且这种命题形式正在不断完善和翻新;解答题则设计成几个小问题,此类题目往往以多面体为依托,第一小问考查线线、线面、面面的位置关系,后面几问考查面积、体积等度量关系,其解题思路也都是“作——证——求”,强调作图、证明和计算相结合.(3)从方法上来看,着重考查公理化方法,如解答题注重理论推导和计算相结合,考查转化的思想方法,如要把立体.4.空间几何体的直观图画空间几何体的直观图常用画法,基本步骤是:(1)在已知图形中取互相垂直的x轴、y轴,两轴相交于点O,画直观图时,把它们画成对应的x′轴、y′轴,两轴相交于点O′,且使∠x′O′y′= .(2)已知图形中平行于x轴、y轴的线段,在直观图中分别画成平行于的线段.(3)已知图形中平行于x轴的线段,在直观图中保持原长度,平行于y轴的线段,长度变为.(4)在已知图形中过O点作z轴垂直于xOy平面,在直观图中对应的z′轴也垂直于x′O′y′平面,已知图形中平行于z轴的线段,在直观图中仍平行于z′轴且长度.5.中心投影与平行投影(1)平行投影的投影线互相,而中心投影的投影线相交于一点.(2)从投影的角度看,三视图和用斜二测画法画出的直观图都是在投影下画出来的图形.(三)基础自测1.(2010·北京理)一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如右图所示,则该几何体的俯视图为( )[答案] C[解析] 本题考查了三视图知识,解题的关系是掌握三视图与直观图的知识,特别是应明确三视图是从几何体的哪个方向看到的.由三视图中正(主)视图、侧(左)视图得到几何体的直观图如图所示,所以该几何体的俯视图为C.2.(2010·福建理)如图,若Ω是长方体ABCD—A1B1C1D1被平面EFGH截去几何体EFGHB1C1后得到的几何体,其中E为线段A1B1上异于B1的点,F为线段BB1上异于B1的点,且EH∥A1D1,则下列结论中不正确...的是( ) A.EH∥FG B.四边形EFGH是矩形 C.Ω是棱柱 D.Ω是棱台[答案] D[解析] ∵EH∥A1D1,∴EH∥B1C1∴B1C1∥面EFGH,B1C1∥FG,∴Ω是棱柱,故选D.3.右图为水平放置的正方形ABCO,它在直角坐标系xOy中点B的坐标为(2,2),则在用斜二测画法画出的正方形的直观图中,顶点B′到x′轴的距离为( )A.12B.22C.1 D. 2[答案] B[解析] 如图,在平面直观图中,B′C′=1,∠B′C′D′=45°,∴B′D′=2 2 .4.已知某物体的三视图如图所示,那么这个物体的形状是( )A.六棱柱 B.四棱柱 C.圆柱 D.五棱柱[答案] A[解析] 由俯视图可知,该物体的形状是六棱柱,故选A.5.用小正方体搭成一个几何体,如图是它的主视图和左视图,搭成这个几何体的小正方体最多为________个.[答案] 7[解析] 由主视图和左视图知,该几何体由两层组成,底层最多有3×2=6个,上层只有1个,故最多为7个.6.(2010·新课标理)正(主)视图为一个三角形的几何体可以是________.(写出三种)[答案] 三棱锥、三棱柱、圆锥(其他正确答案同样给分).[解析] 本题考查空间几何体的三视图.本题属于开放性题目,答案不唯一.正视图是三角形的几何体,最容易想到的是三棱锥,其次是四棱锥、圆锥;对于五棱锥、六棱锥等,正视图也可以是三角形.7.已知某几何体的俯视图是如图所示的矩形,正视图(或称主视图)是一个底边长为8、高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为4的等腰三角形.(1)求该几何体的体积V ;(2)求该几何体的侧面积S .[分析] 由三视图的形状大小,还原成几何体;再利用体积公式和表面积公式求解.[解析] (1)由该几何体的俯视图、主视图、左视图可知,该几何体是四棱锥.且四棱锥的底面ABCD 是边长为6和8的矩形,高VO =4,O 点是AC 与BD 的交点.∴该几何体的体积V =13×8×6×4=64. (2)如图所示,OE ⊥AB ,OF ⊥BC ,侧面VAB 中,VE =VO 2+OE 2=42+32=5,∴S △VAB =12×AB ×VE =12×8×5=20, 侧面VBC 中,VF =VO 2+OF 2=42+42=42,∴S △VBC =12×BC ×VF =12×6×42=12 2. ∴该几何体的侧面积S =2(S △VAB +S △VBC )=40+24 2.[点评] 由三视图还原成几何体,需要对常见的柱、锥、台、球的三视图非常熟悉,有时还可根据三视图的情况,还原成由常见几何体组合而成的组合体.(四)典型例题1.命题方向:空间几何体的结构特征[例1] 下列命题中,成立的是( )A .各个面都是三角形的多面体一定是棱锥B .四面体一定是三棱锥C .棱锥的侧面是全等的等腰三角形,该棱锥一定是正棱锥D .底面多边形既有外接圆又有内切圆,且侧棱相等的棱锥一定是正棱锥[分析] 结合棱锥、正棱锥的概念逐一进行考查.[解析] A 是错误的,只要将底面全等的两个棱锥的底面重合在一起,所得多面体的每个面都是三角形,但这个多面体不是棱锥;B 是正确的,三个面共顶点,另有三边围成三角形是四面体也必定是个三棱锥;对于C ,如图所示,棱锥的侧面是全等的等腰三角形,但该棱锥不是正棱锥;D 也是错误的,底面多边形既有内切圆又有外接圆,如果不同心,则不是正多边形,因此不是正棱锥.[答案] B[点评] 本题考查棱锥、正棱锥的概念以及四面体与三棱锥的等价性,当三棱锥的棱长都相等时,这样的三棱锥叫正四面体.判断一个命题为真命题要考虑全面,应特别注意一些特殊情况.跟踪练习1:以下命题:①以直角三角形的一边为轴旋转一周所得的旋转体是圆锥;②以直角梯形的一腰为轴旋转一周所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆;④一个平面截圆锥、得到一个圆锥和一个圆台.其中正确命题的个数为( )A.0 B.1 C.2 D.3[答案] A[解析] ①应以直角三角形的一条直角边为轴旋转才可以得到圆锥;②以直角梯形垂直于底边的一腰为轴旋转可得到圆台;③它们的底面为圆面,④用平行于圆锥底面的平面截圆锥,可得到一个圆锥和圆台.应选A.2.命题方向:直观图[例2] 若已知△ABC的平面直观图△A′B′C′是边长为a的正三角形,那么原△ABC的面积为( )A.32a2 B.34a2 C.62a2 D.6a2[解析] 如图是△ABC的平面直观图△A′B′C′.作C′D′∥y′轴交x′轴于D′,则C′D′对应△ABC的高CD,∴CD=2C′D′=2·2·C′O′=22·32a=6a.而AB=A′B′=a,∴S△ABC=12·a·6a=62a2[答案] C[点评] 解决这类题的关键是根据斜二测画法求出原三角形的底和高,将水平放置的平面图形的直观图,还原成原来的图形,其作法就是逆用斜二测画法,也就是使平行于x轴的线段的长度不变,而平行于y轴的线段长度变为直观图中平行于y′轴的线段长度的2倍.跟踪练习2已知正三角形ABC 的边长为a ,那么△ABC 的平面直观图△A ′B ′C ′的面积为( )A.34a 2B.38a 2C.68a 2D.616a 2 [分析] 先根据题意画出直观图,然后根据直观图△A ′B ′C ′的边长及夹角求解.[答案] D[解析] 如图①、②所示的实际图形和直观图.由②可知,A ′B ′=AB =a ,O ′C ′=12OC =34a , 在图②中作C ′D ′⊥A ′B ′于D ′,则C ′D ′=22O ′C ′=68a . ∴S △A ′B ′C ′=12A ′B ′·C ′D ′=12×a ×68a =616a 2. 3.命题方向:三视图[例3] 下列图形中的图(b)是根据图(a)中的实物画出的主视图和俯视图,你认为正确吗?若不正确请改正并画出左视图.[解析] 主视图和俯视图都不正确.主视图的上面的矩形中缺少中间小圆柱形成的轮廓线(用虚线表示);左视图的轮廓是两个矩形叠放在一起,上面的矩形中有2条不可视轮廓线.下面的矩形中有一条可视轮廓线(用实线表示),该几何体的三视图如图所示:[点评] 简单几何体的三视图的画法应从以下几个方面加以把握:(1)搞清主视、左视、俯视的方向,同一物体由放置的位置不同,所画的三视图可能不同.(2)看清简单组合体是由哪几个基本元素组成.(3)画三视图时要遵循“长对正,高平齐,宽相等”的原则,还要注意几何体中与投影垂直或平行的线段及面的位置关系.跟踪练习3(2010·浙江文)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是( )A.3523cm 3B.3203cm 3C.2243cm 3D.1603cm 3 [答案] B[解析] 本题考查了三视图及几何体体积的求解.由三视图可知,该几何体是由一个正四棱台和一个长方体构成的一个组合体,V 台=13×2×(16+42×82+64)=2243cm 3, V 长方体=4×4×2=32cm 3 ∴V 总=V 台+V 长方体=2243+32=3203cm 3.(五)思想方法点拨:1.要注意牢固把握各种几何体的结构特点,利用它们彼此之间的联系来加强记忆,如棱柱、棱锥、棱台为一类;圆柱、圆锥、圆台为一类;或分成柱体、锥体、台体三类来分别认识.只有对比才能把握实质和不同,只有联系才能理解共性和个性.2.要适当与平面几何的有关概念、图形和性质进行对比,通过平面几何与立体几何相关知识的比较,丰富自己的空间想象力.对组合体可通过把它们分解为一些基本几何体来研究.3.画图时要紧紧把握住一斜——在已知图形中垂直于x 轴的线段,在直观图中均与x 轴成45°;二测——两种度量形式,即在直观图中,平行于x 轴的线段长度不变,平行于y 轴的线段变为原长度的一半.4.三视图(1)几何体的三视图的排列规则:俯视图放在主视图的下面,长度与主视图一样,左视图放在主视图右面,高度与主视图一样,宽度与俯视图一样,即“长对正,高平齐,宽相等”.注意虚、实线的区别.(2)应用:在解题的过程中,可以根据三视图的形状及图中所涉及到的线段的长度,推断出原几何图形中的点、线、面之间的关系及图中的一些线段的长度,这样我们就可以解出有关的问题.5.本节常涉及一些截面问题,它把空间图形的性质、画法及有关论证、计算融为一体,常见的、基本的截面问题,如直截面、对角截面、中截面等,要求熟知并掌握.要知道这些截面的形状、位置,并能画出其图形,这常常可以将较难的问题变得简单,如“用一个平面截一个球,截面是圆面”这一点很重要,它把有关球的一些问题转化为圆的问题来解决.(六)课后强化作业一、选择题1.(2010·陕西理)若某空间几何体的三视图如图所示,则该几何体的体积是( )A.13B.23 C .1 D .2[答案] C[解析] C 该几何体是如图所示的直三棱柱V =12×1×2×2=1. 2.下列命题中:①与定点的距离等于定长的点的集合是球面;②球面上三个不同的点,一定都能确定一个圆;③一个平面与球相交,其截面是一个圆,其中正确命题的个数为( )A .0B .1C .2D .3[答案] C[解析] 命题①、②都对,命题③一个平面与球相交,其截面是一个圆面,故选C.[点评] 要注意球与球面的区别.3.(2009·上海文,16)如图,已知三棱锥的底面是直角三角形,直角边长分别为3和4,过直角顶点的侧棱长为4,且垂直于底面,该三棱锥的主视图是( )[答案] B[解析] 本题考查三视图的基本知识及空间想象能力.由题可知,选B.4.如果一个空间几何体的主视图与左视图均为全等的等边三角形,俯视图为一个半径为1的圆及其圆心,那么这个几何体的体积为( )A.33πB.233πC.3πD.π3- 11 - [答案] A[解析] 由三视图知,该几何体是底半径为1的圆锥,轴截面是边长为2的正三角形,∴高为3,体积V =33π. 5.如图,△O ′A ′B ′是△OAB 水平放置的直观图,则△OAB 的面积为( )A .6B .3 2C .6 2D .12[答案] D[解析] 若还原为原三角形,则易知OB =4,OA ⊥OB ,OA =6,∴S △AOB =12×4×6=12. 6.棱长为1的正方体ABCD -A 1B 1C 1D 1的8个顶点都在球O 的表面上,E 、F 分别是棱AA 1、DD 1的中点,则直线EF 被球O 截得的线段长为( )A.22 B .1 C .1+22 D. 2 [答案] D[解析] 由条件知球O 半径为32,球心O 到直线EF 的距离为12,由垂径定理可知直线EF 被球O 截得的线段长d =2⎝ ⎛⎭⎪⎫322-⎝ ⎛⎭⎪⎫122= 2. 7.(2010·广东)如图所示,△ABC 为正三角形,AA ′∥BB ′∥CC ′,CC ′⊥平面ABC 且3AA ′=32BB ′=CC ′=AB ,则多面体ABC -A ′B ′C ′的正视图(也称主视图)是( )[答案] D[解析] 本小题考查线面垂直的判定方法及三视图的有关概念.由于AA ′∥BB ′∥CC ′及CC ′⊥平面ABC ,知BB ′⊥平面ABC ,又CC ′=32BB ′,且△ABC 为正三角形,故正(主)视图为D.8.用单位正方体搭一个几何体,使它的主视图和俯视图如图所示,则它的体积的最小值与最大值分别为( )A .9与13B .7与10C .10与16D .10与15[答案] C [解析] 由俯视图知几何体有三行和三列,且第三列的第一行,第二行都没有小正方体,其余各列各行都有小正- 12 -。

2025届高考数学二轮专题复习与测试第一部分专题三立体几何02命题分析03知识方法

2025届高考数学二轮专题复习与测试第一部分专题三立体几何02命题分析03知识方法

专题三 立体几何1.高考立体几何试题具有较强的综合性,重视基础学问、基本技能和创新意识的考查,突出直观想象、逻辑推理、数学运算等学科核心素养的考查.内容包括“空间几何体”“点、直线、平面之间的位置关系”和“空间向量与立体几何”.2. 从近几年高考数学试题考查的状况来看,题目难度和题量相对稳定,一般是一个大题,两个小题,占22分,难度基本是中等.3.立体几何高考选择题或填空题有两个常考的热点:一是空间几何体的表面积、体积的计算,有时和数学文化、科技情境交汇命题,特殊要留意的是球与球的组合体问题,常作为小题的压轴题出现,难度较大,对空间想象实力和推理实力都有较高的要求.二是空间中点、直线、平面之间的位置关系的判定,或空间角的计算,若出现在压轴小题的位置,则类型一般为立体几何动态问题或翻折问题.4.立体几何高考解答题常以棱柱或棱锥为载体,一般设置两问,“一证一算”,一问是定性分析,一问是定量分析.其中定性分析以线、面平行、垂直的证明为主,考查逻辑推理实力及学科素养;而定量分析主要是应用空间向量求线面角、二面角,考查数学运算实力与学科素养.1.几何体的表面积与体积公式(1)柱体的体积和表面积:V =S 底h ;S 圆柱侧=2πrl ;S 表面积=S 侧+2S 底.(2)台体的体积和表面积:V =13(S 上+S 下+S 上S 下)h ;S 圆台侧=π(r 1+r 2)l ;S 表面积=S 侧+S 上+S 下.(3)锥体的体积和表面积:V =13S 底h ;S 圆锥侧=πrl ;S 表面积=S 侧+S 底. (4)球的体积和表面积:V =43πR 3;S =4πR 2. 2.三个基本领实(1)基本领实1:过不在同一条直线上的三点,有且只有一个平面.(2)基本领实2:假如一条直线上的两点在一个平面内,那么这条直线在此平面内.(3)基本领实3:假如两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.3.线面平行、垂直的定理(1)线面平行的判定定理:a ⊄α,b ⊂α,a ∥b ⇒a ∥α.(2)线面平行的性质定理:a ∥α,a ⊂β,α∩β=b ⇒a ∥b .(3)面面平行的判定定理:a ⊂α,b ⊂α,a ∩b =P ,a ∥β,b ∥β⇒α∥β.(4)面面平行的性质定理:α∥β,α∩γ=a ,β∩γ=b ⇒a ∥b .(5)线面垂直的判定定理:⎭⎪⎬⎪⎫l ⊥a l ⊥b a ∩b =O a ⊂αb ⊂α⇒l ⊥α. (6)线面垂直的性质定理:⎭⎪⎬⎪⎫a ⊥αb ⊥α⇒a ∥b . (7)面面垂直的判定定理: ⎭⎪⎬⎪⎫l ⊥αl ⊂β⇒α⊥β.(8)面面垂直的性质定理: ⎭⎪⎬⎪⎫α⊥βα∩β=al ⊥al ⊂β⇒l ⊥α. 4.三种空间角的求法设直线l ,m 的方向向量分别为a =(a 1,b 1,c 1),b =(a 2,b 2,c 2),平面α,β的法向量分别为μ=(a 3,b 3,c 3),v =(a 4,b 4,c 4)(以下相同).(1)线线夹角:设l ,m 的夹角为θ⎝ ⎛⎭⎪⎫0≤θ≤π2,则cos θ=|a ·b ||a ||b |=|a 1a 2+b 1b 2+c 1c 2|a 21+b 21+c 21·a 22+b 22+c 22 .(2)线面夹角:设直线l 与平面α的夹角为θ⎝⎛⎭⎪⎫0≤θ≤π2,则sin θ=|a ·μ||a ||μ|=|cos 〈a ,μ〉|.(3)面面夹角:设平面α,β的夹角为θ(0≤θ<π),则|cos θ|=|μ·v ||μ||v |=|cos 〈μ,v 〉|.5.空间距离(1)点到直线的距离直线l 的单位方向向量为u ,A 是直线l 上的任一点,P 为直线l 外一点,设AP →=a ,则点P到直线l 的距离d =a 2-(a ·u )2.(2)点到平面的距离平面α的法向量为n ,A 是平面α内任一点,P 为平面α外一点,则点P 到平面α的距离为d =|AP →·n ||n |.。

高三数学立体几何专题复习教案

高三数学立体几何专题复习教案
高三数学立体几何专题复习教案
(解题思想方法归纳)
问题一: 证明线线平行
1.证明两直线 、 平行,若直线 和直线 共面时,则可以用平面几何中常用的一些方法(如证明 和 是一个平行四边形的一组对边)证明它们无公共点。
在立体几何中一般还有以下几种思路:
①根据公理4
②根据“线面平行Байду номын сангаас的性质定理
③根据“线面垂直”的性质定理,若直线 和 都与平面 垂直,则 // 。
②利用中位法。如给出异面直线AB和CD,连接AC、AD、BC,然后再分别取这三条线段的中点E、F、G,连接EF、EG、FG得到△EFG,则∠FEG就是所求角或所求角的补角。这种方法优点是作异面直线所成角比较容易,但缺点是△EFG中有一边GF的长度不容易求。
3.向量方法:
转化成求两个向量的夹角(即等于所求的异面直线所成的角或其补角的大小)
2.向量方法:
①转化为证明向量共线。
②根据共面向量定理。
③证明向量与平面的法向量相互垂直。
问题三: 证明面面平行
1.传统几何方法:
①根据两个平面平行的定义
②根据两个平面平行的判定定理
③垂直于同一条直线的两个平面平行
④平行于同一平面的两个平面平行
2.思维过程:
线线平行 线面平行 面面平行
线线平行 线面垂直 面面平行
问题八: 求平面的斜线与平面所成角
1.传统几何方法:
①转化为求斜线与它在平面内的射影所成的角,通过直角三角形求解。
②利用三面角定理(即最小角定理) 求 。
2.向量方法:设 为平面 的法向量,直线 与平面 所成的角为 ,则
问题九: 求二面角
1.作出二面角的平面角并通过解三角形计算。作平面角常用方法如下:

高考立体几何命题分析和复习建议

高考立体几何命题分析和复习建议

高考立体几何命题分析和复习建议高考立体几何命题分析和复习建议一、考纲中对立体几何与空间向量的要求(1)空间几何体①认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构;②知道平行投影与中心投影的概念,了解空间图形的不同表示形式;③能画出简单空间图形(长方体、棱柱、圆柱、圆锥、球等及其简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二侧法画出它们的直观图;④了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)(2)点、直线、平面之间的位置关系①理解空间直线、平面的位置关系的定义,并了解如下的公理和定理:定理1, 2,3, 4及定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补;②理解空间中线面平行、垂直的有关性质与判定定理。

理解以下判定定理和性质定理:(判定定理和性质定理各4个,略)③能运用公理、定理和己获得的结论证明一些空间图形的位置关系的简单命题。

④能根据定义解决两条异面直线所成的角、直线和平面所成的角、二面角的简单计算问题。

(3)空间向量及其运算①了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正夕分解及其坐标表示;②掌握空间向量的线性运算及其坐标表示;③掌握空间向量的数量积及其坐标表示,能运用数量积判断向量的共线与垂直;(4)空间向量的应用①理解直线的方向向量与平面的法向量的概念;②能用向量语言表述直线与直线、直线与平面、平面与平面的垂直、平行关系;③能用向量方法证明有关直线和平面位置关系的一些定理(包括三垂线定理)④能用向量方法解决两条异面直线所成的角、直线和平面所成的角、二面角的计算问题,了解向量方法在研究立体几何问题中的应用。

文科在这部分内容中,共学习必修2两章按课程标准规定的课时数,文科数学总课时数是252课时,这两章的课时数是18课时,约占7%,试卷中期望的分数应是11分.而全国新课程卷考查了两个小题一个大题,分值达到了22分.可见这部分的知识虽然课时数不多,但是份量却不轻,占到总分的15%。

【精品复习】立体几何篇-专题四 高考立体几何命题动向

【精品复习】立体几何篇-专题四 高考立体几何命题动向

专题四高考立体几何命题动向高考命题分析立体几何主要包括柱、锥、台、球及其简单组合体的结构特征、三视图,点、直线、平面的位置关系等.高考对空间想象能力的考查集中体现在立体几何试题上,着重考查空间中点、线、面位置关系的判断及空间角等几何量的计算,既有以选择题、填空题形式出现的试题,也有以解答题形式出现的试题.一般来说,选择题、填空题大多考查概念辨析,位置关系探究,空间几何量的简单计算求解等,考查画图、识图、用图的能力;解答题多以简单几何体为载体,考查直线与直线、直线与平面、平面与平面的位置关系,综合考查空间想象能力、推理论证能力和运算求解能力.试题在突出对空间想象能力考查的同时,关注对平行、垂直的探究,关注对条件和结论不完备情形下开放性问题的探究.高考命题特点立体几何在高考中占据重要的地位,通过分析近几年的高考情况,可以发现对立体几何问题的考查已经突破了传统的框架,在命题风格上,正逐步由封闭性向灵活性、开放性转变.因此,如何进一步把握复习的重点,提高复习效率,从而快速地突破立体几何难点是高考复习过程中必须认真考虑的问题.近几年高考对立体几何的考查特点主要表现在以下几个方面:(1)从命题形式来看,涉及立体几何内容的命题形式最为多变:除保留传统的“四选一”的选择题型外,还尝试开发了“多选填空”、“完型填空”等题型,并且这种命题形式正在不断完善和翻新;解答题则设计成几个小问题,此类考题往往以多面体为依托,第一小问考查线线、线面、面面的位置关系,后面几问考查空间角、空间距离、面积、体积等知识,其解题思路也都是“作证——求”,强调作图、证明和计算相结合.(2)从内容上来看,主要考查:①直线和平面的各种位置关系的判定和性质,这类试题一般难度不大,多为选择题和填空题;②计算角的问题,试题中常见的是异面直线所成的角,直线与平面所成的角;③求距离,试题中常见的是点与点之间的距离,点到直线的距离,点到平面的距离,直线与直线的距离,直线到平面的距离,要特别注意解决此类问题的转化方法;④求简单几何体的侧面积和表面积问题,解此类问题时除套用特殊几何体的侧面积和表面积公式外,还可将侧面展开,转化为求平面图形的面积问题;⑤体积问题,要注意解题技巧,如等积变换、割补思想的应用;⑥三视图,要能辨认空间几何体的三视图,高考中三视图常与表面积、体积相结合.(3)从能力上来看,着重考查空间想象能力,即对空间几何体的观察分析和抽象的能力,要求“四会”:①会画图——根据题设条件画出适合题意的图形或画出自己想作的辅助线(面),作出的图形要直观、虚实分明;②会识图——根据题目给出的图形,想象出立体的形状和有关线面的位置关系;③会析图——对图形进行必要的分解、组合;④会用图——对图形或其某部分进行平移、翻折、旋转、展开或实行割补术.高考动向透视空间几何体的结构、三视图、直观图本部分在新课标高考中的考查重点是以三视图为命题背景来研究空间几何体的结构特点和求解几何体的表面积和体积.备考中,要熟悉一些典型的几何体(如三棱柱、长(正)方体、三棱锥等)的三视图.近年的新课标高考的命题重点和热点依然是以选择题、填空题的方式考查以下两个方面:①几何体的三视图与直观图的认识;②通过三视图和几何体的结合,考查几何体的表面积和体积.【示例1】►(2010·广东)如图,△ABC 为正三角形,AA ′∥BB ′∥CC ′,CC ′⊥平面ABC ,且3AA ′=32BB ′=CC ′=AB ,则多面体ABCA ′B ′C ′的正视图(也称主视图)是( ).解析 画三视图时,由内到外CC ′为虚线,且虚线所在直线应垂直平分AB ,故选D.答案 D三视图和直观图是空间几何体的不同的表现形式,空间几何体的三视图可以使我们很好地把握空间几何体的性质.由空间几何体可以画出它的三视图,同样由三视图可以想象出空间几何体的形状,两者之间可以相互转化.空间几何体的计算问题本部分是新课标高考考查的重点内容,常以几何体的表面积和体积的计算以及几何体的外接球、内切球的知识为主要命题点进行考查.在备考中要牢记一些典型几何体的表面积和体积的计算公式,以及几何体的棱长与它的内切球、外接球的半径之间的转换关系.【示例2】►(2011·辽宁)已知球的直径SC=4,A,B是该球球面上的两点,AB=3,∠ASC=∠BSC=30°,则棱锥SABC的体积为().A.3 3 B.2 3 C. 3 D.1解析由题可知AB一定在与直径SC垂直的小圆面上,作过AB的小圆交直径SC于D,设SD=x,则DC=4-x,此时所求棱锥即分割成两个棱锥SABD和CABD,在△SAD和△SBD中,由已知条件可得AD=BD=33x,又因为SC为直径,所以∠SBC=∠SAC=90°,所以∠DCB=∠DCA=60°,在△BDC中,BD=3(4-x),所以33x=3(4-x),所以x=3,AD=BD=3,所以△ABD为正三角形,所以V=13S△ABD×4= 3.故选C.答案 C本题考查空间想象能力、逻辑推理能力和运算能力.本题的难点在于对三棱锥SABC的结构特征的分析判断,其中的体积分割法是求解体积问题时经常使用的方法.【训练】(2011·陕西)如图,在△ABC中,∠ABC=45°,∠BAC=90°,AD是BC 上的高,沿AD把△ABD折起,使∠BDC=90°.(1)证明:平面ADB⊥平面BDC;(2)若BD =1,求三棱锥DABC 的表面积.(1)证明 ∵折起前AD 是BC 边上的高,∴当△ABD 折起后,AD ⊥DC ,AD ⊥BD ,又DB ∩DC =D ,∴AD ⊥平面BDC ,∵AD ⊂平面ABD ,∴平面ABD ⊥平面BDC .(2)解 由(1)知,DA ⊥DB ,DC ⊥DA ,∵DB =DA =DC =1,DB ⊥DC ,∴AB =BC =CA =2,从而S △DAB =S △DBC =S △DCA =12×1×1=12,S △ABC =12×2×2×sin 60°=32,∴三棱锥DABC 的表面积S =12×3+32=3+32.空间的线面位置关系对于直线与平面的位置关系,高考中主要考查平面的基本性质,考查空间的线线、线面和面面的平行关系与垂直关系的判定并运用平行、垂直的判定定理与性质进行推理论证,一般会以选择题或解答题的形式进行考查.解题的策略:结合图形进行平行与垂直的推理证明,由线线平行或垂直推证出线面平行或垂直,再由线面平行或垂直证明面面平行或垂直.如果是选择题还可以依据条件举出反例否定.【示例3】►(2011·扬州模拟)在四棱锥P ABCD 中,AB ⊥AD ,CD ⊥AD ,P A ⊥平面ABCD ,P A =AD =CD =2AB =2,M 为PC 的中点.(1)求证:BM ∥平面P AD ;(2)平面P AD 内是否存在一点N ,使MN ⊥平面PBD ?若存在,确定点N 的位置;若不存在,请说明理由.(1)证明如图,取PD 中点E ,连接EM 、AE ,∴EM綉12CD,而AB綉12CD,∴EM綉AB.∴四边形ABME是平行四边形.∴BM∥AE.∵AE⊂平面ADP,BM⊄平面ADP,∴BM∥平面P AD.(2)解∵P A⊥平面ABCD,∴P A⊥AB.而AB⊥AD,P A∩AD=A,∴AB⊥平面P AD,∴AB⊥PD.∵P A=AD,E是PD的中点,∴PD⊥AE.AB∩AD=A. ∴PD⊥平面ABME.作MN⊥BE,交AE于点N.∴MN⊥平面PBD.易知△BME∽△MEN.而BM=AE=2,EM=12CD=1,由ENEM=EMBM,得EN=(EM)2BM=12=22,∴AN=22.即点N为AE的中点.在立体几何的平行关系问题中,“中点”是经常使用的一个特殊点,通过找“中点”,连“中点”,即可出现平行线,而线线平行是平行关系的根本.在垂直关系的证明中,线线垂直是问题的核心,可以根据已知图形通过计算证明线线垂直,也可以根据已知的垂直关系证明线线垂直,其中要特别重视平面与平面垂直的性质定理.空间角的计算高考中立体几何的计算主要有两个方面,即空间几何体的表面积、体积的计算,空间角与距离的计算,其中空间角的计算是高考考查考生逻辑推理能力、空间想象能力和运算求解能力的重点.这类试题如果是在选择题或者填空题中出现,则考查简单的空间角的计算,如果是在解答题中出现,则往往是试题的一个组成部分.【示例4】►(2011·湖南)如图,在圆锥PO中,已知PO=2,⊙O的直径AB=2,点C在AB上,且∠CAB=30°,D为AC的中点.(1)证明:AC⊥平面POD;(2)求直线OC和平面P AC所成角的正弦值.(1)证明如图,因为OA=OC,D是AC的中点,所以AC⊥OD.又PO⊥底面⊙O,AC⊂底面⊙O,所以AC⊥PO.而OD,PO是平面POD内的两条相交直线,所以AC⊥平面POD.(2)解由(1)知,AC⊥平面POD,又AC⊂平面P AC,所以平面POD⊥平面P AC.在平面POD中,如图,过O作OH⊥PD于H,则OH⊥平面P AC.连接CH,则CH是OC在平面P AC上的射影,所以∠OCH是直线OC和平面P AC所成的角.在Rt△ODA中,OD=OA·sin 30°=1 2.在Rt△POD中,OH=PO·ODPO2+OD2=2×122+14=23.在Rt△OHC中,sin∠OCH=OHOC=23.故直线OC和平面P AC所成角的正弦值为23.本题考查垂直关系的证明,线面角的求解及逻辑推理能力、空间想象能力和运算求解能力.试题的难点是第二问的线面角,其中作出线面角是解题的关键,作线面角就是找直线上的点在平面内的射影,一个根本的方法就是通过两个平面互相垂直的性质定理得出点在平面上的射影.空间距离的计算高考试题中直接考查距离求解的不多,但距离是立体几何的重要内容之一,在计算空间几何体的体积、空间角时,往往需要计算距离.距离问题的关键是“垂直”,通过作垂线把求解的距离问题纳入到一个具体的平面图形中进行计算.距离问题也与逻辑推理、空间想象密不可分,是立体几何考查逻辑推理能力和空间想象能力的深化.【示例5】►(2011·重庆)高为2的四棱锥SABCD 的底面是边长为1的正方形,点S 、A 、B 、C 、D 均在半径为1的同一球面上,则底面ABCD 的中心与顶点S 之间的距离为( ). A.102 B.2+32 C.32 D. 2解析 设题中的球的球心为O ,球心O 与顶点S 在底面ABCD 上的射影分别是O 1,E ,连接OA ,OB ,OC ,OD ,OS ,则有OA =OB =OC =OD =OS =1,点O 1是底面正方形ABCD 的中心,OO 1∥SE ,且OO 1=OA 2-O 1A 2=12-⎝ ⎛⎭⎪⎫222=22,SE = 2.在直角梯形OO 1ES 中,作OF ⊥SE 于点F ,则四边形OO 1EF 是矩形,EF =OO 1=22,SF =SE -EF =2-22=22.在Rt △SOF 中,OF 2=OS 2-SF 2=1-⎝ ⎛⎭⎪⎫222=12,即O 1E =22.在Rt △SO 1E 中,SO 1=O 1E 2+SE 2=⎝ ⎛⎭⎪⎫222+(2)2=102,选A. 答案 A本小题主要考查了考生的空间想象能力以及如何有效地利用已知条件恰当地将空间问题平面化,从而借助于平面几何知识解决相关问题.【训练】 (2011·北京)如图,在四面体P ABC 中,PC ⊥AB ,P A ⊥BC ,点D ,E ,F ,G 分别是棱AP ,AC ,BC ,PB 的中点.(1)求证:DE ∥平面BCP ;(2)求证:四边形DEFG 为矩形;(3)是否存在点Q ,到四面体P ABC 六条棱的中点的距离相等?说明理由.(1)证明 因为D ,E 分别为AP ,AC 的中点,所以DE ∥PC .又因为DE ⊄平面BCP ,所以DE ∥平面BCP .(2)证明 因为D ,E ,F ,G 分别为AP ,AC ,BC ,PB 的中点,所以DE ∥PC ∥FG ,DG ∥AB ∥EF .所以四边形DEFG 为平行四边形.又因为PC ⊥AB ,所以DE ⊥DG .所以四边形DEFG 为矩形.(3)解 存在点Q 满足条件,理由如下:如图,连接DF ,EG ,设Q 为EG 的中点.由(2)知,DF ∩EG =Q ,且QD =QE =QF =QG =12EG .分别取PC ,AB 的中点M ,N ,连接ME ,EN ,NG ,MG ,MN .与(2)同理,可证四边形MENG 为矩形,其对角线交点为EG 的中点Q ,且QM=QN =12EG ,所以Q 为满足条件的点.空间向量及其运算高考对空间向量的考查主要在立体几何的解答题中进行,试题的一般设计模式是先进行一个线面位置关系的证明,再设计一个求解空间角或距离的问题,第一个问题的意图是考查考生使用综合几何法进行逻辑推理的能力,对于空间角或距离的求解,虽然也可以使用综合几何法解决,但命题者的意图显然不是如此,其真正的意图是考查考生使用空间向量的方法解决立体几何问题的能力.【示例6】►(2011·湖北高考)如图,已知正三棱柱ABCA 1B 1C 1的各棱长都是4,E 是BC 的中点,动点F 在侧棱CC 1上,且不与点C 重合.(1)当CF =1时,求证:EF ⊥A 1C ;(2)设二面角CAFE 的大小为θ,求tan θ的最小值.解 (1)建立如图所示的空间直角坐标系,连接EF ,AF ,则由已知可得A (0,0,0),B (23,2,0),C (0,4,0),A 1(0,0,4),E (3,3,0),F (0,4,1),于是CA 1→=(0,-4,4),EF →=(-3,1,1). 则CA 1→·EF →=(0,-4,4)·(-3,1,1)=0-4+4=0, 故EF ⊥A 1C .(2)设CF =λ(0<λ≤4),平面AEF 的一个法向量为m =(x ,y ,z ),则由(1)得F (0,4,λ).AE→=(3,3,0),AF →=(0,4,λ),于是由m ⊥AE →,m ⊥AF →可得 ⎩⎪⎨⎪⎧ m ·AE →=0,m ·AF →=0,即⎩⎨⎧3x +3y =0,4y +λz =0.取m =(3λ,-λ,4). 又由直三棱柱的性质可取侧面A 1C 的一个法向量为n =(1,0,0),于是由θ为锐角可得cos θ=|m·n ||m|·|n|=3λ2λ2+4,sin θ=λ2+162λ2+4, 所以tan θ=λ2+163λ=13+163λ2.故0<λ≤4,得1λ≥14,即tan θ≥13+13=63.故当λ=4,即点F与点C1重合时,tan θ取得最小值6 3.本题考查空间垂直关系的证明和二面角的求解及函数思想.本题的空间几何体便于建立空间直角坐标系,而且对于要证明的线线垂直和要求解的二面角正切的最值,使用空间向量的方法有一定的优势.线线垂直就是直线的方向向量的数量积等于零,二面角的大小可以使用两个平面的法向量进行计算,便于建立函数关系式.。

2024年高考数学总复习:立体几何中的动态问题

2024年高考数学总复习:立体几何中的动态问题

第1页共5页2024年高考数学总复习:立体几何中的动态问题[解题策略]立体几何中的“动态”问题就变化起因而言大致可分为两类:一是平移;二是旋转.就所求变量而言可分为三类:一是相关线、面、体的测度;二是角度;三是距离.立体几何动态问题的解决需要较高的空间想象能力与化归处理能力,在各省市的高考选择题与填空题中也时有出现.在解“动态”立体几何题时,如果我们能努力探寻运动过程中“静”的一面,动中求静,往往能以静制动、克难致胜.1.去掉枝蔓见本质——大道至简在解决立体几何中的“动态”问题时,需从复杂的图形中分化出最简单的具有实质性意义的点、线、面,让几何图形的实质“形销骨立”,即从混沌中找出秩序,是解决“动态”问题的关键.例1如图1,直线l ⊥平面α,垂足为O .正方体ABCD -A 1B 1C 1D 1的棱长为2.点A 是直线l 上的动点,点B 1在平面α内,则点O 到线段CD 1中点P 的距离的最大值为________.图1答案2+2解析从图形分化出4个点O ,A ,B 1,P ,其中△AOB 1为直角三角形,固定AOB 1,点P 的轨迹是在与AB 1垂直的平面上且以AB 1的中点Q 为圆心的圆,从而OP ≤OQ +QP =12AB 1+2=2+2,当且仅当OQ ⊥AB 1,且点O ,Q ,P 共线时取到等号,此时直线AB 1与平面α成45°角.2.极端位置巧分析——穷妙极巧在解决立体几何中的“动态”问题时,对于移动问题,由图形变化的连续性,穷尽极端特殊之要害,往往能直取答案.例2在正四面体A -BCD 中,E 为棱BC 的中点,F 为直线BD 上的动点,则平面AEF 与平面ACD 所成二面角的正弦值的取值范围是________.答案1解析本例可用极端位置法来加以分析.。

立体几何重难点复习

立体几何重难点复习

立体几何专题一.考点综述《考试说明》关于立体几何的考试要求.内容要求:空间几何体的结构特征,空间图形的三视图及直观图,球、棱柱、锥、台的表面积及体积的计算;点、线、面的位置关系,向量方法在立体几何中的应用.能力的要求:空间想象、抽象概括、推理论证、计算求解的能力.具体表现为:能根据条件作出正确的图形,根据条件想象出直观形象;能正确地分析出图形中基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地揭示问题的本质.课改以来,新疆一直使用全国课标卷,课标卷关于立体几何部分的考查,题型、题量稳定,难度适中,主要涉及以下方面:内容:考查(1)空间几何体:结构特征、三视图、表面积和体积的计算. 常给出几何体的三视图,通过识图、想图、作图、用图,考查学生的空间想象能力及运算求解能力.(2)空间直线与平面的位置关系:线、面平行与垂直关系的判断和证明,其中垂直关系出现频率更高.空间角的计算,其中二面角的计算是理科生的重点,文科生则不做要求;三是空间距离的计算,重点考查点到平面的距离.如在文科高考解答题中,第(2)问往往要计算几何体的体积,其关键是求出点到平面的距离.(3)空间向量与立体几何:考查利用空间向量研究空间直线与平面的位置关系;利用空间向量求角和距离.一般地,论证平行与垂直关系,传统方法较方便,而在求空间角和空间距离上,则可显示出向量法的优越性.方法:解答题的命制,课标卷都采用了“一题多法”的命制办法,并体现向量坐标法优先的特征. 即同一试题可以用综合法(传统的方法)和空间向量两种方法来解决(向量法优先)强调数学通性通法的考查,淡化特殊技巧,无偏怪之题.立体几何专题的考查,理科和文科试卷,都强调对基础知识和基本能力的考查.文科相对强调几何的直观感知和简单的推理论证;而理科对空间想象、推理论证、运算求解有更高的要求.二.备考的几点建议1.重视教材例题、习题,夯实解题基础教材是课堂教学的依据,是高考试题的源头.高考命题常以课本中的例题、习题为题源,以教材中概念、定理、公式等的类比、推广为题源,以教材中研究性学习课题为题源.复习要扣紧教材,熟练掌握课本中每一概念、每一定理的种种用途,知识点要全面覆盖,不能遗漏.以教材例题、习题为载体编拟的高考题在各地高考卷中频频出现.此阶段的复习可以教材中的典型例题、习题为基本素材,结合考纲要求与学生实际,按循序渐进的原则,通过变式教学,实现难点的有效突破.2.注重通性通法,并能依题灵活选用恰当方法向量坐标法思路简单但是计算复杂,向量的非坐标法在空间来去自由,但是求空间角问题时比较繁琐,综合法有一定思维量,但计算简便.三者各有利弊,不应非此即彼,而应依据题目实际特点,灵活选用向量法和综合法.教学中应本着培养学生空间想象能力和逻辑推理能力的意识,多角度训练,鼓励学生选择合适的方法,从不同角度解决立体几何问题,调适思考角度,规避思维定势,以使学生在不易建坐标系的情况下,也不至于一筹莫展.3.重视空间点、线、面关系,合理建系,准确计算坐标系的建立基础,取决于学生对空间点、线、面位置关系的准确把握,而这部分的学习是学生的弱点,因此需重点复习训练.非标准状态的建系与相关点的坐标确定是难点.合理建系的一个基本原则是应尽可能多的让所求的点在坐标轴上.由于坐标法的介入,对学生的计算能力也提出了较高要求.复习时要做相应的训练,以使学生在非标准状态下能合理建系,并能准确确定相关点的坐标.4.注意类比联系,学会合理转化立体几何的学习是在学生学习了平面几何知识后进行的.复习时,要注意平面与空间的联系,三维向二维的转化;弄清公式的推导,注意理解记忆及相似概念的区分.案例:人教版必修2第67页练习第2题过ABC ∆所在平面α外一点P,作α⊥PO ,垂足为O ,连接.,,PC PB PA (1)若,PC PB PA ==090=∠C ,则点O 是AB 边的___点.(2)若PC PB PA ==,则点O 是ABC ∆的____心. (3)若,,,PA PC PC PB PB PA ⊥⊥⊥,则点O 是ABC ∆的____心.5.关注新颖试题,消除信息盲区近几年高考中涌现了一些新颖试题,应给予关注.(1)画图类型题1.如图 ,在 四 棱 锥ABCD P -中 ,PD ⊥平 面ABCD ,CD AB //,AB ⊥AD ,BC = 5,DC = 3,AD = 4,∠PAD = 60°.(1)当正视方向与向量→AD 的方向相同时,画出四棱锥ABCD P -的正视图 (要求标出尺寸,并写出演算过程);(2)若M 为PA 的中点,求证:DM ∥面PBC ;(3)求三棱锥PBC D -的体积.2.长方体1111D C B A ABCD -中,16=AB ,10=BC ,81=AA ,点E,F 分别在11B A ,11C D 上,.411==F D E A 过点F E ,的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由)(2)求直线AF 与平面α所成角的正弦值.(2) 动态问题3.如图,正方体1111ABCD A B C D -的棱长为1,P 为BC 的中点,Q 为线段1CC 上的动点,过点Q P A ,,的平面截该正方体所得的截面记为S .则下列命题正确的是①②③⑤_(写出所有正确命题的编号).①当102CQ <<时,S 为四边形;②当12CQ =时,S 为等腰梯形;③当34CQ =时,S 与11C D 的交点R 满足1113C R =;④当314CQ <<时,S 为六边形;⑤当1CQ =时,S 的面积为62.4.如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 为BC 的中点,点P 在线段D 1E 上,点P 到直线CC 1的距离的最小值为__________.(3)联系生活实际背景的问题5.如图 27,某地质队自水平地面A 、B 、C 三处垂直向地下钻探,自A 点向下钻到1A 处发现矿藏,再继续向下钻到2A 处后下面已无矿,从而得到在A 处正下方的矿层厚度为21A A =1d .同样可得在B 、C 处正下方的矿层厚度分别为,21B B =2d ,21C C =3d ,且321d d d <<.过AC AB ,的中点N M ,且与直线2AA 平行的平面截多面体222111C B A C B A -所得的截面DEFG 为该多面体的一个中截面,其面积记为中S .(1)证明:中DEFG 是梯形;(2)在△ABC 中,记a BC =,BC 边上的高为h ,面积为S .在估测三角形ABC 区域内正下方的矿藏储量 (即多面体222111C B A C B A -的体积V )时,可用近似公式估V =中S ·h 来估算.已知)(31321d d d V ++=S ,试判断估V 与V 的大小关系,并加以证明.(4)蕴含数学文化背景的探究题数学探究、数学文化是课标新增加内容,这些内容的考查也已渗透在试题当中,应引起重视.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依恒内角,下周八尺,高五尺。

立体几何专题备考策略与复习建议探讨

立体几何专题备考策略与复习建议探讨
错误 , 这样才能保证计算的结果的正确性 。 2 . 教师在讲解时不能只讲思路 , 不要以为思路 清晰之后 , 学生就 会完 整的解答 出来 , 如果 时间允 许, 边讲边做是一个有效的手段。 3 . 监 督 学 生认 真 进行 练 习 , 可 以通过 小 测 验 的 形 式 。 同时 , 应 指导 学生建立 错题本 , 及 时分 析错误
To r a l No . 3 2 6
立体几何专题备考策略与复 习建议探讨
高立 东, 孙立文
( 吉林省 实验 中学 , 吉林 长春 1 3 0 0 2 2 )
摘要: 立体几何试题在新课标考卷 中所 占比重很大 。 本 文通过对近几年新课标 高考试题 的回顾 , 寻找 出其 中的规 律 , 指出


对于三视图问题 , 注重培养识图能力Байду номын сангаас, 一定要记 住: “ 长对正 , 高平齐 , 宽相等” 这个 口诀 , 同时应熟
悉一些常见几何体的三视图。解决由三视图想象几
收稿 日期 : 2 O 1 2 —1 l 一1 4 作者简介 : 高立东( 1 9 7 1 一) , 男, 吉林长春人 , 吉林省实验中学 , 高级教师 , 硕士 , 研究方 向: 高 中数学教学。 孙立文( 1 9 6 3 一) , 男, 吉林长春人 , 吉林省实验中学 , 高级教师 , 研究方 向: 高中数学教学。 1 0 2
目 前, 吉林、 黑龙江两省使用全 国新课程试卷 ,
何体 , 进而进行有关计算的题 目, 关键是准确把握三 视 图与几何体之 间的关系。这里容易犯错 误 的地
方, 常常是把三视图和三面图混淆, 如正视图和正面 图弄 混 。 另外 , 在处理有关问题时, 在长方体或正方体中 找到符合条件的图形也是较为常见的处理方法。 ( 二) 与球有关的组合体问题 例: 2 0 1 2年新课标考卷 1 2 题 已知三棱锥 5 一 A B C的所有顶点都在球 D的球 面上, AA B C是边 长为 1的正 三 角形 , S C为 球 0的 直径 , 且S C= 2 ; 则此棱锥的体积为()

立体几何试题分析及一轮复习建议.

立体几何试题分析及一轮复习建议.

答案:B
三、高考动向透视
【示例1】► (2)(2013年高考理科新课标Ⅰ卷8题)某几何体的三视图如 图所示,则该几何体的体积为( ) A.16 8 B.
8 8
16 16 C.
8 16 D.
答案:A三、高考动向透视空间几何 Nhomakorabea的计算问题
本部分是新课标高考考查的重点内容,常以几何体的表 面积和体积的计算以及几何体的外接球、内切球的知识为主要 命题点进行考查.在备考中要牢记一些典型几何体的表面积和 体积的计算公式,以及几何体的棱长与它的内切球、外接球的 半径之间的转换关系.
答案:B
三 、高考 动向透 视
空间角的计算
高考中立体几何的计算主要有两个方面,即空间几何体的 表面积、体积的计算,空间角与距离的计算,其中空间角的计 算是高考考查考生逻辑推理能力、空间想象能力和运算求解能 力的重点.这类试题如果是在选择题或者填空题中出现,则考 查简单的空间角的计算,如果是在解答题中出现,则往往是试 题的一个组成部分.
三、高考动向透视
【示例3】►
(2013年山东理科高考卷4题)三棱柱ABC - A1 B1C1的侧棱与底 9 面垂直,体积为 ,底面是边长为 3的正三角形,若P为底面 4 A1 B1C1的中心,则P A与平面ABC所成角的大小为() 5 (A) (B) (C) (D) 12 3 4 6
立体几何试题分析及一轮复习建议
临沂市高三数学一轮复习研讨会
一、试题命题统计 二、试题命题特点

三、高考动向透视
四、一轮复习建议
立体几何在高考中一直占据重要的地位,近几年 分数基本上都是17分(2013年新课标22分),并且是所 有考生易得分数的知识点之一. 纵观2013~2015年山东、新课标全国高考数学试 卷,我们发现:数学高考对立体几何的考查,遵循《课 程标准》,恪守《考试大纲》和《考试说明》,立足基 础,贴近教材,守正出新,突出能力考查. 下面通过对 2013~2015 年高考立体几何试题命题 的分析,提出今后有效复习备考的建议,希望对新一轮 的高考复习有所裨益.

高三立体几何专题复习

高三立体几何专题复习

高考立体几何专题复习一.考试要求:〔1〕掌握平面的根本性质,会用斜二测的画法画水平放置的平面图形的直观图,能够画出空间两条直线、直线和平面的各种位置关系的图形,能够根据图形想象它们的位置关系。

〔2〕了解空两条直线的位置关系,掌握两条直线平行与垂直的判定定理和性质定理,掌握两条直线所成的角和距离的概念〔对于异面直线的距离,只要求会计算已给出公垂线时的距离〕。

〔3〕了解空间直线和平面的位置关系,掌握直线和平面平行的判定定理和性质定理,理解直线和平面垂直的判定定理和性质定理,掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念,了解三垂线定理及其逆定理。

〔4〕了解平面与平面的位置关系,掌握两个平面平行的判定定理和性质定理。

掌握二面角、二面角的平面角、两个平面间的距离的概念,掌握两个平面垂直的判定定理和性质定理。

〔5〕会用反证法证明简单的问题。

〔6〕了解多面体的概念,了解凸多面体的概念。

〔7〕了解棱柱的概念,掌握棱柱的性质,会画直棱柱的直观图。

〔8〕了解棱锥的概念,掌握正棱锥的性质,会画正棱锥的直观图。

〔9〕了解正多面体的概念,了解多面体的欧拉公式。

〔10〕了解球的概念,掌握球的性质,掌握球的外表积、体积公式。

二.复习目标:1.在掌握直线与平面的位置关系(包括直线与直线、直线与平面、平面与平面间的位置关系)的根底上,研究有关平行和垂直的的判定依据(定义、公理和定理)、判定方法及有关性质的应用;在有关问题的解决过程中,进一步了解和掌握相关公理、定理的容和功能,并探索立体几何中论证问题的规律;在有关问题的分析与解决的过程中提高逻辑思维能力、空间想象能力及化归和转化的数学思想的应用.2.在掌握空间角(两条异面直线所成的角,平面的斜线与平面所成的角及二面角)概念的根底上,掌握它们的求法(其根本方法是分别作出这些角,并将它们置于*个三角形通过计算求出它们的大小);在解决有关空间角的问题的过程中,进一步稳固关于直线和平面的平行垂直的性质与判定的应用,掌握作平行线(面)和垂直线(面)的技能;通过有关空间角的问题的解决,进一步提高学生的空间想象能力、逻辑推理能力及运算能力.3.通过复习,使学生更好地掌握多面体与旋转体的有关概念、性质,并能够灵活运用到解题过程中.通过教学使学生掌握根本的立体几何解题方法和常用解题技巧,开掘不同问题之间的在联系,提高解题能力.4.在学生解答问题的过程中,注意培养他们的语言表述能力和"说话要有根据〞的逻辑思维的习惯、提高思维品质.使学生掌握化归思想,特别是将立体几何问题转化为平面几何问题的思想意识和方法,并提高空间想象能力、推理能力和计算能力.5.使学生更好地理解多面体与旋转体的体积及其计算方法,能够熟练地使用分割与补形求体积,提高空间想象能力、推理能力和计算能力.三.教学过程:〔Ⅰ〕根底知识详析高考立体几何试题一般共有4道(选择、填空题1--2道, 解答题1道), 共计总分20分左右,考察的知识点在20个以. 选择填空题考核立几中的计算型问题, 而解答题着重考察立几中的逻辑推理型问题, 当然, 二者均应以正确的空间想象为前提. 随着新的课程改革的进一步实施,立体几何考题正朝着"多一点思考,少一点计算〞的开展.从历年的考题变化看, 以多面体和旋转体为载体的线面位置关系的论证,角与距离的探常考常新的热门话题.1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的容,因此在主体几何的总复习中,首先应从解决"平行与垂直〞的有关问题着手,通过较为根本问题,熟悉公理、定理的容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律——充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力.2.判定两个平面平行的方法:〔1〕根据定义——证明两平面没有公共点;〔2〕判定定理——证明一个平面的两条相交直线都平行于另一个平面;〔3〕证明两平面同垂直于一条直线。

高考数学立体几何备考复习教案

高考数学立体几何备考复习教案

高考数学立体几何备考复习教案一、教学目标1. 知识与技能:使学生掌握立体几何的基本概念、性质和定理,提高空间想象能力。

2. 过程与方法:通过复习,使学生掌握立体几何的解题方法,提高解题能力。

3. 情感态度与价值观:激发学生学习立体几何的兴趣,培养学生的创新意识。

二、教学内容1. 立体几何的基本概念:点、线、面的位置关系,空间向量。

2. 立体几何的性质:平行公理,空间向量的运算律。

3. 立体几何的定理:平行线、异面直线、线面平行、面面平行、线面垂直、面面垂直的判定与性质。

4. 立体几何的计算:体积、表面积、角、距离的计算。

5. 立体几何的综合应用:空间几何体的结构特征,几何体的运动变化。

三、教学重点与难点1. 教学重点:立体几何的基本概念、性质和定理,立体几何的计算方法。

2. 教学难点:立体几何的综合应用,空间想象能力的培养。

四、教学方法1. 采用讲解、示范、练习、讨论、探索相结合的方法,引导学生掌握立体几何的基本概念、性质和定理。

2. 通过案例分析、几何画板演示等手段,培养学生的空间想象能力。

3. 组织学生进行合作学习,提高学生的解题能力。

五、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。

2. 练习与作业:检查学生完成的练习和作业,评估学生的掌握程度。

3. 考试成绩:定期进行立体几何的测试,分析学生的成绩,了解学生的学习效果。

教案第一课时:立体几何的基本概念1. 教师讲解立体几何的基本概念,如点、线、面的位置关系,空间向量。

2. 学生通过案例分析,理解并掌握基本概念。

第二课时:立体几何的性质1. 教师讲解立体几何的性质,如平行公理,空间向量的运算律。

2. 学生通过几何画板演示,直观地理解立体几何的性质。

第三课时:立体几何的定理1. 教师讲解立体几何的定理,如平行线、异面直线、线面平行、面面平行、线面垂直、面面垂直的判定与性质。

2. 学生通过案例分析,掌握立体几何的定理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考立体几何命题分析和复习建议高考(天津卷)立体几何命题分析和复习建议王强一、考纲中对立体几何与空间向量的要求(1)空间几何体①认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构;②知道平行投影与中心投影的概念,了解空间图形的不同表示形式;③能画出简单空间图形(长方体、棱柱、圆柱、圆锥、球等及其简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二侧法画出它们的直观图;④了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)(2)点、直线、平面之间的位置关系①理解空间直线、平面的位置关系的定义,并了解如下的公理和定理:定理1、2、3、4及定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补;②理解空间中线面平行、垂直的有关性质与判定定理。

理解以下判定定理和性质定理:(判定定理和性质定理各4个,略)③能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题。

④能根据定义解决两条异面直线所成的角、直线和平面所成的角、二面角的简单计算问题。

(3)空间向量及其运算①了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示;②掌握空间向量的线性运算及其坐标表示;③掌握空间向量的数量积及其坐标表示,能运用数量积判断向量的共线与垂直;(4)空间向量的应用①理解直线的方向向量与平面的法向量的概念;②能用向量语言表述直线与直线、直线与平面、平面与平面的垂直、平行关系;③能用向量方法证明有关直线和平面位置关系的一些定理(包括三垂线定理)④能用向量方法解决两条异面直线所成的角、直线和平面所成的角、二面角的计算问题,了解向量方法在研究立体几何问题中的应用。

题成角,线面垂直,二面角;2009年(16分) 第12题第19题12,几何体三视图,体积计算公式;19,异面直线成角,面面垂直,二面角;2008年(21分) 第4题第12题第19题4,空间线面关系;12,球与正方体;19,线面垂直,异面直线成角,二面角;2007年(21分) 第6题第12题第19题6,直线、平面平行与垂直;12,长方体、球的表面积;19,线线垂直,线面垂直,二面角;近年来高考试题中立体几何部分在题型、题量、分值、难度等方面,均保持相对稳定。

自2009年新课改高考由原来的两道小题一道大题改成的一道小题一道大题。

分值为16分,约占总分值(150分)的10%。

特点2:考小题,推陈出新有关立体几何的小题,其考查的重点在于基础知识。

其中,三视图、点直线平面之间的位置关系等知识的试题是重点考查内容。

特别是三视图,是新课改增加的内容,突出了对立体图形的认识,空间想象能力的要求。

09年及10年均是以三视图为背景考查规则或不规则几何体体积的填空题。

特点3:考大题,全面考查考查立体几何的解答题中,一般是考查线、面之间的平行、垂直关系,线面角、二面角,面积、体积等问题,难度属中等,主要考查学生对基本知识、基本方法、基本技能的理解、掌握和应用情况。

其载体多为棱柱、棱锥等组合而成的多面体,解题方法趋于多样化,重视了传统方法和向量方法的有机结合。

三、各地高考立体几何中热点问题纵观2010年全国各地的高考试题,对立体几何部分的考查基本上集中在以下几个热点问题上:热点一、空间几何体的结构及其三视图、直观图从形式上看,以选择、填空为主。

从内容上看,柱、锥、台、球的定义和相关性质是基础,以它们为载体考查线线、线面、面面的关系是重点,三视图的还原在各地高考试题中频繁出现。

例如:2010年陕西,7;2010年课标全国,14;2010年浙江,12等等。

热点二、直线、平面的位置关系考查线线、线面、面面平行的判定和性质多以选择题形式出现,属容易题。

例如:2010年福建,6。

考查线线、线面、面面垂直的判定和性质主要以证明题的形式出现,例如:2010年北京,16;2010年辽宁,19等等。

热点三、空间向量在立体几何中的应用通常各地高考试题中都有一道立体几何的综合题,处于解答题的中间位置,难度不大。

用向量法来解可以降低难度,并且多数情况下传统法、向量法都可以解题。

例如:2010年山东,19;2010年全国Ⅰ,19等等。

四、立体几何复习的几点建议虽然近年来立体几何试题在命题思路和方法上有些变化,但总体上还是保持了稳定,特别是解答题均是三问:一问是证线面垂直的,二问是异面直线成角,三问是求二面角。

所以复习备考工作有章可循,有法可依。

具体方法(1)依纲靠本,控制难度,强化通性通法,提高解题能力从近年高考立体几何试题的命题来源来看,很多题目是出自于课本,或略高于课本。

所以,我们在复习备考中,一定要依据考纲依靠课本,进行一题多解和多题一解的教学,吃透教材的实质。

同时还要控制好题目的难度,不出偏题、怪题。

应注重加强对典型例题(可以考虑选用天津08、09、10的考题作为典型例题)的研究,挖掘题目中的隐含条件,弄清问题所表述的含义,做到对问题的真正理解,并可尝试改变题目中某些条件,认真比较它们之间的联系与区别,真正做到举一反三。

例:(2010天津卷理数19) 如图,在长方体1111ABCD A B C D -中,,E F 分别是棱BC ,1CC 上的点,2CF AB CE ==,1::1:2:4AB AD AA =.(Ⅰ)求异面直线EF 与1A D 所成角的余弦值; (Ⅱ)证明AF ⊥平面1A ED ;(Ⅲ) 求二面角1A ED F --的正弦值.本小题主要考查异面直线所成的角、直线与平面垂直、二面角等基础知识,考查用空间向量解决立体几何问题的方法,考查空间想象能力、运算能力和推理论证能力,满分12分.方法一:如图所示,建立空间直角坐标系,点A 为坐标原点,设1AB =,依题意得(0,2,0)D ,(1,2,1)F ,1(0,0,4)A ,31,,02E ⎛⎫ ⎪⎝⎭. (1)解:易得10,,12EF ⎛⎫= ⎪⎝⎭u u u r ,1(0,2,4)A D =-u u u u r.于是1113cos ,5EF A D EF A D EF A D==-u u u r u u u u ru u u r u u u u r g u u u r u u u u r .所以异面直线EF 与1A D 所成角的余弦值为35.(2)证明:已知(1,2,1)AF =u u u r ,131,,42EA ⎛⎫=-- ⎪⎝⎭u u u r ,11,,02ED ⎛⎫=- ⎪⎝⎭u u u r .于是AFu u u r·1EA u u u r=0,AFu u u r ·EDu u u r =0.因此,1AF EA ⊥,AF ED ⊥,又1EA ED E ⋂=,所以AF ⊥平面1A ED . (3)解:设平面EFD 的法向量(,,)u x y z =r,则⎪⎩⎪⎨⎧=⋅=⋅00ED u EF u ,即•102102y z x y ⎧+=⎪⎪⎨⎪-+=⎪⎩.不妨令x =1,可得)1,2,1(-=u .由(2)可知,AF 为平面1A ED的一个法向量.于是32cos =⋅=AFu AF u AFu ,,从而AFu ,sin 35=.所以二面角1A -ED-F 的正弦值为53.方法二:(1)解:设AB =1,可得AD =2,AA 1=4,CF =1.CE =12.连接B 1C ,BC 1,设B 1C 与BC 1交于点M ,易知A 1D ∥B 1C ,由1CE CF 1==CBCC 4,可知EF ∥BC 1.故BMC ∠是异面直线EF 与A 1D 所成的角,易知BM =CM =11B C=52,所以2223cos 25BM CM BC BMC BM CM +-∠==g ,所以异面直线FE 与A 1D 所成角的余弦值为35(2)证明:连接AC ,设AC 与DE 交点N 因为12CD EC BC AB ==,所以DCE Rt ∆∽∆RtCBA ,从而CDE BCA ∠=∠, 又由于90CDE CED ∠+∠=︒, 所以90BCA CED ∠+∠=︒,故AC ⊥DE ,又因为CC 1⊥DE 且1CC AC C ⋂=,所以DE⊥平面ACF ,从而AF ⊥DE .连接BF ,同理可证B 1C ⊥平面ABF ,从而AF ⊥B 1C ,所以AF ⊥A 1D 因为1DE A D D ⋂=,所以AF ⊥平面A 1ED .(3)解:连接A 1N .FN ,由(2)可知DE ⊥平面ACF ,又NF ⊂平面ACF , A 1N ⊂平面ACF ,所以DE ⊥NF ,DE ⊥A 1N ,故1A NF ∠为二面角A 1-ED -F 的平面角.易知Rt CNE Rt CBA∆∆:,所以CN ECBC AC=,又5AC =5CN =,在221305Rt NCF NF CF CN Rt A AN ∆=+=V 中,在中,在Rt △A 1AN 中,22114305NA A A AN =+=.连接A 1C 1,A 1F 在2211111114Rt AC F A F AC C F ∆=+=中,222111112cos 23A N FN A F Rt A NF A NF A N FN +-∆∠==•在中,.所以15sin 3A NF ∠=.所以二面角A 1-DE -F 正弦值为5.比较2010年天津第19题的两种解法不难看出,向量方法比常规方法要简单一些。

平时也有一些学生认为立体几何这道题一律用向量法来解,这种想法不可取:一,不是所有的题目都可以建系,二,向量的运算未必简单。

在复习过程中还应该加强常规思路在解题中的应用。

如:线段中点——用中位线;(2010安徽卷理数)如图,在多面体ABCDEF 中,四边形ABCD 是正方形,EF ∥AB ,EF FB ⊥,2AB EF =,90BFC ∠=︒,BF FC=,H 为BC 的中点. (Ⅰ)求证:FH ∥平面EDB ; (Ⅱ)求证:AC ⊥平面EDB ; (Ⅲ)求二面角B DE C --的大小.解:第一问可以利用中位线得到平行。

如:确定二面角的平面角——用三垂线定理或逆定理(2010四川理数)如图,二面角l αβ--的大小是60°,线段AB α⊂.B l ∈,AB 与l 所成的角为30°.则AB 与α•AB•β平面β所成的角的正弦值是 .解:过点A 作平面β的垂线,垂足为C ,在β内过C 作l 的垂线.垂足为D .连结AD ,可知AD ⊥l ,故∠ADC 为二面角l αβ--的平面角,为60°.又由已知,∠ABD =30°.连结CB ,则∠ABC 为AB 与平面β所成的角.设AD =2,则AC 3CD =1,AB=0sin 30AD=4,∴sin ∠ABC =34AC AB =.如:同一点出发三直线两两垂直——建立空间直角坐标系(2008年宁夏、海南理18)如图,点P 在正方体ABCD -A 1B 1C 1D 1的对角线BD 1上,∠PDA=60°α•AB•βCD(1)求DP 与CC 1所成角的大小;(2)求DP 与平面AA 1D 1D 所成角的大小. 解:如图,建系即可解决问题(2)建立完整的知识网络,突出转化的数学思想在立体几何的复习过程中要想办法让学生建立起完整的知识网络,要突出这门学科的主干。

相关文档
最新文档