中考数学函数知识点讲解

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学二次函数知识点

1.定义:一般地,如果c b a c bx ax y ,,(2

++=是常数,)0≠a ,那么y 叫做x 的二次函数.

2.二次函数2

ax y =的性质

(1)抛物线2

ax y =的顶点是坐标原点,对称轴是y 轴.

(2)函数2

ax y =的图像与a 的符号关系.

①当0>a 时⇔抛物线开口向上⇔顶点为其最低点;

②当0

(3)顶点是坐标原点,对称轴是y 轴的抛物线的解析式形式为2

ax y =)(0≠a .

3.二次函数

c bx ax y ++=2

的图像是对称轴平行于(包括重合)y 轴的抛物线.

4.二次函数c bx ax y ++=2

用配方法可化成:()k h x a y +-=2

的形式,其中

a

b a

c k a b h 4422

-=-=,.

5.二次函数由特殊到一般,可分为以下几种形式:①2ax y =;②k ax y +=2

;③()2

h x a y -=;④

()k h x a y +-=2

;⑤c bx ax y ++=2.

6.抛物线的三要素:开口方向、对称轴、顶点.

①a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0

a 相等,抛物线的开口大小、形状相同.

②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x .

7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.

8.求抛物线的顶点、对称轴的方法(1)公式法:a b ac a b x a c bx ax y 44222

2

-+

⎪⎭⎫ ⎝

+=++=,∴顶点是),(a b ac a b 4422

--,对称轴是直线a

b x 2-=.

(2)配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2

的形式,得到顶点为(h ,k ),

对称轴是直线h x =.

(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点. 用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失.

9.抛物线c bx ax y ++=2

中,c b a ,,的作用

(1)a 决定开口方向及开口大小,这与2

ax y =中的a 完全一样.

(2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2

的对称轴是直线

a

b

x 2-

=,故:①0=b 时,对称轴为y 轴;②0>a b (即a 、b 同号)时,对称轴在y 轴左侧;

0

b

(即a 、b 异号)时,对称轴在y 轴右侧. (3)c 的大小决定抛物线c bx ax y ++=2

与y 轴交点的位置.

当0=x 时,c y =,∴抛物线c bx ax y ++=2

与y 轴有且只有一个交点(0,c ):

①0=c ,抛物线经过原点; ②0>c ,与y 轴交于正半轴;③0

以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y 轴右侧,则 0

b

. 10.几种特殊的二次函数的图像特征如下:

(1)一般式:c bx ax y ++=2

.已知图像上三点或三对x 、y 的值,通常选择一般式.

(2)顶点式:()k h x a y +-=2

.已知图像的顶点或对称轴,通常选择顶点式.

(3)交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=. 12.直线与抛物线的交点

(1)y 轴与抛物线c bx ax y ++=2

得交点为(0, c ).

(2)与y 轴平行的直线h x =与抛物线c bx ax y ++=2

有且只有一个交点(h ,c bh ah

++2

).

(3)抛物线与x 轴的交点

二次函数c bx ax y ++=2

的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程

02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别

式判定:

①有两个交点⇔0

>∆⇔抛物线与x 轴相交;

②有一个交点(顶点在x 轴上)⇔0=∆⇔抛物线与x 轴相切;

③没有交点⇔0

<∆⇔抛物线与x 轴相离.

(4)平行于x 轴的直线与抛物线的交点

同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵

坐标为k ,则横坐标是k c bx ax =++2

的两个实数根.

(5)一次函数()0≠+=k n kx y 的图像l 与二次函数()02

≠++=a c bx ax y 的图像G 的交点,由方

程组

c

bx ax y n kx y ++=+=2的解的数目来确定:①方程组有两组不同的解时⇔l 与G 有两个交点;

②方程组只有一组解时⇔l 与G 只有一个交点;③方程组无解时⇔l 与G 没有交点.

(6)抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2

与x 轴两交点为()()0021,,,

x B x A ,由于1x 、2x 是方程02

=++c bx ax 的两个根,故

a c

x x a b x x =

⋅-=+2121,()()a a ac b a c a b x x x x x x x x AB ∆=-=-⎪⎭

⎫ ⎝⎛-=-+=-=

-=44422

212

212

2121

一次函数与反比例函数

考点一、平面直角坐标系 (3分) 1、平面直角坐标系

在平面画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。

其中,水平的数轴叫做x 轴或横轴,取向右为正方向;铅直的数轴叫做y 轴或纵轴,取向上为正方

向;两轴的交点O (即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。 为了便于描述坐标平面点的位置,把坐标平面被x 轴和y 轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

注意:x 轴和y 轴上的点,不属于任何象限。 2、点的坐标的概念

点的坐标用(a ,b )表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面点的坐标是有序实数对,当b a ≠时,(a ,b )和(b ,a )是两个不同点的坐标。 考点二、不同位置的点的坐标的特征 (3分) 1、各象限点的坐标的特征

点P(x,y)在第一象限0,0>>⇔y x

点P(x,y)在第二象限0,0><⇔y x

点P(x,y)在第三象限0,0<<⇔y x

相关文档
最新文档