丘成桐:我研究数学的经验(大家耐心看)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
丘成桐:我研究数学的经验(大家耐心看)
丘成桐:我研究数学的经验?
我研究数学的经验—丘成桐在台湾交通大学演讲?
主持人林松山致辞:?
今天我们非常高兴能够请到丘成桐院士来演讲,不是讲深奥的数学而是讲怎么去做深奥的数学,好的数学。这讲题是"我研究数学的经验",是丘院士研究数学的经验,我们欢迎丘院士。?
今天林松山叫我讲关于应用数学的问题,我想一想,讲做学问的经验也好。因为我来台湾也差不多五年了,我想很多研究人员做研究的方法并不见得是最好,尤其是我觉得很多年轻人员为什么在国外能够念的好?这是很值得思考的。所以,我想讲讲我自己的经验,或是我对数学的看法,让大家参考一下。?
我想第一讲是最重要的当然是要有热忱,最主要的就是求真的精神,是始终要培养的。我们做学问是为了求真,无论是对自然界的了解或是从数学方面来讲,我们有不同的观念,可是真跟美就数学来讲是最重要的。追求真跟美的热忱很重要,因为我们整个做学问的路上要碰到很多不同的困难,假如我们没有热忱的话,就没有办法继续下去。所以追求学问的最崇高目标,无过于真跟美,追求的目标无误,热情才不会熄减。我们非想办法培养自己对追求学问的热忱不可。几天我在去看我父亲的遗作,其中有屈原:?
路漫漫其修远兮,余将上下而求索。?
做学问的路很长很远,我们一定要看得很远,因此我们要上下去求索,要想尽办法去求真。怎么去找真跟美,能够始终不断的坚持下去,这是成功的一个很重要因素,如果没有热忱的话,就永远达不到做大学问的地步。我们再举一个国外的例子,在一个有组织的系统里,我们的竞争很厉害,尤其在物理方面或其它实验科学方面的研究,真是分秒必争;有一个题目刚好出来的时候,大家晓得其他人也会做这个问题,很多post doctor 或者是faculty 聚在一起往往工作到深夜,甚至整个晚上不睡觉。这上面当然有一个竞争性在里面,就是希望达到一个目标,比人家快了一点;可是另一方面也是因为求真的热忱很大,刺激着我们使我们不肯放松。否则的话,很多有tenure 的faculty,没有必要这样拼命,可是很多faculty 还是愿意这样子作,我想热忱很重要。我们要晓得,作研究的路是很远的,我们要在中间低潮的时候还能够坚持做下去。很多作研究的人,他往往觉得若不在中心的地方,他不敢去做。有些人去到过最好的地方,他也不敢去碰难的题目。这有很多不同的原因,等一下我们再慢慢谈,可是一个最要紧的我想是基本的功夫要做好。基本功夫没做好往往会出现上述问题。中学的时候,大学的时候或者在研究院作研究生的时候,很多基本功夫都要培养,很多学生在年轻的时候不将基本功夫做好,以后做研究就很吃力。?
交通大学着重应用数学,可是我们晓得应用数学主要的工具是从纯数学来的;很多的学生人认为既然是应用数学就不用学纯数学或者是应用物理就不必学基本的物理,这是很大的错误。很多基本的功夫非在作学生的时候学不可,为什么呢?我们要做习题,并且要大量的去做,这是学习基本功夫的必要过程。我想很多现在毕了业拿了博士学位的人看一本书的时候不再去做习题。遇到一些比较复杂计算的时候往往不愿意去,可是很多基本的想法就是要从计算里面领会得来的。我们所做的命题,最后的时候可能留下很简单很漂亮的结果,可是中间往往要花大量的计算我们才晓得这结果是怎么得到的。做好的研究不是一朝一夕得来的,往往做了一百次,九十九次是错的,最后一次是成功的。但成功的时候,我只跟你讲成功的结果,
不会跟你讲九十九次失败的经验。错误的经验往往是很好笑的,因为经常犯很明显的错误,要在做完的时候才知道。可是当讲给人家听的时候很少会跟人家讲错误的那部分,其实做错误的结果让你眼睛明亮,它帮你忙,让你向前走。其实你能做错的结果,已经是很不错的了,因为很多初学的人连怎么进去做这个题目都不能够做到。譬如来讲,你给我一个化学上的问题,我从什么地方开始做我都不晓得,因为我没有这基本的功夫,我根本不晓得要从什么地方开始。?
一个好的数学家至少要能够掌握两门以上很基本的功夫。基本功夫不是一朝一夕学来的。譬如讲,有代数的方法、有分析的方法、有几何的方法等种种不同的方法,我们在中学的时候就开始学。有些人喜欢几,觉得代数没有什么意思不想学,或者是学代数的人不想学几何,各种想法都有,可是最后我们发现真的做研究的时候全部都要用到。有人说我只做一个特殊的题目就永远只去做这方面的题目,结果连这方面的问题也不见得做得好。因为数学的发展是不停地在改变,不断地在改变。自然界能够提供给我们的问题,不会因为你是几何学家就继续不断的提供几何方面的问题,而往往是与几何结合在一起的问题。到了题目来的时候,要用到其它工具,我没办法去了解,我就比其他人吃亏了。?
例如,很重要的一门"群表示理论",一般来讲很多地方不教这门课,可是在应用科学或者理论科学要用到,"群表示理论"在物理也要用到。有些好的数学家可以很技巧地运用"群表示理论"分析很多问题。我们可能没有这些办法,这就是因为我们基本功夫没有做好的缘故。我想"群表示理论"大概是进了研究院或者大学后半期的时候学的。中国数学家在这方面的训练不够,因此不如国外学者,可见有些基本学科一定要学好,同时要很早就学。我们学数学的不单是要学数学上的基本功夫,在物理上的基本功夫也要学,这是在大学时就要学的。力学、电磁学我们都要有一定的了解,因为物理跟数学这几十年来的发展越来越接近,很多问题是从物理上提供的。我们假如对这些基本的观念完全不认得的话,我们看到题目就比不上其他懂得这方面的数学家,能够很快的融会贯通。到了这个年代,很多的数学的问题往往是从其他的学问如理论物理、应用数学或其它的科学里来的,他们甚至提供intuition和方法。我们想了很久的一些问题,往往因此得到了解决,假使我们从来都不接触其他科学的话,就完全落伍了。?
举个例子来讲,代数几何学家这二十年来已有长远的发展。可是到了这几年来用古典的方法或者纤维丛的方法,都没有办法解决的问题,结果从理论物理帮助我们看到以前看不到的可能。由于本身知识的局限,很多代数几何学家遇到这个困难的时候没有办法接受这些专家的看法,遇到理论物理就不敢去碰它。可是物理提供了,解决了我们基本问题的方向,代数几何学又觉得很难为情,因为他们没有办法去了解,所以这是一个很困扰的问题. 假使你不肯学物理学上的基本功夫,你就很难接受这个新的挑战。记得我看过一本书, 序言里讲作者很感谢代数学家Albert,他为什么感激他呢?他说Albert教我代数,使得我坐下来的时候,看代数问题不会恐慌,使我能够坐下来好好地对待代数上的问题。就是讲我们基本功夫能不能做到如此,我坐下来,看到几何问题或应用数学的问题,可不可以坐下来就想个办法来对付他,我想这是很重要。我们往往看到问题,坐下来的时候,恐慌的不晓得怎么办,因此就算了,我想大家都有这个经验。你做基本功夫一定要做到你看一个题目,明明是unknown、unsolved的问题,你还是可以坐下来,然后花工夫去解决它。即使你不能够解决它,可是你至少晓得怎样去想办法,同时不会恐慌、放弃,我想这是最重要的。往往我们因为基本功夫没做好,当一个深的题目或看法出现的时候,我们就拒绝去接受,认为这些题目不重要,这是去解释自己为什么不能够去做某一个问题的时候最自然的方法。训练基本功夫要在研究生、大学生或中学生的时。基本功夫怎样学好呢?有时看一本书完了就放在一边,看了两、三本书后就以为懂了,其实单看书是不够,最重要的是做习题,因为只有在做习题的工夫里面你才能晓得什么命题你不懂,也理解到古人遇到的困难在那里。习题不单在课本里找,在上课和听seminar时也可以找。我们很多学生上课的时候不愿意去写笔记,不作笔记的话根本不可能去念任何学科。尤其是有时候演讲的人讲的题目是根本不在书本里的,或者是还没有发表的。我常觉得很奇怪,为什么学生不去作笔记,他认为他懂了,