勾股定理典型分类练习题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

勾股定理典型分类练习题

题型一:直接考查勾股定理

例1.在ABC

C

∠=︒.

∆中,90

⑴已知6

BC=.求AB的长

AC=,8

⑵已知17

AC=,求BC的长

AB=,15

变式1:已知,△ABC中,AB=17cm,BC=16cm,BC边上的中线AD=15cm,试说明△ABC

是等腰三角形。

变式2:已知△ABC的三边a、b、c,且a+b=17,ab=60,c=13, △ABC是否是直角三角形?你能说明理由吗?

题型二:利用勾股定理测量长度

例1如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少米?

例2如图,水池中离岸边D点1.5米的C处,直立长着一根芦苇,出水部分BC的长是0. 5米,把芦苇拉到岸边,它的顶端B恰好落到D点,并求水池的深度AC.

题型三:勾股定理和逆定理并用

例3 如图3,正方形ABCD 中,E 是BC 边上的中点,F 是AB 上一点,且AB FB 4

1

那么 △DEF 是直角三角形吗?为什么

题型四:旋转中的勾股定理的运用:

例4、如图,△ABC 是直角三角形,BC 是斜边,将△ABP 绕点A 逆时针旋转后,能与

△ACP ′重合,若AP=3,求PP ′的长。

变式:如图,P 是等边三角形ABC 内一点,PA=2,PB=23,PC=4,求△ABC 的边长. 分析:利用旋转变换,将△BPA 绕点B 逆时针选择60°,将三条线段集中到同一个三角形中,根据它们的数量关系,由勾股定理可知这是一个直角三角形.

题型五:翻折问题

例5:如图,矩形纸片ABCD 的边AB=10cm ,BC=6cm ,E 为BC 上一点,将矩形纸片沿 AE 折叠,点B 恰好落在CD 边上的点G 处,求BE 的长.

P

A

P

C

B

C

A

B

D E 10

15 变式:如图,已知长方形ABCD 中AB=8cm,BC=10cm,在边CD 上取一点E ,将△ADE 折叠使点D 好落在BC 边上的点F ,求CE 的长.

题型6:勾股定理在实际中的应用:

例6、如图,公路MN 和公路PQ 在P 点处交汇,点A 处有一所中学,AP=160米,点A 到 公路MN 的距离为80米,假使拖拉机行驶时,周围100米以内会受到噪音影响,那么拖拉 机在公路MN 上沿PN 方向行驶时,学校是否会受到影响,请说明理由;如果受到影响, 已知拖拉机的速度是18千米/小时,那么学校受到影响的时间为多少?

变式:如图,铁路上A 、B 两点相距25km, C 、D 为两村庄,若DA=10km,CB=15km ,

DA ⊥AB 于A ,CB ⊥AB 于B ,现要在AB 上建一个中转站E ,使得C 、D 两村到E 站的距离相等.求E 应建在距A 多远处?

关于最短性问题

例5、如右图1-19,壁虎在一座底面半径为2米,高为4米的油罐的下底边沿A 处, 它发现在自己的正上方油罐上边缘的B 处有一只害虫,便决定捕捉这只害虫,为了不 引起害虫的注意,它故意不走直线,而是绕着油罐,沿一条螺旋路线,从背后对害虫进行 突然袭击.结果,壁虎的偷袭得到成功,获得了一顿美餐.请问壁虎至少要爬行多少路 程才能捕到害虫?(π取3.14,结果保留1位小数,可以用计算器计算)

选择题

1.在三边分别为下列长度的三角形中,不是直角三角形的是( ) A.5,12,13 B.4,5,7 C.2,3,5 D.1,2,3

2.在Rt △ABC 中,∠C=90,周长为60,斜边与一条直角边之比为13∶5,则这个三角形三边长分别是( )

A.5、4、3

B.13、12、5

C.10、8、6

D.26、24、10

3.下列各组线段中的三个长度①9、12、15;②7、24、25;③32、42、52

;④3a 、4a 、5a

(a>0);⑤m 2-n 2、2mn 、m 2+n 2

(m 、n 为正整数,且m>n )其中可以构成直角三角形的有( )

A 、5组;

B 、4组;

C 、3组;

D 、2组 4.下列结论错误的是( )

A 、三个角度之比为1∶2∶3的三角形是直角三角形;

B 、三条边长之比为3∶4∶5的三角形是直角三角形;

C 、三条边长之比为8∶16∶17的三角形是直角三角形;

D 、三个角度之比为1∶1∶2的三角形是直角三角形。

5.下面几组数:①7,8,9;②12,9,15;③m 2 + n 2, m 2–n 2

, 2mn (m ,n 均为正整数,m >n ) 2a ,12+a ,22+a .其中能组成直角三角形的三边长的是( ) A. ①② B. ②③ C. ①③ D. ③④

6. 三角形的三边为a 、b 、c ,由下列条件不能判断它是直角三角形的是( )

A .a:b:c=8∶16∶17

B . a 2-b 2=c 2

C .a 2

=(b+c)(b-c) D . a:b:c =13∶5∶12

7.三角形的三边长为ab c b a 2)(2

2+=+,则这个三角形是( )

A. 等边三角形

B. 钝角三角形

C. 直角三角形

D. 锐角三角形 8.三角形的三条中位线长分别为6、8、10,则该三角形为( )

A.锐角三角形

B.直角三角形

C.钝角三角形

D.不能确定

9.以下列线段c b a \\的长为三边的三角形中,不是直角三角形的是( )A 25,24,7===c b a B.1,2,1===c b a C 5:4:3::=c b a D.15,13,12===c b a

10.已知三角形的三边长为a 、b 、c ,如果

()a b c c -+-+-+=51226169022,则△ABC 是(

A.以a 为斜边的直角三角形

B.以b 为斜边的直角三角形

C.以c 为斜边的直角三角形

D.不是直角三角形

11.有五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的摆放是( )

7

15

24

25

207

15

2024

25

15

7

25

20

24

257

202415

(A)(B)

(C)

(D)

12.若三角形ABC 中,∠A ∶∠B ∶∠C=2∶1∶1,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,则下列等式中,成立的是( )

A.2

2

2

c b a =+ B.2

2

2c a = C.2

2

2a c = D.2

2

2b c =

B

A

C

D

相关文档
最新文档