高数数学极限总结(精选)
大一高数极限知识点归纳总结
大一高数极限知识点归纳总结大一高数中的极限是一个非常重要且基础的概念,它在数学中发挥着至关重要的作用。
极限的概念在不同领域有不同的含义和应用,如物理学、工程学等。
在学习极限的过程中,我们需要深入理解其原理和应用,下面将对大一学生常见的高数极限知识点进行归纳总结。
一、数列极限数列是由一系列数按一定顺序排列而成的特殊集合。
数列可以是无穷的,因此讨论数列时就需要考虑其极限。
数列极限可以理解为数列中的数随着序号的增大趋于某个确定的值。
数列极限的计算需要了解一些基本的性质和方法。
对于数列 {an} ,当n趋于无穷时,如果存在一个实数a,使得对于任意给定的正数ε,总存在正整数N,当n>N时,有|an - a| < ε,那么我们就称数列 {an} 的极限为a,记作lim(an) = a。
在计算数列极限时,可以运用数列的极限性质和一些基本的极限运算法则。
例如,当我们遇到常见的几何数列或等差数列时,可以根据其规律推导出极限值。
二、函数极限函数极限是指当自变量趋于某一个值时,函数的取值趋于某个确定的值。
函数极限是数学分析的基础,对于理解和应用各种函数的性质和特点至关重要。
对于函数 f(x),当x趋于某个值x0时,如果存在一个实数L,使得对于任意给定的正数ε,总存在正数δ,当0 < |x - x0| < δ时,有|f(x) - L| < ε,那么我们就称函数 f(x) 的极限为L,记作lim f(x) = L。
计算函数极限需要运用一些基本的极限性质和方法,如极限的四则运算法则、极限的复合法则等。
此外,还需要结合一些常见函数的特性,如指数函数、对数函数、三角函数等,来求解更加复杂的函数极限。
三、无穷极限无穷极限是指当极限的自变量趋向于无穷大或无穷小的情况下,函数的取值趋于不同的极限。
无穷极限的研究可以帮助我们更深入地理解和运用数学中的极限概念。
1. 当x趋于正无穷大(+∞)时,我们写作x→+∞。
高等数学极限求法总结
04 极限求法之洛必达法则
洛必达法则基本思想
利用导数求解极限
在一定条件下,通过分子分母分别求导的方式,简化极限运 算。
转化无穷大比无穷大型
对于0/0型或∞/∞型的极限,通过洛必达法则可转化为其他 类型进行求解。
适用条件及典型例题
适用条件
适用于0/0型和∞/∞型的极限,且分子分母 在求导后极限存在或为无穷大。
05 极限求法之泰勒公式法
泰勒公式基本概念及展开式
泰勒公式定义
泰勒公式是用多项式逼近一个函数的方法,将一个在闭区间上可导的函数展开成多项式 的形式。
泰勒展开式
f(x) = f(a) + f'(a)(x-a) + f''(a)/2! * (x-a)^2 + ... + f^n(a)/n! * (x-a)^n + Rn(x),其 中Rn(x)为余项。
适用于连续函数情况
连续函数定义
若函数在某点的极限值等于该点的函 数值,则称函数在该点连续。对于连 续函数,我们可以直接将其自变量代 入函数表达式来求解极限。
适用范围
直接代入法适用于一元和多元函数的 极限求解,但要求函数在求极限的点 是连续的。
注意事项及典型例题
注意事项:在使用直接代入 法求极限时,需要注意以下
该方法不需要复杂的数学变换和技巧,易于掌握。
缺点
直接代入法仅适用于连续函数的极限问题,对于非连续函 数或复杂函数可能无法求解。
在某些情况下,即使函数在求极限的点连续,直接代入也 可能导致分母为零等无法计算的情况,需要结合其他方法 进行处理。
03 极限求法之因式分解法
适用于多项式函数情况
0/0型极限
大一高数极限知识点总结
大一高数极限知识点总结一、定义和性质高等数学中,极限是一种重要的概念,被广泛应用于微积分和数学分析。
理解和熟练掌握极限的定义和性质对于学习高等数学至关重要。
1. 无穷小量和无穷大量在研究极限时,无穷小量和无穷大量是两个常用的概念。
2. 极限的定义设函数 f(x) 在点 x0 的某个去心邻域内有定义,如果对于任意给定的正数ε,都存在正数δ,使得当 x 由点 x0 接近时,不等式 0 < |x-x0| < δ 总是成立,那么就称函数 f(x) 在点 x0 处极限存在,记为lim┬(x→x0)〖f(x)=A〗。
3. 极限的性质极限具有一系列重要的性质,包括唯一性、四则运算性质、和函数复合性质等。
二、极限的计算方法掌握极限的计算方法是学好高等数学的关键之一。
1. 用直接代入法计算极限当函数在极限点附近有定义时,可以通过直接将极限点代入函数来计算极限。
2. 用夹逼准则计算极限如果一个函数在某个点的附近被两个函数夹住,并且这两个函数的极限都为 A,那么待求函数的极限也是 A。
3. 分段函数的极限计算对于分段函数,我们可以分别计算每一段的极限,然后综合起来得到整个函数的极限。
三、常见的极限在高等数学中,有一些常见的极限形式是我们必须掌握的。
1. 无穷大与无穷小当 x 趋向于正无穷或负无穷时,函数 f(x) 的极限可能为无穷大或无穷小。
2. 0/0 型极限当直接代入法计算极限时,如果得到的结果是 0/0 型,那么我们通常要进一步进行简化或者换一种计算方法来求解。
3. ∞/∞ 型极限当直接代入法计算极限时,如果得到的结果是∞/∞ 型,那么我们通常需要进行一些数学变换或者化简来求解。
四、高阶极限除了一阶极限外,高阶极限也是高等数学中的重要内容。
1. 一阶无穷小与高阶无穷小一阶无穷小是指函数 f(x) 在某一点处的极限等于 0,而高阶无穷小是指函数 f(x) 在该点的极限为 0,且比一阶无穷小更快地趋近于 0。
大一高数知识点总结求极限
大一高数知识点总结求极限大一的高等数学课程对于许多学生来说是一个挑战。
其中,求极限是一个重要的知识点,在解决数学问题和理解数学概念时起到关键的作用。
本文将对大一高数中与求极限相关的知识做一个总结。
一、数列极限在大一高数中,数列极限是一个基础而重要的概念。
数列极限可以通过数学定义和一些常用的极限定理来求解。
1. 数列极限的定义数列极限的定义是:对于一个数列{an},当n趋近于无穷时,如果存在一个实数A,使得对于任意给定的正数ε(无论多么小),都存在正整数N,使得当n > N时,有|an - A| < ε成立,则称数列的极限为A。
2. 常用的数列极限定理在实际计算中,可以根据一些常用的数列极限定理简化计算过程。
常用的数列极限定理包括:- 夹逼准则:当数列{an}、{bn}和{cn}满足an≤bn≤cn,且lim(n→∞)an=lim(n→∞)cn=L,那么lim(n→∞)bn=L。
- 唯一性定理:如果数列{an}与数列{bn}有相同的极限,即lim(n→∞)an=lim(n→∞)bn=L,那么可以推出lim(n→∞)(an ±bn)=2L。
- 四则运算法则:对于两个数列{an}和{bn},如果它们的极限存在,可以利用四则运算计算它们的极限。
即lim(n→∞)an ± bn = lim(n→∞)an ± lim(n→∞)bn,lim(n→∞)an · bn =lim(n→∞)an · lim(n→∞)bn,lim(n→∞)an / bn = (lim(n→∞)an) / (lim(n→∞)bn)(其中,lim(n→∞)bn ≠ 0)。
二、函数极限在大一高数中,函数极限是求极限的另一个重要方面。
函数极限的计算可以通过代入法、夹逼定理和洛必达法则等方法进行。
1. 函数极限的代入法对于一些常见的函数极限,可以通过代入法进行计算。
例如,对于以下函数极限的计算:lim(x→a)f(x),当x趋近于某个实数a时,可以通过直接将x代入f(x)的表达式中,计算得到极限值。
高数大一求极限知识点总结
高数大一求极限知识点总结高等数学中的极限是一个重要且基础的概念,它在微积分和数学分析等学科中起到了至关重要的作用。
大一学习高数过程中,掌握极限的相关知识点对于进一步深入学习数学和应用数学是至关重要的。
本文将对大一高数中的极限知识点进行总结,以帮助同学们回顾复习和加深理解。
1. 极限的定义极限是指当自变量趋向于某一特定值时,函数值或数列的趋势。
对于函数而言,当自变量逐渐接近某个特定值时,函数值是否逐渐趋于确定的有限值或无穷大,这个确定的值就是该函数的极限。
2. 极限的性质- 唯一性:如果一个函数存在极限,那么极限是唯一的。
- 有界性:如果一个函数在某个点附近存在极限,那么该函数在该点附近有界。
- 保号性:如果一个函数在某个点附近极限存在,且极限大于(或小于)0,那么在该点附近函数的值也大于(或小于)0。
3. 极限的四则运算在计算函数的极限时,可以利用四则运算的法则来简化问题。
以下是常见的四则运算法则:- 两个函数相加(减)的极限等于两个函数的极限的和(差)。
- 一个函数与一个常数相乘的极限等于函数的极限乘以常数。
- 两个函数相乘的极限等于两个函数的极限的乘积。
- 一个函数除以另一个函数的极限等于函数的极限除以另一个函数的极限。
4. 极限存在的充分条件为了判断一个函数在某点是否存在极限,可以利用以下常见的充分条件:- 函数在该点附近有定义。
- 左极限和右极限存在且相等。
- 函数在该点附近有界。
- 函数在该点附近单调。
- 函数在该点附近保号。
5. 常见的极限计算方法- 代入法:直接将自变量代入函数中,求函数值来确定极限。
- 消去法:通过分子有理化、分母有理化等方法,将复杂的表达式转化为简单的形式,进而计算极限。
- 夹逼定理:当存在两个函数,它们在某点附近夹住待求函数,并且这两个函数的极限相等,那么待求函数的极限也等于这个共同的极限。
6. 无穷小量与无穷大量- 无穷小量:当自变量趋于某一特定值时,函数的极限趋近于0,这个极限称为无穷小量。
高等数学极限的公式总结
高等数学极限的公式总结在高等数学中,极限的公式是非常重要的概念,这些公式能够帮助我们理解函数的极限,并进行极限的运算。
以下是一些常见的高等数学极限的公式总结:1. 极限的四则运算性质:lim(a+b) = lim a + lim blim(a-b) = lim a - lim blim(ab) = lim a lim b (假设lim a 和 lim b都存在)lim(a/b) = lim a / lim b (假设lim b 不等于0)2. 极限的常数性质:lim a = a (当a是一个常数)3. 极限的单调性:lim(f(x0+delta x) - f(x0)) / delta x = f'(x0) (当delta x -> 0)4. 连续函数的性质:如果f(x)在x0处连续,那么lim f(x) = f(x0) 当 x -> x05. 无穷小量与无穷大量:当x -> 0时,x是无穷小量,1/x是无穷大量。
6. 洛必达法则:如果lim (f'(x)/g'(x))存在,那么lim (f(x)/g(x)) = lim (f'(x)/g'(x)) (当x->a时)。
7. 泰勒公式:对于任何n阶可导函数f(x),存在一个多项式Pn(x),使得对于所有-∞ < x < ∞,有f(x) = Pn(x) + o(x^n),其中o(x^n)是高阶无穷小。
8. 夹逼准则:如果存在一个区间或闭区间[a, b],满足f(a) <= g(a), f(b) >= g(b),并且lim f(x) = lim g(x),则lim g(x)存在,并且lim g(x) = lim f(x)。
9. 无穷大与无穷小的关系:lim x -> ∞ f(x) = lim x -> ∞ f(x) (如果存在的话)lim x -> ∞ f(x) = 0 (如果lim x -> ∞ f(x)存在的话)10. 极限的唯一性:对于任意给定的正数ε,总存在一个正数δ,使得当x - x0 < δ时,有f(x) - A < ε。
大一高数知识点归纳极限
大一高数知识点归纳极限在大一的高等数学中,极限是一个非常重要的概念和知识点。
它是数学中的基础,也是许多高级数学概念的起点。
下面我们将对大一高数中的极限知识点进行归纳和总结。
1. 极限的定义在数学中,极限可以用来描述一个函数或者数列在某一点或者无穷远处的趋势。
对于函数f(x),当x无限接近于一个常数a时,如果f(x)无限接近于一个常数L,那么我们可以说f(x)的极限为L,表示为lim (x->a) f(x) = L。
2. 无穷大与无穷小量在讨论极限时,我们经常会接触到无穷大与无穷小量的概念。
无穷大量是指当x趋近于某一点时,函数的值趋近于无穷大;无穷小量则是指当x趋近于某一点时,函数的值趋近于0。
3. 常见的极限计算方法我们可以通过一些常见的极限计算方法来求解各种函数的极限:- 代数运算法则:包括加减乘除四则运算的极限性质。
- 复合函数极限法则:当函数是由多个函数复合而成时,可以通过复合函数极限法则来求解极限。
- 洛必达法则:当求解函数的极限遇到形如0/0或者∞/∞的不定型时,可以利用洛必达法则进行求解。
- 数列极限:数列是一系列数字按照特定规律排列的集合,其中的极限也是一种重要的研究对象。
4. 基本的极限性质和定理在极限的研究中,我们还有一些基本的性质和定理:- 极限的唯一性定理:如果一个函数存在极限,那么这个极限是唯一的。
- 保号性定理:如果一个函数在某一点的左侧有极限,且极限大于0,那么在该点的右侧也有极限,且极限仍大于0。
- 夹逼定理:如果一个函数在某一点的左侧和右侧存在两个函数,且这两个函数的极限相等,那么原函数的极限也等于这个公共的极限。
- 连续函数定理:如果一个函数在某一点存在极限,并且这个极限等于函数在该点的值,那么这个函数在该点是连续的。
5. 极限在微积分中的应用极限在微积分中应用广泛,下面是一些常见的应用:- 求导:导数就是某一点的函数斜率,而极限可以用来表示这个点的函数值无限接近于该点的斜率。
高数函数的极限知识点
高数函数的极限知识点一、极限的定义1. 数列极限数列 $\{a_n\}$ 极限为 $L$,记作 $\lim_{n \to \infty} a_n = L$,如果对于任意给定的正数 $\epsilon$,总存在一个正整数 $N$,使得当 $n > N$ 时,不等式 $|a_n - L| < \epsilon$ 成立。
2. 函数极限函数 $f(x)$ 当 $x \to c$ 时的极限为 $L$,记作 $\lim_{x \to c} f(x) = L$,如果对于任意给定的正数 $\epsilon$,总存在一个正数 $\delta$,使得当 $0 < |x - c| < \delta$ 时,不等式 $|f(x) - L| < \epsilon$ 成立。
二、极限的性质1. 唯一性如果 $\lim_{x \to c} f(x) = L$ 和 $\lim_{x \to c} f(x) = M$ 都成立,则 $L = M$。
2. 局部有界性如果 $\lim_{x \to c} f(x) = L$,则 $f(x)$ 在 $c$ 的某个邻域内有界。
3. 局部保号性如果 $\lim_{x \to c} f(x) = L$ 且 $L > 0$,则存在 $c$ 的一个邻域,使得在这个邻域内 $f(x) > 0$。
三、极限的计算1. 极限的四则运算如果 $\lim_{x \to c} f(x) = L$ 和 $\lim_{x \to c} g(x) = M$ 都存在,则:- $\lim_{x \to c} [f(x) + g(x)] = L + M$- $\lim_{x \to c} [f(x) - g(x)] = L - M$- $\lim_{x \to c} [f(x) \cdot g(x)] = L \cdot M$- $\lim_{x \to c} [f(x) / g(x)] = L / M$,当 $M \neq 0$。
高数数学极限总结资料
高数数学极限总结资料一、定义:极限(limit)是高等数学中一个重要的概念,不管在何时何地,几乎所有的数学定理和实际应用中,都离不开极限的概念,极限的概念的出现,使得很多以前被认为无解的数学问题,得以有效解决。
二、速率极限:速率极限(Rate of Change Limit)是讨论函数变化率(rate of change)时使用的概念。
它指的是一个函数当它处于极限状态时,其变化率(rate of change)会几乎接近于零。
可以说,函数的某个点处的变化率越接近零,则函数处于越接近极限的状态。
速率极限是解决常微分方程的关键,可帮助理解函数的变化率是如何随着自变量的变化而变化的。
三、双边极限:双边极限是在一个定义域中植入一个“小数字”,使得函数趋近某个可观察值。
双边极限定义了曲线就在“极限值”上,即曲线非常接近这一“极限值”。
双边极限可以用来判断函数是否连续,可以用来判断两个函数是否相等、是否存在封闭集等。
双边极限也是解决无穷积分问题的关键。
四、无穷大极限:无穷大极限(infinity limit)是当函数在某一方向上的取值不断增加时,函数的值会几乎趋近于正无穷大或负无穷大,也可以把无穷大极限看做是一个函数在相应方向上的“极限值”。
无穷大极限的发现,使得很多以前无法解决的极大(或极小)量问题得以解决,是极限理论及应用取得巨大成就的基础。
五、极限定理:极限定理(Limit Theorem)是数学分析中,极限理论的更深层次的一个定义。
它是指当一个数序中的每一项都趋近于某个数时,其和也会趋近于这个数。
极限定理的宗旨是使数位的总和趋近于一数值,从而使所有数都趋近于此数值。
在微积分中,极限定理对许多定理,如泰勒公式、极大值定理等初步思想,均有重要作用。
高等数学极限求法总结
高等数学极限求法总结在高等数学中,极限是一个至关重要的概念,它在微积分、数学分析等领域中扮演着重要角色。
极限求法是数学学习中的一个关键技能,通过正确的方法和技巧能够更快地求解各种极限问题。
本文将系统总结常见的极限求法,包括极限的基本性质、洛必达法则、泰勒展开等内容,帮助读者更好地掌握和运用极限求法。
一、极限的基本性质1. 有界性如果一个函数在某点的一个邻域内有界,那么该函数在该点的极限存在且有限。
2. 夹逼准则如果函数f(x)在点a的某个邻域内除a点以外都满足0≤g(x)≤f(x)≤h(x),并且lim[g(x)]=lim[h(x)]=L,则由夹逼准则可得lim[f(x)]=L。
二、洛必达法则洛必达法则常用来解决0/0型或∞/∞型的极限。
若lim[f(x)]=0, lim[g(x)]=0,并且lim[f’(x)/g’(x)]存在,则lim[f(x)/g(x)]=lim[f’(x)/g’(x)]。
三、泰勒展开泰勒展开是在某一点附近用多项式逼近一个函数的方法。
简单来说,就是用一个多项式不断逼近原函数,使得在该点附近它们的表现尽量接近。
泰勒展开的公式如下:f(x)≈f(a)+f’(a)(x-a)+f’’(a)(x-a)2/2!+⋯+f n(a)(x-a)^n/n!+Rn(x)其中,f(x)是原函数,a是展开的点,f^(n)(a)表示f(x)在点a处的n阶导数,Rn(x)是泰勒余项,即多项式逼近的误差。
通过以上总结,我们可以看到,极限求法涉及到多方面的知识和技巧,需要结合具体问题选择合适的方法进行求解。
掌握极限求法不仅可以帮助我们更好地理解函数的性质,还可以在数学建模、物理学等领域中发挥重要作用。
希望通过本文的总结,读者能够更加熟练地运用各种极限求法,提升自己的数学水平。
大一高数知识点总结极限
大一高数知识点总结极限大一高数知识点总结极限极限是高等数学中非常重要的概念,它是数学分析的基础,也是其他数学学科的重要工具。
在大一的高等数学课程中,学生们会接触到很多与极限相关的知识点。
本文将就大一高数中与极限相关的知识点进行总结和归纳,帮助读者更好地理解和应用这些概念。
一、函数极限及其性质在高等数学中,我们常常要探讨函数在某个点处的“趋近”行为。
这种趋近的行为就是函数的极限。
函数极限的定义是:当自变量趋近于某个值时,函数的值也会趋近于一个确定的值,那么这个确定的值就是函数的极限。
具体来说,我们用以下符号表示函数极限:lim(x→a) f(x) = L其中,“lim”表示极限,“(x→a)”表示自变量x趋近于a,“f(x)”表示函数f(x),“L”表示极限值。
在探讨函数极限的性质时,我们会遇到以下重要概念和定理:1. 唯一性定理:如果函数在某点存在极限,那么它的极限值是唯一的。
2. 夹逼定理:如果一个函数在某点的左、右两侧有两个函数夹住,并且这两个函数的极限相等,那么该函数在该点处的极限存在,并且等于这个相等的极限值。
3. 无穷小量:如果函数在某点的极限是0,那么该函数在该点处是无穷小量。
4. 无穷大量:如果函数在某点的极限不存在或为无穷大,那么该函数在该点处是无穷大量。
二、常见函数的极限计算在大一的高等数学学习中,我们经常需要计算一些常见函数在某点处的极限。
以下是一些常见函数的极限计算方法:1. 多项式函数:多项式函数在任何有限点处的极限存在,且极限值等于该点处的函数值。
2. 指数函数:指数函数e^x在任何有限点处的极限都存在,并且极限值等于该点处的函数值。
3. 对数函数:对数函数log(x)在x趋近于正无穷时的极限为正无穷,在x趋近于0时的极限为负无穷。
4. 三角函数:三角函数sin(x)和cos(x)在任何有限点处的极限存在,且极限值等于该点处的函数值。
三、无穷极限和级数除了常见函数的极限计算外,大一高数还会涉及无穷极限和级数的讨论。
极限高数知识点总结
极限高数知识点总结极限是数学分析中一个非常重要的概念,它是研究函数趋于某个趋势或者某个值时的性质的一种方法。
极限的研究对于理解函数的性质、求解微积分的各种问题具有非常重要的意义。
在高等数学中,极限被广泛应用于各个领域,是数学分析的基础和核心之一。
下面我们来系统地总结一下极限的相关知识点。
一、极限概念1.1 函数的极限函数的极限是指当自变量趋于某一值时,因变量的值趋于某一值。
设函数f(x)在点x=a的某一去心邻域内有定义时,如果存在常数A,对于任意给定的正数ε,总存在正数δ,使得当0<|x-a|<δ时,对应的f(x)都满足|f(x)-A|<ε。
那么称当x趋于a时,f(x)的极限为A,记作lim(f(x))=A,或者x→a时f(x)趋于A。
1.2 无穷大与无穷小当x趋于无穷大时,函数f(x)的极限称为无穷大,记作lim(f(x))=∞。
当x趋于无穷小时,函数f(x)的极限称为无穷小,记作lim(f(x))=0。
1.3 极限运算法则函数极限的运算法则包括加减乘除四则运算法则、乘积的极限法则、商的极限法则等。
二、极限存在性2.1 极限的必要条件与充分条件函数极限存在的充分必要条件是明确的,但是对于不同类型的函数,其极限存在的条件也有所不同。
比如对于无穷大级数,其收敛的充分必要条件为级数通项趋于0。
2.2 极限存在的判定方法判定极限是否存在的方法包括夹逼准则、单调有界法、变量代换法、洛必达法则、泰勒展开法等。
三、极限计算3.1 无穷小量的性质无穷小量有许多性质,包括有限个无穷小的和、积仍是无穷小,无穷小与有界函数的乘积仍是无穷小,无穷小的高阶无穷小、低阶无穷小、等阶无穷小等。
3.2 无穷大量的性质无穷大量也有一些性质,包括有限个无穷大的和、积仍是无穷大,无穷大的倒数为无穷小等。
3.3 极限的计算方法极限的计算方法包括利用极限的基本性质和极限的等价无穷小、等价无穷大的性质,还有利用洛必达法则或者泰勒展开法则进行计算。
高数常用极限公式大全
高数常用极限公式大全极限公式:1、e^x-1~x (x→0)2、e^(x^2)-1~x^2 (x→0)3、1-cosx~1/2x^2 (x→0)4、1-cos(x^2)~1/2x^4 (x→0)5、sinx~x (x→0)6、tanx~x (x→0)7、arcsinx~x (x→0)8、arctanx~x (x→0)9、1-cosx~1/2x^2 (x→0)10、a^x-1~xlna (x→0)11、e^x-1~x (x→0)12、ln(1+x)~x (x→0)13、(1+Bx)^a-1~aBx (x→0)14、[(1+x)^1/n]-1~1/nx (x→0)15、loga(1+x)~x/lna(x→0)扩展资料:高等数学极限中有“两个重要极限”的说法,指的是:sinX/x →1(x→0 ),与(1+1/x)^x→e^x(x→∞)。
另外,关于等价无穷小,有:sinx ~ tanx ~ arctanx ~ arcsinx ~ e^x-1 ~ ln(1+X)~ (a^x-1)/lna ~[(1+x)^a-1]/a ~x(x→0),1-cosx ~ x^2/2(x→0)。
你是说求极限的方法吧?求极限没有固定的方法,必须是具体问题具体分析,没有哪个方法是通用的,大学里用到的方法如下:1、四则运算法则(包括有理化、约分等简单运算);2、两个重要极限(第二个重要极限是重点);3、夹逼准则,单调有界准则;4、等价无穷小代换(重点);5、利用导数定义;6、洛必达法则(重点);7、泰勒公式(考研数学1需要,其它考试不需要这个方法);8、定积分定义(考研);9、利用收敛级数(考研)每个方法中可能都会有相应的公式,全总结就太多了,你自己去看吧。
希望可以帮到你,不明白可以追问,如果解决了问题,请点下面的"选为满意回答"按钮,谢谢。
等价无穷小代换罗必塔法则泰勒展开转化成定积分转化成求导夹逼定理。
高等数学极限知识点总结
高等数学极限知识点总结
以下是高等数学极限知识点总结:
1. 极限的定义:极限是描述函数在某一点的行为的数学工具。
它包括数列的极限和函数的极限。
2. 极限的性质:包括唯一性,有界性,和收敛性。
3. 极限的四则运算法则:如果lim f(x),lim g(x)存在,那么对于加减乘除四种运算,极限都存在。
4. 极限的夹逼定理:如果一个数列被两个已知极限的数列夹在中间,那么这个数列的极限就是这两个数列的极限。
5. 函数极限的运算法则:如果lim f(x)存在,那么lim [f(x) + c] = lim f(x) + lim c,lim [f(x) c] = lim f(x) lim c,其中c是一个常数。
6. 无穷小和无穷大的概念:无穷小是一个趋于0的变量,无穷大是一个趋于无穷的变量。
7. 洛必达法则:当分子和分母的极限都存在时,可以求出函数的极限。
8. 泰勒级数:将一个函数表示为其各阶导数的无限和的方法。
9. 单侧极限和双侧极限:函数在某一点的单侧极限是指函数在该点的左侧或右侧的极限;双侧极限是指函数在这一点左侧和右侧的极限。
10. 连续性和可微性:如果一个函数在某一点的极限值等于该点的函数值,则称该函数在该点连续;如果一个函数在某一点的导数存在,则称该函数在该点可微。
以上就是高等数学极限的基本知识点,希望对你有所帮助。
大一高数求极限的方法总结
大一高数求极限的方法总结大一高等数学中,求极限是一个非常重要的概念和技巧。
在学习求极限的过程中,我们需要掌握一些基本的方法和技巧。
下面是对一些常用的求极限方法进行总结。
一、无穷小量代换法当我们在求一个函数的极限时,可以将函数中的无穷小量用一个新的无穷小量来代替,从而简化计算。
例如,当求极限lim(x->0)(sinx)/x时,可以将sinx用x来代替,即lim(x->0)x/x=1二、夹逼定理夹逼定理是一种非常常用的求极限方法。
当我们无法直接计算一个函数的极限时,可以通过找到两个已知的函数,使它们的极限分别为L和L’,并且夹在待求函数的极限值周围时,我们可以得出待求函数的极限也为L。
三、洛必达法则洛必达法则是一种非常常用的求导法则,它可以用来求解一些不定型的极限。
当我们在计算一个函数的极限时,如果得到的结果为0/0或者∞/∞的形式,那么我们可以使用洛必达法则来求解极限。
具体做法是对分子和分母同时求导,并再次计算极限,直到得到一个有限的值。
四、泰勒展开法当我们计算一些函数在一点的极限时,可以使用泰勒展开来逼近函数的值。
泰勒展开是将一个函数表示为无限项的级数,通过截取有限项来逼近函数的值。
这样可以大大简化我们的计算过程。
五、换元法有时候我们可以通过进行一些变量的替换来改变函数的形式,从而更容易求解极限。
例如,当我们计算lim(x->0)(3^(2x)-2^x)时,可以令y=2^x,然后再进行计算,就可以得到较为简单的表达式。
六、分数的极限当我们计算一个函数的极限时,如果得到的结果为一个分数形式,可以进行有理化来方便我们的计算。
有理化的方法有分子分母同时乘以一些适当的因式、差化积等。
七、级数化积当我们计算一个函数的极限时,通常可以将函数展开为一个级数,然后进行计算。
例如,当我们计算lim(x->0)(e^x-1)/x时,可以将e^x展开为一个级数,再进行计算。
八、寻找特殊点有时候我们可以通过找到一些特定的点来计算极限。
高数数学极限总结
高数数学极限总结.doc高等数学极限总结引言极限是高等数学中的核心概念之一,它描述了函数在某一点附近的行为,是微积分学的基础。
本文档旨在总结高等数学中极限的基本概念、性质、计算方法以及应用。
极限的定义函数的极限设函数( f(x) )定义在点( a )的某个去心邻域内,如果存在常数( L ),对于任意给定的正数( \epsilon )(无论多么小),总存在正数( \delta ),使得当( 0 < |x - a| < \delta )时,都有( |f(x) - L| < \epsilon ),则称( L )是函数( f(x) )当( x )趋于( a )时的极限,记作( \lim_{x \to a} f(x) = L )。
无穷远处的极限函数( f(x) )在( x )趋于无穷大时的极限,如果存在常数( L ),使得对于任意给定的正数( \epsilon ),总存在正数( M ),使得当( |x| > M )时,都有( |f(x) - L| < \epsilon ),则称( L )是函数( f(x) )当( x )趋于无穷大时的极限,记作( \lim_{x \to \infty} f(x) = L )。
极限的性质唯一性极限存在且唯一。
保号性如果( \lim_{x \to a} f(x) = L ),且( L > 0 ),则存在( \delta > 0 ),使得当( 0 < |x - a| < \delta )时,( f(x) >0 )。
有界性如果( \lim_{x \to a} f(x) = L ),则存在( \delta > 0 ),使得当( 0 < |x - a| < \delta )时,( f(x) )是有界的。
极限的计算方法直接代入法如果函数( f(x) )在点( a )处连续,则可以直接代入( x = a )来求极限。
高数极限的知识点笔记总结
高数极限的知识点笔记总结一、数列极限的概念1.1、数列的概念1.1.1、若给定一个从自然数集合N到实数集合R的函数an=f(n),则称序列{an}为数列。
1.1.2、数列是数学中的一个重要概念,它是指有序的一串数的集合。
比如,1,2,3,4,5,6,... 就是一个数列,其中每一个数都有一个位置,称之为该数在数列中的项。
这个位置通常用自然数n表示,称为项数。
1.2、数列极限的概念1.2.1、若数列{an}的项在某一项之后,无论距离这一项多近,都能无限地接近某一个确定的常数A,则称常数A为数列{an}的极限。
极限通过记号lim(an)=A来表示。
1.2.2、数列极限的概念是指当n趋于无穷大时,数列中的项an的极限值。
1.2.3、形式化定义:对于数列{an},若对于任意给定的正数ε>0,存在正整数N,使得当n>N时,|an-A|<ε,则称A是数列{an}的极限。
1.3、无穷大数列1.3.1、若数列{an}满足:对于任何实数M,存在正整数N,使得当n>N时,有|an|>M,则称数列{an}为无穷大数列。
1.3.2、无穷大数列的极限是无穷大。
1.4、数列极限的性质1.4.1、唯一性:数列的极限若存在,则唯一。
1.4.2、有界性:如果数列有极限,则这个数列一定是有界的。
1.4.3、保号性:如果数列{an}有极限A, 且A>0(或A<0),则存在正整数N1,当n>N1时,有an>0(或an<0)。
二、函数极限的概念2.1、函数极限的概念2.1.1、在自然数集N上定义的函数f(n),若当n趋于无穷大时,f(n)的极限存在,则称函数f(n)在n趋于无穷大时有极限。
2.1.2、形式化定义:对于函数f(x),若对于任意给定的正数ε>0,存在正数δ>0,使得当0<|x-a|<δ时,有|f(x)-A|<ε,则称A是f(x)当x趋于a时的极限。
高数数学极限总结
函数极限总结一.极限的产生极限理论是研究关于极限的严格定义、基本性质和判别准则等问题的基础理论。
极限思想的萌芽可以追溯到古希腊时期和中国战国时期,但极限概念真正意义上的首次出现于沃利斯的《无穷算数》中,牛顿在其《自然哲学的数学原理》一书中明确使用了极限这个词并作了阐述。
但迟至18世纪下半叶,达朗贝尔等人才认识到,把微积分建立在极限概念的基础之上,微积分才是完善的,柯西最先给出了极限的描述性定义,之后,魏尔斯特拉斯给出了极限的严格定义(ε-δ和ε-N 定义)。
从此,各种极限问题才有了切实可行的判别准则,使极限理论成为了微积分的工具和基础。
[1]二.极限知识点总结1. 极限定义函数极限:设函数f(x)在点的x 0某一去心邻域内有定义,如果存在常数A ,对于任意给定的正数ε(无论它多么小),总存在正数 ,使得当x 满足不等式时,对应的函数值 都满足不等式:那么常数A 就叫做函数f(x)?当x →x 0时的极限,记作。
[2]单侧极限:✍.左极限:或 ✍.右极限:或 定理:函数当时极限存在的充分必要条件是左、右极限各自存在且相δ<<|x -x |00ε<-|)(|A x f Ax f xx =→)(lim 0A x f xx =-→)(lim )()(左→→x A x f A x f xx =+→)(lim )()(右→→x A x f A x f x f A x f x x ==⇔=+-→)()()(lim 0)(x f 0x x →等 即。
2. 极限概念函数极限可以分成以的极限为例,f(x) 在点x 0以A 为极限的定义是:对于任意给定的正数ε(无论它多么小),总存在正数δ,使得当x 满足不等式时,对应的函数值f(x)都满足不等式:|f(x)-A|<ε,那么常数A 就叫做函数f(x)当 x →x 。
时的极限。
函数极限具有唯一性、局部有限性、局部保号性[2] 3. 存在准则有些函数的极限很难或难以直接运用极限运算法则求得,需要先判定。
大一高数极限知识点归纳
大一高数极限知识点归纳一、定义和基本性质高等数学中的极限是一种重要的数学概念,其定义如下:设函数 f(x) 在某一点 a 的某一邻域内有定义,如果存在一个常数 L,对于任意给定的正数ε,无论它多么小,总存在正数δ,当0 < |x - a| < δ 时,使得 |f(x) - L| < ε 成立,则称函数 f(x) 当 x 趋于 a 时的极限为 L,记作lim(x→a) f(x) = L。
极限具有以下基本性质:1. 唯一性:如果极限存在,则极限值唯一。
2. 局部有界性:若函数在某一点的邻域内有极限,则函数在该点的某一邻域内有界。
3. 夹逼定理:如果函数 f(x) 在点 a 的某一邻域内,除点 a 外的其他点的函数值都被两个函数 g(x) 和 h(x) 夹住,即g(x) ≤ f(x) ≤ h(x),并且lim(x→a) g(x) = lim(x→a) h(x) = L,则函数 f(x) 在点 a 处的极限也存在,且等于 L。
二、常见极限公式1. 基本极限公式:- 常值函数极限:lim(x→a) c = c,其中 c 为常数。
- 自变量 x 的幂函数极限:lim(x→a) x^n = a^n,其中 n 为正整数。
- 指数函数极限:lim(x→a) a^x = a^a,其中 a 为正实数。
- 对数函数极限:lim(x→a) logₐ x = logₐ a,其中 a 为正实数,且a ≠ 1。
2. 三角函数极限公式:- 正弦函数极限:lim(x→0) sinx = 0。
- 余弦函数极限:lim(x→0) cosx = 1。
- 正切函数极限:lim(x→0) tanx = 0。
- 余切函数极限:lim(x→0) cotx = ∞。
3. 指数函数与对数函数极限公式:- 自然对数函数极限:lim(x→0) ln(1+x) = 0。
- 指数函数极限:lim(x→0) (a^x - 1) / x = ln a,其中 a 为正实数,且a ≠ 1。
高数极限总结
高数极限总结高等数学中的极限是一个重要的概念,深入理解和掌握极限的性质和计算方法对于学习数学和应用数学都是非常关键的。
本文将对高数中的极限进行总结,从极限的定义、性质到计算方法进行系统地探讨。
1. 极限的定义极限是数学分析中最重要的概念之一,它描述了函数在某一点附近的变化趋势。
对于函数$f(x)$当$x$无限接近某一点$a$时,如果$f(x)$的函数值趋近于某个常数$L$,则称$L$为函数$f(x)$在$x=a$处的极限,记作$\lim_{x\to a}f(x)=L$。
这个定义可以形象地理解为“当$x$无限接近$a$时,$f(x)$趋近于$L$”。
2. 极限的性质极限具有一些重要的性质,其中最基本的有唯一性、有界性和保号性。
- 唯一性:如果函数$f(x)$在$x=a$处的极限存在,那么极限值$L$是唯一确定的,即唯一确定一个函数在某点的极限。
- 有界性:如果函数$f(x)$在$x=a$处的极限存在,那么函数在某个邻域内是有界的,即存在一个上界$M$和下界$m$,使得对于所有的$x$都有$m\leq f(x)\leq M$。
- 保号性:如果函数$f(x)$在$x=a$处的极限存在且为正数(负数),那么函数在某个邻域内保持正号(负号),即对于任意$x$,都有$f(x)>0$($f(x)<0$)。
3. 极限的计算方法计算极限是数学分析中的基本技能,要熟练掌握各种计算方法。
- 代入法:对于简单的函数,可以直接将$x$的值代入函数中计算极限,如$\lim_{x\to3}(2x+1)=2\cdot3+1=7$。
- 基本极限法则:根据极限的性质,可以利用基本的极限法则来计算复杂函数的极限,如$\lim_{x\to0}\frac{\sin{x}}{x}=1$。
- 多项式函数的极限:对于多项式函数,可以通过化简或利用洛必达法则来计算极限,如$\lim_{x\to2}\frac{x^2-4}{x-2}=\lim_{x\to2}\frac{(x-2)(x+2)}{x-2}=\lim_{x\to2}(x+2)=4$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数极限总结一.极限的产生极限理论是研究关于极限的严格定义、基本性质和判别准则等问题的基础理论。
极限思想的萌芽可以追溯到古希腊时期和中国战国时期,但极限概念真正意义上的首次出现于沃利斯的《无穷算数》中,牛顿在其《自然哲学的数学原理》一书中明确使用了极限这个词并作了阐述。
但迟至18世纪下半叶,达朗贝尔等人才认识到,把微积分建立在极限概念的基础之上,微积分才是完善的,柯西最先给出了极限的描述性定义,之后,魏尔斯特拉斯给出了极限的严格定义(ε-δ和ε-N 定义)。
从此,各种极限问题才有了切实可行的判别准则,使极限理论成为了微积分的工具和基础。
[1]二.极限知识点总结1. 极限定义函数极限:设函数f(x)在点的x 0某一去心邻域内有定义,如果存在常数A ,对于任意给定的正数ε(无论它多么小),总存在正数 ,使得当x 满足不等式时,对应的函数值 都满足不等式:那么常数A 就叫做函数f(x) 当x →x 0时的极限,记作。
[2]单侧极限:.左极限:或.右极限:或 定理:函数当时极限存在的充分必要条件是左、右极限各自存在且相δ<<|x -x |00ε<-|)(|A x f Ax f xx =→)(lim 0A x f xx =-→)(lim )()(左→→x A x f A x f xx =+→)(lim )()(右→→x A x f A x f x f A x f x x ==⇔=+-→)()()(lim 0)()()()()(0000limx f x f x f x f x f x x ==⇔=+-→)(x f 0x x →等 即。
2. 极限概念函数极限可以分成以的极限为例,f(x) 在点x 0以A 为极限的定义是:对于任意给定的正数ε(无论它多么小),总存在正数δ,使得当x 满足不等式时,对应的函数值f(x)都满足不等式:|f(x)-A|<ε,那么常数A 就叫做函数f(x)当 x →x 。
时的极限。
函数极限具有唯一性、局部有限性、局部保号性[2] 3. 存在准则有些函数的极限很难或难以直接运用极限运算法则求得,需要先判定。
下面介绍几个常用的判定数列极限的定理。
准则Ⅰ.如果数列,及满足以下条件: (1)从某项起,即,当时,有;(2);, 那么数列的极限存在,且 准则Ⅰ'如果(1)当(或)时,(2),,那么存在,且等于。
夹逼定理:(1)当时,有 成立(2),那么,极限存在,且等于A【准则Ⅰ,准则Ⅰ´合称夹逼定理】)()()(lim 000x f x f x f xx →+-==0,,,x x x x x →-∞→+∞→∞→0x x →{}n x {}n y {}n z +∈∃N n 00n n >n n n z x y ≤≤a y n x =∞→lim a z n x =∞→lim {}n x a x n x =∞→lim ),(0r x U x∈M x >||)()()(x h x f x g ≤≤A x g x x x =∞→→)(lim )(0A x h x x x o=∞→→)(lim )()(lim )(0x f x x x ∞→→A ),(x 0r x U∉()0x f准则Ⅱ: 单调有界数列必有极限准则Ⅱ' :设函数在点的某个左(右)邻域内单调并且有界,则在的左(右)极限必定存在[3]单调有界准则:单调增加(减少)有上(下)界的数列必定收敛。
柯西准则:数列收敛的充分必要条件是任给o >ε,存在)(εN ,使得当N >n ,N >m 时,有ε<-||m n x x 成立。
[2]极限运算相关法则、定理及推论(1).设α、β为同一极限过程下的无穷小 (无穷小) (2).穷小之积为无穷小 (无穷小) 推论:.常数与无穷小之积为无穷小.有限个无穷小之积为无穷小(3).有界函数与无穷小之积为无穷小(4).函数极限运算法则定理:设,则若,则 )(x f 0x )(x f 0x )(-x f ()[]+x f 0=±βα0=•βα0=•αu 0)(lim =x f B x g =)(lim []B A x g x f +=±=±)(lim )(lim g(x )f(x )lim []B A x g x f x g x f •=•=•)(lim )(lim )()(lim 0≠B BAx g x f x g x f ==)(lim )(lim )()(lim推论1.如果存在,而c 为常数那么推论2. 则定理(复合函数求极限法则)设函数是由函数与函数复合而成,在点的某去心邻域内有定义,若,且存在,当时,有,则。
两个重要极限:. .即若, 则常用等价无穷小:当时,,,,计算极限方法总结 (1)直接带入求极限例1. )(lim x f [])(lim )(lim x f c x cf =A x f =)(+∈N n [][]nn x f x f )(lim )(lim =[])(y x g f =)(u x g =)(y u f =[])(x g f 0x 0)(lim 0u x g x x =→A xx =→lim 000>δ),(x 00δx U∈0)(g u x ≠[]()Au f x g f u u x x ==→→lim lim 0)(1sin lim=→xxx e x x x =+∞→)11(lim )0)((0)(lim ≠=x f x f e x f x f =+)(1))(1(lim 0→x )1ln(arctan arctan tan sin x x x x x x +=====n x x n=+1x e x =-12x cosx -12=abx x b=+)(a 1)(1,0ln 1≠>=-a a a x a x )138(21lim+-→x x x【解】(2)约零因子求极限例2.求极限 【说明】x →1表明x 与1无限接近,但。
所以x-1这一零因子可以约去。
【解】(3)分子分母同除求极限(公式法)例3.求极限 【说明】型且分子分母都以多项式给出的极限,可通过分子分母同除来求。
【解】 【注】(1)一般分子分母同除x 的最高次方(2) (4)分子(分母)有理化求极限()613813813813821121112121lim lim lim lim lim lim lim =+-⎪⎭⎫⎝⎛=+-=+-=+-→→→→→→→x x x x x x xx x x x x x x 1141lim --→x x x 1x ≠4)1)(1()1()1)(1)(1(21x 21lim lim =++=-++-→→x x x x x x x 13223lim --∞→x x x x ∞∞311311133323x lim lim =+-=--∞→∞→xx x x x x m m n m n m b a b x b x b a x a x a n n m m m m n n n n x =<>⎪⎪⎩⎪⎪⎨⎧∞=++++++=----+∞→0011011lim例4.求极限【说明】分子分母有理化求极限,是通过有理化去除无理式 【解】例5.求极限 【解】【注】本题除使用分子有理化方法外,及时分离极限式中的非零因子是解题的关键。
(5)应用两个重要极限求极限 【说明】两个重要极限是和 例6.求极限【说明】用第二个重要极限时主要搞清楚步骤:先凑出1,在凑,最后凑指数部分。
)13(22lim +-++∞→x x x 013213)13)(13()13(2222222222limlimlim =+++=+++++++-+=+-++∞→+∞→+∞→x x x x x x x x x x x x x 3sin 11tan limxxx x +-+→41sin tan 21sin tan 1sin 1tan 11sin 1tan sin tan 1sin 1tan 3030303030lim lim lim lim lim =-=-+-+=+-+-=+-+=→→→→→x x x x xx x x xx x x xx x x x x x x x x 1sin lim0=→x x x e x x x =+∞→)11(lim xx 1-1lim ⎪⎭⎫⎝⎛++∞→x x x1+【解】(6)用等价无穷小两代换求极限 【说明】(1)常见的等价无穷小有:当x →0时,x=sinx=tanx=arcsinx=arctanx=ln(1+x )=e x -1,1-cosx=,,, 。
(2)等价无穷小量代换,只能代换极限式中的因式; (3)此方法在各种求极限的方法中应作为首选。
例7.求极限 【解】例8.求极限【解】(7)用洛必达法则求极限22121x 12121111211-x 1lim lim lim e x x x x x x x x x =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛+-∞→∞→∞→2x 21abx x b=+)(a 1)(1,0ln 1≠>=-a a a x a x nx x n=+1x x x x cos -1)1ln(lim 0+→221cos 1)1ln(2lim lim 00=•=-+→→x x x x x x x x xx x x 30tan )1ln(lim+→6132131cos sin tan sin 22203030lim lim lim lim -=-=-=-=-→→→→x x x x x x x x x x x x x x例9.求极限 【说明】和型的极限,可通过洛必达法则来求。
【解】【注】有许多变动上限的积分表示的极限,常用洛必达法则求解。
例10.设函数连续,且,求极限 【解】由于,于是(8)用对数恒等式求极限220)sin 1ln(2cos ln lim x x x x +-→∞∞03sin 112cos 222sin 2sin 12sin cos 2sin 2)sin 1ln(2cos ln 220220lim lim lim -=⎪⎭⎫ ⎝⎛+--=+--=+-→→→x x x x x x x x x x x x x x x )(f x 0f(0)≠⎰⎰--→dt t x f x x dtt t x x )(0))((0xlim 0du u f xdu u f x dt t x f ut x )(0))((0)(0x⎰⎰⎰=-=-=-21)0()0()0()()(00)()(0)(0)()(0)()()(0)(0)()(0)(0)(0)())((0lim lim lim lim lim 0000=+=++=+-+=-=--⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰→→→→→f f f x f xu f x x dtx x xf du u f x dtt f x x xf du u f x x xf x xf dt t f x du u f x x t d t tf xdt t f x x dt t x f x x t d t t x x x x x x x )()(lim x g x f例11.求极限【解】【注】对于形势的未定式,也可用公式因为例12.求极限【解1】原式=【解2】原式=[4] 四.参考文献[1]极限理论 2017.11.24[2]函数极限 函数极限/727083?fr=aladdin 2017.11.24[3]同济大数学系 《高等数学 第七版 上册》北京 高等教育出版社 1987年[]xx x 20)1ln(1lim ++→()[]()[]()[]21ln 121ln 1220)1ln(2limlim 1ln 1lim lim e eeex xx x x xx x xx xx ====+++→→++++→→∞1)()(lim x g x f )(]1)(lim[)(1)(lim x g x f x g e x f -∞=))()()(1)((lim )11ln()(lim ln )(lim )()(lim --+===x f x g x f x g x f x g x g e e e x f ()[]113cos 23lim-+→x x x x ()61sin cos 21212)sin (cos 213ln cos 2ln 3cos 2ln 1lim lim lim lim lim 0020233cos 2ln 0-=•+-=-+=-+=⎪⎭⎫⎝⎛+=-→→→→⎪⎭⎫⎝⎛+→x x x x x x x x x x e x x x x x x x 6131cos 31cos 1ln 3cos 2ln 120202033cos 2ln 0lim lim lim lim -=-=⎪⎭⎫ ⎝⎛-+=⎪⎭⎫⎝⎛+=-→→→⎪⎭⎫⎝⎛+→x x x x x x x e x x x x x x[4]来自QQ空间由大学生笔记墙整理【感谢您的阅览,下载后可自由复制或修改编辑,敬请您的关注】。