pt100温度测量电路图(电子发烧友)
PT100温度传感器测量电路
PT100温度传感器测量电路温度传感器PT100是一种稳定性和线性都比较好的铂丝热电阻传感器,可以工作在 -200℃至 650℃的范围.本电路选择其工作在 -19℃至500℃范围。
整个电路分为两部分,一是传感器前置放大电路,一是单片机 A/D 转换和显示,控制,软件非线性校正等部分。
前置放大部分原理图如下:工作原理:传感器的接入非常简单,从系统的 5V 供电端仅仅通过一支 3K92 的电阻就连接到 PT100 了.这种接法通常会引起严重的非线性问题,但是.由于有了单片机的软件校正作为后盾,因此就简化了传感器的接入方式.按照 PT100 的参数,其在 0℃到 500℃的区间内,电阻值为 100 至280.9Ω,我们按照其串联分压的揭发,使用公式:Vcc/(PT100+3K92)* PT100 = 输出电压(mV),可以计算出其在整百℃时的输出电压,见下面的表格:单片机的 10 位 A/D 在满度量程下,最大显示为 1023 字,为了得到PT100 传感器输出电压在显示 500 字时的单片机 A/D 转换输入电压,必须对传感器的原始输出电压进行放大,计算公式为:(500/1023 * Vcc)/传感器两端电压( mV/℃ ) ,(Vcc=系统供电=5V),可以得到放大倍数为10.466 。
关于放大倍数的说明:有热心的用户朋友询问,按照 (500/1023 * Vcc)/传感器两端电压不能得到 10.466 的结果,而是得到 11.635的结果。
实际上,500 个字的理想值是无法靠电路本身自然得到的,自然得到的数字仅仅为 450 个字,因此,公式中的 500℃在实际计算时的取值是 450 而不是 500 。
450/1023*5/(0.33442-0.12438)≈10.47 。
其实,计算的方法有多种,关键是要按照传感器的 mV/℃为依据而不是以被测温度值为依据,我们看看加上非线性校正系数:10.47*1.1117=11.639499 ,这样,热心朋友的计算结果就吻合了。
Pt100铂电阻测温电路(稳定版)
常用电路图R2、R3、R4 和Pt100 组成传感器测量电桥,为了保证电桥输出电压信号的稳定性,电桥的输入电压通过TL431 稳至2.5V。
从电桥获取的差分信号通过两级运放放大后输入单片机。
电桥的一个桥臂采用可调电阻R3,通过调节R3 可以调整输入到运放的差分电压信号大小,通常用于调整零点。
放大电路采用LM358 集成运算放大器,为了防止单级放大倍数过高带来的非线性误差,放大电路采用两级放大,如图 5.1 所示,前一级约为10 倍,后一级约为3倍。
温度在0~100 度变化,当温度上升时,Pt100 阻值变大,输入放大电路的差分信号变大,放大电路的输出电压Av 对应升高。
注意:虽然电桥部分已经经过TL431 稳压,但是整个模块的电压VCC 一定要稳定,否则随着VCC 的波动,运放LM358 的工作电压波动,输出电压Av 随之波动,最后导致A/D 转换的结果波动,测量结果上下跳变。
铂热电阻阻值与温度关系为:式中,A=0.00390802;B=-0.000000580;C=0.0000000000042735。
可见Pt100 在常温0~100摄氏度之间变化时线性度非常好,其阻值表达式可近似简化为:RPt=100(1+At),当温度变化1 摄氏度,Pt100 阻值近似变化0.39 欧。
Pt100 的分度表(0℃~100℃)程序处理一般在使用PT100 的温度采集方案中,都会对放大器LM358 采集来的模拟信号A V进行温度采样,即进行A/D 转换。
A/D 处理包括两方面内容,一是A/D 值的滤波处理,二是A/D 值向实际温度转换。
由于干扰或者电路噪声的存在,在采样过程当中会出现采样信号与实际信号存在偏差的现象,甚至会出现信号的高低波动,为了减小这方面原因造成的测量误差,在实际采样时采样18 个点,然后再除去其中偏差较大的两个点,即一个最大值和一个最小值,再对剩余的16 个点取均值,这样得到的A/D 转换结果比较接近实际值。
pt100温度检测电路
3。
2温度检测电路
温度检测电路主要检测的是Pt100传输的电压信号,采用三线制接法,可分为恒流源电路、桥式检测电路及放大输出电路,其电路图如图3所示。
图3 温度检测电路
3.2。
1恒流源电路
为调高电路的抗干扰能力,采用恒流源为温度检测电路供电,其电路图如图4所示.该电流源利用了稳压管的特性,可通过调节电阻R1获得0。
58mA~11。
96mA的恒定电流。
而由于Pt100在2mA情况下线性度较好,此处调节R1使得恒流源输出2mA.
图4 恒流源电路
3。
2。
2桥式检测电路
桥式检测电路如图5所示。
Pt100在2mA条件下有较好的线性度且温度在0~150℃范围内每升高1℃阻值增加0。
3908Ω。
另外,通过调整电阻R5使Pt100在0℃输出为0V,这样即可根据输出电压值求出相应温度.
图5 桥式检测电路
3.2。
3放大输出电路
由于桥式检测电路输出信号较小,需通过放大电路进行信号放大,其电路如图6所示。
根据电路图可知最终输出电压为
.由于单片机读取模拟量信号范围为0~3V,在假定量程为0~150℃的情况下,温度每增加1℃输出电压增大20mA,因此调节R12为279Ω即可。
图6 放大输出电路。
PT100温度测量电路
电阻温度检测器(RTD)除了用于测量温度的热电偶,仪器仪表工程师经常使用电阻温度检测器或RTD。
这些设备的直流电阻变化(几乎)作为线性温度的函数。
或许其中最常见的是PT100,铂为基础的传感器,其电阻在0℃,正是100欧姆,(见表1)。
由于传感器的温度升高其电阻也是如此,在一个合理的线性方式。
表1显示了一个PT100传感器的电阻随温度的变化。
而温度系数略有不同在一个很宽的温度范围内,(通常为0.0036至0.0042欧姆/ º C),它可以被认为是合理恒定在50或100 º C范围内。
普遍接受的平均温度系数为0.00385欧姆每ºC。
据此,PT100往往可以在不超过这个范围线性化使用提供相应的系数进行评估。
这个装置也能承受的温度范围很广,从-200到800 º C的能力,以及一些应用中的温度系数的变化可以容忍的。
此外,PT100提供了稳定和可重复的温度特性。
对于给定的基极电阻R O,一个RTD电阻在T º C为:或ααooRTRTTTTRTR-=--+=)())(1()(... (1)其中R O是基极电阻对应到T O,(在0 º C 100欧姆)和是温度系数(每º C0.00385Ohms)。
因此,R(100℃)= 138.5欧姆。
这种近似提供了相当良好的温度估计高达约300℃,如图1所示,在此之后,非线性就不言而喻了。
图1。
RTD线性模型与实际特性方程(1)假设,在RTD的非线性特性可以忽略不计,即该设备完全是线性的,而许多应用这种近似是可以接受的,这里需要一个更精确的非线性模型,必须使用,如公式概述( 2)。
))100(1()(32TTCBTATRTRo-+++=(2)其中:A = 3.908E - 3,B = - 5.775E - 7和C = - 4.183E - 12 T <0,C =为T 0> 0。
温度信息可以从一个RTD通过测量其电阻,或者通过应用已知的电流并测量产生的电压,反之亦然。
PT100三线制测量电路
PT100三线制测量电路2007年10月02日星期二下午02:40引言PT100 是一种广泛应用的测温元件,在-50℃~600℃范围内具有其他任何温度传感器无可比拟的优势,包括高精度、稳定性好、抗干扰能力强等。
由于铂热电阻的电阻值与温度成非线性关系,所以本模块需要进行非线性校正,一般的模块采用模拟电路校正,这种校正的精度不高,而且温漂等受干扰的程度也比较大。
本模块采用了软件查表插值的方法进行校正,最后转换成III型信号。
III型信号是当被测信号从下量程到上量程(0%~100%)变化时,输出线上对应4-20mA 电流的变化。
此外模块还具有MODBUS协议的通讯端口,可以直接和任何MODBUS口连接。
图1 采样电路图2 主机电路系统设计整个模块基于AVR新型的Atmega16单片机,采用三线制形式,这样可以去除导线电阻带来的零点不准确,经过差分放大电路直接得到0~5V的信号电压,这样就可以直接输入到A/D转换器。
数据处理部分,将PT100分度表中的每隔10℃的电阻值写入到闪存中,这样,将得到电压值回算到电阻值,这样进行查表,当电阻位于某一段之间时,再进行线性处理,这样系统的线性化程度比较高可以达到0.2%。
D/A转换系统采用373芯片作为锁存器,采用权电阻网络进行D/A转换,这样可以节省成本,而且精度也可以得到保证。
最后再经过一个电压电流转换部分,把信号以III型信号传送出去,完成模块的功能。
图4 V/I转换电路图5 485通讯电路采样电路采样电路如图1所示,PT100以三线制接到J0,这样连接PT100的两侧的导线长度相等,而且分别加在两侧的桥臂上,这样导线电阻得以消除,当 PT100输出100Ω时可以调节R1的阻值,以调整温度下限,当温度范围是0~300℃时,电桥电压经过放大后,Anolog0的电压正好是0~5V, 这样可以完整使用单片机的A/D转换器的转换精度。
主机电路主机电路如图2。
CPU采用Atmega16 ,它自带8路10位A/D转换器,转换速度快,精度高,而且不需要外扩任何器件。
pt100温度测量电路图(电子发烧友)
PT100与热敏电阻相反,热敏电阻温度越高电阻值越小pt100温度测量电路,温度传感器PT100是一种稳定性和线性都比较好的铂丝热电阻传感器,可以工作在 -200℃ 至650℃ 的范围.本电路选择其工作在 -19℃ 至500℃ 范围.整个电路分为两部分,一是传感器前置放大电路,一是单片机 A/D 转换和显示,控制,软件非线性校正等部分.前置放大部分原理图如下:工作原理:传感器的接入非常简单,从系统的 5V 供电端仅仅通过一支 3K92 的电阻就连接到 PT100 了.这种接法通常会引起严重的非线性问题,但是.由于有了单片机的软件校正作为后盾,因此就简化了传感器的接入方式.按照 PT100 的参数,其在0℃ 到500℃ 的区间内,电阻值为 100 至280.9Ω,我们按照其串联分压的揭发,使用公式:Vcc/(PT100+3K92)* PT100 = 输出电压(mV),可以计算出其在整百℃时的输出电压,见下面的表格:温度℃PT100 阻值Ω传感两端电压 mV0 100.00 124.381 100.39 124.850 119.40 147.79100 138.51 170.64150 157.33 192.93200 175.86 214.68250 194.10 235.90300 212.05 256.59350 229.72 276.79400 247.09 296.48450 264.18 315.69单片机的 10 位 A/D 在满度量程下,最大显示为 1023 字,为了得到 PT100 传感器输出电压在显示 500 字时的单片机 A/D 转换输入电压,必须对传感器的原始输出电压进行放大,计算公式为:(500/1023 * Vcc)/传感器两端电压( mV/℃ ) ,(Vcc=系统供电=5V),可以得到放大倍数为 10.466 。
关于放大倍数的说明:有热心的用户朋友询问,按照 (500/1023 * Vcc)/传感器两端电压不能得到 10.466 的结果,而是得到 11.635的结果。
Pt1000热电阻温度测量
1 工作原理本系统可以分为五大部分:热电阻温度采集、运行状态显示、继电器控制、键盘输入、风向步进电机控制。
2.1 热电阻温度采集热电阻传感器以其温度特性稳定、测量精图1 Pt1000热电阻温度测量电路度高的特点,在大型中央空调得到了广泛的应用。
采用Pt1000热电阻作为温度传感器的测量电路原理图如图1 所示。
热电阻Rt 与三个电阻接成电桥。
当温度变化时,使得运算放大器的同相输入端的电位发生变化,经过运算放大器放大之后输入到Atmega16单片机进行AD 转换。
由于单片机采用5V 电压作为ADC 的参考电源,而电桥在温度变化为0~100°C 时,输出电压范围为0~0.7V ,所以确定运算放大电路的放大倍数为7,以获得最佳的测量结果。
运算放大电路的电阻按以下公式确定:71045==iu u R R + 456//R R R =取Ω===860,1,6645R k R k R 。
输出电压变化范围大致是0~5V 。
由于ADC 的转换精度为10,故当输入电压为5V 时,其采样值为1023,根据电桥平衡原理,可得到以下公式:)21(1023750-+•=•t t R R R U N V (1) 其中,N ——ADC 数据寄存器的值,U ——电桥电源电压,0R ——Pt1000在0°C 时的电阻1000Ω。
Pt1000热电阻的阻值按以下公式计算::)1(20t B t A R R t ⋅+⋅+= (2)Rt ——温度为t 时铂热电阻的电阻值,Ω;t ——温度,℃;0R ——Pt1000在0°C 时的电阻1000Ω。
A ——分度常数,A =0.00728B ——分度常数,B =-0.000000626用Visual 根据以上公式(1)、(2)生成用N 来查找温度t 的程序表格,其代码如下:Private Sub Pt1000()Me .Cursor = Cursors.WaitCursortxtTab.Clear()Dim U As Integer = 9 '电桥电源电压'热电阻0度时的电阻值Dim Pt1000_R0 As Integer = 1000Dim n As IntegerDim sngT As SingleDim sngRt As SingletxtTab.AppendText("const float Pt1000Tab[]={" & Chr(13) & Chr(10))For n = 0 To 1023sngRt = (10000 * n + 7161000 * U) / (7161 * U - 10 * n)sngT = (-const_A + Sqrt(const_A ^ 2 - 4 * const_B * (1 - sngRt / Pt1000_R0))) / (2 * const_B) If n < 1023 Then txtTab.AppendText(Format(Abs(sngT), "0.0") & ", /* " & n & " */")Else txtTab.AppendText(Format(Abs(sngT), "0.0") & " /* " & n & " */" & Chr(13)& Chr(10) & "};")End IfIf n Mod 5 = 0 ThentxtTab.AppendText(Chr(13) & Chr(10))End IfNexttxtTab.SelectAll()txtTab.Copy()Me .Cursor = Cursors.DefaultEnd Sub生成的程序常数表格(1024个值)部分如下:const float Pt1000Tab[]={0.0, /* 0 */ 0.1, /* 1 */0.2, /* 2 */0.2,……63.4, /* 696 */63.5, /* 697 */……99.3, /* 1022 */99.4 /* 1023 */};2.2 运行状态显示本系统采用一块16×4的字符型液晶模块,这种类型的LCD应用很广泛,其控制驱动主芯片为HD44780及其扩展驱动芯片HD44100(或兼容芯片),少量阻、容元件,结构件等装配在PCB板上而成。
Pt100铂电阻测温电路-重要
常用电路图R2、R3、R4 和Pt100 组成传感器测量电桥,为了保证电桥输出电压信号的稳定性,电桥的输入电压通过TL431 稳至2.5V。
从电桥获取的差分信号通过两级运放放大后输入单片机。
电桥的一个桥臂采用可调电阻R3,通过调节R3 可以调整输入到运放的差分电压信号大小,通常用于调整零点。
放大电路采用LM358 集成运算放大器,为了防止单级放大倍数过高带来的非线性误差,放大电路采用两级放大,如图 5.1 所示,前一级约为10 倍,后一级约为3倍。
温度在0~100 度变化,当温度上升时,Pt100 阻值变大,输入放大电路的差分信号变大,放大电路的输出电压A v 对应升高。
注意:虽然电桥部分已经经过TL431 稳压,但是整个模块的电压VCC 一定要稳定,否则随着VCC 的波动,运放LM358 的工作电压波动,输出电压A v 随之波动,最后导致A/D 转换的结果波动,测量结果上下跳变。
铂热电阻阻值与温度关系为:式中,A=0.00390802;B=-0.000000580;C=0.0000000000042735。
可见Pt100 在常温0~100摄氏度之间变化时线性度非常好,其阻值表达式可近似简化为:RPt=100(1+At),当温度变化1 摄氏度,Pt100 阻值近似变化0.39 欧。
Pt100 的分度表(0℃~100℃)程序处理一般在使用PT100 的温度采集方案中,都会对放大器LM358 采集来的模拟信号A V进行温度采样,即进行A/D 转换。
A/D 处理包括两方面内容,一是A/D 值的滤波处理,二是A/D 值向实际温度转换。
由于干扰或者电路噪声的存在,在采样过程当中会出现采样信号与实际信号存在偏差的现象,甚至会出现信号的高低波动,为了减小这方面原因造成的测量误差,在实际采样时采样18 个点,然后再除去其中偏差较大的两个点,即一个最大值和一个最小值,再对剩余的16 个点取均值,这样得到的A/D 转换结果比较接近实际值。
实用低成本PT100测温电路两例_V1.0
实用PT100测温电路两例概述PT100铂热电阻是一种常用的温度传感器。
其测温原理是利用了金属铂自身电阻随着温度近乎线性变化的特点。
相较于其他测温元件(热电偶和热敏电阻),PT100铂热电阻的热稳定性好、精度高、漂移小,通常用在-200℃~600℃范围内的精密测温系统中。
PT100测温探头一般有2线、3线和4线这几种引线方式。
3线和4线的引线方式,主要是为了后面的调理电路能修正引线电阻带来的影响。
当然,引线越多,探头价格越贵。
PT100铂热电阻在0℃时是100Ω,当温度每变化1℃,电阻变化约0.385Ω。
如果引线电阻1Ω,那么会引入大约2.56℃的误差。
所以设计时应根据实际情况,选用不同的引线方式。
对于要求不高,引线不长(<0.5米)的系统,此时引线电阻很小,一般几十毫欧,引线电阻引入的误差可以忽略,推荐使用2线方式。
对于引线比较长的系统,引线电阻比较大,而且阻值不可预测,则应使用3线或4线方式。
根据IEC60751标准,PT100铂热电阻的阻值与温度之间关系如下:其中:下表是PT100铂热电阻的温度-电阻速查表:温度℃电阻值Ω温度℃电阻值Ω温度℃电阻值Ω温度℃电阻值Ω-20018.5220107.79240190.47460267.56-18027.1040115.54260197.71480274.29-16035.5460123.24280204.90500280.98-14043.8880130.90300212.05520287.62-12052.11100138.51320219.15540294.21-10060.26120146.07340226.21560300.75-8068.33140153.58360233.21580307.25-6076.33160161.05380240.18600313.71-4084.27180168.48400247.09620320.12-2092.16200175.86420253.96640326.480100.00220183.19440260.78660332.79表1PT100温度-电阻速查表PT100铂热电阻温度采集系统主要有两种实现方式:1.恒流方式,2.电桥方式。
pt100温度测量电路图(电子发烧友)
PT100与热敏电阻相反,热敏电阻温度越高电阻值越小pt100温度测量电路,温度传感器PT100是一种稳定性和线性都比较好的铂丝热电阻传感器,可以工作在 -200℃ 至650℃ 的范围.本电路选择其工作在 -19℃ 至500℃ 范围.整个电路分为两部分,一是传感器前置放大电路,一是单片机 A/D 转换和显示,控制,软件非线性校正等部分.前置放大部分原理图如下:GAGGAGAGGAFFFFAFAF传感器的接入非常简单,从系统的 5V 供电端仅仅通过一支3K92 的电阻就连接到 PT100 了.这种接法通常会引起严重的非线性问题,但是.由于有了单片机的软件校正作为后盾,因此就简化了传感器的接入方式.按照 PT100 的参数,其在0℃ 到500℃ 的区间内,电阻值为 100 至280.9Ω,我们按照其串联分压的揭发,使用公式:Vcc/(PT100+3K92)* PT100 = 输出电压(mV),可以计算出其在整百℃时的输出电压,见下面的表格:GAGGAGAGGAFFFFAFAF单片机的 10 位 A/D 在满度量程下,最大显示为 1023 字,为了得到 PT100 传感器输出电压在显示 500 字时的单片机 A/D 转换输入电压,必须对传感器的原始输出电压进行放大,计算公式为:(500/1023 * Vcc)/传感器两端电压( mV/℃ ) ,(Vcc=系统供电=5V),可以得到放大倍数为 10.466 。
关于放大倍数的说明:有热心的用户朋友询问,按照(500/1023 * Vcc)/传感器两端电压不能得到 10.466 的结果,而是得到 11.635的结果。
实际上,500 个字的理想值GAGGAGAGGAFFFFAFAF是无法靠电路本身自然得到的,自然得到的数字仅仅为 450 个字,因此,公式中的500℃ 在实际计算时的取值是 450 而不是 500 。
450/1023*5/(0.33442-0.12438)≈10.47 。
最新pt100温度传感器测量电路
p t100温度传感器测量电路pt100温度传感器测量电路温度传感器PT100是一种稳定性和线性都比较好的铂丝热电阻传感器,可以工作在 -200℃至 650℃的范围.本电路选择其工作在 -19℃至500℃范围.整个电路分为两部分,一是传感器前置放大电路,一是单片机 A/D 转换和显示,控制,软件非线性校正等部分.前置放大部分原理图如下:工作原理:传感器的接入非常简单,从系统的 5V 供电端仅仅通过一支 3K92 的电阻就连接到 PT100 了.这种接法通常会引起严重的非线性问题,但是.由于有了单片机的软件校正作为后盾,因此就简化了传感器的接入方式.按照 PT100 的参数,其在 0℃到 500℃的区间内,电阻值为 100 至280.9Ω,我们按照其串联分压的揭发,使用公式:Vcc/(PT100+3K92)* PT100 = 输出电压(mV),可以计算出其在整百℃时的输出电压,见下面的表格:温度℃PT100 阻值Ω传感两端电压 mV0100.00124.381100.39124.850119.40147.79100138.51170.64150157.33192.93200175.86214.68250194.10235.90单片机的 10 位 A/D 在满度量程下,最大显示为 1023 字,为了得到 PT100 传感器输出电压在显示 500 字时的单片机 A/D 转换输入电压,必须对传感器的原始输出电压进行放大,计算公式为:(500/1023 * Vcc)/传感器两端电压( mV/℃ ) ,(Vcc=系统供电=5V),可以得到放大倍数为 10.466 。
关于放大倍数的说明:有热心的用户朋友询问,按照 (500/1023 * Vcc)/传感器两端电压不能得到 10.466 的结果,而是得到 11.635的结果。
实际上,500 个字的理想值是无法靠电路本身自然得到的,自然得到的数字仅仅为 450 个字,因此,公式中的 500℃在实际计算时的取值是 450 而不是 500 。
Pt100铂电阻测温电路(稳定版)
常用电路图R2、R3、R4 和Pt100 组成传感器测量电桥,为了保证电桥输出电压信号的稳定性,电桥的输入电压通过TL431 稳至2.5V。
从电桥获取的差分信号通过两级运放放大后输入单片机。
电桥的一个桥臂采用可调电阻R3,通过调节R3 可以调整输入到运放的差分电压信号大小,通常用于调整零点。
放大电路采用LM358 集成运算放大器,为了防止单级放大倍数过高带来的非线性误差,放大电路采用两级放大,如图 5.1 所示,前一级约为10 倍,后一级约为3倍。
温度在0~100 度变化,当温度上升时,Pt100 阻值变大,输入放大电路的差分信号变大,放大电路的输出电压Av 对应升高。
注意:虽然电桥部分已经经过TL431 稳压,但是整个模块的电压VCC 一定要稳定,否则随着VCC 的波动,运放LM358 的工作电压波动,输出电压Av 随之波动,最后导致A/D 转换的结果波动,测量结果上下跳变。
铂热电阻阻值与温度关系为:式中,A=0.00390802;B=-0.000000580;C=0.0000000000042735。
可见Pt100 在常温0~100摄氏度之间变化时线性度非常好,其阻值表达式可近似简化为:RPt=100(1+At),当温度变化1 摄氏度,Pt100 阻值近似变化0.39 欧。
Pt100 的分度表(0℃~100℃)程序处理一般在使用PT100 的温度采集方案中,都会对放大器LM358 采集来的模拟信号A V进行温度采样,即进行A/D 转换。
A/D 处理包括两方面内容,一是A/D 值的滤波处理,二是A/D 值向实际温度转换。
由于干扰或者电路噪声的存在,在采样过程当中会出现采样信号与实际信号存在偏差的现象,甚至会出现信号的高低波动,为了减小这方面原因造成的测量误差,在实际采样时采样18 个点,然后再除去其中偏差较大的两个点,即一个最大值和一个最小值,再对剩余的16 个点取均值,这样得到的A/D 转换结果比较接近实际值。
PT100测温电路
文件编号:INVT0_013_0008_CBB_01CBB规范PT100测温电路(VER:V1.0)拟制:时间:2009-09-05批准:时间:文件评优级别:□A优秀□B良好□C一般1 功能介绍PT100是铂电阻温度传感器,他适用于-60℃到400℃之间的温度,因其测量范围大,线性度好,稳定性强等特点而被广泛使用。
铂电阻温度传感器是利用金属铂在温度变化时自身电阻值也随之改变的特性来测量温度的,当被测介质中存在温度梯度时,所测得的温度是感温元件所在范围内介质层中的平均温度。
2 详细原理图+3.3+15-15+3.3-15+15+3.3AI5-AD恒流源1mAPT100 从-150至+150度阻值39.72-157.33欧PT1000 从-150到+150度阻值397.2-1573.3欧PT100+电压范围0.78V-3.14VPT100 : 拨码开关断开 放大20倍 PT1000:拨码开关选通 放大2 倍+-U1B TL08256784CN1CON212T11PIN1T21PIN1C10.1uC30.1u+-U2ATL08232184D1123C40.1uC61n/2kV+-U1A TL08232184R3 3.3k +-U2B TL08256784C50.1uC20.1uD2123R9100kR4100kR82kR71kR62k R1051kR251k R151kR111k R121kR1418kR1318k SW1SW DIP-112R551k图1 PT100电路原理图为了把PT100的温度变化的电阻信号转换成电压信号以方便微处理器测量,通过恒流源电路将PT100电阻信号转换为电压信号,再经过放大及A/D 转换后送微处理器进行处理。
3 器件功能图1中虚线方框内是产生1mA 的恒流源;二极管D1、D2为箝位作用,将电压限制在0V ~+3.3V ,保护运算放大器的安全工作电压; U2A 为电压跟随器; U2B 为同相输入运算放大器; 4 参数计算1) 恒流源电流计算图1中虚线方框内恒流源是正反馈平衡式,由于负载接地而受到人们的喜爱,使用中也可以把电阻R1取的比负载大的多,而省略跟随器运放。
Pt100铂电阻测温电路(稳定版)
常用电路图R2、R3、R4 和Pt100 组成传感器测量电桥,为了保证电桥输出电压信号的稳定性,电桥的输入电压通过TL431 稳至2.5V。
从电桥获取的差分信号通过两级运放放大后输入单片机。
电桥的一个桥臂采用可调电阻R3,通过调节R3 可以调整输入到运放的差分电压信号大小,通常用于调整零点。
放大电路采用LM358 集成运算放大器,为了防止单级放大倍数过高带来的非线性误差,放大电路采用两级放大,如图 5.1 所示,前一级约为10 倍,后一级约为3倍。
温度在0~100 度变化,当温度上升时,Pt100 阻值变大,输入放大电路的差分信号变大,放大电路的输出电压Av 对应升高。
注意:虽然电桥部分已经经过TL431 稳压,但是整个模块的电压VCC 一定要稳定,否则随着VCC 的波动,运放LM358 的工作电压波动,输出电压Av 随之波动,最后导致A/D 转换的结果波动,测量结果上下跳变。
铂热电阻阻值与温度关系为:式中,A=0.00390802;B=-0.000000580;C=0.0000000000042735。
可见Pt100 在常温0~100摄氏度之间变化时线性度非常好,其阻值表达式可近似简化为:RPt=100(1+At),当温度变化1 摄氏度,Pt100 阻值近似变化0.39 欧。
Pt100 的分度表(0℃~100℃)程序处理一般在使用PT100 的温度采集方案中,都会对放大器LM358 采集来的模拟信号A V进行温度采样,即进行A/D 转换。
A/D 处理包括两方面内容,一是A/D 值的滤波处理,二是A/D 值向实际温度转换。
由于干扰或者电路噪声的存在,在采样过程当中会出现采样信号与实际信号存在偏差的现象,甚至会出现信号的高低波动,为了减小这方面原因造成的测量误差,在实际采样时采样18 个点,然后再除去其中偏差较大的两个点,即一个最大值和一个最小值,再对剩余的16 个点取均值,这样得到的A/D 转换结果比较接近实际值。
PT100四线制测温电路
『电阻式温度检测器』(RTD,Resistance Temperature Detector)-一种物质材料作成的电阻,它会随温度的上升而改变电阻值,如果它随温度的上升而电阻值也跟著上升就称为正电阻係数,如果它随温度的上升而电阻值反而下降就称为负电阻系数。
大部分电阻式温度检测器是以金属作成的,其中以白金(Pt)作成的电阻式温度检测器,最为稳定-耐酸碱、不会变质、相当线性...,最受工业界采用。
PT100温度感测器是一种以白金(Pt)作成的电阻式温度检测器,属于正电阻系数,其电阻和温度变化的关系式如下:R=Ro(1+αT)其中α=0.00392,Ro为100Ω(在0℃的电阻值),T为摄氏温度因此白金作成的电阻式温度检测器,又称为PT100。
1:Vo=2.55mA ×100(1+0.00392T)=0.255+T/1000 。
2:量测Vo时,不可分出任何电流,否则量测值会不準。
电路分析由于一般电源供应较多零件之后,电源是带杂讯的,因此我们使用齐纳二极体作为稳压零件,由于7.2V齐纳二极体的作用,使得1K电阻和5K可变电阻之电压和为6.5V,靠5K可变电阻的调整可决定电晶体的射(集极)极电流,而我们须将集极电流调为2.55mA,使得量测电压V如箭头所示为0.255+T/1000。
其后的非反向放大器,输入电阻几乎无限大,同时又放大10倍,使得运算放大器输出为2.55+T/100。
6V齐纳二极体的作用如7.2V齐纳二极体的作用,我们利用它调出2.55V,因此电压追随器的输出电压V1亦为2.55V。
其后差动放大器之输出为Vo=10(V2-V1)=10(2.55+T/100-2.55)=T/10,如果现在室温为25℃,则输出电压为2.5V。
相关文章: 铂电阻测温电路的线性化设计方法摘要:介绍一种基于A/D转换原理的铂电阻测温的非线性校正方法,分析了铂电阻线性测温的原理,并给出了A/D转换器7135与单片机89C51接口电路及试验数据。
PT100三线制测量电路
PT100三线制测量电路引言PT100 是一种广泛应用的测温元件,在-50℃~600℃范围内具有其他任何温度传感器无可比拟的优势,包括高精度、稳定性好、抗干扰能力强等。
由于铂热电阻的电阻值与温度成非线性关系,所以本模块需要进行非线性校正,一般的模块采用模拟电路校正,这种校正的精度不高,而且温漂等受干扰的程度也比较大。
本模块采用了软件查表插值的方法进行校正,最后转换成III型信号。
III型信号是当被测信号从下量程到上量程(0%~100%)变化时,输出线上对应4-20mA 电流的变化。
此外模块还具有MODBUS协议的通讯端口,可以直接和任何MODBUS口连接。
系统设计整个模块基于AVR新型的Atmega16单片机,采用三线制形式,这样可以去除导线电阻带来的零点不准确,经过差分放大电路直接得到0~5V的信号电压,这样就可以直接输入到A/D转换器。
数据处理部分,将PT100分度表中的每隔10℃的电阻值写入到闪存中,这样,将得到电压值回算到电阻值,这样进行查表,当电阻位于某一段之间时,再进行线性处理,这样系统的线性化程度比较高可以达到0.2%。
D/A转换系统采用373芯片作为锁存器,采用权电阻网络进行D/A转换,这样可以节省成本,而且精度也可以得到保证。
最后再经过一个电压电流转换部分,把信号以III型信号传送出去,完成模块的功能。
图1 采样电路采样电路采样电路如图1所示,PT100以三线制接到J0,这样连接PT100的两侧的导线长度相等,而且分别加在两侧的桥臂上,这样导线电阻得以消除,当PT100输出100Ω时可以调节R1的阻值,以调整温度下限,当温度范围是0~300℃时,电桥电压经过放大后,Anolog0的电压正好是0~5V, 这样可以完整使用单片机的A/D转换器的转换精度。
图2 主机电路主机电路如图2。
CPU采用Atmega16 ,它自带8路10位A/D转换器,转换速度快,精度高,而且不需要外扩任何器件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PT100与热敏电阻相反,热敏电阻温度越高电阻值越小
pt100温度测量电路,温度传感器PT100是一种稳定性和线性都比较好的铂丝热电阻传感器,可以工作在 -200℃ 至650℃ 的范围.本电路选择其工作在 -19℃ 至500℃ 范围.
整个电路分为两部分,一是传感器前置放大电路,一是单片机 A/D 转换和显示,控制,软件非线性校正等部分.
前置放大部分原理图如下:
工作原理:
传感器的接入非常简单,从系统的 5V 供电端仅仅通过一支 3K92 的电阻就连接到 PT100 了.这种接法通常会引起严重的非线性问题,但是.由于有了单片机的软件校正作为后盾,因此就简化了传感器的接入方式.
按照 PT100 的参数,其在0℃ 到500℃ 的区间内,电阻值为 100 至280.9Ω,我们按照其串联分压的揭发,使用公式:
Vcc/(PT100+3K92)* PT100 = 输出电压(mV),可以计算出其在整百℃时的输出电压,见下面的表格:
温度℃PT100 阻值Ω传感两端电压 mV
0 100.00 124.38
1 100.39 124.8
50 119.40 147.79
100 138.51 170.64
150 157.33 192.93
200 175.86 214.68
250 194.10 235.90
300 212.05 256.59
350 229.72 276.79
400 247.09 296.48
450 264.18 315.69
单片机的 10 位 A/D 在满度量程下,最大显示为 1023 字,为了得到 PT100 传感器输出电压在显示 500 字时的单片机 A/D 转换输入电压,必须对传感器的原始输出电压进行放大,计算公式为:(500/1023 * Vcc)/传感器两端电压( mV/℃ ) ,(Vcc=系统供电=5V),可以得到放大倍数为 10.466 。
关于放大倍数的说明:有热心的用户朋友询问,按照 (500/1023 * Vcc)/传感器两端电压不能得到 10.466 的结果,而是得到 11.635
的结果。
实际上,500 个字的理想值是无法靠电路本身自然得到的,自然得到的数字仅仅为 450 个字,因此,公式中的500℃ 在实际计算时的取值是 450 而不是 500 。
450/1023*5/(0.33442-0.12438)≈10.47 。
其实,计算的方法有多种,关键是要按照传感器的mV/℃ 为依据而不是以被测温度值为依据,我们看看加上非线性校正系数:10.47*1.1117=11.639499 ,这样,热心朋友的计算结果就吻合了。
运算放大器分为两级,后级固定放大 5 倍(原理图中 12K/3K+1=5),前级放大为:10.465922/5=2.0931844 倍,为了防止调整时的元器件及其他偏差,使用了一只精密微调电位器对放大倍数进行细调,可以保证比较准确地调整到所需要的放大倍数(原理图中
10K/(8K2+Rw)+1)。
通常,在温度测量电路里,都会有一个“调零”和另一个“调满度”电位器,以方便调整传感器在“零度”及“满度”时的正确显示问题。
本电路没有采用两只电位器是因为只要“零度”调整准确了,就可以保证整个工作范围的正确显示,当然也包括满度时的最大显示问题了。
那么,电路中对“零度”是如何处理的呢?它是由单片机程序中把这个“零度”数字直接减掉就是了,在整个工作范围内,程序都会自动减掉“零度”值之后再作为有效数值来使用。
当供电电压发生偏差后,是否会引起传感器输入的变化进而影响准确度呢?供电变化后,必然引起流过传感器的电流发生变化,也就会使传感器输出电压发生变化。
可是,以此同时,单片机的供电也是在同步地接受到这种供电变化的,当单片机的 A/D 基准使用供电电压时,就意味着测量基准也在同步同方向发生变化,因此,只要参数选择得当,系统供电的变化在 20% 之内时,就不会影响测量的准确度。
(通常单片机系统并不允许供电有过大的变化,这不仅仅是在温度测量电路中的要求。
)
后级单片机电路的原理图如下:
从传感器前置放大电路输出的信号,就送入到 HT46R23 的 A/D 转换输入端口(PB0/AN0),由单片机去进行各种必需的处理。
首先是进行软件非线性校正,把输入信号按照不同的温度值划分为不同段,再根据其所在的段分别乘以不同的补偿系数,令其与理论值尽量接近,经过非线性校正的数字,才被送去进行显示,比较用户设定的控制值等等。
各段的非线性补偿系数见下列表格(仅仅列出主要段的数据,非全部表格内容):
传感电压mV/℃内部AD读
数
校正系数
124.3781 供电电阻=3K92±1%,供电电压
=5.000V±1%
124.8450 0.4670 1.00 1.0000 147.7942 0.4683 50.14 0.9972 170.6414 0.4626 99.06 1.0095 192.9326 0.4570 146.80 1.0218 214.6802 0.4515 193.36 1.0343 235.8961 0.4461 238.79 1.0469 256.5918 0.4407 283.11 1.0597 276.7898 0.4355 326.36 1.0724 296.4779 0.4302 368.52 1.0854
本电路还有一个特点,就是用户可以在工作范围内,任意设定 3 个超限控制值。
当测量显示值大于设定值的时候,对应的控制端口就会输出高电平。
利用这个高电平信号,再外接一级三极管驱动继电器的电路,就可以实现自动控制。
在某一个控制端口输出高电平的同时,与之串联的 LED 发光管会同时点亮,以便提示使用者是哪一个设定值在输出控制信号。
电路中的 24C02 是电存储器,可以把使用者设定的控制值可靠地保存起来,即使掉电也不会丢失数据。
电路图中还有 3 只按键,它们分别是“设定”、“加置数”和“减置数”操作按键,用于使用者进行超限值的设置。
使用方法如下:
按动一下设定键,屏幕显示“1--”,表示现在进入第一个超限值的设置,三秒后屏幕自动跳转到显示“***”并闪烁(*** 代表原来电存储器里储存的超限数值),然后,按压加数键(或减数键),屏幕上的最低位的数字就会加一(或减一),如果按住按键三秒以上不放开,屏幕上的前两位数字就会快速进行加数(或减数)。
把屏幕上的数字调整到所需要的数字后,这个超限值就设置完成了。
接着,再按动一下设定键屏幕显示“2--”,表示现在进入第二个超限值的设置,三秒后屏幕自动跳转到显示“***”并闪烁....,接下来的操作与第一个超限值的操作完全一样。
第三个超限值的设置与上面两个完全一样。
当设置好 3 个超限值之后,还必须最后按动一下设定键,退出设定状态而返回正常工作状态。
如果忘记了这最后一次按动退出的操作,程序就会等待 10 秒之后,自动返回正常工作状态。
简易调试方法:
可以使用100Ω 的电阻来模拟 PT100 在 0℃ 的阻值,接入传感器输入端,看看显示是否 =000,如果不对,可以调整微调电位器来达到;然后用一只281Ω 的电阻来模拟 PT100 在500℃ 时传感器的电阻值,显示应该在 500 字±1字;最后,使用一只194Ω 的电阻来代替250℃ 传感器电阻输入,应该显示250±1 字.如果经过上面调试没有问题,就可以接入真正的 PT100 传感器投入使用了.(真正的传感器也有误差,可以微调一下前置放大的电位器来校正它。
)
在实际工作中,要求电路的供电电压为5V±5%.如果测量显示值大于某一个超限值,对应的控制端口就会立即输出高电平。
如果传感器发生开路故障,显示就会出现"HHH",如果传感器及其引线发生了短路,显示就会立即出现"LLL".为了防止传感器出现开路或者短路之后可能会引起的不良后果,这时候,3 个控制输出端口都会优先关闭。