统计学计算题
统计学计算题
解:基期总平均成本=1800120018007001200600+⨯+⨯=660报告期总平均成本=1600240016007002400600+⨯+⨯=640总平均成本下降的原因是该公司产品的生产结构发生了变化,即成本较低的甲企业产量占比上升而成本较高的乙企业产量占比相应下降所致。
2.某商贸公司从产地收购一批水果,分等级的收购价格和收购进入如下, (元)收购总量收购总额6268.130.1832060.11664000.21270083201664012700)()(11=++++=∑∑====k i ii i ki i i X f X f X X 3.某中学正在准备给一年级新生定制校服。
男生校服分小号、中号和大号三种规格,分别适合于身高在160cm 以下、160~168cm 之间和168cm 以上的男生。
一直一年级 新生中有1200名男生,估计他们身高的平均数为164cm ,标准差为4cm 。
试由此粗 略估计三种规格男生校服分别准备多少套?解:均值=164;标准差=4;总人数=1200身高分布通常为钟形分布,按经验法则近似估计:规格 身高 分布范围 比重 数量(套)小号 160以下0.15865 190.38 中号 160-168 均值±1*标准差0.6827 819.24 大号168以上0.15865190.38合计 12004. 根据长期实验,飞机的最大飞行速度服从正态分布。
先对某新型飞机进行了 15次试飞,测得各次试飞时的最大飞行速度(单位:米/秒)为: 422.2 417.2 425.6 425.8 423.1 418.7 428.2 438.3 434.0 412.3 431.5 413.5 441.3 423.0 420.3试对该飞机最大飞行速度的数学期望值进行区间估计。
(置信概率0.95) 解:样本平均数 X=425, S 2n-1=72.049, S 14=8.488XS 2.19161510.05/2()t -=2.1448∆==/2t α=2.1448×2.1916=4.7005所求μ的置信区间为:425-4.70<μ<425+4.7t0,即(420.30,429.70)。
统计学计算题
计算题部分:知识点四:统计综合指标1、某局所属企业某年下半年产值资料如下:试通过计算填写表中空缺2、现有某市国内生产总值资料如下,通过计算填写表中空缺。
(单位:亿元)(2)计算标准差(3)计算方差要求:(1)比较哪个企业职工年龄偏高(2)比较哪个企业职工平均年龄更具代表性5、某年某月某企业按工人劳动生产率分组资料如下:6、某企业生产产品需要依次经过四道工序,加工一批300件产品的资料如下:要求:计算各道工序的平均合格率7、甲、乙两企业工人有关资料如下:要求:(1)比较哪个企业职工工资偏高(2)比较哪个企业职工平均工资更具代表性试计算该行发行的全部债券的年平均利率10、甲、乙两钢铁生产企业某月上旬的钢材供货量资料如下:11、某校甲、乙两班学生的统计学原理考试成绩分组情况如下:要求:(1)计算各班学生的平均成绩(2)通过计算说明哪个班学生平均成绩的代表性强1213、设甲乙两公司进行招员考试,甲公司用百分制记分,乙公司用五分制记分,有关资料如下表所示:知识点五:时间数列及动态分析3、某储蓄所1996—2001年年末存款余额资料如下:(2)预测2004年存款余额将达到多少4、1997—2002年某企业职工人数和非生产人数资料如下:试计算该企业1997—2002年非生产人员占全部职工人数的平均比重6、某年上半年某市副食品公司商品销售额资料如下:(2)计算上半年平均计划完成程度(2)计算四年平均工业增加值占国内生产总值的比重(2)用最小平方法配合直线趋势方程11、试通过计算填写表中所缺的环比动态指标:知识点六:统计指数(2)编制产量总指数、计算由于产量变动而增减的产值(3)编制出厂价格总指数,计算由于价格变动而增减的产值(2)计算销售量总指数(3)对总销售额的变动进行因素分析(2)三种商品价格及销售量的综合变动指数(3)由于价格提高和销售量的增加各使销售额增加多少?4、某企业总产值及产量增长速度资料如下:(2)物价总指数(3)由于物价变动所引起的总产值的增加或减少额(2)销售量总指数以及由于销售量变动对销售额的影响7、某商店出售三种商品,资料如下:8、某商店出售三种商品,资料如下:试计算价格总指数11、某工业企业生产甲、乙两种产品,基期和报告期的产量、单位产品成本和出厂价格资料如下:试计算:(1)以单位成本为同度量因素的产量总指数;(2)单位成本总指数;(3)对总成本进行两因素分析。
统计学计算题汇总
第二章六、计算题.1.下面是某公司工人月收入水平分组情况和各组工人数情况:月收入(元)工人数(人)400-500 20500-600 30600-700 50700-800 10800-900 10指出这是什么组距数列,并计算各组的组中值和频率分布状况。
答:闭口等距组距数列,属于连续变量数列,组限重叠。
各组组中值及频率分布如下:2.抽样调查某省20户城镇居民平均每人全年可支配收入(单位:百元)如下:88 77 66 85 74 92 67 84 77 94 58 60 74 64 75 66 78 55 70 66⑴根据上述资料进行分组整理并编制频数分布数列⑵编制向上和向下累计频数、频率数列答:⑴⑵某省20户城镇居民平均每人全年可支配收入分布表第三章六、计算题.⒈某企业生产情况如下:要求:⑴填满表内空格.⑵对比全厂两年总产值计划完成程度的好坏。
解:⑴某企业生产情况如下:单位:(万元)⑵该企业2005年的计划完成程度相对数为110.90%,而2006年只有102.22%,所以2005年完成任务程度比2006好。
⒉某工厂2006年计划工业总产值为1080万吨,实际完成计划的110%,2006年计划总产值比2005年增长8%,试计算2006年实际总产值为2005年的百分比?解:118.8%3.某种工业产品单位成本,本期计划比上期下降5%,实际下降了9%,问该种产品成本计划执行结果?解:95.79%4.我国“十五”计划中规定,到“十五”计划的最后一年,钢产量规定为7200万吨,假设“八五”期最后两年钢产量情况如下:(万吨)根据上表资料计算:⑴钢产量“十五”计划完成程度;⑵钢产量“十五”计划提前完成的时间是多少?解:⑴102.08%;⑵提前三个月5.某城市2005年末和2006年末人口数和商业网点的有关资料如下:计算:⑴平均每个商业网点服务人数;⑵平均每个商业职工服务人数;⑶指出是什么相对指标。
解: 某城市商业情况⑶上述两个指标是强度相对指标。
统计学计算习题
第四章六、计算题工资更具有代表性。
1、(1) 430025500267x f x f⨯+⨯+===∑∑甲工资总额总人数3002%5008%7003%fx x f=⋅=⨯+⨯+⨯+∑∑乙(2) 计算变异系数比较 σ=甲 σ乙 V x σσ=甲甲甲V x σσ=乙乙乙根据V σ甲、V σ乙大小判断,数值越大,代表性越小。
假定生产条件相同,试研究这两个品种的收获率,确定那一个品种具有稳定性和推广价值。
2、(1) 收获率(平均亩产)2430528.254.8x ===甲总产量总面积 22505004.5x ==乙 (2) 稳定性推广价值(求变异指标)σ=甲σ=乙求V σ甲、V σ乙,据此判断。
8.某地20个商店,1994年第四季度的统计资料如下表4-6。
试计算(1)该地20个商店平均完成销售计划指标 (2)该地20个商店总的流通费用率 (提示:流通费用率=流通费用/实际销售额) 8、(1) ()101%1%ff x ===⨯∑∑20实际销售额计划销售额实际销售额计划完成(2) 据提示计算:2012.7%x =13、提示:=销售额平均价格销售量(2)平均一级品率。
14、(1) ()%=实际产量产量平均计划完成计划产量(2) ()%⨯==实际一级品实际产量一级品率平均一级品率实际产量实际产量15.某生产小组有36名工人,每人参加生产的时间相同,其中有4人每件产品耗时5分钟,20人每件耗时8分钟,12人每件耗时10分钟。
试计算该组工人平均每件产品耗时多少分钟?如果每人生产的产品数量相同,则平均每件产品耗时多少分钟?15、(1) 设时间为t ,36124201058tt t t==⨯+⨯+⨯总时间每件平均耗时总产量(2) 设产品数量为a ,45208121036a a aa⨯+⨯⨯+⨯⨯=每件平均耗时16.为了扩大国内居民需求,银行为此多次降低存款利润,近5年年利润率分别为7%、5%、4%、3%、2%,试计算在单利和复利情况下5年的平均年利率。
统计学计算题
统计学计算题1. 某企业生产的A 、B两种产品的产量及产值资料如下:产品总产值(万元)产量的环比发展速度(%)基期报告期A B 400600580760110100★标准答案:2. 某厂生产的三种产品的有关资料如下:产品名称产量单位产品成本基期报告期基期报告期甲10001200108乙500050004丙1500200087要求:计算三种产品的成本总指数以及由于单位产品成本变动使总成本使总成本变动的绝★标准答案:产品成本指数=由于单位产品成本变动使总成本使总成本变动的绝对额;(-)=461000-48000=-1900(万元)3. 某企业本月分三批购进某种原材料,已知每批购进的价格及总金额如下:购进批次价格(元/吨)总金额(元)一二三200190205160001900028700★标准答案:4. 某厂三个车间一季度生产情况如下:第一车间实际产量为200件,完成计划95%;第二车间实际产量280件,完成计划100%;第三车间实际产量650件,完成计划105%,请问★标准答案:平均计划完成程度☆考生答案:解:三个车间总的计划产量=200/95%+280/100%+650/105%=1110(件)三个车间总的实际产量=200+280+650=1130(件)三个车间产品产量的平均计划完成程度=1130/1110*100%=%5. 三种商品的销售额及价格资料如下:商品销售额(万元)报告期价格比基期增(+)或减(-)的%基期报告期甲乙丙5070809010060+10+8-4合计200250—★标准答案:6. 某公司下属三个企业上季度生产计划完成情况及一级品率资料如下:企业计划产量(件)计划完成(%)实际一级品率(%)甲乙丙50034025010310198969895根据资料计算:(1)产量计划平均完成百分比;★标准答案:☆考生答案:解:(1)计划平均完成百分比=(500*+340*+250*)/(500+340+250)*100%=% (2)平均一级品率=(500**+340**+250**)/(500*+340*+250*)*100%=%7. 某商店主要商品价格和销售额资料如下:商品计量单位价格本月销售额(万元)上月本月甲乙丙件台套1005060110486311024★标准答案:8. 某市场上某种蔬菜早市每斤元,中午每斤元,晚市每斤元,现在早、中、晚各买一元,★标准答案:.平均价格H==(元)☆考生答案:解:购买的总斤数=1/+1/+1/=19(斤)平均价格=(1+1+1)/19=(元/斤)9. 某商店出售某种商品第一季度价格为元,第二季度价格为元,第三季度为6元,第四季度为元,已知第一季度销售额3150元,第二季度销售额3000元,第三季度销售额5400元,★标准答案:☆考生答案:解:平均价格=(3150+3000+5400+4650)/(3150/+3000/+5400/6+4650/)=(元)10. 某厂生产某种机床配件,要经过三道工序,各加工工序的合格率分别为%,%,%。
统计学计算题整理
:典型计算题一1、某地区销售某种商品的价格和销售量资料如下:根据资料计算三种规格商品的平均销售价格。
解:(元)点评:第一,此题给出销售单价和销售量资料,即给出了计算平均指标的分母资料,所以需采用算术平均数计算平均价格.第二,所给资料是组距数列,因此需计算出组中值。
采用加权算术平均数计算平均价格.第三,此题所给的是比重权数,因此需采用以比重形式表示的加权算术平均数公式计算.2、某企业1992年产值计划是1991年的105%,1992年实际产值是1991的的116%,问1992年产值计划完成程度是多少?解:.即1992年计划完成程度为110%,超额完成计划10%。
点评:此题中的计划任务和实际完成都是“含基数"百分数,所以可以直接代入基本公式计算。
3、某企业1992年单位成本计划是1991年的95%,实际单位成本是1991年的90%,问1992年单位成本计划完成程度是多少?解:计划完成程度。
即92年单位成本计划完成程度是94。
74%,超额完成计划5。
26%.点评:本题是“含基数”的相对数,直接套用公式计算计划完成程度。
4、某企业1992年产值计划比91年增长5%,实际增长16%,问1992年产值计划完成程度是多少?解:计划完成程度点评:这是“不含基数”的相对数计算计划完成程度,应先将“不含基数”的相对数还原成“含基数"的相对数,才能进行计算。
5、某企业1992年单位成本计划比1991年降低5%,实际降低10%,问1992年单位成本降低计划完成程度是多少?解:计划完成程度点评:这是“不含基数”的相对数计算计划完成程度,应先将“不含基数”的相对数还原成“含基数”的相对数,才能进行计算。
6、某企业产值计划完成103%,比上期增长5%,问产值计划规定比上期增加多少?解:103%=105%÷(1+x)x=1。
9%即产值计划规定比上期增加1.9%.点评:计划完成程度=103%,实际完成相对数=105%,设产值计划规定比上期增加x,则计划任务相对数=1+x,根据基本关系推算出x。
统计学计算题例题
第四章1。
某企业1982年12月工人工资的资料如下:要求:(1)计算平均工资;(79元)(2)用简捷法计算平均工资。
2. 某企业劳动生产率1995年比1990年增长7%,超额完成计划2%,试确定劳动生产率计划增长数。
7%-2%=5%3. 某厂按计划规定,第一季度的单位产品成本比去年同期降低8%。
实际执行结果,单位产品成本较去年同期降低4%。
问该厂第一季度产品单位成本计划的完成程度如何?104.35%((1—4%)/(1—8%)*100%=96%/92%*100%=104。
35%结果表明:超额完成4。
35%(104.35%—100%))4. 某公社农户年收入额的分组资料如下:要求:试确定其中位数及众数。
中位数为774.3(元)众数为755。
9(元)求中位数:先求比例:(1500—720)/(1770—720)=0.74286分割中位数组的组距:(800—700)*0。
74286=74.286加下限700+74。
286=774。
286求众数:D1=1050-480=570D2=1050—600=450求比例:d1/(d1+d2)=570/(570+450)=0.55882分割众数组的组距:0。
55882*(800—700)=55.882加下限:700+55.882=755.8825.1996年某月份某企业按工人劳动生产率高底分组的生产班组数和产量资料如下:.64。
43(件/*140+85*60)/)6。
根据表中资料计算中位数和众数.中位数为733。
33(元)众数为711.11(元)求中位数:先求比例:(50—20)/(65—20)=0。
6667分割中位数组的组距:(800-600)*0.6667=66。
67 加下限:600+66.67=666。
677.某企业产值计划完成103%,比去年增长5%。
试问计划规定比去年增长 多少?1.94%(上年实际完成1。
03/1.05=0.981 本年实际计划比上年增长(1—0。
《统计学》计算题
计算题1、某班学生统计学考试成绩(分)如下:93 50 78 85 66 71 63 83 52 95 78 72 85 78 82 90 80 55 95 67 72 85 77 70 90 7076 69 58 89 80 61 67 99 89 63 78 74 82 88 98 62 81 24 76 86 73 83 85 81要求:(1)根据资料编制组距数列。
(2)计算两种累计人数,并回答60分以下及80分以上的人数是多少。
2、某百货公司连续40天的商品销售额(单位:万元)如下:41 25 29 47 38 34 30 38 43 40 46 36 45 37 37 36 45 43 33 44 35 28 46 34 30 3744 26 38 44 42 36 37 37 49 39 42 32 36 35要求:根据上面的数据进行适当分组,编制频数分布表。
4、某班15名学生的月消费如下(单位:元):400、450、500、400、500、600、650、300、1200、550、500、600、1300、1000、800。
要求进行统计频率累计。
5、某校55名教师月工资如下(单位:元):2000以下1人,2000—2500有16人,2500——2800有14人,2800—3300有19人,3300以上有5人。
要求进行统计频率累计。
6、某企业有30名工人的月生产量如下(单位:件):400、410、420、401、405、409、410、445、398、358、443、467、487、456、476、457、494、387、389、456、564、345、456、345、543、346、432、432、456、435,要求组数为六组,编制分配数列。
7、某企业有一个班组有40人,他们的身高如下:160CM以下的2人,160—165CM有18人,165—170CM有15人,170—175CM有3人,155CM以上有2要。
统计学计算题例题(含答案)
1、某企业制定了销售额的五年计划,该计划要求计划期的最后一年的年销售额应达到1200万元。
实际执行最后两年情况如下表:请根据上表资料,对该企业五年计划的完成情况进行考核。
1、计划完成相对数=1410/1200*100%=117.5%该计划完成相对数指标为正指标,计划完成相对数又大于100%,所以表示该计划超额完成。
从第四年5月至第五年4月的一年的年销售额之和恰好为1200万元,所以该计划在第五年4月完成,提前8个月完成。
2、某地区制定了一个植树造林的五年计划,计划中设定的目标是五年累计植树造林面积为2000万亩。
实际执行情况如下:请对该长期计划的完成情况进行考核。
2、计划完成程度相对数=2100/2000*100%=105%计划完成相对数指标大于100%,且该指标为正指标,所以该计划超额完成截止第五年第三季度累计完成2000万亩造林面积,所以提前1个季度完成3、某班学生统计学课程考试成绩情况如下表:请根据上述资料计算该班统计学课程的平均成绩、成绩的中位数、众数和成绩的标准差。
4、某学校有5000名学生,现从中按重复抽样方法抽取250名同学,调查其每周观看电视的小时数的情4> 样本平均数X= Sxf/Sf-l250/250-5样 ________ __________二>/刀(好予f/(工f—1)二V 1136/249二2. 14抽样平均误差U二s/ Vn=0.14因为F (t) =95%,所以日.96抽样极限误差△二t U 二 1. 96*0. 14=0. 27 区间下限=5-0. 27=4. 73 区间上限二5+0. 27-5. 27全校学生每周平均收看电视的吋间在(4.73,5.27)小时之间,概率保证程度为95%5、某企业对全自动生产线上的产品随机抽取1000件进行检验,发现有45件是不合格的,设定允许的极限误差为 1.32%。
请对全部产品的合格率进行区间估计。
5、样本合格率p=955/1000=95.5% 抽样平均误差u二V pChp)/n= 0.66%因为△=1.32%,所以t= A/ u =2所以F.(.t)-95. 45%区间下限二95. 5%-l. 32%=94. 18%区间上限二95. 5%+l. 32%二96. 82%所以我们以95. 45%的概率估计全部产品和合格率是在(94.18%, 96. 82%)之间。
统计学计算题8个例题及答案
统计学计算题8个例题及答案
1.给定一组数据,X=(13,12,13,13,10,13,11),求它的众数:
答:13(众数是出现次数最多的值)
2.给定一组数据,X=(1,2,3,4,5,6,7),求它的中位数:
答:4(中位数是将一组数据按照大小顺序排列后位于正中间的一个数)
3.给定一组数据,X=(1,2,3,4,5,6,7),求它的样本标准差:
答:(样本标准差S=√ [(∑(Xi−X平均数)2)/ (n−1)],其中,Xi代表样本的每一项,X平均数是样本的平均值,n是样本的总观测值数量)
4.给定一组数据,X=(1,2,3,4,5,6,7,8,9),求它的方差:
答:(方差σ^2=∑(Xi−X平均数)^2/n,其中,Xi代表样本的每一项,X平均数是样本的平均值,n是样本的总观测值数量)
5.给定一组数据,X=(21, 25, 28, 31, 34, 37, 40),求它的算术平均数:
答:31(算术平均数是将样本中数据求和,再除以样本的个数得到的数)
6.给定一组数据,X=(1,2,3,4,5,6,7,8,9),求它的期望:
答:5(期望是一组数据根据概率分布定义出的一种数学期望)
7.给定一组数据,X=(3,4,5,7,12,15,18),求它的方差:
答:(方差σ^2=∑(Xi−X平均数)^2/n,其中,Xi代表样本的每一项,X平均数是样本的平均值,n是样本的总观测值数量)
8.给定一组数据,X=(7,7,7,7,8,8,9),求它的众数:
答:7(众数是出现次数最多的值)。
统计学计算题
统计学作业答案第三章1、表3-23某市三个商店2004年上半年商品销售情况金额单位:万元商店第一季度实际销售额第二季度第二季度实际销售为第一季度的% 计划实际计划完成%乙丙实际分别为甲店%销售额比重% 销售额比重%(甲)(1)(2)(3)=(2)/1850(4)(5)=(4)/1839(6)(7)(8)=(4)/(1)甲乙丙260489975300500105016.227.056.8310500102916.927.255.9103.3100.098.0—161.3331.9119.2102.2105.5合计1724 1850 100.0 1839 100.0 99.4 —106.7上表中(3)(5)栏为结构相对指标,(6)栏为计划完成程度相对指标,(7)栏为比较相对指标,(8)栏为动态相对指标。
4、计划完成程度(%)组中值(%)x企业数(个)实际产量(台)mm/x 90以下 85 1 30 35.29 90—100 95 2 50 52.63 100—110 105 5 60 57.14 110以上 115 2 80 69.57 合计——10220214.63%50.10263.214220===∑∑xm m x10个企业产品产量的平均计划完成程度为102.5%。
6、总平均单位产品成本=)/(70.13%3816%4013%2211件元=⨯+⨯+⨯=⋅∑∑ffx7、上半年下半年%8.1021130100010.11661024%20.103113010.1166/m %40.10210001024f xf =++========∑∑∑∑全年计划利润全年实际利润全年下半年上半年x m 10、()甲乙乙甲甲:V V xV V ffx x fxf x 〈=⨯=⨯==⨯=⨯==-====∑∑∑∑ %69.22%1009.117.2%100%47.27%1007.839.2%100x39.27.8403482σσσ因此,乙班组的平均日产量代表性大。
统计学计算题36600
统计学习题答案三、计算题1、某班级40名学生,某门课程考试成绩如下:87 65 86 92 76 73 56 60 83 7980 91 95 88 71 77 68 70 96 6973 53 79 81 74 64 89 78 75 6672 93 69 70 87 76 82 79 65 84试根据以上资料编制组距为10的分配数列。
解:所编制的分配数列如下所示:某班学生某门课程考试成绩分组资料2、某工业局所属10个企业(工厂)计划利润和实际利润如下:单位:万元(1(2)按利润计划完成程度分组,分为三组.①未完成计划者;②完成计划和超额完成计划10%以内者;③超额完成计划10%以上者.(3)汇总各组企业数、实际利润和计划利润.解:(1)根据资料,算得各厂利润计划完成程度指标如下(2)(3)某工业局所属企业利润计划完成情况统计表三、计算题1某企业产量计划完成程度为103%,实际比上年增长5%,试问计划规定比上年增长多少? 解:设计划规定比上年增长x%,则有 于是,有2某企业计划生产某产品工时消耗较上期降低5%,实际较上期降低4.5%,试确定降低劳动量计划完成程度指标。
解:降低劳动量计划完成程度(%)=实际执行结果表明,降低劳动量还有0。
5%没有完成。
3某公司所属甲、乙两分公司销售额资料如下: 金额单位:万元计算上表各空栏数字,并分别说明各是什么类型的指标。
解:表中各空栏数字计算结果如下:金额单位:万元本期计划、本期实际、上期实际三个指标为总量指标;实际比重(%)为结构相对指标;计划完成(%)为计划完成程度相对指标;本期实际为上期实际(%)为动态相对指标. 4某产品按五年计划规定最后一年产量应达到50万吨,计划执行情况如下表:试计算该产品计划完成程度及提前多少时间完成五年计划规定的指标。
解:该产品从第四年的第二季度起连续累计四个季度产量已达到50万吨。
可见,该产品提前9个月完成了五年计划规定的指标。
统计学的计算题汇总(附有答案)
统计学的计算题汇总如下
答案计算过程中避免不了误差哦,请各位认真去计算一下吧!
1、某地区2010年玉米产量如下表所示:
解: 依题意知,此题数据是组距数列。
所以取产量组中值分别为450、550、650、750、850
2、已知甲组工人的平均奖金为1767元,其标准差为92元,乙组工人的奖金如下表所示:
解:依题意知,此题数据是组距数列。
所以取奖金组中值分别为1550、1650、1750、1850、1950
3、某地区2011年土地面积为2.4万平方公里,人口资料如下表所示:
4、①某企业2009年计划利润需求比上年提高5% ,实际提高了8% 。
计划产品单位成本要求比上年降低10% ,实际降低了6% 。
请计算利润和成本各自的完成情况,并加以说明?
②某班有40名学生,20岁的有3人,19岁的有25人,18岁的有12人,请用加权算数平均法和众数法分别计算该班的平均年龄?
答案如下:。
统计学计算题
四、计算题(共50分。
其中1小题10分;2小题15分;3小题10分;4小题15分)1.根据以往生产数据,某种产品的废品率为2%。
如果要求95%的置信区间,估计误差不超过4%,应该抽取多大的样本?根据已知条件P=2%,96.12=αZ ;E=4%=⨯=⨯=-⋅=122584.30016.096.196.1)1(2222EP P Z n α4704试用指数体系法分析销售额的变动。
(1)销售额变动 %116750870011==∑=∑q p q p K pq )(1207508700011万元=-=∑-∑q p q p (2)销售量指数 %93.11075083200000010==∑∑=∑=∑q p q Kp q p q p K q)(827508320010万元=-=∑-∑q p q p(3)销售价格指数 %57.10483287000111011==∑∑=∑∑=q kp q p q p q p K p )(38832870101万元=-=∑-∑q p q p (4)指数体系绝对数 120万元=82万元+38万元 相对数 116%=110.93%×104.57%(5)文字说明:该商店三种商品销售额报告期比基期增长了16%,增加120万元。
这是由销量和价格两因素变动引起的。
其中,价格固定在每种商品各自的基期水平,由于销量的变动使得总销售额比基期提高了10.93%,增加82万元;把销量固定在每种商品各自的报告期水平,由于价格的变动使得总销售额比基期提高了4.57%,增加了38万元。
试计算该企业第二季度平均每月全员劳动生产率。
(10分)解:第二季度平均每月总产值)(12203137011201170万元=++=∑=n a a第二季度平均每月职工人数1421214321-+++=b b b b b)(8.631.7219.67.05.621千人=⨯+++⨯=该企业第二季度平均每月全员劳动生产率bac =()人元千人万元/12.17948.61220==(1)计算相关系数,判断其相关程度;(2)建立以总成本为因变量的回归直线方程,并预测当木材消耗量为2.5米3时,总成本将达到多少千元?4、①r=2222)()(∑∑∑∑∑∑∑-⋅--y y n x x n yx xy n =0.75 中度正相关②b==--∑∑∑∑∑22)(x x n y x xy n 0.758a=y -b x =1.265 x Y c 758.0265.1+=当x=2.5时,总成本16.35.2758.0265.1=⨯+=c y (千元)。
统计学资料计算题
计算题:100%11⨯±±=率)计划提高率(计划降低率)实际提高率(实际降低计划完成相对数P72例4.5:某企业本年度计划单位成本降低6%,实际降低7.6%,则:成本降低率计划完成相对数=(1-7.6%)/(1-6%)*100%=98.29% 根据计算结果,本年度单位成本降低率比计划完成了1.71%例4.6:某企业计划规定劳动生产率比上年提高10%,实际比上年提高15%,则:劳动生产率计划完成相对数=(1+15%)/(1+10%)*100%=104.5% 根据计算结果,劳动生产率超额4.5%完成计划任务。
P81例 4.14:某企业有三个工厂,已知其计划完成程度及计划增加值资料如表所示,计算该企业平均计划完成程度。
工厂 计划完成程度(%)X 计划增加值(万元)f 甲 92 130 乙 105 1280 丙 117 300 合计 —— 1710106.12%17101814.630012801303001.1712801.051300.92==++⨯+⨯+⨯=⨯==∑∑∑∑计划增加值计划增加值计划完成程度f xf x根据计算结果,该企业平均计划完成程度是106.12%,即超额6.12%完成计划。
例4.15:某企业有三个工厂,已知其计划完成程度及实际完成增加值资料如表,计算该企业平均计划完成程度。
工厂 计划完成程度(%)x 实际完成增加值(万元)m 甲 92 119.6 乙 105 1344.0 丙 117 351.0 合计 —— 1814.6106.12%17101814.6 1.173511.0513440.92119.63511344119.6x m m ==++++===∑∑∑∑计划完成程度实际完成增加值实际完成增加值平均计划完成程度根据计算结果,该企业平均计划完成程度是106.12%,即超额6.12%完成计划。
P84加权几何平均计算例4.18:投资银行某笔投资的年利率是按复利计算的,25年的年利率分配是:有1年为3%,有4年为5%,有8年为8%,有10年为10%,有2年为15%,求平均年利率。
统计学计算题
四章综合指标(一)某厂10年A种车资料如下:计算A种车平均每辆成本。
(二)某车间第一批产品的废品率为1%,第二批废品率为1.5%,第三批废品为2%,第一批产品数量占总数的35%,第二批占40%。
试计算平均废品率。
(三)某车间工人日产量分组资料如下:计算该车间工人平均每人日产量。
(四)某厂从不同地区购进三批相同材料资料如下:计算该厂购进该种材料的平均每公斤价格。
(五)某企业工人产量资料如下(六)2011年4月甲、乙两市场商品价格、销售量和销售额资料如下:试分别计算商品在两个市场平均每件的销售价格。
(七)某厂某车间工人产量分组资料如下:要求:计算该车间工人平均每人日产量、标准差。
答案(一)=fX xf∑∑=210×0.4+230×0.45+250×0.15=225(元/辆) (二)χ = ∑x∑ff=1%×35%+1.5%×40%+2%×25%= 1.45%(三)χ=∑∑ff χ=(5×10+6×28+7×35+8×31+9×16)÷(10+28+35+31+16) =855/120=7.125(件)(四)380004000022000=10()3800040000220009.51011m X m x ∑++==∑++元/公斤(10分) (五)1120260320200f f ∑⨯⨯+⨯+⨯X ==∑ =)/(5.1200/300人件= (六)(元/件)(元/件)(七)=(25×10﹢35×70﹢45×90﹢55×30)/(10﹢70﹢90﹢30)=42(公斤)标准差σ=(公斤)81.76120012200)(2===-∑∑ffx x六章 动态数列(一) 某企业09年二季度商品库存如下:计算该企业二季度平均库存额。
(二)某商场2010年某些月分库存皮鞋资料如下:计算该商场2010年皮鞋月平均库存量。
统计学计算题和答案完整版
统计学计算题和答案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】三个企业生产的同一型号空调在甲、乙两个专卖店销售,有关资料如下:企业型号 价格 (元/台) 甲专卖店销售额(万元) 乙专卖店销售量(台) A 2500 340 B 3400 260 C 4100 200 合计——答案:2某企业甲、乙两个生产车间,甲车间平均每个工人日加工零件数为65件,标准差为11件;乙车间工人日加工零件数资料如下表。
试计算乙车间工人加工零件的平均数和标准差,并比较甲、乙两个生产车间哪个车间的平均日加工零件数更有代表性?日加工零件数(件) 60以下 60—70 70—80 80—90 90—100 工人数(人)59121410三、某地区2009—2014年GDP 资料如下表,要求: 1、计算2009—2014年GDP 的年平均增长量; 2、计算2009—2014年GDP 的年平均发展水平;年份 2009 2010 2011 2012 2013 2014 GDP (亿元)87431062711653147941580818362年平均增长速度:5100%280%100%22.9%x -=-= 年份2010 2011 2012 2013 2014 销售额(万元)320332340356380水平?答案: 2010年—2014年的数据有5项,是奇数,所以取中间为0,以1递增。
设定x 为-2、-1、0、1、2、年份/销售额(y ) x xy x2 2010 320 -2 -640 4 2011 332 -1 -332 1 2012 340 0 0 0 2013 356 1 356 1 2014 380 2 760 4合计 1728 0 144 10b=∑xy/∑x2=144/10=a=∑y/n=1728/5=y=+预测2016年,按照设定的方法,到2016年应该是5y=+*5=元五、某企业生产三种产品,2013年三种产品的总生产成本分别为20万元,45万元,35万元,2014年同2013年相比,三种产品的总生产成本分别增长8%,10%,6%,产量分别增长12%,6%,4%。
统计学计算题例题(含答案)
1、某企业制定了销售额的五年计划, 该计划要求计划期的最后一年的年销售额应达到 1200万元。
实际执行最后两年情况如下表:请根据上表资料,对该企业五年计划的完成情况进行考核。
1、 计划完成相对数 =1410/1200*100%=117.5%该计划完成相对数指标为正指标, 计划完成相对数又大于 100% ,所以表示该计划超额完成。
从第 四年 5 月至第五年 4 月的一年的年销售额之和恰好为 1200 万元,所以该计划在第五年 4 月完成,提 前 8 个月完成。
2、 某地区制定了一个植树造林的五年计划,计划中设定的目标是五年累计植树造林面积为 2000 万 亩。
实际执行情况如下:请对该长期计划的完成情况进行考核。
2、 计划完成程度相对数 =2100/2000*100%=105%计划完成相对数指标大于100%, 且该指标为正指标 , 所以该计划超额完成截止第五年第三季度累计完成 2000 万亩造林面积,所以提前 1 个 季 度 完 成3、某班学生统计学课程考试成绩情况如下表:请根据上述资料计算该班统计学课程的平均成绩、成绩的中位数、众数和成绩的标准差。
3、某企业职工年龄情况如下表:X 二三于=4740/62=76.45 (分)Me=70+ (62/2-18) *10/20=76.5 (分)Mo=70+(20 J5)70/[(2CM5)+(2CM8)]=77 」4 (分)G-7(55-76.45f *3 +⋯⋯+ (95^76.45f *6/62=10.45 (分)4、某学校有5000 名学生,现从中按重复抽样方法抽取250 名同学,调查其每周观看电视的小时数的情况,获得资料如下表:请根据上述资料,以95% 的概率保证程度对全校学生每周平均收看电视时间进行区间估计。
4> 样本平均数X= Sxf/Sf-l250/250-5样 ______________ __________二>/ 刀(好予f/(工f—1 )二V 1136/249 二2. 14抽样平均误差U 二s/ Vn=0.14因为 F (t) =95%, 所以日.96抽样极限误差△ 二t U 二 1. 96*0. 14=0. 27 区间下限=5-0. 27=4. 73 区间上限二5+0. 27-5. 27全校学生每周平均收看电视的吋间在( 4.73,5.27) 小时之间,概率保证程度为95%5 、某企业对全自动生产线上的产品随机抽取1000 件进行检验,发现有45 件是不合格的,设定允许的极限误差为1.32% 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六、计算题1.某班40名学生统计学考试成绩分别为:68 89 88 84 86 87 75 73 72 68 75 82 97 58 81 54 79 76 95 76 71 60 90 65 76 72 76 85 89 9264 57 83 81 78 77 72 61 70 81学校规定:60分以下为不及格,60─70分为及格,70─80分为中, 80─90分为良,90─100分为优。
要求:(1)将该班学生分为不及格、及格、中、良、优五组, 编制一 张次数分配表。
(2)指出分组标志及类型;分组方法的类型;分析本班学生考试情况。
解:(1)学生成绩次数分布表:(2)分组标志为"成绩",其类型为"数量标志"; 分组方法为:变量分组中的组距式分组,而且是开口式分组; 本班学生的考试成绩的分布呈“两头小, 中间大的”正态分布的形态。
2、某商场出售某种商品的价格和销售资料如下表:试求该商品的平均销售价格。
解:平均商品销售价值8.16=∑∑=xM M x (元/公斤)3、某厂三个车间一季度生产情况如下: 第一车间实际产量为190件,完成计划95%;第二车间实际产量250件,完成计划100%;第三车间实际产量609件,完成计划105%,三个车间产品产量的平均计划完成程度为:%1003%105%100%95=++另外,一车间产品单位成本为18元/件,二车间产品单位成本12元/件,三车间产品单位成本15元/件,则三个车间平均单位成本为:153151218=++元/件 以上平均指标的计算是否正确?如不正确请说明理由并改正。
解:两种计算均不正确。
平均计划完成程度的计算,因各车间计划产值不同,不能对其进行简单平均,这样也不符合计划完成程度指标的特定涵义。
正确的计算方法是:()%84.1011030104905.160900.125095.0190609250190/==++++=∑∑=x m m X 平均计划完成程度平均单位成本的计算也因各车间的产量不同,不能简单相加,产量的多少对平均单位成本有直接影响。
故正确的计算为:平均单位成本件元/83.14104915555609250190609152501219018==++⨯+⨯+⨯=∑∑=f xf X4、某厂甲、乙两个工人班组,每班组有8名工人,每个班组每个工人的月生产量记录如下:甲班组:20、40、60、70、80、100、120、70 乙班组:67、68、69、70、71、72、73、70(1)计算甲、乙两组工人平均每人产量;计算全距,平均差、标准差,标准差系数等指标;(2)比较甲、乙两组的平均每人产量的代表性。
解:(1)甲班组:平均每人产量件70=∑=nx x ;全距件10020120min max =-=-=x x R ;平均差A 、D 件5.228180==-∑=nx x ;标准差 ()件6.29870002==-∑=n x x σ ;标准差系数 %29.42706.29===x V σσ。
乙班组:平均每人产量件70=∑=n x x全距 件66773min max =-=-=x x R ;平均差A 、D=件5.1812==-∑nx x ;标准差 ()件5.38282==-∑=nx x σ ;标准差系数%00.5705.3===x V σσ。
(2)分析说明:从甲、乙两组计算结果看出,尽管两组的平均每人产量相同,但乙班组的标志变异指标值均小于甲班组,所以,乙班组的人均产量的代表性较好。
5、在某乡2万亩水稻中按重复抽样方法抽取400亩,得知平均亩产量为609斤,样本标准差为80斤。
要求以95.45%(t=2)的概率保证程度估计该乡水稻的平均亩产量和总产量的区间范围.解:已知 N=40000,n=400,x =609斤,б=80,t=2 样本平均误差4=40080==nx σμ (斤) 允许误差Δx=t μx=2×4=8(斤)平均亩产范围x =x ±Δx 609-8≤x ≤609+8 即601—617(斤) 总产量范围:601×20000--617×20000 即1202—1234(万斤)6、某单位按简单随机重复抽样方式抽取40名职工,对其业务情况进行考核,考核成绩资料如下:68 89 88 84 86 87 75 73 72 68 75 82 99 58 81 54 79 76 95 76 71 60 91 65 76 72 76 85 89 92 64 57 83 81 78 77 72 61 70 87要求:(1)根据上述资料按成绩分成以下几组:60分以下,60-70分,70-80分,80-90分,90-100分,并根据分组整理成变量分配数列;(2)根据整理后的变量数列,以95.45%的概率保证程度推断全体职工业务考试成绩的区间范围;(3)若其它条件不变,将允许误差范围缩小一半,应抽取多少名职工?解:(1)根据抽样结果和要求整理成如下分布数列:(2)根据次数分配数列计算样本平均数和标准差)(774049512851575665355分=⨯+⨯+⨯+⨯+⨯==∑∑fxf x∑∑=ffxx =55×7.5%+65×15%+75×37.5%+85×30%+95.5×10%=77(分)34.367.1267.14054.10(54.10404440)(2=⨯==∆=====-=∑∑x x x t n ffx x μσμσ分)全体职工考试成绩区间范围是:下限=分)(66.7334.377=-=∆-x x ;上限=(分)3.8034.377=+=∆+x x即全体职工考试成绩区间范围在73.66分—80.3分之间。
(3)若其它条件不变,将允许误差范围缩小一半,应抽取的职工数为:159)234.3(54.10222222≈⨯=∆=xt n σ(人)7、在4000件成品中按不重复方法抽取200件进行检查结果有废品8件,当概率为0.9545(t=2)时,试估计这批成品废品量的范围. 解:%42008==p %35.1)1()1(=--=Nnn p p p μ %7.2%35.12=⨯==∆p p t μ废品率的范围:4%±2.7%废品率的区间范围在1.3%-6.7%之间。
废品数量区间:4000×1.3%-4000×6.7%废品量的区间范围在52(件)-268(件)之间。
8、根据5位同学西方经济学的学习时间与成绩分数计算出如下资料: n=5 ∑x =40 ∑y =310 ∑x 2=370 ∑y 2=20700 ∑xy =2740试: (1)编制以学习时间为自变量的直线回归方程(2)解释回归系数的含义解:①配合直线回归方程, 设直线回归方程为y c =a+bx 计算参数a 、b22)(11∑∑∑∑∑-⋅-=x n x yx n xy b 2.5405137********27402=⨯-⨯⨯-=x b y a -=4.2040512.531051=⨯⨯-⨯=直线回归方程为 y c =20.4+5.2x(2)解释回归系数的含义:表示学习时数每增加一小时,成绩平均增加5.2分 9、根据某地区历年人均收入(元)与商品销售额(万元)资料计算的有关数据如下: (x 代表人均收,y 代表销售额)n=9 ∑x =546 ∑y =260 ∑x 2=34362 ∑xy =16918计算: (1)建立以商品销售额为因变量的直线回归方程,并解释回归系数的含义 (2)若2005年人均收为11400元,试推算该年商品销售额 解:(1)配合直线回归方程:y c =a+bx ,计算参数a 、b 值:22)(11∑∑∑∑∑-⋅-=x n x y x n xy b 254691343622605469116918⨯-⨯⨯-==0.92a= ∑∑-=---x nb y n x b y 11 92.265469192.026091-=⨯⨯-⨯= 直线回归方程: y c =-26.92+0.92x回归系数的含义: 表示当人均收入每增加一元时,商品销售额平均增加0.92万元 (2)预测2005年商品销售额公式: y c =-26.92+0.92x 0代入数字并计算: =-26.92+0.92⨯11400=1021.88 (万元) 10.解:产品物量总指数:∑∑0000p q p kq 1000+1800+20001000⨯%100+1800⨯%105+2000⨯%110= =106.04%11计算三种商品价格总指数和销售量总指数。
解:三种商品物价总指数:∑∑11111p q k p q %10+11200+%5-1200+%2+16501200+200+650=69.19382050==105.74% 销售量总指数=销售额指数÷价格指数÷=∑∑0011p q p q ∑∑11111p q kp q %74.105÷1000+200+5001200+200+650= =114.04%12、某厂生产的三种产品的有关资料如下:要求: (1)计算三种产品的单位成本指数以及由于单位成本变动使总成本变动的绝对额;(2)计算三种产品产量总指数以及由于产量变动而使总成本变动的绝对额; (3)利用指数体系分析说明总成本(相对程度和绝对额)变动的情况。
解:列表计算如下:(1)三种产品的单位成本指数:%11515.12610030100111或===∑∑zq z q k z由于单位成本变动影响的总成本绝对额:∑∑0111-z q z q =30100-26100=4000万元 (2)三种产品的产量总指数:%10303.12535026100001或===∑∑zq z q k q由于产量变动影响的总成本绝对额: ∑∑0001-z q z q =26100-25350=750万元 (3)总成本指数: %7.118187.12535030100011或===∑∑zq z q k qz总成本变动的绝对额:∑∑0011-z q z q =30100-25350=4750万元指数体系:109.76%=96.04%×114.29%4100=(-1900)+6000万元分析说明:由于报告期单位成本比基期下降3.96%,产品产量增加14.29%,使得总成本报告期比基期增加9.76%;单位成本下降节约总成本1900万元,产量增加使总成本增加6000万元,两因素共同作用的结果使总成本净增4100万元。
13、某商店1990年各月末商品库存额资料如下:又知1月1日商品库存额为63万元。
试计算上半年、下半年和全年的平均商品库存额。