第四节 直接证明与间接证明

合集下载

直接证明与间接证明 课件

直接证明与间接证明  课件

法二:分析法 因为a>0,b>0,a+b=1,要证1a+1b+a1b≥8. 只要证1a+1b+a+abb≥8, 只要证1a+1b+1b+1a≥8,即证1a+1b≥4. 也就是证a+a b+a+b b≥4.即证ba+ab≥2, 由基本不等式可知,当a>0,b>0时,ba+ab≥2成立, 所以原不等式成立.
[典例] 设a>0,f(x)=aa+xx,令a1=1,an+1=f(an),n∈N*. (1)写出a2,a3,a4的值,并猜想数列{an}的通项公式; (2)用数学归纳法证明你的结论. [解] (1)∵a1=1, ∴a2=f(a1)=f(1)=1+a a; a3=f(a2)=2+a a;a4=f(a3)=3+a a. 猜想an=(n-a1)+a(n∈N*).
正确的反设为
()
A.a,b,c都是偶数
B.a,b,c都是奇数
C.a,b,c中至少有两个偶数
D.a,b,c中都是奇数或至少有两个偶数
(2)已知:ac≥2(b+d).
求证:方程x2+ax+b=0与方程x2+cx+d=0中至少有一
个方程有实数根.
[解析] (1)自然数a,b,c的奇偶性共有四种情形:3个都是 奇数,1个偶数2个奇数,2个偶数1个奇数,3个都是偶数,所以 否定“自然数a,b,c中恰有一个偶数”时正确的反设为“a, b,c中都是奇数或至少有两个偶数.”
数学归纳法
(1)数学归纳法在近几年高考试题中都有所体现,常与 数列、不等式结合在一起考查,一般涉及通项公式的求 解,相关等式、不等式的证明等,考查模式一般为“归纳 ——猜想——证明”.
(2)数学归纳法是一种特殊的直接证明的方法,在证明 一些与正整数有关的数学命题时,往往是非常有用的研究 工具.在使用时注意“归纳奠基”和“归纳递推”两个步 骤缺一不可.

第四节 直接证明与间接证明

第四节 直接证明与间接证明

考点突破 栏目索引
考点突破 栏目索引
规律总结 1.利用分析法证明问题的思路 先从结论入手,由此逐步推出保证此结论成立的充分条件,而当这些判 断恰恰都是已证的命题(定义、公理、定理、法则、公式等)或要证命 题的已知条件时,命题得证. 2.分析法证明问题的适用范围 当已知条件与结论之间的联系不够明显,或证明过程中所需知识不太明 确时,往往采用分析法,特别是含有根号、绝对值的等式或不等式,常考 虑用分析法.
教材研读 栏目索引
(5)在解决问题时,常常用分析法寻找解题的思路与方法,再用综合法展 现解决问题的过程. ( √ ) (6)证明不等式 2 + 7 < 3+ 6 最合适的方法是分析法. ( √ ) 答案 (1)✕ (2)✕ (3)✕ (4)✕ (5)√ (6)√
教材研读 栏目索引
2.命题“对任意角θ,cos4θ-sin4θ=cos 2θ”的证明:“cos4θ-sin4θ=(cos2θsin2θ)(cos2θ+sin2θ)=cos2θ-sin2θ=cos 2θ”过程应用了 ( B ) A.分析法 B.综合法 C.综合法、分析法综合使用 D.间接证明法
教材研读 栏目索引
6.(教材习题改编)在△ABC中,三个内角A,B,C的对边分别为a,b,c,且A,B,
C成等差数列,a,b,c成等比数列,则△ABC的形状为
.
答案 等边三角形
解析 由题意知2B=A+C,又A+B+C=π,所以B= ,易知b2=ac,所以b2=a2+c2
3
-2acos B=a2+c2-ac,所以a2+c2-2ac=0,即(a-c)2=0,所以a=c,所以A=C,所以A=
栏目索引

直接证明与间接证明课件

直接证明与间接证明课件

基础知识梳理
2.间接证明 反证法:假设原命题 不成立 ,经 过正确的推理,最后得出 矛盾 ,因此 说明假设错误,从而证明了原命题成 立,这样的证明方法叫反证法.
三基能力强化
用反证法证明命题:若整系数一元 二次方程ax2+bx+c=0(a≠0)有有理数 根,那么a、b、c中至少有一个是偶数 时,下列假设中正确的是( ) A.假设a、b、c都是偶数 B.假设a、b、c都不是偶数 C.假设a、b、c至多有一个偶数 D.假设a、b、c至多有两个偶数 答案:B
基础知识梳理
综合法和分析法有什么区别与联系? 分析法的特点是:从“未知”看“需知”, 逐步靠拢“已知”,其逐步推理,实际上是寻 求它的充分条件; 综合法的特点是:从“已知”看“可知”, 逐步推向“未知”,其逐步推理,实际上是寻 找它的必要条件. 分析法与综合法各有其特点,有些具体 的待证命题,用分析法或综合法均能证明出 来,往往选择较简单的一种.
直接证明与间接证明
基础知识梳理
1.直接证明 (1)综合法 ①定义:利用已知条件和某些数学定义、公 理、定理等,经过一系列的推理证明 ,最后推导 出所要证明的结论 成立 ,这种证明方法叫综合 法. ②框图表示:
P⇒Q1 → Q1⇒Q2 → Q2⇒Q3 →…→ Qn⇒Q (其 中 P 表示条件,Q 表示要证结论).
课堂互动讲练
一般地,含有根号、绝对值的等式 或不等式,若从正面不易推导时,可以 考虑用分析法.
课堂互动讲练
反证法体现了正难则反的思维方法,用反证 法证明问题的一般步骤是: (1)分清问题的条件和结论; (2)假定所要证的结论不成立,而设结论的反 面成立(否定结论); (3)从假定和条件出发,经过正确的推理,导 出与已知条件、公理、定理、定义及明显成立的 事实相矛盾或自相矛盾(推导矛盾); (4)因为推理正确,所以断定产生矛盾的原因 是“假设”错误.既然结论的反面不成立,从而证 明了原结论成立(结论成立).

2014届高考江苏专用(理)一轮复习第十四章第4讲直接证明与间接证明

2014届高考江苏专用(理)一轮复习第十四章第4讲直接证明与间接证明

(3)分析法定义: 保证前一个结论成立 从求证的结论出发,一步一步地探索__________________ 的充分条件 ___________,直到归结为这个命题的条件,或者归结为
定义、公理、定理等.这样的思维方法称为分析法.
(4)框图表示: Q⇐P1 → P1⇐P2 → P2⇐P3 →…→ 得到一个明显成立的条件 .
考向二
分析法的应用
【例2】 (2011· 湖北卷)已知数列{an}的前n项和为Sn,且满足: a1=a(a≠0),an+1=rSn(n∈N*,r∈R,r≠-1,r≠0).
(1)求数列{an}的通项公式;
(2)若存在k∈N*,使得Sk+1,Sk,Sk+2成等差数列,试判断: 对于任意的m∈N*,且m≥2,am+1,am,am+2是否成等差 数列,并证明你的结论.
数列”?若是,指出它对应的实常数p、q,若不是,请说明
理由; (2)已知数列{an}满足a1=2,an+an+1=3·n(n∈N*).若数列 2 {an}是“优美数列”,求数列{an}的通项公式. 解 (1)∵an=2n,则有an+1=an+2,n∈N*.
∴数列{an}是“优美数列”,对应的p、q值分别为1、2;
而an+an+1=3·n(n∈N*), 2 且an+1+an+2=3·n+1(n∈N*), 2 则有3·n+1=3·np+2q对于任意n∈N*都成立, 2 2 即3·n(2-p)=2q对于任意n∈N*都成立, 2
∴p-2=0,即p=2,q=0.此时,an+1=2an,
又∵a1=2,∴an=2n(n∈N*).

(2)证明
4 3 用反证法证明.
4 3
4 3
假设数列{bn}存在三项 br, s, t(r<s<t)按某种顺序成等差数列, b b 1 2 由于数列{bn}是首项为 , 公比为 的等比数列, 于是有 br>bs>bt, 4 3 则只可能有 2bs=br+bt 成立. 12 s- 1 12 r-1 12 t-1 ∴2· = + , 43 43 43 两边同乘 3t- 121- r,化简得 3t- r+2t- r=2·s- r3t- s. 2 由于 r<s<t,所以上式左边为奇数,右边为偶数,故上式不可 能成立,导致矛盾. 故数列{bn}中任意三项不可能成等差数列.

直接证明与间接证明_知识讲解

直接证明与间接证明_知识讲解

直接证明与间接证明【要点梳理】要点一:直接证明直接证明最常见的两种方法是综合法和分析法,它们是思维方向相反的两种不同的推理方法. 综合法定义:一般地,从命题的已知条件出发,利用定义、公理、定理及运算法则,经过演绎推理,一步步地接近要证明的结论,直到完成命题的证明,我们把这种思维方法叫做综合法.... 基本思路:执因索果综合法又叫“顺推证法”或“由因导果法”.它是由已知走向求证,即从数学题的已知条件出发,经过逐步的逻辑推理,最后导出待证结论或需求的问题.综合法这种由因导果的证明方法,其逻辑依据是三段论式的演绎推理方法.综合法的思维框图:用P 表示已知条件,Q 表示要证明的结论,123...i Q i n =(,,,,)为已知的定义、定理、公理等,则综合法可用框图表示为: 11223...n P Q Q Q Q Q Q Q ⇒→⇒→⇒→→⇒(已知) (逐步推导结论成立的必要条件) (结论)要点诠释(1)从“已知”看“可知”,逐步推出“未知”,由因导果,其逐步推理实际上是寻找它的必要条件;(2)用综合法证明不等式,证明步骤严谨,逐层递进,步步为营,条理清晰,形式简洁,宜于表达推理的思维轨迹;(3)因用综合法证明命题“若A 则D ”的思考过程可表示为:故要从A 推理到D ,由A 推演出的中间结论未必唯一,如B 、B 1、B 2等,可由B 、B 1、B 2进一步推演出的中间结论则可能更多,如C 、C 1、C 2、C 3、C 4等等.所以如何找到“切入点”和有效的推理途径是有效利用综合法证明问题的“瓶颈”.综合法证明不等式时常用的不等式(1)a 2+b 2≥2ab (当且仅当a =b 时取“=”号);(2)2a b +≥a ,b ∈R*,当且仅当a =b 时取“=”号); (3)a 2≥0,|a |≥0,(a -b )2≥0;(4)2b a a b +≥(a ,b 同号);2b a a b+≤-(a ,b 异号); (5)a ,b ∈R ,2221()2a b a b +≥+, (6)不等式的性质定理1 对称性:a >b ⇔b <a .定理2 传递性:a b a c b c >⎫⇒>⎬>⎭. 定理3 加法性质:a b a c b c c R >⎫⇒+>+⎬∈⎭. 推论 a b a c b d c d >⎫⇒+>+⎬>⎭. 定理4 乘法性质:0a b ac bc c >⎫⇒>⎬>⎭. 推论1 00a b ac bc c d >>⎫⇒>⎬>>⎭. 推论2 0*n n a b a b n N >>⎫⇒>⎬∈⎭.定理5 开方性质:0*a b n N >>⎫⇒>⎬∈⎭ 分析法定义一般地,从需要证明的命题出发,分析使这个命题成立的充分条件,逐步寻找使命题成立的充分条件,直至所寻求的充分条件显然成立(已知条件、定理、定义、公理等),或由已知证明成立,从而确定所证的命题成立的一种证明方法,叫做分析法.基本思路:执果索因分析法又叫“逆推证法”或“执果索因法”.它是从要证明的结论出发,分析使之成立的条件,即寻求使每一步成立的充分条件,直到最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止.分析法这种执果索因的证明方法,其逻辑依据是三段论式的演绎推理方法.分析法的思维框图:用123i P i =L (,,,)表示已知条件和已有的定义、公理、公式、定理等,Q 所要证明的结论,则用分析法证明可用框图表示为: 11223...Q P P P P P ⇐→⇐→⇐→→得到一个明显成立的条件(结论) (逐步寻找使结论成立的充分条件) (已知)格式:要证……,只需证……,只需证……,因为……成立,所以原不等式得证.要点诠释:(1)分析法是综合法的逆过程,即从“未知”看“需知”,执果索因,逐步靠拢“已知”,其逐步推理,实际上是寻找它的充分条件.(2)由于分析法是逆推证明,故在利用分析法证明时应注意逻辑性与规范性,即分析法有独特的表述.综合法与分析法的横向联系(1) 综合法是把整个不等式看做一个整体,通过对欲证不等式的分析、观察,选择恰当不等式作为证题的出发点,其难点在于到底从哪个不等式出发合适,这就要求我们不仅要熟悉、正确运用作为定理性质的不等式,还要注意这些不等式进行恰当变形后的利用.分析法的优点是利于思考,因为它方向明确,思路自然,易于掌握,而综合法的优点是宜于表述,条理清晰,形式简洁.我们在证明不等式时,常用分析法寻找解题思路,即从结论出发,逐步缩小范围,进而确定我们所需要的“因”,再用综合法有条理地表述证题过程.分析法一般用于综合法难以实施的时候.(2)有不等式的证明,需要把综合法和分析法联合起来使用:根据条件的结构特点去转化结论,得到中间结论Q ;根据结论的结构特点去转化条件,得到中间结论P .若由P 可以推出Q 成立,就可以证明结论成立,这种边分析边综合的证明方法,称之为分析综合法,或称“两头挤法”.分析综合法充分表明分析与综合之间互为前提、互相渗透、互相转化的辩证统一关系,分析的终点是综合的起点,综合的终点又成为进一步分析的起点.命题“若P 则Q ”的推演过程可表示为:要点二:间接证明 间接证明不是从正面确定命题的真实性,而是证明它的反面为假,或改证它的等价命题为真,间接地达到目的,反证法是间接证明的一种基本方法.反证法定义:一般地,首先假设要证明的命题结论不正确,即结论的反面成立,然后利用公理,已知的定义、定理,命题的条件逐步分析,得到和命题的条件或公理、定理、定义及明显成立的事实等矛盾的结论,以此说明假设的结论不成立,从而证明了原命题成立,这样的证明方法叫做反证法.反证法的基本思路:假设——矛盾——肯定①分清命题的条件和结论.②做出与命题结论相矛盾的假设.③由假设出发,结合已知条件,应用演绎推理方法,推出矛盾的结果.④断定产生矛盾结果的原因,在于开始所做的假定不真,于是原结论成立,从而间接地证明原命题为真.反证法的格式:用反证法证明命题“若p则q”时,它的全部过程和逻辑根据可以表示如下:要点诠释:(1)反证法是间接证明的一种基本方法.它是先假设要证的命题不成立,即结论的反面成立,在已知条件和“假设”这个新条件下,通过逻辑推理,得出与定义、公理、定理、已知条件、临时假设等相矛盾的结论,从而判定结论的反面不能成立,即证明了命题的结论一定是正确的.(2) 反证法的优点:对原结论否定的假定的提出,相当于增加了一个已知条件.反证法的一般步骤:(1)反设:假设所要证明的结论不成立,假设结论的反面成立;(2)归谬:由“反设”出发,通过正确的推理,导出矛盾——与已知条件、已知的公理、定义、定理、反设及明显的事实矛盾或自相矛盾;(3)结论:因为推理正确,产生矛盾的原因在于“反设”的谬误,既然结论的反面不成立,从而肯定了结论成立.要点诠释:(1)结论的反面即结论的否定,要特别注意:“都是”的反面为“不都是”,即“至少有一个不是”,不是“都不是”;“都有”的反面为“不都有”,即“至少有一个没有”,不是“都没有”;“都不是”的反面是“部分是或全部是”,即“至少有一个是”,不是“都是”;“都没有”的反面为“部分有或全部有”,即“至少有一个有”,不是“都有”(2)归谬的主要类型:①与已知条件矛盾;②与假设矛盾(自相矛盾);③与定义、定理、公理、事实矛盾.宜用反证法证明的题型:①要证的结论与条件之间的联系不明显,直接由条件推出结论的线索不够清晰;比如“存在性问题、唯一性问题”等;②如果从正面证明,需要分成多种情形进行分类讨论,而从反面进行证明,只要研究一种或很少的几种情形.比如带有“至少有一个”或“至多有一个”等字样的数学问题.要点诠释:反证法体现出正难则反的思维策略(补集的思想)和以退为进的思维策略,故在解决某些正面思考难度较大和探索型命题时,有独特的效果.【典型例题】【高清课堂:例题1】类型一:综合法证明例1.求证:a4+b4+c4≥abc(a+b+c).【证明】∵a4+b4≥2a2b2,b4+c4≥2b2c2,c4+a4≥2c2a2,∴(a4+b4)+(b4+c4)+(c4+a4)≥2(a2b2+b2c2+c2a2),又∵a2b2+b2c2≥2ab2c,b2c2+c2a2≥2abc2,a2b2+c2a2≥2a2bc,∴2(a2b2+b2c2+c2a2)≥2abc(a+b+c).∴2(a4+b4+c4)≥2abc(a+b+c),即a4+b4+c4≥abc(a+b+c).【总结升华】利用综合法时,从已知出发,进行运算和推理得到要证明的结论,并且在用均值定理证明不等式时,一要注意均值定理运用的条件,二要运用定理对式子作适当的变形,把式分成若干部分,对每部分运用均值定理后,再把它们相加或相减.举一反三:【变式1】已知a,b是正数,且a+b=1,求证:114a b+≥.【证明】证法一:∵a,b∈R,且a+b=1,∴2a b ab +≥,∴12ab ≤, ∴1114a b a b ab ab++==≥. 证法二:∵a ,b ∈R +,∴20a b ab +=>,11120a b ab +≥>, ∴11()4a b a b ⎛⎫++≥ ⎪⎝⎭. 又a +b =1,∴114a b+≥. 证法三:1111224a b a b b a a b a b a b a b b a+++=+=+++≥+⋅=. 当且仅当a =b 时,取“=”号.【变式2】求证:5321232log 19log 19log 19++<. 【证明】待证不等式的左端是3个数和的形式,右端是一常数的形式,而左端3个分母的真数相同,由此可联想到公式,1log log a b b a =转化成能直接利用对数的运算性质进行化简的形式. ∵ 1log log a b b a =, ∴左边∵, ∴5321232log 19log 19log 19++<. 例2.已知数列{a n }中,S n 是它的前n 项和,并且S n +1=4a n +2(n =1,2,…),a 1=1.(1)设b n =a n +1-2a n (n =1,2,…),求证:数列{b n }是等比数列.(2)设2n n na c =(n =1,2,…), 求证:数列{c n }是等差数列. 【证明】(1)∵S n +1=4a n +2,∴S n +2=4a n +1+2,两式相减,得S n +2―S n +1=4a n +1―4a n (n =1,2,3,…),即a n +2=4a n +1―4a n ,变形得a n +2―2a n +1=2(a n +1―2a n ).∵b n =a n +1-2a n (n =1,2,…),∴b n +1=2b n (n =1,2,…).由此可知,数列{b n }是公比为2的等比数列.由S 2=a 1+a 2=4a 1+2,a 1=1,得a 2=5,b 1=a 2―2a 1=3.故b n =3·2n ―1.(2)∵2n n n a c =(n =1,2,…) ∴11111122222n n n n n n n n n n n a a a a b c c ++++++--=-== 将b n =3·2n -1代入,得134n n c c +-=(n =1,2,…). 由此可知,数列{c n }是公差34d =的等差数列,它的首项11122a c ==,故3144n c n =-. 【总结升华】本题从已知条件入手,分析数列间的相互关系,合理实现了数列间的转化,从而使问题获解,综合法是直接证明中最常用的证明方法.举一反三:【变式1】已知数列{}n a 满足15a =, 25a =,116(2)n n n a a a n +-=+≥.求证:{}12n n a a ++是等比数列;【证明】 由a n +1=a n +6a n -1,a n +1+2a n =3(a n +2a n -1) (n ≥2),∵a 1=5,a 2=5∴a 2+2a 1=15,故数列{a n +1+2a n }是以15为首项,3为公比的等比数列.【变式2】在△ABC 中,若a 2=b (b +c ),求证:A =2B .【证明】∵a 2=b (b +c ),222222()cos 22b c a b c b bc A bc bc+-+-+==, 又222222222()22cos 2cos 12121222()2a c b b c b c b bc c b B B ac a b b c b ⎛⎫+-++---⎛⎫=-=-=-== ⎪ ⎪+⎝⎭⎝⎭,∴cos A =cos2B .又A 、B 是三角形的内角,故A =2B .例3.如图所示,在四棱锥P —ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD =DC ,E 是PC 的中点,作EF ⊥PB 交PB 于点F .求证:(1)P A ∥平面EDB ;(2)PB ⊥平面EFD .【证明】(1)连结AC 交BD 于O ,连结E O .∵底面ABCD 是正方形,∴点O 是AC 的中点,在△P AC 中,E O 是中位线,∴P A ∥E O .而E O ⊂平面EDB 且P A ⊄平面EDB ,∴P A ∥平面EDB .(2)PD ⊥底面ABCD 且DC ⊂底面ABCD ,∴PD ⊥DC .由PD =DC ,可知△PDC 是等腰直角三角形,而DE 是斜边PC 上的中线,∴DE ⊥PC .①同样由PD ⊥底面ABCD ,得PD ⊥BC .∵底面ABCD是正方形,∴DC⊥BC,∴BC⊥平面PDC.而DE⊂平面PDC,∴BC⊥DE.②由①和②推得DE⊥平面PBC.而PB⊂平面PBC,∴DE⊥PB.又EF⊥PB且DE∩EF=E,∴PB⊥平面EFD.【总结升华】利用综合法证明立体几何中线线、线面和面面关系的关键在于熟练地运用判定定理和性质定理.举一反三:【变式1】如图,设在四面体PABC中,90ABC∠=o,PA PB PC==,D是AC的中点.求证:PD垂直于ABC∆所在的平面.【证明】连PD、BD因为BD是Rt ABC∆斜边上的中线,所以DA DC DB==又因为PA PB PC==,而PD是PAD∆、PBD∆、PCD∆的公共边,所以PAD∆≅PBD PCD∆≅∆于是PDA PDB PDC∠=∠=∠,而90PDA PDC∠=∠=o,因此90PDB∠=o∴PD AC⊥,PD BD⊥由此可知PD垂直于ABC∆所在的平面.【变式2】如图所示,在四棱锥S—ABCD中,底面ABCD是正方形,SA平面ABCD,且SA=AB,点E为AB的中点,点F为SC的中点.求证:(1)EF⊥CD;(2)平面SCD⊥平面SCE.【证明】(1)∵SA⊥平面ABCD,F为SC的中点,∴AF为Rt△SAC斜边SC上的中线.∴12AF SC=.又∵四边形ABCD是正方形,∴CB⊥AB.而由SA ⊥平面ABCD ,得CB ⊥SA ,∴CB ⊥平面SAB .又∵SB ⊂平面SAB ,∴CB ⊥SB .∴BF 为Rt △SBC 的斜边SC 上的中线,∴12BF SC =. ∴AF =BF ,∴△AFB 为等腰三角形.又E 为AB 的中点,∴EF ⊥AB .又CD ∥AB ,∴EF ⊥CD .(2)由已知易得Rt △SAE ≌Rt △CBE ,SE =EC ,即△SEC 是等腰三角形,∴EF ⊥SC .又∵EF ⊥CD 且SC ∩CD =C ,∴EF ⊥平面SCD .又EF ⊂平面SCE ,∴平面SCD ⊥平面SCE .类型二:分析法证明例4. 设0a >、0b >,且a b ≠,用分析法证明:3322a b a b ab ++>.【证明】要证3322a b a b ab +>+成立,只需证33220a b a b ab +--> 成立,即证22()()0a a b b b a -+->成立,即证22()()0a b a b -->成立,也就是要证2()()0a b a b +->成立,因为0a >、0b >,且a b ≠,所以2()()0a b a b +->显然成立,由此原不等式得证.【总结升华】1.在证明过程中,若使用综合法出现困难时,应及时调整思路,分析一下要证明结论成立需要怎样的充分条件是明智之举.从结论出发,结合已知条件,逐步反推,寻找使当前命题成立的充分条件的方法.2. 用分析法证明问题时,一定要恰当地用好“要证”“只需证”“即证”“也即证”等词语.举一反三:【变式1】设a ,b ,c ,d ∈R ,求证:ac bc +≤【证明】当ac +bc ≤0时,不等式显然成立.当ac +b d >0时,要证明ac bd +只需证明(ac +b d)2≤(a 2+b 2)(c 2+d 2),即证明a 2c 2+2abc d+b 2d 2≤a 2c 2+a 2d 2+b 2c 2+b 2d 2,只需证明2abc d≤a 2d 2+b 2c 2,只需证明(a d -bc )2≥0. 而上式成立,∴2222ac bd a b c d +≤+⋅+成立. 【变式2】求证:123(3)a a a a a --<---≥【证明】分析法: 要证123(3)a a a a a --<---≥成立, 只需证明321(3)a a a a a +-<-+-≥, 两边平方得232(3)232(2)(1)a a a a a a -+-<-+--(3)a ≥, 所以只需证明(3)(2)(1)a a a a -<--(3)a ≥, 两边平方得22332a a a a -<-+,即02<,∵02<恒成立,∴原不等式得证.【变式3】用分析法证明:若a >0,则212122-+≥-+a a a a . 【证明】要证212122-+≥-+a a a a , 只需证212122++≥++aa a a . ∵a >0,∴两边均大于零,因此只需证2222)21()21(++≥++a a a a 只需证)1(222211441222222a a a a a a a a +++++≥++++, 只需证)1(22122a a a a +≥+,只需证)21(2112222++≥+a a a a , 即证2122≥+a a ,它显然成立.∴原不等式成立.例5. 若a ,b ,c 是不全相等的正数,求证:lg2b a ++ lg 2c b ++ lg 2a c +>lg a +lg b +lg c . 【证明】要证lg 2b a ++ lg 2c b ++ lg 2a c +>lg a +lg b +lg c , 只需证lg 2b a +·2c b +·2a c +>lg (a ·b ·c ), 只需证2b a +·2c b +·2a c +>abc . 但是,2b a +0>≥ab ,2c b +0>≥bc ,2a c +0>≥ac .且上述三式中的等号不全成立,所以,2b a +·2c b +·2a c +>abc . 因此lg 2b a ++ lg 2c b ++ lg 2a c +>lg a +lg b +lg c . 【总结升华】这个证明中的前半部分用的是分析法,后半部分用的是综合法.在实际证题过程中,分析法与综合法是统一运用的,把分析法和综合法孤立起来运用是脱离实际的.没有分析就没有综合;没有综合也没有分析.问题仅在于,在构建命题的证明路径时,有时分析法居主导地位,综合法伴随着它;有时却刚刚相反,是综合法导主导地位,而分析法伴随着它.举一反三:【变式1】设a 、b 是两个正实数,且a ≠b ,求证:3a +3b >22ab b a +【证明】证明一:(分析法)要证3a +3b >22ab b a +成立,只需证(a +b )( 2a -ab +2b )>ab (a +b )成立,即需证2a -ab +2b >ab 成立.(∵a +b >0)只需证2a -2ab +2b >0成立,即需证()2b a ->0成立. 而由已知条件可知,a ≠b ,有a -b ≠0,所以()2b a ->0显然成立,由此命题得证. 证明二:(综合法)∵a ≠b ,∴a -b ≠0,∴()2b a ->0,即2a -2ab +2b >0,亦即2a -ab +2b >ab . 由题设条件知,a +b >0,∴(a +b )( 2a -ab +2b )>(a +b )ab即3a +3b >22ab b a +,由此命题得证.【变式2】ABC ∆的三个内角,,A B C 成等差数列,求证:113a b b c a b c +=++++ 【证明】要证原式成立,只要证3a b c a b c a b b c +++++=++, 即只要证1c a a b b c+=++ 即只要证2221bc c a ab ab b ac bc+++=+++; 而2A C B +=,所以060B =,由余弦定理得222b a c ac =+-所以222222222221bc c a ab bc c a ab bc c a ab ab b ac bc ab a c ac ac bc ab a c bc+++++++++===+++++-+++++. 类型三:反证法证明例6.【证明】=只需证22≠,即证10≠5≠,即证2125≠,而该式显然成立,≠不成等差数列.=2125≠∵,5≠,10≠∴,即3720+≠,即2≠,∴ ≠∴【总结升华】结论中含有“不是”“不可能”“不存在”等词语的命题,此类问题的反面比较具体,适宜应用反证法. 举一反三:【变式1】求证:函数()f x =不是周期函数.【证明】假设()f x =则存在常数T (T≠0)使得对任意x ∈R ,都有成立.上式中含x=0,则有cos01=,2m =π(m ∈z 且m≠0). ①再令x=T ,则有1=,2n =π(n ∈Z 且n ≠0). ②②÷①得:32n m =, 这里,m ,n 为非零整数,故n m为有理数,而32无理数,二者不可能相等. 因此3()cos f x x =不是周期函数.【变式2】设{a n }是公比为q 的等比数列,S n 为它的前n 项和.(1)求证:数列{S n }不是等比数列.(2)数列{S n }是等差数列吗?为什么?【解析】(1)证明:假设{S n }是等比数列,则2213S S S =, 即222111(1)(1)a q a a q q +=⋅++.∵a 1≠0,∴(1+q )2=1+q +q 2.即q =0,与等比数列中公比q ≠0矛盾.故{S n }不是等比数列.(2)解:①当q =1时,S n =na 1,n ∈N*,数列{S n }是等差数列.②当q ≠1时,{S n }不是等差数列,下面用反证法证明:假设数列{S n }是等差数列,则S 1,S 2,S 3成等差数列,即2S 2=S 1+S 3,∴2a 1(1+q )=a 1+a 1(1+q +q 2).∵a 1≠0,∴2+2q =1+1+q +q 2,得q =q 2.∵q ≠1,∴q =0,这与等比数列中公比q ≠0矛盾.从而当q ≠1时,{S n }不是等差数列.综上①②可知,当q =1时,数列{S n }是等差数列;当q ≠1时,数列{S n }不是等差数列.【变式3】已知数列{a n }的前n 项的和S n 满足S n =2a n -3n (n ∈N *).(1)求证{a n +3}为等比数列,并求{a n }的通项公式;(2)数列{a n }是否存在三项使它们按原顺序可以构成等差数列?若存在,求出一组适合条件的项;若不存在,请说明理由.【解析】 (1) 证明:∵S n =2a n -3n (n ∈N *),∴a 1=S 1=2a 1-3,∴a 1=3.又由112323(1)n n n n S a n S a n ++=-⎧⎨=-+⎩得a n +1=S n +1-S n =2a n +1-2a n -3, ∴a n +1+3=2(a n +3),∴{a n +3}是首项为a 1+3=6,公比为2的等比数列.∴a n+3=6×2n-1,即a n=3(2n-1).(2)解:假设数列{a n}中存在三项a r,a s,a t (r<s<t),它们可以构成等差数列.由(1)知a r<a s<a t,则2a s=a r+a t,∴6(2s-1)=3(2r-1)+3(2t-1),即2s+1=2r+2t,∴2s+1-r=1+2t-r(*)∵r、s、t均为正整数且r<s<t,∴(*)左边为偶数而右边为奇数,∴假设不成立,即数列{a n}不存在三项使它们按原顺序可以构成等差数列.例7. 已知a,b,c∈(0,1),求证:(1―a)b,(1―b)c,(1-c)a中至少有一个小于或等于14.【证明】证法一:假设三式同时大于14,即1(1)4a b->,1(1)4b c->,1(1)4c a->,三式相乘,得1 (1)(1)(1)64a ab bc c-⋅-⋅->,又211 (1)24a aa a-+⎛⎫-≤=⎪⎝⎭,同理1(1)4b b-≤,1(1)4c c-≤,以上三式相乘,得1 (1)(1)(1)64a ab bc c-⋅-⋅-≤,这与1(1)(1)(1)64a ab bc c-⋅-⋅->矛盾,故结论得证.证法二:假设三式同时大于14.∵0<a<1,∴1-a>0.∴(1)11(1)242a ba b-+≥->=.同理(1)122b c-+≥,(1)122c a-+≥.三式相加,得33 22 >,∴原命题成立.【总结升华】从正面证明,需要分成多种情形进行分类讨论,而从反面进行证明,只要研究一种或很少的几种情形的问题多用反证法.比如这类带有“至少有一个”等字样的数学问题.举一反三:【变式】已知,,,0,1a b c R a b c abc ∈++==,求证:,,a b c 中至少有一个大于32. 【证明】假设,,a b c 都小于或等于32, 因为 1abc =,所以,,a b c 三者同为正或一正两负,又因为0a b c ++=,所以,,a b c 三者中有两负一正,不妨设0,0,0a b c ><<,则1,b c a bc a +=-=由均值不等式得()2b c bc -+≥,即12a a ≥, 解得33273482a ≥≥=,与假设矛盾,所以 ,,abc 中至少有一个大于32. 例8.已知:直线a 以及A ∉a .求证:经过直线a 和点A 有且只有一个平面.【证明】(1)“存在性”,在直线a 上任取两点B 、C ,如图.∵A ∉a ,B ∈a ,C ∈a ,∴A 、B 、C 三点不在同一直线上.∴过A 、B 、C 三点有且只有一个平面α∵B ∈α,C ∈α,∴a ⊂α,即过直线a 和点A 有一个平面α.(2)“唯一性”,假设过直线a 和点A 还有一个平面β.∵A ∉a ,B ∈a ,C ∈a ,∴B ∈β,C ∈β.∴过不共线的三点A 、B 、C 有两个平面α、β,这与公理矛盾.∴假设不成立,即过直线a 和点A 不可能还有另一个平面β,而只能有一个平面α.【总结升华】 这里证明“唯一性”时用了反证法.对于“唯一性”问题往往使用反证法进行证明,要注意与“同一法”的区别与联系.举一反三:【变式】求证:两条相交直线有且只有一个交点.【证明】假设结论不成立,即有两种可能:(1)若直线a 、b 无交点,那么a ∥b ,与已知矛盾;(2)若直线a 、b 不止有一个交点,则至少有两个交点A 和B ,这样同时经过点A 、B 就有两条直线,这与“经过两点有且只有一条直线”相矛盾.综上所述,两条相交直线有且只有一个交点.。

第4节直接证明与间接证明

第4节直接证明与间接证明
(1)证明:取x1=x2=0,则x1+x2=0≤1, 因为f(0+0)≥f(0)+f(0),所以f(0)≤0. 又对任意的x∈[0,1],总有f(x)≥0,所以f(0)≥0.于是f(0)=0.
【例2】 设{an}是公比为q的等比数列. (1)推导{an}的前n项和公式;
(2)设q≠1,证明数列{an+1}不是等比数列.
(2)证明:假设{an+1}是等比数列,则对任意的k∈N+, (ak+1+1)2=(ak+1)(ak+2+1),+2ak+1+1=akak+2+ak+ak+2+1, q2k+2a1qk=a1qk-1·a1qk+1+a1qk-1+a1qk+1, 因为a1≠0,所以2qk=qk-1+qk+1, 因为q≠0,所以q2-2q+1=0,所以q=1,这与已知矛盾. 所以假设不成立,故{an+1}不是等比数列.
是(C )
(A)锐角三角形 (B)直角三角形
(C)钝角三角形
(D)不确定
2.要证:a2+b2-1-a2b2≤0,只要证明( D ) 解析:因为a2+b2-1-a2b2≤0⇔(a2-1)(b2-1)≥0,故选D.
3.在△ABC中,三个内角A,B,C的对边分别为a,b,c,且A,B,C成等差数列,a,
b,c成等比数列,则△ABC的形状为
三角形.
答案:等边
4.已知函数f(x)=lg ,若f(a)=b,则f(-a)=
.(用b表示)
答案:-b
考点专项突破
在讲练中理解知识

直接证明与间接证明

直接证明与间接证明

直接证明与间接证明知识点:一、直接证明1、综合法(1)定义:一般地,利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法.(2)综合法的特点:综合法又叫“顺推证法”或“由因导果法”.它是从已知条件和某些学过的定义、公理、公式、定理等出发,通过推导得出结论.2、分析法(1)定义:一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止。

(2)分析法的特点:分析法又叫“逆推证法”或“执果索因法”.它是要证明结论成立,逐步寻求推证过程中,使每一步成立的充分条件,直到最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止.二、间接证明反证法1、定义:一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法.2、反证法的特点:反证法是间接证明的一种基本方法.它是先假设要证的命题不成立,即结论的反面成立,在已知条件和“假设”这个新条件下,通过逻辑推理,得出与定义、公理、定理、已知条件、临时假设等相矛盾的结论,从而判定结论的反面不能成立,即证明了命题的结论一定是正确的.3、反证法的优点:对原结论否定的假定的提出,相当于增加了一个已知条件.4反证法主要适用于以下两种情形:(1)要证的结论与条件之间的联系不明显,直接由条件推出结论的线索不够清晰;(2)如果从正面证明,需要分成多种情形进行分类讨论,而从反面进行证明,只要研究一种或很少的几种情形.例题讲解:一、选择题:1.命题“对于任意角θ,cos4θ-s in4θ=cos2θ”的证明:“cos4θ-sin4θ=(cos2θ-sin2θ)(cos2θ+sin2θ)=cos2θ-sin2θ=cos2θ”过程应用了()A.分析法B.综合法C.综合法、分析法综合使用D.间接证明法答案:B2.已知x1>0,x1≠1且x n+1=x n·(x2n+3)3x2n+1(n=1,2,…),试证:“数列{x n}对任意的正整数n,都满足x n>x n+1,”当此题用反证法否定结论时应为()A .对任意的正整数n ,有x n =x n +1B .存在正整数n ,使x n ≤x n +1C .存在正整数n ,使x n ≥x n -1,且x n ≥x n +1D .存在正整数n ,使(x n -x n -1)(x n -x n +1)≥0解析:根据全称命题的否定,是特称命题,即“数列{x n }对任意的正整数n ,都满足x n >x n +1”的否定为“存在正整数n ,使x n ≤x n +1”,故选B. 答案:B3.要证:a 2+b 2-1-a 2b 2≤0,只要证明( )A .2ab -1-a 2b 2≤0B .a 2+b 2-1-a 4+b 42≤0 C.(a +b )22-1-a 2b 2≤0 D .(a 2-1)(b 2-1)≥0 解析:因为a 2+b 2-1-a 2b 2≤0⇔(a 2-1)(b 2-1)≥0,故选D. 答案:D4.已知a 、b 是非零实数,且a >b ,则下列不等式中成立的是( )A.b a<1 B .a 2>b 2 C .|a +b |>|a -b | D.1ab 2>1a 2b 解析:b a <1⇔b -a a<0⇔a (a -b )>0. ∵a >b ,∴a -b >0.而a 可能大于0,也可能小于0,因此a (a -b )>0不一定成立,即A 不一定成立;a 2>b 2⇔(a -b )(a +b )>0,∵a -b >0,只有当a +b >0时,a 2>b 2才成立,故B 不一定成立;|a +b |>|a -b |⇔(a +b )2>(a -b )2⇔ab >0,而ab <0也有可能,故C 不一定成立;由于1ab 2>1a 2b ⇔a -b a 2b 2>0⇔(a -b )·a 2b 2>0. ∵a ,b 非零,a >b ,∴上式一定成立,因此只有D 正确.故选D.答案:D5.(2009·杭州市模拟)已知函数f (x )=⎝⎛⎭⎫12x ,a ,b ∈(0,+∞),A =f ⎝⎛⎭⎫a +b 2,B =f (ab ),C =f ⎝⎛⎭⎫2ab a +b ,则A 、B 、C 的大小关系为( ) A .A ≤B ≤CB .A ≤C ≤BC .B ≤C ≤AD .C ≤B ≤A解析:因为当a ,b ∈(0,+∞)时,a +b 2≥ab ≥2ab a +b,且函数f (x )=⎝⎛⎭⎫12x ,在R 上为减函数,所以A ≤B ≤C ,故选A.答案:A6.设0<x <1,则a =2x ,b =1+x ,c =11-x中最大的一个是( ) A .aB .bC .cD .不能确定解析:易得1+x >2x >2x .∵(1+x )(1-x )=1-x 2<1,又0<x <1,即1-x >0.∴1+x <11-x.答案:C 二、填空题:7.否定“任何三角形的外角都至少有两个钝角”其正确的反设应是________. 解析:本题为全称命题,其否定为特称命题.答案:存在一个三角形,它的外角至多有一个钝角8.已知a ,b 是不相等的正数,x =a +b 2,y =a +b ,则x ,y 的大小关系是________. 解析:y 2=(a +b )2=a +b =2(a +b )2>(a +b )22=x 2.答案:x <y 9.已知a ,b ,μ∈(0,+∞)且1a +9b=1,则使得a +b ≥μ恒成立的μ的取值范围是________. 解析:因为a +b =(a +b )⎝⎛⎭⎫1a +9b =b a +9a b +10≥16(当且仅当b a =9a b,即b =3a 时取等号),a +b ≥μ恒成立⇔μ≤(a +b )min ,所以μ≤16.又μ∈(0,+∞),故0<μ≤16.答案:(0,16]10.(原创题)如果a a +b b >a b +b a ,则a 、b 应满足的条件是________. 解析:∵a a +b b >a b +b a ⇔(a -b )2·(a +b )>0⇔a ≥0,b ≥0且a ≠b . 答案:a ≥0,b ≥0且a ≠b三、解答题:11.已知a ,b ,c 是不等正数,且abc =1.求证:a +b +c <1a +1b +1c.证明:∵a ,b ,c 是不等正数,且abc =1, ∴a +b +c =1bc +1ca +1ab <1b +1c 2+1c +1a 2+1a +1b 2=1a +1b +1c. 12.已知:a >0,b >0,a +b =1.求证: a +12+b +12≤2. 证明:要证 a +12+b +12≤2.只要证:a +12+b +12+2(a +12)(b +12)≤4, ∵由已知知a +b =1,故只要证:(a +12)(b +12)≤1, 只要证:(a +12)(b +12)≤1,只要证:ab ≤14, ∵a >0,b >0,1=a +b ≥2ab ,∴ab ≤14,故原不等式成立. 13.(2010·浦东模拟)△ABC 的三个内角A ,B ,C 成等差数列,a ,b ,c 分别为三内角A ,B ,C 的对边.求证:1a +b +1b +c =3a +b +c. 解:要证明1a +b +1b +c =3a +b +c ,只需证明a +b +c a +b +a +b +c b +c =3,只需证明c a +b +a b +c=1,只需证明c (b +c )+a (a +b )=(a +b )·(b +c ),只需证明c 2+a 2=ac +b 2.∵△ABC 的三个内角A ,B ,C 成等差数列,∴B =60°,则余弦定理,有b 2=c 2+a 2-2ac cos60°,即b 2=c 2+a 2-ac ,∴c 2+a 2=ac +b 2成立.故原命题成立,得证.。

直接证明与间接证明 知识点+例题+练习

直接证明与间接证明 知识点+例题+练习





1.分析法的特点:从未知看需知,逐步靠拢已知.
2.综合法的特点:从已知看可知,逐步推出未知.
3.分析法和综合法各有优缺点.分析法思考起来比较自然,容易
寻找到解题的思路和方法,缺点是思路逆行,叙述较繁;综合法从
条件推出结论,较简捷地解决问题,但不便于思考.实际证题时常
常两法兼用,先用分析法探索证明途径,然后再用综合法叙述出来.
4.利用反证法证明数学问题时,要假设结论错误,并用假设的命
题进行推理,没有用假设命题推理而推出矛盾结果,其推理过程是
错误的.
基础巩固题组
(建议用时:40分钟)
一、填空题
1.(2014·安阳模拟)若a<b<0,则下列不等式中成立的是________.
①1
a<
1
b;②a+
1
b>b+
1
a;③b+
1
a>a+
1
b;④
b
a<
b+1
a+1
.
2.用反证法证明命题:“已知a,b∈N,若ab可被5整除,则a,b中至少有一个能被5整除”时,应反设________成立.
3.(2014·上海模拟)“a=1
4”是“对任意正数x,均有x+
a
x≥1”的
________条件.教学效果分析。

一轮优化探究理数(苏教版)课件:第十章 第四节 直接证明与间接证明

一轮优化探究理数(苏教版)课件:第十章 第四节 直接证明与间接证明

(1)求数列{an}的通项 an 与前 n 项和 Sn; Sn (2)设 bn= n (n∈N*),求证:数列{bn}中任意不同的三项都不可 能成为等比数列.
a1=1+ 2, 解析:(1)由已知得 3a1+3d=9+3
2,
∴d=2. 故 an=2n-1+ 2,Sn=n(n+ 2). Sn (2)证明:由(1)得 bn= =n+ 2. n 假设数列{bn}中存在三项 bp,bq,br(p,q,r 互不相等)成等比 数列,则 b2 br. q=bp· 即(q+ 2)2=(p+ 2)(r+ 2).
第十章 算法初步、复数、推理与证明 第四节 直接证明与间接证明
主干知识 自主排查
C
目 录
ONTENTS
核心考点 互动探究 真题演练 高考预测 课时作业 知能提升
主干知识 自主排查
一、直接证明 内容 综合法 分析法
从要证明的结论出发,逐步 利用已知条件和某些数学 寻求使它成立的充分条件 , 定义、公理、定理等,经过 直到最后,把要证明的结论 定义 归结为判定一个明显成立 一系列的推理论证,最后推 的条件(已知条件, 定理, 定 导出所要证明的结论 成立 义,公理等)为止.
c2 +a≥2c. a a2 b2 c2 三式相加: b + c + a +a+b+c≥2(a+b+c), a2 b2 c2 即 b + c + a ≥a+b+c.
|a|+|b| 【例 2】 已知非零向量 a⊥b,求证: ≤ 2. |a-b|
证明:∵a⊥b,∴a· b=0. |a|+|b| 要证 ≤ 2,只需证:|a|+|b|≤ 2|a-b|, |a-b| 平方得:|a|2+|b|2+2|a||b|≤2(|a|2+|b|2-2a· b), 只需证:|a|2+|b|2-2|a||b|≥0, 即(|a|-|b|)2≥0,显然成立,故原不等式得证.

直接证明与间接证明-PPT精选文档

直接证明与间接证明-PPT精选文档

因为……所以……或由……得……
要证……只需证……即证……
2.间接证明
反证法:假设原命题 不成立 (即在原命题的条件下,结论不成立),经过正确的
推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证 明方法叫反证法.
考基联动
考向导析
限时规范训练
联动思考
综合法和分析法有什么区别与联系? 提示:分析法的特点是:从“未知”看“需知”,逐步靠拢“已知”,其逐步推理, 实际上是寻求它的充分条件;综合法的特点是:从“已知”看“可知”,逐步推向 “未知”,其逐步推理,实际上是寻找它的必要条件.分析法与综合法各有其特点, 有些具体的待证命题,用分析法或综合法均能证明出来,往往选择较简单的一种.
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
考基联动
考向导析
限时规范训练
迁移发散 1 1 1 1.设 a>0,b>0,a+b=1,求证: + + ≥8. a b ab 证明:∵a+b=1, 1 1 1 a+b a+b a+b ∴ + + = + + a b ab a b ab b a a+b =1+ +1+ + ≥2+2 a b ab =2+2+4=8. a+b ba ·+ a b a+b2 2
考基联动
考向导析
限时规范训练
考向二 分析法
|a|+|b| 【例 2】 已知非零向量 a,b,且 a⊥b,求证: ≤ 2. |a+b| 证明:a⊥b⇔a· b=0, 要证 |a|+|b| ≤ 2, |a+b|
只需证|a|+|b|≤ 2|a+b|, 只需证|a| +2|a||b|+|b| ≤2(a +2a· b+b ) 只需证|a|2 +2|a||b|+|b|2 ≤2a2 +2b2 , 只需证|a| +|b| -2|a||b|≥0, 即(|a|-|b|)2 ≥0, 上式显然成立,故原不等式得证.

2.2直接证明与间接证明(4课时)

2.2直接证明与间接证明(4课时)

2.2
直接证明与间接证明
2.2.2
反证法
问题提出
1.综合法和分析法的基本含义分别 是什么? 综合法:利用已知条件和某些数学定义、 公理、定理、性质、法则等,经过一系 列的推理论证,最后推导出所证结论成 立. 分析法:从所证结论出发,逐步寻求使 它成立的充分条件,直到归结为判定一 个显然成立的条件(已知条件、定义、 公理、定理、性质、法则等)为止.
2
2
2
9 4
例4 求证:面积为1的三角形不能被 面积小于2的平行四边形所覆盖.
D P
E N F B
C
K
M
A
流程:
P Þ Q1 Q1 Þ Q 2 Q 2 Þ Q 3

Qn Þ Q
2.分析的基本含义和思维流程分别 是什么?
含义:从所证结论出发,逐步寻求使它成 立的充分条件,直到归结为判定一个显 然成立的条件(已知条件、定义、公理、 定理、性质、法则等)为止. 流程: Q Ü P1 P1 Ü P2 P2 Ü P3 …
大前提:已知的一般原理; 小前提:所研究的特殊情况;
结 论:根据一般原理,对特殊情况做 出判断.
3.合情推理所得结论的正确性是需要 证明的,演绎推理的实施也需要具体的 操作方法,因此,从理论上获取证明数 学命题的基本方法,是我们需要进一步 学习的内容.
探究(一):综合法
思考1:对于不等式
a(b + c ) + b(c + a )
2.2
2.2.1
直接证明与间接证明
综合法和分析法
问题提出
1 5730 p 2
t
1.合情推理的主要作用和思维过程是 什么?
作用:提出猜想,发现结论; 过程:从具体问题出发→观察、分析、 比较、联想→归纳、类比→提出猜想.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
栏目索引
文数
课标版
第四节 直接证明与间接证明
教材研读
栏目索引
1.直接证明
内容
综合法
分析法
定义
利用已知条件和某些数学定义、公理 从要证明的结论出发,逐步寻求使它成
、定理
立的② 充分 条件,直至最后,把要证
等,经过一系列的推理论证,最后推导 明的结论归结为判定一个明显成立的
出所要
条件(已知条件、定理、定义、公理等)
栏目索引
2.用分析法证明时出现:欲使①A>B,只需②C<D,这里①是②的 ( ) A.充分条件 B.必要条件 C.充要条件 D.既不充分也不必要条件 答案 B 由题意可知,应用②⇒①,故①是②的必要条件.
栏目索引
3.用反证法证明命题:“三角形的内角中至少有一个不大于60度”,假设 正确的是 ( ) A.假设三个内角都不大于60度 B.假设三个内角都大于60度 C.假设三个内角至多有一个大于60度 D.假设三个内角至多有两个大于60度 答案 B 根据反证法的定义,假设是对原命题结论的否定,故假设三个 内角都大于60度.故选B.
栏目索引
判断下列结论的正误(正确的打“√”,错误的打“×”) (1)综合法是直接证明,分析法是间接证明. (×) (2)分析法是从要证明的结论出发,逐步寻找使结论成立的必要条件. (×) (3)反证法是将条件和结论同时否定,推出矛盾. (×) (4)用反证法证明结论“a>b”时,应假设“a<b”. (×)
点,其中n∈N*,设cn=an-bn,则cn与cn+1的大小关系为
.
答案 cn>cn+1
解析 由题意知,an= n2 1,bn=n,
∴cn= n2 1-n= 1 .
n2 1 n
显然,cn随着n的增大而减小,
∴cn>cn+1.
栏目索引
考点突破
考点一 综合法的应用
典例1 (2016湖北武汉模拟)已知函数f(x)=(λx+1)ln x-x+1.
栏目索引
1-1 设f(x)=ax2+bx+c(a≠0),若函数f(x+1)与f(x)的图象关于y轴对称,求
证:f
x
1 2
为偶函数.
证明 由函数f(x+1)与f(x)的图象关于y轴对称,可知f(x+1)=f(-x).将x换成
x-
1 2
代入上式可得f
x
1 2
1 =f
x
1 2
,即f
x
1 2
=f
x
证明的结论① 成立
为止
实质
由因导果
执果索因
框图表示
P⇒Q1→Q1⇒Q2→Q2⇒Q3→…→Qn⇒Q Q⇐P1→P1⇐P2→P2⇐P3→…→得到一个 明显成立的条件
文字语言
因为……所以…… 或由……得……
要证……只需证……即证……
栏目索引
2.间接证明 间接证明是不同于直接证明的又一类证明方法,反证法是一种常用的间 接证明方法. (1)反证法的定义:假设原命题③ 不成立 (即在原命题的条件下,结论 不成立),经过正确的推理,最后得出④ 矛盾 ,因此说明假设错误,从 而证明⑤ 原命题成立 的证明方法. (2)用反证法证明的一般步骤:(i)反设——假设命题的结论不成立;(ii)归 谬——根据假设进行推理,直到推出矛盾为止;(iii)结论——断言假设不 成立,从而肯定原命题的结论成立.
(1)若λ=0,求f(x)的最大值;
(2)若曲线y=f(x)在点(1,
f(1))处的切线与直线x+y+1=0垂直,证明:
f x
(x) 1
>0.
解析 (1)f(x)的定义域为(0,+∞),
当λ=0时, f(x)=ln x-x+1.
则f
'(x)=
1 x
-1,令f
'(x)=0,解得x=1.
当0<x<1时, f '(x)>0,∴f(x)在(0,1)上是增函数;
2
栏目索引
方法技巧 (1)分析法采用逆向思维,当已知条件与结论之间的联系不够明显、直 接,或证明过程中所需要用的知识不太明确、具体时,往往采用分析法, 特别是含有根号、绝对值的等式或不等式,从正面不易推导时,常考虑 用分析法.(2)应用分析法的关键在于需保证分析过程的每一步都是可 逆的,它的常用书面表达形式为“要证……只需要证……”或“……⇐ ……”.注意用分析法证明时,一定要严格按照格式书写.
1 2
,由偶函数
的定义可知f
x
1 2
为偶函数.
栏目索引
考点二 分析法的应用
典例2
已知函数f(x)=3x-2x,求证:对于任意的x1,x2∈R,均有
f
( x1 )
2
f
(x2 )
≥f
x1
2
x2
.
证明
要证明
f
( x1 )
2
f
(x2 )
≥f
x1
2
x2
,
即证明 (3x1
2x1) (3x2
2x2 )
x1 x2
≥3 2
-2·x1
x2
,
2
2
因此只要证明 3x1
3x2 2
x1 x2
-(x1+x2)≥3 2
-(x1+x2),
即证明 3x1
3x2
≥ 3 x1 x2 2
,
2
因此只要证明 3x1 3x2 ≥ 3x1 3x2 ,
2
由于x1,x2∈R,所以3x1 >0,3x2 >0,
由基本不等式知 3x1 3x2 ≥ 3x1 3x2 成立,故原结论成立.
栏目索引
4.下列条件:①ab>0,②ab<0,③a>0,b>0,④a<0,b<0,其中能使 b + a ≥2成
ab
立的条件的个数是
.

答案 3
解析 要使 b + a ≥2成立,需 b >0,
ab
a
即a与b同号,故①③④均能使 b + a ≥2成立.
ab
栏目索引
5.已知点An(n,an)为函数y= x2 1图象上的点,Bn(n,bn)为函数y=x图象上的
当0<x<1时, f(x)=(x+1)ln x-x+1=xln x+(ln x-x+1)<0,
∴ f (x) >0.
x 1
当x>1时,
f(x)=ln
x+(xln
x-x+1)=ln
x-x
ln
1 x
1 x
1
>0,∴
f x
(x) 1
>0.
综上可知, f (x) >0.
x 1
栏目索引
方法技巧 用综合法证题是从已知条件出发,逐步推向结论,综合法的适用范围: (1)定义明确的问题,如判定函数的单调性、奇偶性;(2)已知条件明确,并且 容易通过分析和应用条件逐步逼近结论的题型,在使用综合法证明时, 易出现的错误是因果关系不明确,逻辑表达混乱.
当x>1时, f '(x)<0,∴f(x)在(1,+∞)上是减函数.
故f(x)在x=1处取得最大值,为f(1)=0.
栏目索引
(2)证明:由题意可得, f '(x)=λlnx+ λx 1-1.
x
由题设条件,得f '(1)=1,即λ=1,
∴f(x)=(x+1)ln x-x+1.
由(1)知,ln x-x+1<0(x>0,且x≠1).
2-1
已知m>0,a,b∈R,求证:
a mb 1 m
2

a2 mb2 1 m
.
证明 ∵m>0,∴1+m>0,
∴要证原不等式成立,
只需证明(a+mb)2≤(1+m)(a2+mb2),
即证m(a2-2ab+b2)≥0,即证(a-b)2≥0, 而(a-b)2≥0显然成立, 故原不等式得证.
栏目索引
栏目索引
1.命题“对任意角θ,cos4θ-sin4θ=cos 2θ”的证明:“cos4θ-sin4θ=(cos2θsin2θ)(cos2θ+sin2θ)=cos2θ-sin2θ=cos 2θ”过程应用了 ( ) A.分析法 B.综合法 C.综合法、分析法综合使用 D.间接证明法 答案 B 因为证明过程是“从左往右”,即由条件⇒结论,故选B.
相关文档
最新文档