抽屉原理和容斥原理

合集下载

抽屉原理及其应用

抽屉原理及其应用

抽屉原理及其应用
抽屉原理(也称鸽笼原理、容斥原理)是离散数学中的一个基本原理,它描述了把若干个物体放入若干个容器中时,如果物体数量多于容器数量,那么至少有一个容器必须放多于一个物体。

抽屉原理可以应用在多个领域,包括:
1. 计算概率:假设有n个鸽巢和m个鸽子,如果将m个鸽子平均放入n个鸽巢中,那么至少有一个鸽巢中会放多于一个鸽子。

2. 计算排列组合:假设将n个物品分成m堆,至少有一堆中包含的物品数量不少于⌈n/m⌉(向上取整)。

3. 求解问题:当问题本身的解法很难找到时,可以利用抽屉原理削减解空间,锁定可能的解,减少求解难度。

4. 数据存储:在计算机程序设计中,抽屉原理可以用来优化数据存储和搜索。

将数据划分多个小区域同时进行搜索,可以减少搜索空间,提高效率。

总之,抽屉原理是一种非常实用的思想工具,可以帮助我们解决各种实际问题。

抽屉原理与容斥原理

抽屉原理与容斥原理

抽屉原理与容斥原理曹国钧有人说:“13个人中至少有两个人出生在相同月份”;又说:“某校一个年级的400名学生中,一定存在两名学生,他们在同一天过生日”,你认为他的说法对吗?你能说明为什么对或为什么不对吗?1947年匈牙利全国数学竞赛有一道这样的试题:“证明:任何六个人中,一定可以找到三个互相认识的人,或者三个互不认识的人。

”这道题看起来与数学没有多大关系,似乎无法用数学知识解决。

但解决时并不要用到多少高深知识,立即引起了许多数学爱好者的关注和兴趣。

以上问题就是数学中的一类与“存在性”有关的问题。

解决以上这几个问题,要用到数学中的抽屉原理。

我们很容易理解这样一个事实:把3只苹果放到两个抽屉中,肯定有一个抽屉中有2只或2只以上的苹果。

用数学语言表达这一事实,就是:将n+1个元素放入n 个集合内,则一定有一个集合内有两个或两个以上的元素(n 为正整数)。

这就是抽屉原理,也称为“鸽笼(巢)”原理。

这一原理最先是由德国数学家狄里克雷明确提出来的,因此,称之为狄里克雷原理。

抽屉原理还有另外的常用形式:抽屉原理2:把m 个元素任意放入n n m ()<个集合里,则一定有一个集合里至少有k 个元素,其中:k m n n m m n n m =⎡⎣⎢⎤⎦⎥+⎧⎨⎪⎪⎩⎪⎪,(当能整除时)(当不能整除时)1. m n m n m n ⎡⎣⎢⎤⎦⎥⎧⎨⎩⎫⎬⎭表示不大于的最大整数,亦即的整数部分。

抽屉原理3:把无穷多个元素放入有限个集合里,则一定有一个集合里含有无穷多个元素。

现在你能肯定前面的两种说法是正确的吗?你能说明这两种说法是正确的吗?利用抽屉原理,可以解决一些相当复杂甚至感到无从下手的问题,抽屉原理也是解决存在性问题的常用方法。

例1. 在1,4,7,10,…,100中任选20个数,其中至少有不同的两对数,其和等于104。

分析:解这道题,可以考虑先将4与100,7与97,49与55……,这些和等于104的两个数组成一组,构成16个抽屉,剩下1和52再构成2个抽屉,这样,即使20个数中取到了1和52,剩下的18个数还必须至少有两个数取自前面16个抽屉中的两个抽屉,从而有不同的两组数,其和等于104;如果取不到1和52,或1和52不全取到,那么和等于104的数组将多于两组。

奥数-抽屉原理;容斥原理

奥数-抽屉原理;容斥原理

奥数教学教案授课时间:年月日备课时间年月日年级五课程类别一对一课时学生姓名授课主题抽屉原理;面积计算授课教师教学目标理解和掌握抽屉原理并会灵活应用;会进行面积计算教学重难点抽屉原理;组合图形面积教学方法讲练结合教学过程1、课程导入/错题讲解:桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。

点拨教学过程2.知识点讲解定义一般情况下,把n+1或多于n+1个苹果放到n个抽屉里,其中必定至少有一个抽屉里至少有两个苹果。

我们称这种现象为抽屉原理。

解题思路(一)、利用公式进行解题苹果÷抽屉=商……余数余数:(1)余数=1,结论:至少有(商+1)个苹果在同一个抽屉里(2)余数=,结论:至少有(商+1)个苹果在同一个抽屉里(3)余数=0,结论:至少有“商”个苹果在同一个抽屉里(二)、利用最值原理解题将题目中没有阐明的量进行极限讨论,将复杂的题目变得非常简单,也就是常说的极限思想“任我意”方法、特殊值方法.学习札记容斥原理教学过程3、例题分析:【例1】向阳小学有730个学生,问:至少有几个学生的生日是同一天?一年最多有366天,可看做366个抽屉,730个学生看做730个苹果.因为,所以,至少有1+1=2(个)学生的生日是同一天.有20张写有数的卡片,正面的数分别是1,2,3,……19,20,将卡片背面朝上放在桌上,试问:最少取出几张,才能保证取出的卡片一定有两张上的数相差正好是5?【分析】11张。

要考虑最不利的情况,才能保证符合题目的条件。

将卡片分成10组,每组两张,并且这两张的数的差等于5:(1,6),(2,7)(3,8)(4,9),(5,10),(11,16),(12,17)(13,18)(14,19)(15,20)。

只要其中一组的两张卡片被取出,就可以符合要求。

如果每组取1张,共取10张,取第11张的时候就可以保证取出的11张中有两张上的数差为方法与技巧教学过程4、随堂练习染色中的抽屉原理小提。

人教版初中《第24章抽屉原理和容斥原理》竞赛专题复习含答案

人教版初中《第24章抽屉原理和容斥原理》竞赛专题复习含答案

第24章 抽屉原理和容斥原理24.1 抽屉原理24.1.1★在任意的61个人中,至少有6个人的属相相同.解析 因为一共有12种属相,把它看作12个抽屉,61151612⎡⎤+=+=⎢⎥⎣⎦,根据抽屉原理知,至少有6个人的属相相同. 评注 抽屉原理又称鸽笼原理或狄里克雷原理.这一简单的思维方式在解题过程中却可以有很多颇具匠心的运用.抽屉原理常常结合几何、整除、数列和染色等问题出现.许多有关存在性的证明都可用它来解决.抽屉原理1 如果把1n +件东西任意放入n 个抽屉,那么必定有一个抽屉里至少有两件东西. 抽屉原理2 如果把m 件东西任意放人n 个抽屉,那么必定有一个抽屉里至少有女件东西,这里,1,mm n nk m m n n ⎧⎪⎪=⎨⎡⎤⎪+⎢⎥⎪⎣⎦⎩是的位不是的位当数时; 当数时. 其中[]x 表示不超过x 的最大整数 ,例如[]33=,[]4.94=,[]2.63-=-等等.24.1.2★从2,4,6,…,30这15个偶数中任取9个数,证明:其中一定有两个数之和是34. 解析 把2,4,6,…,30这15个数分成如下8组(8个抽屉); (2)(4,30),(6,28),(8,26),(10,24),(12,22),(14,20),(16,18).从2,4,6,…,30这15个数中任取9个数,即是从上面8组数中取出9个数.抽屉原理知,其中一定有两个数取自同一组,这两个数的和就是34.24.1.3★★在1,2,3, …,100这100个正整数中任取11个数,证明其中一定有两个数的比值不超过32; {}1,{2,3},{4,5,6},{7,8,9,10},{11,12,…,16},{17,18,…,25}, {26,27,…,39},{40,41,…,60}. {61,62,…,91},{92,93,…,100}.从1,2,…,100中任取11个数,即是从上面10组中任取11个数,由抽屉原理知,其中一定有两个数取自同一组,这两个数的比值不超过32. 24.1.4★求证:任给五个整数,必能从中选出三个,使得它们的和能被3整除. 解析 任何数除以3所得余数只能是0、1、2,分别构造3个抽屉:{0}、{1}、{2}.(1)若这五个自然数除以3后所得余数分别分布在这3个抽屉中,从这三个抽屉中各取1个,其和必能被3整除.(2)若这5个余数分布在其中的两个抽屉中,根据抽屉原理,其中一个抽屉必包含有5132⎡⎤+=⎢⎥⎣⎦个余数,而这三个余数之和或为0,或为3,或为6,故所对应的3个整数之和是3的倍数.(3)若这5个余数都能分布在其中的一个抽屉中,易知必有3个整数之和能被3整除.24.1.5★★从1,2,3,…,20中,至少任取多少个数,才能使得其中一定有两个数,大的数是小的数的倍数. 解析 从1,2,…,20中取11,12,…,20这10个数,其中没有一个数是另一个数的倍数.把1,2,…,20分成如下10组:{1,221⨯,221⨯,321⨯,421⨯},{3,23⨯,223⨯},{5,25⨯,225⨯ },{7,27⨯ },{9,29⨯ },{11},{13},{13},{15},{17},{19},从中任取11个数,一定有两数取自同一组,于是大数便是小数的倍数. 所以,至少任取11个数才能满足题意.24.1.6★★在不超过100的正整数中任取55个不同的数,在这55个数中: (1)是否一定有两个数的差等于11? (2)是否一定有两个数的差等于9? 解析 (1)不一定,例如1~11,23~33,45~55,67~77,89~99这55个数中,任意两数的差都不等于11.(2)一定.把1,2,…,100分成如下54组:{1,10},{2,11},…,{9,18},{19,28},…,{81,90},{91,100},{92},{93},…,{99}.从中任取55个数,一定有两个数取自同一组,它们的差等于9.24.1.7★★证明:在任意的52个正整数中,一定可以找到两个数a 、b ,使得a b +或a b -能被100整除. 解析 把这52个正整数都除以100,考虑52个余数,若其中有两个相同,则它们的差能被10整除,若其中任意两个都不相同,则它们的差能被100整除,若其中任意两个都不相同,把0,1,…,99分成如下51组:{1,99},{2,98},…,{49,51},{0},{50}.从中任取52个数,车琮有两数(的余数)取自同一给,这两数的和或差能被100整除. 24.1.8★★某学校的初三年组的同学要从8名候选人中投票选举三好学生,规定每人必须从这8名候选人中任意选两名,那么至少有多少人参加投票,才能保证必有不少于5名同学投了相同的两个候选人的票? 解析 从8个人中任意选2人,不同的选法共有87228⨯÷=(种), 即有28个抽屉.由抽屉原理,当投票的人不少于()28511113⨯-+=人时,就能保证必有不少于5名同学投了相同两个候选人的票.而当112个人投票时,不一定有不少于5名同学投了相同两个候选人的票.所以,到少有113人投票时,能保证必有不少于5名同学投了相同两个候选人的票. 24.1.9★在1,11,111,…,1111n 个,…,中,是否有的倍数?解析 答案是肯定的. 考虑以下个数:1,11,111,…,20071111个,若它们都不是的倍数,则它们除以所得的余数中一定有两个是相同的,不妨设为1111a 个和1111b 个()12007a b <≤≤,于是112007111111b a -个个,1200711110a b a -⨯个.而(,10a )=1,所以,12007111b a -个,这与1,11,111,…,20071111个都不是的倍数矛盾.所以,在1,11,111,…,1111n 个,…中,一定有的倍数.24.1.10★★从任意给定的1999 个自然数中总可以找到k 个数,使得它们的和能被1999整除. 解析设1999个自然数为1a ,2a ,…,1999a ,且构造下列个和:0,1a ,12a a +,123a a a ++,…, 1231999a a a a ++++.因为任意一个自然数被1999除后,所得的余数可能是0,1,2,…,1998,共1999种.所以可将上述个和按照被1999除后所得不同的余数分成1999个集合.由抽屉原理可知,至少有两个和,不妨 设为 123a a a +++,12s t a a a a +++++()11999s t <≤≤,它们属于同一个集合,即它们分别被1999除后所得的余数相同,那么它们的差 12s s t a a a +++++能被1999整除.从而本题得证.24.1.11★★把圆周分成12段,将l ,2,3,…,11,12这12个数任意写在每一段内,使每一段恰好有一个数字.证明:一定存在连续的三段,它们的数字和至少是20. 解析如果记第1小段内填写的数是1a ,第2小段内填写的数是2a ……第12小段内填写的数是12a ,那么三个相邻小段填写的数字和可以有 123a a a ++,234a a a ++,345a a a ++, 456a a a ++,567a a a ++,678a a a ++, 789a a a ++,8910a a a ++,91011a a a ++,101112a a a ++,11121a a a ++,1212a a a ++这12种,并且12种情况中出现的所有数字和为()()12111233121112a a a a ++++=++++234=.由抽屉原理可知,至少有某个相邻的三段,它们的数字和至少是 23412012⎡⎤+=⎢⎥⎣⎦. 值得注意:本题中的三个相邻小段也可分成123a a a ++,456a a a ++,789a a a ++,101112a a a ++这4种情况,这时它们的数字和为 12111212111278a a a a ++++=++++=.由抽屉原理可知,至少有某个相邻的三段,它们的数字和至少是 781204⎡⎤+=⎢⎥⎣⎦. 24.1.12★★在2n 个连续自然数1,2,3,…,2n 中,任取出1n +个数.证明:在这1n +个数中,一定有两个数,其中一个是另一个的倍数. 解析 将这2n 个连续自然数分成n 集合: 1A ={1,12⨯,212⨯,312⨯,412⨯,512⨯,612⨯,…}, 2A ={3,32⨯,232⨯,332⨯,432⨯,532⨯,…}, 3A ={5,52⨯,252⨯,352⨯,452⨯,…},……n A =A{21n -}.由此可见,这2n 个数没有遗漏地被放在n 个集合中,并且同一个数决不会出现在两个不同的集合中.因此,根据抽屉原理可知,不论用何种方式从中取出1n +个数时,必定有至少两个数是出自同一个集合的,而同一个集合的两个数,大数必定是小数的倍数.24.1.13★★从1,2,…,2n 这2n 个正整数中任取1n +个数,证明其中一定存在两个数是互质的. 解析 把1,2,…,2n 这2n 个焉整数分成如下n 组: {1,2},{3,4},…,{21n -,2n }.从这n 组中任取1n +个数,由抽屉原理知,其中一定有两个数取自同一组,同一组中的两个数是相邻的正整数,从而它们是互质的.24.1.14★★把1,2,…,10按任意次序排成一个圆圈. (1)证明:一定可以找到三个相邻的数,它们的和不小于18; (2)证明:一定可以找到三个相邻的数,它们的和不大于15.解析 (1)设这10个数在圆周上排列为1,1a ,2a ,…,9a 如图(a ).由于()()()123456789231054a a a a a a a a a ++++++++=+++=,所以123a a a ++、456a a a ++、789a a a ++这三个数中一定有一个数不小于54183=.(2)设这10个数在圆周上排列为10,1b ,2b ,…,9b 如图(b ).由于()()()12345678912945b b b b b b b b b ++++++++=+++=,所以,123b b b ++、456b b b ++、789b b b ++这三个数中一定有一个数不大于45153=. 24.1.15★在边长为1的正三角形中,任取7个点,其中任意三点不共线.证明:其中必有三. 解析 如图所示,将正三角形的中心与三个顶点连起来把正三角形分成三个小三角形(3个抽屉).由抽屉原理知,必定有一个小三角形的内部或边界上至少有7133⎡⎤+=⎢⎥⎣⎦个点.这三个点构成的三角形面积不超过该小三角形的面积,即不超过13. 24.1.16★★在34⨯的长方形中,任意放置6个点,证明:一定可以找到两个点,它们的距离. 解析我们要设法把34⨯的长方形分成5个部分(5个抽屉),而且每部分中任意两点的距.b 23b a a 5a 32(b)(a)1如图所示,把34⨯的矩形分成5个部分.由勾股定理可以算得每个部分的任两点之间的距离不大于24.1.17★★求证:在任何凸()22n n >边形中,总有一条对角线不与任何一条边平行. 解析凡是与某条边平行的对角线,称之为“好对角线”,由于对每一条边,最多有2n -条对角线与之平行,因此凸n 边形的“好对角线”至多有()22n n -条,但凸2n 边形的对角线总数为()()2322n n n n n -=-+.于是由抽屉原理,知必定有某条对角线不与任何边平行. 对于凸21n +边形,不难构造例子使所有对角线均为“好对角线”.24.1.18★★证明:在任意6个人的集会上,或者有3个人以前彼此相识,或者有3个人以前彼此不相识. 解析 在平面上用6个点A 、B 、C 、D 、E 、F 分别代表参加集会的6个人.如果两人以前彼此认识,就在代表他们的两点间连一条实线;否则连一条虚线.考虑A 点与其余各点连线AB ,AC ,…,AF ,它们的线形不超过2种.根据抽屉原理,可知其中至少有5132⎡⎤+=⎢⎥⎣⎦条连线同为实线,或同为虚线.不妨设AB 、AC 、AD 均为实线.如果BC 、BD 、CD 三条连线中有一条(不妨设为BC )也是实线,那么三角形ABC 三边均为实线,说明A 、B 、C 代表的3个人以前彼此相识:如果BC 、BD 、CD 三条连线均为虚线,那么三角形BCD 三边均为虚线.说明B 、C 、D 代表的3个人以前彼此不相识.不论哪种情形发生,都符合问题的结论.24.1.19★★★空间有6点,任何3点都是一个不等边三角形的顶点,求证:这些三角形中的一个三角形的最短边同时是另一个三角形的最大边. 解析设1P ,2P ,…,6P 是空间中6个已知点.在每个三角形i j k PP P 中,把最短边涂成红色,于是,每个三角形中必有一条边为红色,其余的边未涂色.从每个点i P 可作5条线段与其余已知点相连.按抽屉原理,这5条线段中,或者至少有3条线段已被涂色,或者至少有3条线段还未涂色.211211211122EF F如果经过点1P 的5条线段中至少有3条(例如,设为线段12P P 、13PP 、14P P )涂红,那么,在由这3条线段的另一顶点为顶点的234P P P △中至少须有一边(最短边)涂红,设是边23P P ,那么123PP P △的3边就都被涂红了.如果经过点1P 的线段中至少有3条未被涂红(例如设为线段14P P 、15PP 、16P P ),由于145PP P △、156PP P △、164PP P △中每个都至少有一边是红的.因此,只能是线段45P P 、56P P 、64P P 全是红的,即456P P P △的各边都是红色的.24.1.20★★将正十三边形的每个顶点染成黑色或染成白色,每顶点染一色.求证:存在三个同色顶点,它们刚好成为一个等腰三角形的顶点. 解析设13个顶点依次为1A ,2A ,…,12A ,13A .若13个顶点都染成黑色或都染成白色,则结论显然成立.故只需考虑13个顶点中有染黑色也有染白色的情形.这时必有相邻两顶点同色,不妨设1A 、2A 同色,现考虑13A 、1A 、2A 、3A 、8A 这五个顶点,由抽屉原理知其中必有三顶点同色,这又分为下列三种情形:(1)13A 、1A 、2A 、3A 中有三点同色,又1A 、2A 同色,故1A 、2A 、3A 同色或13A 、1A 、2A 同色.这时123A A A △或1312A A A △为三顶点同色的等腰三角形.(2)13A 、3A 、8A 同色,这时1338A A A △为三顶点同色的等腰三角形.(3)1A 、2A 、8A 同色,这时128A A A △为三顶点同色的等腰三角形.24.1.21★★15个席位同等地围绕着圆桌安排,席上有15个客人的名片,客人们没有注意这些名片,直到他们坐下来,才发觉没有一个人坐在他自己的名片前面.证明:可以转动圆桌使得至少有两个客人同时对号入座. 解析 对于每个客人,都有一种转动圆桌的方式,使他对上自己的名片.现在先把席位按逆时针方向依次由1到15编号,每按逆时针方向转动一次圆桌,使名片对到下一个席位上,即1号上的名片对到2号席位,2号上的名片对到3号席位……15号上的名片对到1号席位.那么按这种方式转动15次后,所有的名片又对到初始的席位上.所以,一共有14种有效的转动,因为有15个客人,根据抽屉原理,必定有某种转动至少可容许有两个客人对上号.24.1.22★★在52张扑克牌上任意写上互不相同的正整数.证明:一定存在四张扑克牌,将其上的四个数仅用减号、乘号和括号适当组合成一个式子,其值是1989的倍数. 解析 因为19893951=⨯.而对任给的52个互异的正整数中,至少有两个数被51除后的余数相同,设这两个数为m a 、n a ,且m n a a >,那么 51m n a a t -=(t 为整数).在取出m a 、n a 后的50个互异的正整数中,又至少有两个数,不妨设k a 、l a ,且k l a a >,它们分别被39除后的余数相同,即 39k l a a s -=(s 为整数). 因此,在给出的52个互异的正整数中,一定有四个整数m a 、n a 、k a 、l a 组成一个式子:()()1989m n k l a a a a st --=.24.1.23★★★证明在任意11个无穷小数中,一定可以找到两个小数,它们的差或者含有无穷多个数字0,或者含有无穷多个数字9. 解析 由于每一个数位上的数字只有0,1,2,…,9这10种情况,因此11个数中必有两个数在这个数位上有相同的数字.记11个无穷小数为1a ,2a ,…,11a ,把这11个数分成如下55个二元组(每两个一组):()12,a a ,()13,a a ,…,()111,a a , ()23,a a ,…,()1011,a a .这55个二元组作为55个抽屉,现将无穷多个数1,2,3,…放进这些抽屉,规则是:若小数点后第k 位上i a 与j a 相同,则数k 就放入(),i j a a 中.例如,3a 与5a 的第7位上的数相同,则7就放入()35,a a这个抽屉里.由抽屉原理知,这55个(有限个)抽屉中必有一个抽屉,它含有无穷多个数,不妨设(1a ,5a )这个抽屉里含有无穷多个数,这就说明1a ,2a 这两个无穷小数有无穷多位相同.考虑1a 与2a 的差,在数字相同的数位上,差的数字为0或9.由于0与9的总个数有无穷多个,因此至少有一个出现无穷多次,从而1a 与2a 的差中,或者有无穷多个数字0,或者有无穷多个数字9.评注 本题先后三次用了抽屉原理,请读者仔细玩味.24.1.24★★★一个书架有五层,从下到上依次称为第1层,第2层,…,第5层.今把15册图书分放到书架的各层上,有些层可不放.证明:无论怎样放法,书架每层上的图书册数,以及相邻两层上图书册数之和,这些数中至少有两个是相等的. 解析用i a 表示第i 层所放的图书册数,1i =,2,3,4,5.如果有某个0i a =,那么结论显然成立.因此可设1i a ≥,1i =,2,…,5.考虑下面两种情况:(1)1a ,2a ,…,5a 中有两个数相等,则结论已经成立. (2)1a ,2a ,…,5a 各不相等,因 12515125a a a +++==+++,所以1a ,2a ,…,5a 必各取1、2、3、4、5之一.但是12a a +,23a a +,34a a +,45a a +这4个数不可能同时包含7、8、9这三个数.事实上,若7、8、9都出现,则只可能是725=+,835=+,945=+或734=+,835=+,945=+.前者表示放5册书的那一层与放2、3、4册的各层均相邻,不可能.后者表示放4、5册书的两层既要相邻又要不相邻,也不可能. 因此,下面9个数:24.1.25★★★一个由n n ⨯个方格组成的正方形表格,其中填满1,2,3,…,n 等数,且在任一行、任一列都能遇到所有这些数字.若表格中的数字关于对角线AB 是对称的,求证:当n 是奇数时,在对角线AB 上的那些方格中将会遇到所有的1,2,…,n 这些数字.解析 如图,由于在表格的每一行、每一列都出现l ,2,…,n 各数,所以任一行(或列)中,每个数只出现一次,于是表格中有n 个1,n 个2,…,n 个n . 又由于整个表格关于AB 对称,因此除对角线上的数外,任何一个数都将在其对称位置出现,如图中a ,b ,c ,d ,e ,f 等数.因此除对角线外表格中1,2,…,n 等数各有偶数个. 当n 为奇数时,表格中共有奇数个1,奇数个2,…,奇数个n .所以对角线AB 上出现1,2,…,n ,且1到n 个数都必将出现,但对角线上只有n 个格子,因此,所有的数在对角线上都恰好出现一次.24.1.26★★★一个半径为1的圆内或边界上有6个点,求证:必定有两点之间距离不大于1. 解析不妨设6个点为A 、B 、C 、D 、E 、F .如图,设1A 、2A 、3A 、4A 、5A 、6A 将O 六等分,且可让A 落在1OA 上(旋转可达).dc a b ff da cb ee BAA 5A对于六个扇形(圆心角60︒,半径为1),其中一个内有两点(包括边界)M 、N ,则1MN ≤.这是因为60MON ∠︒≤,()22222222cos 1MN OM ON OM ON MON OM ON OM ON OM ON ON OM OM =+-⋅∠+-⋅=+-≤≤≤(这里不妨设ON OM ≤).于是由前知,B 、C 、D 、E 、F 已不能落在扇形16A OA 与12A OA 上,于是这五个点均落在剩下的四个扇形中,由抽屉原理,知必有两点落在同一扇形内或边界上,因此仍有距离不大于1,结论成立.24.1.27★★★一个棋手为参加一次锦标赛将进行77天的集训,他每天至少下一盘棋,而每周至多下12盘棋.证明一定存在一个正整数n ,使得他在这77天里有连续的一天恰好下了21盘棋. 解析用i a 表示这位棋手从第1天到第i 天(包括第i 天)下棋的总盘数,1i =,2,…,77.由于每天至少下一盘棋,所以 12771a a a <<<≤.又因为每周至多下12盘棋,所以 7777121327a ⨯=≤, 所以12771132a a a <<<≤≤.考虑下面154个正整数:1a ,2a ,…,77a ,121a +,221a +,…,7721a +.其中最小的是1a ,最大的7721a +不超过13221153+=.因此这154个正整数中必定有两个是相等的.由于 1277a a a <<<,1277212121a a a +<+<<+,所以必定存在i j <,使得 21j i a a =+. 21j i a a -=.令n j i =-,那么该棋手在第1i +,2i +,…,i n j +=这连续的n 天中恰好下了21盘棋. 24.2 容斥原理24.2.1★一个班有45个学生,参加数学课外小组的有30人,参加语文课外小组的有25人,并且每一个人都至少参加了一个课外小组.问:这个班中参加了两个课外小组的同学有多少个?解析 我们画一个图帮助思考,如图所示,画两个相交的圆,其中一个圆表示参加数学课外小组的同学,另一个圆表示参数学课外小组语文课外小组加语文课外小组的同学,那么,两个圆的内部共有45个同学,两个圆的公共部分就是参加了两个课外小组的同学. 因为参加数学课外小组的同学有30人,参加语文课外小组的25人,但30255545+=>,这是因为两个课外小组都参加的同学被重复计算了两次,所以,两个课外小组都参加的同学有()30254510+-=(人).所以,这个班中参加了两个课外小组的同学有10个.评注 本题用的方法是容斥原理1.容斥原理1:A 或B 的元素个数A =的元素个数B +的元素个数一既是A 又是B 的元素个数. 24.2.2★在1,2,…,100这100个正整数中,不是5的倍数,也不是7的倍数的数有多少个?解析 在1,2,…,100中,5的倍数有5,10,15,…,100共20个,7的倍数有7,14,21,…,98共14个,其中既是5的倍数又是7的倍数的数有35,70共2个.根据容斥原理1得,在1,2,…,100中,5或者7的倍数有2014232+-=(个). 从而,在l ,2,…,100这100个正整数中,不是5的倍数,也不是7的倍数的数有1003268-=(个). 24.2.3★某班40位同学在一次数学测验中,答对第一题的有23人,答对第二题的有27人,这两题都答对的有17人,问有多少个同学这两题都不对?解析 根据容斥原理l 得:这两题都不对的同学有()402327177-+-=(人).24.2.4★某校对五年级100名同学进行学习兴趣调查,结果有58人喜欢语文,有38人喜欢数学,有52人喜欢外语.而且喜欢语文和数学(但不喜欢外语)的有6人,喜欢数学和外语(但不喜欢语文)的有4人,三科都喜欢的有12人,而且每人至少喜欢一科.问有多少同学只喜欢语文?有多少同学喜欢语文和外语(但不喜欢数学)?BA解析 如图所示,设喜欢语文和外语(但不喜欢数学)的有x 人.于是,喜欢数学和语文的有612+个人,喜欢数学和外语的有124+个人,喜欢语文和外语的有12x +个人.所以()100585238612=++-+()()1241212x -+-++,解得14x =.即喜欢语文和外语(但不喜欢数学)的有14人.所以,只喜欢语文的同学有586121426---=(人). 所以,有26个同学只喜欢语文,有14个同学喜欢语文和外语(但不喜欢数学).评注 本题用的方法是容斥原理2.容斥原理2:A 或B 或C 的元素个数A =的元素个数B +的元素个数C +的元素个数既是A 又是B 的元素个数一既是A 又是C 的元素个数一既是B 又是C 的元素个数+既是A 又是B 又是C 的元素个数.24.2.5★★全班有25个学生,其中17人会骑自行车,13人会游泳,8人会滑冰,这三项运动项目没有人全会.至少会这三项运动之一的学生数学成绩都及格了,但又都不是优秀.如果全班有6个人数学不及格,问:(1)全班数学成绩优秀的有几名?(2)全班有几个人既会游泳又会滑冰?解析 (1)至少会一项运动的人有25619-=人,因为没有人会全部三项运动,因此至少会三项运动之一的人假使每人都会两项,也要()17138219++÷=(人),这些人数学都及格了,再加上数学不及格的6人,正好是25人,所以没有人数学优秀.(2)如图所示:根据题意可得x 5241238658外语数学语文CBA17A B +=,8B C +=,13A C +=;其中A 表示既会骑自行车又会游泳的学生人数,B 表示既会骑自行车又会滑冰的同学的人数,C 表示既会游泳又会滑冰的同学的人数.所以()1381722C =+-÷=,故没有人数学优秀;全班有2人既会游泳又会滑冰.24.2.6★★在1到100个自然数中,既非3的倍数也不是4与5的倍数的数有多少个? 解析 只需求出是3或4,5的倍数有多少个,问题也随之解决了.3的倍数有3,6,9,…,99,共33个;4的倍数有4,8,12,…,100,共25个;5的倍数有5,10,15,…,100,共20个.我们还应注意下面这些数:3与4的公倍数有12,24,…,96,共8个;3与5的公倍数有15,30,…,90,共6个;4与5的公倍数有20,40,…,100,共5个;3、4、5的公倍数有1个:60.根据容斥原理,1到100的自然数中是3、4或5的倍数共有()()332520865160++-+++=(个). 因此,1到100的自然数中既非3、4也不是5的倍数有1006040-=(个). 所以,既非3、4也不是5的倍数的数有40个.34.2.7★如图,A 、B 、C 分别是面积为12、28、16的三张不同形状的纸片,它们叠放在一起盖住的总面积为38,若A 与B 、B 与C 、C 与A 的公共部分的面积分别为8、7、6.求A 、B 、C 三张纸片的公共部分的面积(图中阴影部分).解析 设所求三张纸片的公共部分的面积为x ,则由容斥原理有38122816876x =++---+,所以所以,A 、B 、C 三张纸片的公共部分的面积为3.24.2.8★★某班在体育课上进行了成绩考核,这个班在100米自由泳、跳远、铅球三项测0C B A滑冰游泳骑自行车试中获得优秀等级的人数分类统计如下:100米自由泳获得优秀的有21人,跳远获得优秀的有19人,铅球获得优秀的有20人.100米自由泳和跳远都获得优秀的有9人,跳远和铅球都获得优秀的有7人,铅球和100米自由泳都获得优秀的有8人.有5人没有获得任何一项优秀.问:这个班有多少个学生?解析设三项都获得优秀的有n个人,根据容斥原理2,至少有一项优秀的学生有n n++---+=+,21192097836所以,这个班的学生有36541++=+人.故这个班的学生人数不少于41人.n n另一方面,由于获得其中两项优秀的人数分别为9、7、8,所以,获得三项优秀的学生人数不超过7,即7n≤,所以,这个班的学生人数不超过48人.综上所述,这个班的学生人数在41与48之间.所以,学生人数可能的情况是41,42,43,…,48人.。

人教版初中《抽屉原理和容斥原理》竞赛专题复习含答案

人教版初中《抽屉原理和容斥原理》竞赛专题复习含答案

人教版初中《抽屉原理和容斥原理》竞赛专题复习含答案抽屉原理和容斥原理24.1 抽屉原理24.1.1★在任意的61个人中,至少有6个人的属相相同.解析 因为一共有12种属相,把它看作12个抽屉,61151612⎡⎤+=+=⎢⎥⎣⎦,根据抽屉原理知,至少有6个人的属相相同. 评注 抽屉原理又称鸽笼原理或狄里克雷原理.这一简单的思维方式在解题过程中却可以有很多颇具匠心的运用.抽屉原理常常结合几何、整除、数列和染色等问题出现.许多有关存在性的证明都可用它来解决.抽屉原理1 如果把1n +件东西任意放入n 个抽屉,那么必定有一个抽屉里至少有两件东西.抽屉原理2 如果把m 件东西任意放人n 个抽屉,那么必定有一个抽屉里至少有女件东西,这里,1,mm n n k m m n n ⎧⎪⎪=⎨⎡⎤⎪+⎢⎥⎪⎣⎦⎩是的位不是的位当数时; 当数时. 其中[]x 表示不超过x 的最大整数 ,例如[]33=,[]4.94=,[]2.63-=-等等.24.1.2★从2,4,6,…,30这15个偶数中任取9个数,证明:其中一定有两个数之和是34. 解析 把2,4,6,…,30这15个数分成如下8组(8个抽屉); (2)(4,30),(6,28),(8,26),(10,24),(12,22),(14,20),(16,18).从2,4,6,…,30这15个数中任取9个数,即是从上面8组数中取出9个数.抽屉原理知,其中一定有两个数取自同一组,这两个数的和就是34.24.1.3★★在1,2,3, …,100这100个正整数中任取11个数,证明其中一定有两个数的比值不超过32; {}1,{2,3},{4,5,6},{7,8,9,10},{11,12,…,16},{17,18,…,25}, {26,27,…,39},{40,41,…,60}. {61,62,…,91},{92,93,…,100}.从1,2,…,100中任取11个数,即是从上面10组中任取11个数,由抽屉原理知,其中一定有两个数取自同一组,这两个数的比值不超过32. 24.1.4★求证:任给五个整数,必能从中选出三个,使得它们的和能被3整除. 解析 任何数除以3所得余数只能是0、1、2,分别构造3个抽屉:{0}、{1}、{2}.(1)若这五个自然数除以3后所得余数分别分布在这3个抽屉中,从这三个抽屉中各取1个,其和必能被3整除.(2)若这5个余数分布在其中的两个抽屉中,根据抽屉原理,其中一个抽屉必包含有5132⎡⎤+=⎢⎥⎣⎦个余数,而这三个余数之和或为0,或为3,或为6,故所对应的3个整数之和是3的倍数.(3)若这5个余数都能分布在其中的一个抽屉中,易知必有3个整数之和能被3整除.24.1.5★★从1,2,3,…,20中,至少任取多少个数,才能使得其中一定有两个数,大的数是小的数的倍数. 解析 从1,2,…,20中取11,12,…,20这10个数,其中没有一个数是另一个数的倍数.把1,2,…,20分成如下10组:{1,221⨯,221⨯,321⨯,421⨯},{3,23⨯,223⨯},{5,25⨯,225⨯},{7,27⨯},{9,29⨯},{11},{13},{13},{15},{17},{19},从中任取11个数,一定有两数取自同一组,于是大数便是小数的倍数. 所以,至少任取11个数才能满足题意.24.1.6★★在不超过100的正整数中任取55个不同的数,在这55个数中: (1)是否一定有两个数的差等于11? (2)是否一定有两个数的差等于9? 解析 (1)不一定,例如1~11,23~33,45~55,67~77,89~99这55个数中,任意两数的差都不等于11.(2)一定.把1,2,…,100分成如下54组:{1,10},{2,11},…,{9,18},{19,28},…,{81,90},{91,100},{92},{93},…,{99}.从中任取55个数,一定有两个数取自同一组,它们的差等于9.24.1.7★★证明:在任意的52个正整数中,一定可以找到两个数a 、b ,使得a b +或a b -能被100整除. 解析 把这52个正整数都除以100,考虑52个余数,若其中有两个相同,则它们的差能被10整除,若其中任意两个都不相同,则它们的差能被100整除,若其中任意两个都不相同,把0,1,…,99分成如下51组:{1,99},{2,98},…,{49,51},{0},{50}.从中任取52个数,车琮有两数(的余数)取自同一给,这两数的和或差能被100整除. 24.1.8★★某学校的初三年组的同学要从8名候选人中投票选举三好学生,规定每人必须从这8名候选人中任意选两名,那么至少有多少人参加投票,才能保证必有不少于5名同学投了相同的两个候选人的票? 解析 从8个人中任意选2人,不同的选法共有87228⨯÷=(种), 即有28个抽屉.由抽屉原理,当投票的人不少于 ()28511113⨯-+=人时,就能保证必有不少于5名同学投了相同两个候选人的票.而当112个人投票时,不一定有不少于5名同学投了相同两个候选人的票.所以,到少有113人投票时,能保证必有不少于5名同学投了相同两个候选人的票. 24.1.9★在1,11,111,…,1111n 个,…,中,是否有2007的倍数?解析 答案是肯定的. 考虑以下2007个数: 1,11,111,…,20071111个,若它们都不是2007的倍数,则它们除以2007所得的余数中一定有两个是相同的,不妨设为1111a 个和1111b 个()12007a b <≤≤,于是112007111111b a -个个,1200711110a b a -⨯个.而(2007,10a )=1,所以,12007111b a -个,这与1,11,111,…,20071111个都不是2007的倍数矛盾.所以,在1,11,111,…,1111n 个,…中,一定有2007的倍数.24.1.10★★从任意给定的1999 个自然数中总可以找到k 个数,使得它们的和能被1999整除. 解析设1999个自然数为1a ,2a ,…,1999a ,且构造下列2000个和:0,1a ,12a a +,123a a a ++,…, 1231999a a a a ++++.因为任意一个自然数被1999除后,所得的余数可能是0,1,2,…,1998,共1999种.所以可将上述2000个和按照被1999除后所得不同的余数分成1999个集合.由抽屉原理可知,至少有两个和,不妨 设为 123a a a +++, 12s t a a a a +++++()11999s t <≤≤,它们属于同一个集合,即它们分别被1999除后所得的余数相同,那么它们的差 12s s t a a a +++++能被1999整除.从而本题得证.24.1.11★★把圆周分成12段,将l ,2,3,…,11,12这12个数任意写在每一段内,使每一段恰好有一个数字.证明:一定存在连续的三段,它们的数字和至少是20. 解析如果记第1小段内填写的数是1a ,第2小段内填写的数是2a ……第12小段内填写的数是12a ,那么三个相邻小段填写的数字和可以有 123a a a ++,234a a a ++,345a a a ++,456a a a ++,567a a a ++,678a a a ++, 789a a a ++,8910a a a ++,91011a a a ++, 101112a a a ++,11121a a a ++,1212a a a ++这12种,并且12种情况中出现的所有数字和为 ()()12111233121112a a a a ++++=++++234=.由抽屉原理可知,至少有某个相邻的三段,它们的数字和至少是 23412012⎡⎤+=⎢⎥⎣⎦. 值得注意:本题中的三个相邻小段也可分成123a a a ++,456a a a ++,789a a a ++,101112a a a ++这4种情况,这时它们的数字和为 12111212111278a a a a ++++=++++=.由抽屉原理可知,至少有某个相邻的三段,它们的数字和至少是 781204⎡⎤+=⎢⎥⎣⎦. 24.1.12★★在2n 个连续自然数1,2,3,…,2n 中,任取出1n +个数.证明:在这1n +个数中,一定有两个数,其中一个是另一个的倍数. 解析 将这2n 个连续自然数分成n 集合: 1A ={1,12⨯,212⨯,312⨯,412⨯,512⨯,612⨯,…}, 2A ={3,32⨯,232⨯,332⨯,432⨯,532⨯,…}, 3A ={5,52⨯,252⨯,352⨯,452⨯,…},……n A =A{21n -}.由此可见,这2n 个数没有遗漏地被放在n 个集合中,并且同一个数决不会出现在两个不同的集合中.因此,根据抽屉原理可知,不论用何种方式从中取出1n +个数时,必定有至少两个数是出自同一个集合的,而同一个集合的两个数,大数必定是小数的倍数.24.1.13★★从1,2,…,2n 这2n 个正整数中任取1n +个数,证明其中一定存在两个数是互质的. 解析 把1,2,…,2n 这2n 个焉整数分成如下n 组: {1,2},{3,4},…,{21n -,2n }.从这n 组中任取1n +个数,由抽屉原理知,其中一定有两个数取自同一组,同一组中的两个数是相邻的正整数,从而它们是互质的.24.1.14★★把1,2,…,10按任意次序排成一个圆圈.(1)证明:一定可以找到三个相邻的数,它们的和不小于18; (2)证明:一定可以找到三个相邻的数,它们的和不大于15.解析 (1)设这10个数在圆周上排列为1,1a ,2a ,…,9a 如图(a ).由于()()()123456789231054a a a a a a a a a ++++++++=+++=,所以123a a a ++、456a a a ++、789a a a ++这三个数中一定有一个数不小于54183=.b 23b a a 5a 32(b)(a)1(2)设这10个数在圆周上排列为10,1b ,2b ,…,9b 如图(b ).由于()()()12345678912945b b b b b b b b b ++++++++=+++=,所以,123b b b ++、456b b b++、789b b b ++这三个数中一定有一个数不大于45153=. 24.1.15★在边长为1的正三角形中,任取7个点,其中任意三点不共线.证明:其中必有三. 解析 如图所示,将正三角形的中心与三个顶点连起来把正三角形分成三个小三角形(3个抽屉).由抽屉原理知,必定有一个小三角形的内部或边界上至少有7133⎡⎤+=⎢⎥⎣⎦个点.这三个点构成的三角形面积不超过该小三角形的面积,即不超过13=. 24.1.16★★在34⨯的长方形中,任意放置6个点,证明:一定可以找到两个点,它们的距. 解析我们要设法把34⨯的长方形分成5个部分(5个抽屉),而且每部分中任意两点的距.211211211122如图所示,把34⨯的矩形分成5个部分.由勾股定理可以算得每个部分的任两点之间的距离不大于.从而命题得证.24.1.17★★求证:在任何凸()22n n >边形中,总有一条对角线不与任何一条边平行. 解析凡是与某条边平行的对角线,称之为“好对角线”,由于对每一条边,最多有2n -条对角线与之平行,因此凸n 边形的“好对角线”至多有()22n n -条,但凸2n 边形的对角线总数为()()2322n n n n n -=-+.于是由抽屉原理,知必定有某条对角线不与任何边平行. 对于凸21n +边形,不难构造例子使所有对角线均为“好对角线”.24.1.18★★证明:在任意6个人的集会上,或者有3个人以前彼此相识,或者有3个人以前彼此不相识. 解析 在平面上用6个点A 、B 、C 、D 、E 、F 分别代表参加集会的6个人.如果两人以前彼此认识,就在代表他们的两点间连一条实线;否则连一条虚线.考虑A 点与其余各点连线AB ,AC ,…,AF ,它们的线形不超过2种.根据抽屉原理,可知其中至少有5132⎡⎤+=⎢⎥⎣⎦条连线同为实线,或同为虚线.不妨设AB 、AC 、AD 均为实线.如果BC 、BD 、CD 三条连线中有一条(不妨设为BC )也是实线,那么三角形ABC 三边均为实线,说明A 、B 、C 代表的3个人以前彼此相识:如果BC 、BD 、CD 三条连线均为虚线,那么三角形BCD 三边均为虚线.说明B 、C 、D 代表的3个人以前彼此不相识.不论哪种情形发生,都符合问题的结论.EF F24.1.19★★★空间有6点,任何3点都是一个不等边三角形的顶点,求证:这些三角形中的一个三角形的最短边同时是另一个三角形的最大边. 解析设1P ,2P ,…,6P 是空间中6个已知点.在每个三角形i j k PPP 中,把最短边涂成红色,于是,每个三角形中必有一条边为红色,其余的边未涂色.从每个点i P 可作5条线段与其余已知点相连.按抽屉原理,这5条线段中,或者至少有3条线段已被涂色,或者至少有3条线段还未涂色.如果经过点1P 的5条线段中至少有3条(例如,设为线段12P P 、13PP 、14P P )涂红,那么,在由这3条线段的另一顶点为顶点的234P P P △中至少须有一边(最短边)涂红,设是边23P P ,那么123PP P △的3边就都被涂红了.如果经过点1P 的线段中至少有3条未被涂红(例如设为线段14P P 、15PP 、16P P ),由于145PP P △、156PP P △、164PP P △中每个都至少有一边是红的.因此,只能是线段45P P 、56P P 、64P P 全是红的,即456P P P △的各边都是红色的.24.1.20★★将正十三边形的每个顶点染成黑色或染成白色,每顶点染一色.求证:存在三个同色顶点,它们刚好成为一个等腰三角形的顶点. 解析设13个顶点依次为1A ,2A ,…,12A ,13A .若13个顶点都染成黑色或都染成白色,则结论显然成立.故只需考虑13个顶点中有染黑色也有染白色的情形.这时必有相邻两顶点同色,不妨设1A 、2A 同色,现考虑13A 、1A 、2A 、3A 、8A 这五个顶点,由抽屉原理知其中必有三顶点同色,这又分为下列三种情形:(1)13A 、1A 、2A 、3A 中有三点同色,又1A 、2A 同色,故1A 、2A 、3A 同色或13A 、1A 、2A 同色.这时123A A A △或1312A A A △为三顶点同色的等腰三角形.(2)13A 、3A 、8A 同色,这时1338A A A △为三顶点同色的等腰三角形.(3)1A 、2A 、8A 同色,这时128A A A △为三顶点同色的等腰三角形.24.1.21★★15个席位同等地围绕着圆桌安排,席上有15个客人的名片,客人们没有注意这些名片,直到他们坐下来,才发觉没有一个人坐在他自己的名片前面.证明:可以转动圆桌使得至少有两个客人同时对号入座. 解析 对于每个客人,都有一种转动圆桌的方式,使他对上自己的名片.现在先把席位按逆时针方向依次由1到15编号,每按逆时针方向转动一次圆桌,使名片对到下一个席位上,即1号上的名片对到2号席位,2号上的名片对到3号席位……15号上的名片对到1号席位.那么按这种方式转动15次后,所有的名片又对到初始的席位上.所以,一共有14种有效的转动,因为有15个客人,根据抽屉原理,必定有某种转动至少可容许有两个客人对上号.24.1.22★★在52张扑克牌上任意写上互不相同的正整数.证明:一定存在四张扑克牌,将其上的四个数仅用减号、乘号和括号适当组合成一个式子,其值是1989的倍数. 解析 因为19893951=⨯.而对任给的52个互异的正整数中,至少有两个数被51除后的余数相同,设这两个数为m a 、n a ,且m n a a >,那么51m n a a t -=(t 为整数). 在取出m a 、n a 后的50个互异的正整数中,又至少有两个数,不妨设k a 、l a ,且k l a a >,它们分别被39除后的余数相同,即 39k l a a s -=(s 为整数). 因此,在给出的52个互异的正整数中,一定有四个整数m a 、n a 、k a 、l a 组成一个式子:()()1989m n k l a a a a st --=.24.1.23★★★证明在任意11个无穷小数中,一定可以找到两个小数,它们的差或者含有无穷多个数字0,或者含有无穷多个数字9. 解析 由于每一个数位上的数字只有0,1,2,…,9这10种情况,因此11个数中必有两个数在这个数位上有相同的数字.记11个无穷小数为1a ,2a ,…,11a ,把这11个数分成如下55个二元组(每两个一组):()12,a a ,()13,a a ,…,()111,a a , ()23,a a ,…,()1011,a a .这55个二元组作为55个抽屉,现将无穷多个数1,2,3,…放进这些抽屉,规则是:若小数点后第k 位上i a 与j a 相同,则数k 就放入(),i j a a 中.例如,3a 与5a 的第7位上的数相同,则7就放入()35,a a这个抽屉里.由抽屉原理知,这55个(有限个)抽屉中必有一个抽屉,它含有无穷多个数,不妨设(1a ,5a )这个抽屉里含有无穷多个数,这就说明1a ,2a 这两个无穷小数有无穷多位相同.考虑1a 与2a 的差,在数字相同的数位上,差的数字为0或9.由于0与9的总个数有无穷多个,因此至少有一个出现无穷多次,从而1a 与2a 的差中,或者有无穷多个数字0,或者有无穷多个数字9.评注 本题先后三次用了抽屉原理,请读者仔细玩味.24.1.24★★★一个书架有五层,从下到上依次称为第1层,第2层,…,第5层.今把15册图书分放到书架的各层上,有些层可不放.证明:无论怎样放法,书架每层上的图书册数,以及相邻两层上图书册数之和,这些数中至少有两个是相等的. 解析用i a 表示第i 层所放的图书册数,1i =,2,3,4,5.如果有某个0i a =,那么结论显然成立.因此可设1i a ≥,1i =,2,…,5.考虑下面两种情况: (1)1a ,2a ,…,5a 中有两个数相等,则结论已经成立. (2)1a ,2a ,…,5a 各不相等,因 12515125a a a +++==+++,所以1a ,2a ,…,5a 必各取1、2、3、4、5之一.但是12a a +,23a a +,34a a +,45a a +这4个数不可能同时包含7、8、9这三个数.事实上,若7、8、9都出现,则只可能是725=+,835=+,945=+或734=+,835=+,945=+.前者表示放5册书的那一层与放2、3、4册的各层均相邻,不可能.后者表示放4、5册书的两层既要相邻又要不相邻,也不可能. 因此,下面9个数:1a ,2a ,…,5a ,12a a +,23a a +,34a a +,45a a +至多能取8个不同的值.由抽屉原理知,其中必有两个是相等的,从而命题得证.24.1.25★★★一个由n n ⨯个方格组成的正方形表格,其中填满1,2,3,…,n 等数,且在任一行、任一列都能遇到所有这些数字.若表格中的数字关于对角线AB 是对称的,求证:当n 是奇数时,在对角线AB 上的那些方格中将会遇到所有的1,2,…,n 这些数字.dc a b ff da cb ee BA解析 如图,由于在表格的每一行、每一列都出现l ,2,…,n 各数,所以任一行(或列)中,每个数只出现一次,于是表格中有n 个1,n 个2,…,n 个n . 又由于整个表格关于AB 对称,因此除对角线上的数外,任何一个数都将在其对称位置出现,如图中a ,b ,c ,d ,e ,f 等数.因此除对角线外表格中1,2,…,n 等数各有偶数个. 当n 为奇数时,表格中共有奇数个1,奇数个2,…,奇数个n .所以对角线AB 上出现1,2,…,n ,且1到n 个数都必将出现,但对角线上只有n 个格子,因此,所有的数在对角线上都恰好出现一次.24.1.26★★★一个半径为1的圆内或边界上有6个点,求证:必定有两点之间距离不大于1. 解析不妨设6个点为A 、B 、C 、D 、E 、F .如图,设1A 、2A 、3A 、4A 、5A 、6A 将O 六等分,且可让A 落在1OA 上(旋转可达).A 5A对于六个扇形(圆心角60︒,半径为1),其中一个内有两点(包括边界)M 、N ,则1MN ≤.这是因为60MON ∠︒≤,()22222222cos 1MN OM ON OM ON MON OM ON OM ON OM ON ON OM OM =+-⋅∠+-⋅=+-≤≤≤(这里不妨设ON OM ≤).于是由前知,B 、C 、D 、E 、F 已不能落在扇形16A OA 与12A OA 上,于是这五个点均落在剩下的四个扇形中,由抽屉原理,知必有两点落在同一扇形内或边界上,因此仍有距离不大于1,结论成立.24.1.27★★★一个棋手为参加一次锦标赛将进行77天的集训,他每天至少下一盘棋,而每周至多下12盘棋.证明一定存在一个正整数n ,使得他在这77天里有连续的一天恰好下了21盘棋. 解析用i a 表示这位棋手从第1天到第i 天(包括第i 天)下棋的总盘数,1i =,2,…,77.由于每天至少下一盘棋,所以 12771a a a <<<≤.又因为每周至多下12盘棋,所以7777121327a ⨯=≤, 所以12771132a a a <<<≤≤.考虑下面154个正整数:1a ,2a ,…,77a ,121a +,221a +,…,7721a +.其中最小的是1a ,最大的7721a +不超过13221153+=.因此这154个正整数中必定有两个是相等的.由于 1277a a a <<<,1277212121a a a +<+<<+,所以必定存在i j <,使得 21j i a a =+. 21j i a a -=.令n j i =-,那么该棋手在第1i +,2i +,…,i n j +=这连续的n 天中恰好下了21盘棋. 24.2 容斥原理24.2.1★一个班有45个学生,参加数学课外小组的有30人,参加语文课外小组的有25人,并且每一个人都至少参加了一个课外小组.问:这个班中参加了两个课外小组的同学有多少个?解析 我们画一个图帮助思考,如图所示,画两个相交的圆,其中一个圆表示参加数学课外小组的同学,另一个圆表示参数学课外小组语文课外小组加语文课外小组的同学,那么,两个圆的内部共有45个同学,两个圆的公共部分就是参加了两个课外小组的同学. 因为参加数学课外小组的同学有30人,参加语文课外小组的25人,但30255545+=>,这是因为两个课外小组都参加的同学被重复计算了两次,所以,两个课外小组都参加的同学有()30254510+-=(人). BA所以,这个班中参加了两个课外小组的同学有10个.评注 本题用的方法是容斥原理1.容斥原理1:A 或B 的元素个数A =的元素个数B +的元素个数一既是A 又是B 的元素个数. 24.2.2★在1,2,…,100这100个正整数中,不是5的倍数,也不是7的倍数的数有多少个?解析 在1,2,…,100中,5的倍数有5,10,15,…,100共20个,7的倍数有7,14,21,…,98共14个,其中既是5的倍数又是7的倍数的数有35,70共2个.根据容斥原理1得,在1,2,…,100中,5或者7的倍数有2014232+-=(个). 从而,在l ,2,…,100这100个正整数中,不是5的倍数,也不是7的倍数的数有1003268-=(个). 24.2.3★某班40位同学在一次数学测验中,答对第一题的有23人,答对第二题的有27人,这两题都答对的有17人,问有多少个同学这两题都不对?解析 根据容斥原理l 得:这两题都不对的同学有()402327177-+-=(人).24.2.4★某校对五年级100名同学进行学习兴趣调查,结果有58人喜欢语文,有38人喜欢数学,有52人喜欢外语.而且喜欢语文和数学(但不喜欢外语)的有6人,喜欢数学和外语(但不喜欢语文)的有4人,三科都喜欢的有12人,而且每人至少喜欢一科.问有多少同学只喜欢语文?有多少同学喜欢语文和外语(但不喜欢数学)?x 5241238658外语数学语文解析 如图所示,设喜欢语文和外语(但不喜欢数学)的有x 人.于是,喜欢数学和语文的有612+个人,喜欢数学和外语的有124+个人,喜欢语文和外语的有12x +个人.所以()100585238612=++-+()()1241212x -+-++,解得14x =.即喜欢语文和外语(但不喜欢数学)的有14人.所以,只喜欢语文的同学有586121426---=(人). 所以,有26个同学只喜欢语文,有14个同学喜欢语文和外语(但不喜欢数学).CBA评注 本题用的方法是容斥原理2.容斥原理2:A 或B 或C 的元素个数A =的元素个数B +的元素个数C +的元素个数既是A 又是B 的元素个数一既是A 又是C 的元素个数一既是B 又是C 的元素个数+既是A 又是B 又是C 的元素个数.24.2.5★★全班有25个学生,其中17人会骑自行车,13人会游泳,8人会滑冰,这三项运动项目没有人全会.至少会这三项运动之一的学生数学成绩都及格了,但又都不是优秀.如果全班有6个人数学不及格,问:(1)全班数学成绩优秀的有几名?(2)全班有几个人既会游泳又会滑冰?解析 (1)至少会一项运动的人有25619-=人,因为没有人会全部三项运动,因此至少会三项运动之一的人假使每人都会两项,也要()17138219++÷=(人),这些人数学都及格了,再加上数学不及格的6人,正好是25人,所以没有人数学优秀.(2)如图所示:根据题意可得0 C BA滑冰游泳骑自行车17A B+=,8B C+=,13A C+=;其中A表示既会骑自行车又会游泳的学生人数,B表示既会骑自行车又会滑冰的同学的人数,C表示既会游泳又会滑冰的同学的人数.所以()1381722C=+-÷=,故没有人数学优秀;全班有2人既会游泳又会滑冰.24.2.6★★在1到100个自然数中,既非3的倍数也不是4与5的倍数的数有多少个? 解析只需求出是3或4,5的倍数有多少个,问题也随之解决了.3的倍数有3,6,9,…,99,共33个;4的倍数有4,8,12,…,100,共25个;5的倍数有5,10,15,…,100,共20个.我们还应注意下面这些数:3与4的公倍数有12,24,…,96,共8个;3与5的公倍数有15,30,…,90,共6个;4与5的公倍数有20,40,…,100,共5个;3、4、5的公倍数有1个:60.根据容斥原理,1到100的自然数中是3、4或5的倍数共有()()332520865160++-+++=(个).因此,1到100的自然数中既非3、4也不是5的倍数有1006040-=(个).所以,既非3、4也不是5的倍数的数有40个.34.2.7★如图,A、B、C分别是面积为12、28、16的三张不同形状的纸片,它们叠放在一起盖住的总面积为38,若A与B、B与C、C与A的公共部分的面积分别为8、7、6.求A、B、C三张纸片的公共部分的面积(图中阴影部分).解析设所求三张纸片的公共部分的面积为x,则由容斥原理有38122816876x=++---+,所以所以,A、B、C三张纸片的公共部分的面积为3.24.2.8★★某班在体育课上进行了成绩考核,这个班在100米自由泳、跳远、铅球三项测试中获得优秀等级的人数分类统计如下:100米自由泳获得优秀的有21人,跳远获得优秀的有19人,铅球获得优秀的有20人.100米自由泳和跳远都获得优秀的有9人,跳远和铅球都获得优秀的有7人,铅球和100米自由泳都获得优秀的有8人.有5人没有获得任何一项优秀.问:这个班有多少个学生?解析 设三项都获得优秀的有n 个人,根据容斥原理2,至少有一项优秀的学生有 21192097836n n ++---+=+,所以,这个班的学生有36541n n ++=+人.故这个班的学生人数不少于41人.另一方面,由于获得其中两项优秀的人数分别为9、7、8,所以,获得三项优秀的学生人数不超过7,即7n ≤,所以,这个班的学生人数不超过48人.综上所述,这个班的学生人数在41与48之间.所以,学生人数可能的情况是41,42,43,…, 48人.。

2容斥原理和抽屉原理

2容斥原理和抽屉原理

抽屉原理I. 基础知识回顾 一、抽屉原理把八个苹果任意地放进七个抽屉里,不论怎样放,至少有一个抽屉放有两个或两个以上的苹果,这就是抽屉原理最简单的例子.抽屉原则有时也被称为鸽巢原理,它是德国数学家狄利克雷首先明确的提出来并用以证明一些数论中的问题,因此,也称为狄利克雷原则。

它是组合数学中一个重要的原理。

把它推广到一般情形有以下几种表现形式。

1. 若有1+n 个元素放进n 个集合,则必存在一个集合至少放2个元素; 2. 若把1+mn 个元素放进n 个集合,则必存在一个集合至少放有1+m 个元素; 3. 把m 个物体,按照任意方式全部放入n 个抽屉中,有两种情况: 当n 能整除m 时,一定存在一个抽屉中至少放入了mn个物体; 当n 不能整除m 时,一定存在一个抽屉中至少放入了1m n ⎡⎤+⎢⎥⎣⎦个物体. 二、容斥原理当我们对某些对象的数目从整体上计数碰到困难时,可以考虑将整体分解为几个部分,通过对每个部分的计数来实现对整体的计数. 这一方法就是容斥原理.将整体分解为部分,也就是将集合A 表示成它的一组两两互异的非空真子集123,,,n A A A A L 的并集,即12n A A A A =U UL U ,其中i A A ⊆,(1,2,)i A i n ≠∅=L ,则集合12{,,,}n A A A ϕ=L 叫做集合A 的一个覆盖. 当集合ϕ中的任意两个集合都不相交时,称ϕ为集合A 的一个(完全)划分.即ϕ是集合A 的一个覆盖,且()i j A A i j =∅≠I .如ϕ为集合A 的划分,则12n A A A A =+++L (为了方便,我们用A 来表示集合A 的元素个数,即card A A =),但是,要找到一个划分并且其中所有子集易于计数的有时并非易事. 我们可以考虑通过对任意的集族中的子集的计数来计算A ,当集族ϕ只是A 的覆盖,而不是划分时,显然有12nA A A A <+++L . 因为在计算iA 时出现了对某些元素的重复计数,为了计算A ,就得将②式右边重复计算的部分减去,如果减得多了,还得再加上,也就是说我们要做“多退少补”的工作.完成上述工作的准则就是容斥原理,是十九世纪英国数学家西尔维斯提出的,容斥原理有两个公式.1. 容斥公式定理1 设(1,2,,)i A i n =L 为有限集,则11111(1)nnnn i i i j i i i i i j nA A A A A -===≤<≤=-++-∑∑U I L I .容斥公式常用来计算至少具有某几个性质之一的元素的数目. 2. 筛法公式与容斥公式讨论的计数问题相反,有时需要计算不具有某几个性质中的任何一个性质的元素的个数,即()()()21U UU n A A A II L I 痧?.定理2 设(1,2,,)i A i n =L 为有限集U 的子集,则11111(1)nnnnU i i i j i j k i i i i i j ni j k nA U A A A A A A A ===≤<≤≤<<≤=-+-++-∑∑∑I I I I L I ð.II. 典型例题精讲例题1:任意400人中至少有两个人的生日相同.分析:生日从1月1日排到12月31日,共有366个不相同的生日,我们把366个不同的生日看作366个抽屉,400人视为400个苹果,由表现形式1可知,至少有两人在同一个抽屉里,所以这400人中有两人的生日相同.解:将一年中的366天视为366个抽屉,400个人看作400个苹果,由抽屉原理可以得知至少有两人的生日相同.例题2:边长为1的正方形中,任意放入9个点,求证这9个点中任取3个点组成的三角形中,至少有一个的面积不超过18. 解:将边长为1的正方形等分成边长为21的四个小正方形,视这四个正方形为抽屉,9个点任意放入这四个正方形中,根据抽屉原理,必有三点落入同一个正方形内.现取出这个正方形来加以讨论.把落在这个正方形中的三点记为.D E F 、、通过这三点中的任意一点(如E )作平行线,如图可知:111111.222228DEF DEG EFG S S S h h ⎛⎫≤⋅+⋅-= ⎪⎝⎭V V V =+例题3:任取5个整数,必然能够从中选出三个,使它们的和能够被3整除.证明:任意给一个整数,它被3除,余数可能为0,1,2,我们把被3除余数为0,1,2的整数各归入类12r r r 0,,.至少有一类包含所给5个数中的至少两个.因此可能出现两种情况: 1°. 某一类至少包含三个数;2°. 某两类各含两个数,第三类包含一个数.若是第一种情况,就在至少包含三个数的那一类中任取三数,其和一定能被3整除; 若是第二种情况,在三类中各取一个数,其和也能被3整除. 综上所述,原命题正确.例题4:九条直线中的每一条直线都将正方形分成面积比为2∶3的梯形,证明:这九条直线中至少有三条经过同一点.证明:如图,设PQ 是一条这样的直线,作这两个梯形的中位线MNABMN因为这两个梯形的高相等,所以它们的面积之比等于中位线长的比,即MH NH ∶ ,从而点H 有确定的位置(它在正方形一对对边中点的连线上,并且MH NH ∶=2:3 ).由几何上的对称性,这种点共有四个,即图中的.H J I K 、、、已知的九条适合条件的分割直线中的每一条必须经过H J I K 、、、这四点中的一点.把.H J I K 、、、看成四个抽屉,九条直线当成9个苹果,即可得出必定有3条分割线经过同一点.例题5:某校派出学生204人上山植树15301株,其中最少一人植树50株,最多一人植树100株,则至少有5人植树的株数相同.证明:按植树的多少,从50到100株可以构造51个抽屉,则个问题就转化为至少有5人植树的株数在同一个抽屉里.(用反证法)假设无5人或5人以上植树的株数在同一个抽屉里,那只有5人以下植树的株数在同一个抽屉里,而参加植树的人数为204人,所以,每个抽屉最多有4人,故植树的总株数最多有:4(50+51+…+100)=15300<15301得出矛盾.因此,至少有5人植树的株数相同.例题6(2016北京文科高考试题)某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种,则该网店三天售出的商品至少有 种. 解析:设三天销售商品种类的集合分别是,,A B C ,由题已知19,13,18,3,4A B C A B B C =====I I .由容斥原理可得43.A B C A B C A B B C A C A B CA C ABC =++---+=-+U U I I I I I I I I要求A B C U U 的最小值,只需求A C A B C -I I I 即()C A B I ð的最大值.而14C B C B C =-=I ð,当这14个元素均在A 中时,()C A B I ð最大值为14.所以A B C U U 的最小值为431429-=.例题7.设集合{}1,2,,2013S =L ,A 是S 的子集,并且A 的元素或是3的倍数,或是5的倍数,或是7的倍数,试问A 的元素最多有几个?解析:设{}3|B x S x =∈,{}5|C x S x =∈,{}7|D x S x =∈,则max A B C D =U U .注意到20136713B ⎡⎤==⎢⎥⎣⎦,20134025C ⎡⎤==⎢⎥⎣⎦,20132877D ⎡⎤==⎢⎥⎣⎦, 201313435B C ⎡⎤==⎢⎥⨯⎣⎦I ,20139537B D ⎡⎤==⎢⎥⨯⎣⎦I ,20135757C D ⎡⎤==⎢⎥⨯⎣⎦I ,201319357B C D ⎡⎤==⎢⎥⨯⨯⎣⎦I I . 由容斥原理,可得max A B C D =U U B C D B C B D C D B C D =++---+I I I I I()()671402287134955719=++-+++1093=.所以A 的元素最多有1093个.例题8.给定正整数n ,某个协会中恰好有n 个人,他们属于6个委员会,每个委员会至少由4n个人组成,证明:必有两个委员会,他们的公共成员数不小于30n . 证明:设621,,,A A A Λ表示6个委员会的成员集合,则61261161632i i j i j i i j i j nn A A A A A A A A =≤<≤≤<≤=≥-≥-∑∑∑U UL U I I , ① 所以162i j i j n A A ≤<≤≥∑I . 如果任意16i j ≤<≤,均有30i j n A A <I ,那么2616302i j i j n n A A C ≤<≤<⨯=∑I ,矛盾. 所以必存在,61≤<≤j i 使得30i j nA A ≥I .练习题:1.边长为1的等边三角形内有5个点,证明:这5个点中一定有距离小于0.5的两点.2.边长为1的等边三角形内,若有21n +个点,则至少存在2点距离小于1n.3.求证:任意四个整数中,至少有两个整数的差能够被3整除.4.某校高一某班有50名新生,试说明其中一定有两个人的熟人一样多.5.某个年级有202人参加考试,满分为100分,且得分都为整数,总得分为10101分,则至少有3人得分相同.6. 求1,2,3,…,100中不能被2,3,5整除的数的个数。

-抽屉、容斥

-抽屉、容斥

学员姓名: 上课日期:上课时间: 教师姓名:1.理解抽屉原理的基本概念、基本用法; 2.掌握用抽屉原理解题的基本过程,能够构造抽屉进行解题; 3.了解包含和排除问题的数量关系; 4.应用容斥原理解决问题抽屉原理 抽屉原理有时也被称为鸽笼原理,它由德国数学家狄利克雷首先明确提出来并用来证明一些数论中的问题,因此,也被称为狄利克雷原则.抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣的问题,并且常常能够起到令人惊奇的作用.许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使问题得到解决.抽屉原理的定义(1)举例桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。

(2)定义一般情况下,把n +1或多于n +1个苹果放到n 个抽屉里,其中必定至少有一个抽屉里至少有两个苹果。

我们称这种现象为抽屉原理。

抽屉原理的解题方案(一)、利用公式进行解题苹果÷抽屉=商……余数余数:(1)余数=1, 结论:至少有(商+1)个苹果在同一个抽屉里(2)余数=x ()()11x n - , 结论:至少有(商+1)个苹果在同一个抽屉里(3)余数=0, 结论:至少有“商”个苹果在同一个抽屉里(二)、利用最值原理解题将题目中没有阐明的量进行极限讨论,将复杂的题目变得非常简单,也就是常说的极限思想“任我意”方法、特殊值方法.容斥原理如果有s 件东西,其中具有性质A 的有a 件,具有性质B 的有b 件,既有性质A 又有性质B 的有c 知识要点教学目标抽屉、容斥原理件,那么具有性质A或性质B的件数是:cba-+既不具有性质A也不具有性质B的件数是:)(cbas-+-板块一:抽屉原理例题1:三个小朋友在一起玩,其中必有两个小朋友都是男孩或者都是女孩.例题2:光明小学有367名2000年出生的学生,请问是否有生日相同的学生?例题3:用五种颜色给正方体各面涂色(每面只涂一种色),请你说明:至少会有两个面涂色相同.例题4:教室里有5名学生正在做作业,现在只有数学、英语、语文、地理四科作业试说明:这5名学生中,至少有两个人在做同一科作业.例题5:向阳小学有930个学生,问:至少有几个学生的生日是同一天?例题精讲例题6:证明:在任意的37人中,至少有四人的属相相同。

高中数学抽屉原理容斥原理

高中数学抽屉原理容斥原理

高中数学抽屉原理容斥原理在数学问题中有一类与“存在性”有关的问题,例如:“13个人中至少有两个人出生在相同月份”;“某校400名学生中,一定存在两名学生,他们在同一天过生日”;“2003个人任意分成200个小组,一定存在一组,其成员数不少于11”;“把[0,1]内的全部有理数放到100个集合中,一定存在一个集合,它里面有无限多个有理数”。

这类存在性问题中,“存在”的含义是“至少有一个”。

在解决这类问题时,只要求指明存在,一般并不需要指出哪一个,也不需要确定通过什么方式把这个存在的东西找出来。

这类问题相对来说涉及到的运算较少,依据的理论也不复杂,我们把这些理论称之为“抽屉原理”。

“抽屉原理”最先是由19世纪的德国数学家迪里赫莱(Dirichlet)运用于解决数学问题的,所以又称“迪里赫莱原理”,也有称“鸽巢原理”的。

这个原理可以简单地叙述为“把10个苹果,任意分放在9个抽屉里,则至少有一个抽屉里含有两个或两个以上的苹果”。

这个道理是非常明显的,但应用它却可以解决许多有趣的问题,并且常常得到一些令人惊异的结果。

抽屉原理是国际国内各级各类数学竞赛中的重要内容,本讲就来学习它的有关知识及其应用。

(一)抽屉原理的基本形式定理1、如果把n+1个元素分成n个集合,那么不管怎么分,都存在一个集合,其中至少有两个元素。

证明:(用反证法)若不存在至少有两个元素的集合,则每个集合至多1个元素,从而n个集合至多有n个元素,此与共有n+1个元素矛盾,故命题成立。

在定理1的叙述中,可以把“元素”改为“物件”,把“集合”改成“抽屉”,抽屉原理正是由此得名。

同样,可以把“元素”改成“鸽子”,把“分成n个集合”改成“飞进n个鸽笼中”。

“鸽笼原理”由此得名。

例题讲解1.已知在边长为1的等边三角形内(包括边界)有任意五个点(图1)。

证明:至少有两个点之间的距离不大于2.从1-100的自然数中,任意取出51个数,证明其中一定有两个数,它们中的一个是另一个的整数倍。

小学数学《容斥原理和抽屉原理》教案

小学数学《容斥原理和抽屉原理》教案

容斥原理和抽屉原理第一课时教学内容:容斥原理和抽屉原理教学目标:本节课是在学生已学过两个基本原理和排列组合基础知识后,对学生提出的较高要求。

根据数学学科的特点、学生身心发展的合理需要,本节课从知识、方法、能力和发展性等层面确定了相应的教学目标。

教学重点:容斥原理作为解决计数问题的重要方法成为本节课教学重点;教学难点:而容斥原理由一般到特殊的归纳和推广是本节课的教学难点。

教学方法的选择:本节课运用“问题解决”课堂教学模式,采用探究、讨论的教学方法。

通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,总结规律,培养积极探索的科学精神。

教学手段的利用:采用多媒体技术,目的在于通过大容量信息的呈现和生动形象的演示,提高学生学习兴趣、激活学生思维、加深理解。

学法指导:学法指导的目标:(1)指导学生对一系列问题进行化归,找到解决问题的方法。

(2)通过对学生发言的点评,规范语言表达,指导学生进行交流和讨论。

教学过程:|一、脑筋急转弯激趣,导入新课师:同学们,喜欢脑筋急转弯吗?老师出个脑筋急转弯考考你们?脑筋急转弯:一张照片上有两对父子,数数却只有三个人,为什么?学:因为多数了一个人,爷爷和爸爸,爸爸和儿子,爸爸多数了,所以,是2+2-1=3(人)二、讲授新课师:同学们,你们知道什么容斥原理。

学:不知道。

师:在计数时,必须注意无一重复,无一遗漏。

为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。

师:就像是我们看到的图片一样,把重复的数目排斥出去。

你们知道了吗?学:知道了师:下面让我们实际挑战吧三:出示例1例1:从1到20中2或3的倍数的个数共有()个。

师:同学们,我们想知道从1到20中2或3的倍数的个数共有多少个?我们应该怎么来做这题?学:我们可以先把2的倍数数出来,在再把3 的倍数数出来师:那我们现在来数2的倍数?学:2的倍数是:2,4,6,8,10,12,14,16,18,20。

101中学坑班2012年春季五年级第十讲容斥原理与抽屉原理

101中学坑班2012年春季五年级第十讲容斥原理与抽屉原理

一、知识要点1、容斥原理(包含与排除原理):1) 原理一:给定两个集合A和B,要计算A∪B中元素的个数,总结为公式:|A∪B|=∣A∣+∣B∣-∣A∩B∣如:已知6的约数集合A={1,2,3,6},10的约数集合B={1,2,5,10},则A∩B={1,2},A∪B={1,2,3,5,6,10}。

∴∣A∣+∣B∣-∣A∩B∣=4+4-2=6,|A∪B|=6,满足|A∪B|=∣A∣+∣B∣-∣A∩B ∣。

2) 原理二:要计算A∪B∪C中元素的个数,总结为公式:∣A∪B∪C∣=∣A ∣+∣B∣+∣C∣-∣A∩B∣-∣B∩C∣- |C∩A|+|A∩B∩C∣5、抽屉原理抽屉原理1:将多于n件物品任意放到n个抽屉中,那么至少有一个抽屉中的物品不少于2件。

抽屉原理2:将多于m×n件物品任意放到到n个抽屉中,那么至少有一个抽屉中的物品不少于(m+1)件。

理解抽屉原理要注意几点:(1)抽屉原理是讨论物品与抽屉的关系,要求物品数比抽屉数或抽屉数的倍数多,至于多多少,这倒无妨。

(2)“任意放”的意思是不限制把物品放进抽屉里的方法,不规定每个抽屉中都要放物品,即有些抽屉可以是空的,也不限制每个抽屉放物品的个数。

(3)抽屉原理只能用来解决存在性问题,“至少有一个”的意思就是存在,满足要求的抽屉可能有多个,但这里只需保证存在一个达到要求的抽屉就够了。

(4)将a件物品放入n个抽屉中,如果a÷n= m……b,其中b是自然数,那么由抽屉原理2就可得到,至少有一个抽屉中的物品数不少于(m+1)件。

二、典型例题一、容斥原理一的应用例1 求不超过20的正整数中是2的倍数或3的倍数的数共有多少个。

例2 某班同学中有39人打篮球,37人跑步,25人既打篮球又跑步,问全班参加篮球、跑步这两项体育活动的总人数是多少?例3某班统计考试成绩,数学得90分以上的有25人;语文得90分以上的有21人;两科中至少有一科在90分以上的有38人。

小升初数学专题复习-专题十三 数学拓展(抽屉原理、容斥原理、方阵问题、时钟问题等)

小升初数学专题复习-专题十三  数学拓展(抽屉原理、容斥原理、方阵问题、时钟问题等)

专题十二数学拓展(抽屉原理、容斥原理、方阵问题、时钟问题等)考点扫描1.抽屉原理(1)抽屉原理定义一般情况下,把n+1或多于n+1个苹果放到n个抽屉里,其中必定至少有一个抽屉里至少有两个苹果。

我们称这种现象为抽屉原理。

(2)抽屉原理的基本公式判断三个量:苹果:多;具体.抽屉:少;类别(谁相同者谁抽屉)类型一:求至少数或者证明至少数均分思想:苹果 抽屉=商......余数至少数=商+1类型二:求苹果苹果至少=(至少数-1)×抽屉+1类型三:求抽屉(这个考查的非常少,了解一下)抽屉至多=(苹果—1)÷(至少数—1)(三个类型中,求至少数和苹果树,题目中都会出现“至少”,唯独求抽屉的时候会出现“至多”)2.容斥原理(1)两集合容斥原理:如果被计数的事物有A、B两类,那么,A类B类元素个数总和= 属于A类元素个数+ 属于B 类元素个数—既是A类又是B类的元素个数;(A∪B = A+B - A∩B)。

(2)三集合容斥原理:如果被计数的事物有A、B、C三类,那么,A类和B类和C类元素个数总和= A类元素个数+ B类元素个数+C类元素个数—既是A类又是B类的元素个数—既是A类又是C类的元素个数—既是B类又是C类的元素个数+既是A类又是B类而且是C类的元素个数。

(3)三个集合的容斥关系公式:A∪B∪C = A+B+C - A∩B - B∩C - C∩A +A∩B∩C。

3.方阵问题在日常生活中,我们经常见到把人或物排成正方形的形状,比如用花盆摆成正方形,同学们要参加运动会入场式,要进行队列操练,解放军排着整齐的方队接受检阅等,无论是训练或接受检阅,都要按一定的规则排成一定的队形,于是就产生了这一类的数学问题,在数学上我们通常把研究这样的问题称为方阵问题。

掌握这类问题的解题规律,可以提高我们的解题能力,培养思维的灵活性。

士兵排队,横着排叫行,竖着排叫列,若行数与列数都相等,恰好排成一个正方形,这就是一个方队,这种方队也叫做方阵(亦叫乘方问题)。

五年级上册数学奥数专题系列-容斥原理 抽屉原理 沪教版(2015秋)(含答案)

五年级上册数学奥数专题系列-容斥原理 抽屉原理 沪教版(2015秋)(含答案)

=+- (其中符号B A B A B”读作“并”,相当于中文“和”或者“或”的意思;符号“”读作“交”,相当,则称这一公式为包含与排除原理,简称容斥原理。

B,即阴影B计算了、再排除——A B A B+-次的重叠部分A B减去。

B的元素的个数,可分以下两的元素个数,然后加起来,即先求A+B(意思是“排除”了重复计A类、B类与C类元素个数的总和=A类元素的个数+B类元素个数+C类元素个数-既是A类又是B类的元素个数-既是B类又是C类的元素个数-既是A类又是C类的元素个数+同时是A类、B类、C类的元素个数。

用符号表示为:A B C A B C A B B C A C A B C=++---+图示如下:图中小圆表示A的元素的个数,中圆表示B的元素的个数,大圆表示C的元素的个数。

1.先包含——A B C++A B、B C、C A重叠了2次,多加了1次。

2.再排除——A B C A B B C A C++---重叠部分A B C重叠了3次,但是在进行A B C A B B C A C++---计算时都被减掉了。

3。

再包含——A B C A B B C A C A B C++---+最不利原则所谓“最不利原则”是指完成某一项工作先从最不利的情况下考虑,然后研究任意情况下可能的结果。

由此得到充分可靠的结论。

抽屉原理又称鸽巢原理或Dirichlet原理抽屉原理有时也被称为鸽笼原理,它由德国数学家狄利克雷首先明确提出来并用来证明一些数论中的问题,因此,也被称为狄利克雷原则。

抽屉原理是组合数学中一个重要而又两者容斥:【例 1】 两张长4厘米,宽2厘米的长方形纸摆放成如图形状。

把它放在桌面上,覆盖面积有多少平方厘米?【分析】被覆盖面积=长方形面积之和-重叠部分。

被覆盖面积4222212=⨯⨯-⨯=(平方厘米)。

【例 2】 一个长方形长12厘米,宽8厘米,另一个长方形长10厘米,宽6厘米,它们中间重叠的部分是一个边长4厘米的正方形,求这个组合图形的面积。

容斥原理与抽屉原理

容斥原理与抽屉原理

容斥原理与抽屉原理包含排除法:①若已知A、B、C三部分的数量(如图),其中C为重复部分,则图中的数量等于A+B-C.即:A∪B=A+B- A∩B,其中A∩B=C.②若已知A、B、C三部分的数量(如图),则图中的数量等于A+B+C-(A与B重叠部分+ B与C重叠部分+ C与A重叠部分)+A、B、C三者重叠的部分.即:A∪B∪C=A+B+C-(A∩B+B∩C+C∩A)+ A∩B∩C.以上概念中符号解释:“∪”表示并集,“A∪B”表示A并B,通俗的讲表示所有或属于A、或属于B的元素的数量(集合),“A∪B∪C”通俗的讲表示所有或属于A、或属于B、或属于C的元素数量. “∩”表示交集,“A∩B”表示A交B,通俗的讲表示所有即属于A、又属于B的元素的数量(集合),“A∩B∩C”通俗的讲表示所有即属于A,又属于B,还属于C的元素数量【例1】在一个炎热的夏日,10个小学生去冷饮店每人都买了冷饮。

其中6人买了汽水,6人买了可乐,4人买了果汁,有 3人既买了汽水又买了可乐,1人既买了汽水又买了果汁,2人既买了可乐又买了果汁。

问:(1)三样都买的有几人?(2)只买一样的有几人?分析:(1)直接运用公式,设三样都买的学生有X人,那么6+6+4-3-1-2+X=10,解得X=0,所以没有人三种东西都买了.(2)去冷饮店的学生中除了买一样的外,只有买两样东西的,买两样东西的有3+1+2=6人,所以买一样东西的学生有10-6=4人.【例2】 两个布袋各有12个大小一样的小球,且都是红、白、蓝各4个。

从第一袋中拿出尽可能少的球,但至少有两种颜色一样的放入第二袋中;再从第二袋中拿出尽可能少的球放入第一袋中,使第一袋中每种颜色的球不少于3个。

这时,两袋中各有多少个球?分析:第一次取完后,只需知道第一袋中有某种颜色的球不足3个即可(取了多少个球,怎样取的都可以不考虑)。

第二次取后,要保证第一袋中每种颜色的球不少于3个,最不利的情况是两种颜色的球各有8个,另一种颜色的球有3个。

第十二讲 容斥与抽屉

第十二讲   容斥与抽屉

第十二讲容斥与抽屉一、基础知识㈠容斥原理:在计数时,必须做到既不重复,也不遗漏。

为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既不重复,也不遗漏,这种计数的方法称为容斥原理。

1、两个集合的容斥:A∪B = A+B-A∩B (∩:重合的部分)2、三个集合的容斥:A∪B∪C = A+B+C-A∩B-B∩C-A∩C+A∩B∩C㈡抽屉原理原理1:把多于n个的物体放到n个抽屉里,则至少有一个抽屉里有2个或2个以上的物体。

原理2:把多于mn+1(m乘以n加一)个的物体放到n个抽屉里,则至少有一个抽屉里有m+1个或多于m+1个的物体。

二、补充练习练习1:学而思的一场竞赛选拔考试,试卷一共有5道题,规定答对3道及3道以上的人能通过考试。

发卷子时张老师说:“这次考试一共有5个班的100位同学参加,答对第1题到笫5题的依次有80、92、86、78、74人。

在公布每位同学的成绩之前,我想问大家一个问题:这次考试最少有多少位同学能通过呢?最多有多少位同学通过呢?”分析:⑴这100人共答对了80+92+86+78+74=410(道)题。

为使通过考试的人数尽可能少,应该让答对2题的人尽量多,且答对5题的尽量多。

410-2×100=210(道)题,210÷(5-2)=70(人),70<74, 70符合要求。

这次考试最少有70位同学能通过。

⑵这100人共答对了80+92+86+78+74=410(道)题。

为了使通过考试的人尽可能多,应该让答对3题题的人尽量多。

410=3×100+110,显然,可以让每人答对3道题。

因此,最多有100人通过考试。

练习2 一次数学竞赛出了10道选择题,评分标准为:基础分10分,每道题答对得3分,答错扣1分,不答不得分。

问:要保证至少有4人得分相同,至少需要多少人参加竞赛? 分析:⑴最不利原则的运用。

国家公务员考试行测答题技巧:数学运算之容斥原理和抽屉原理精讲

国家公务员考试行测答题技巧:数学运算之容斥原理和抽屉原理精讲

国家公务员考试行测答题技巧:数学运算之容斥原理和抽屉原理精讲行测答题技巧:容斥原理和抽屉原理是国家公务员考试行测科目数学运算部分的“常客”,了解此两种原理不仅可以提高做题效率,还可以提高自己的运算能力,扫平所有此类计算题。

中公教育专家在此进行详细解读。

一、容斥原理在计数时,要保证无一重复,无一遗漏。

为了使重叠部分不被重复计算,在不考虑重叠的情况下,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。

1.容斥原理1——两个集合的容斥原理如果被计数的事物有A、B两类,那么,先把A、B两个集合的元素个数相加,发现既是A类又是B类的部分重复计算了一次,所以要减去。

如图所示:公式:A∪B=A+B-A∩B总数=两个圆内的-重合部分的【例1】一次期末考试,某班有15人数学得满分,有12人语文得满分,并且有4人语、数都是满分,那么这个班至少有一门得满分的同学有多少人?数学得满分人数→A,语文得满分人数→B,数学、语文都是满分人数→A∩B,至少有一门得满分人数→A∪B。

A∪B=15+12-4=23,共有23人至少有一门得满分。

2.容斥原理2——三个集合的容斥原理如果被计数的事物有A、B、C三类,那么,将A、B、C三个集合的元素个数相加后发现两两重叠的部分重复计算了1次,三个集合公共部分被重复计算了2次。

如图所示,灰色部分A∩B-A∩B∩C、B∩C-A∩B∩C、C∩A-A∩B∩C都被重复计算了1次,黑色部分A∩B∩C被重复计算了2次,因此总数A∪B∪C=A+B+C-(A∩B-A∩B∩C)-(B∩C-A∩B∩C)-(C∩A-A∩B∩C)-2A∩B∩C=A+B+C-A∩B-B∩C-C∩A+A∩B∩C。

即得到:公式:A∪B∪C=A+B+C-A∩B-B∩C-C∩A+A∩B∩C总数=三个圆内的-重合两次的+重合三次的【例2】某班有学生45人,每人都参加体育训练队,其中参加足球队的有25人,参加排球队的有22人,参加游泳队的有24人,足球、排球都参加的有12人,足球、游泳都参加的有9人,排球、游泳都参加的有8人,问:三项都参加的有多少人?参加足球队→A,参加排球队→B,参加游泳队→C,足球、排球都参加的→A∩B,足球、游泳都参加的→C∩A,排球、游泳都参加的→B∩C,三项都参加的→A∩B∩C。

抽屉原理与容斥原理 竞赛用

抽屉原理与容斥原理 竞赛用

抽屉原理与容斥原理一、抽屉原理的定义(1)定义一般情况下,把n +1或多于n +1个苹果放到n 个抽屉里,其中必定至少有一个抽屉里至少有两个苹果。

我们称这种现象为抽屉原理。

(2)抽屉原理抽屉原理1 如果把n+1件东西任意放入n 个抽屉,那么必定有一个抽屉里至少有两件东西。

抽屉原理2 如果把m 件东西任意放入n 个抽屉,那么必行有一个抽屉里至少有k 件东西,这里⎪⎪⎩⎪⎪⎨⎧+⎥⎦⎤⎢⎣⎡=的倍数时。

不是当的倍数时,时当n m n m n m n m k ,1, 二、容斥原理定义 在计数时,为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理,也叫做包含排除原理。

容斥原理1 如果被计数的事物有A 、B 两类,那么,A 类或B 类元素个数=A 类元素个数+B 类元素个数一既是A 类又是B 类的元素个数。

容斥原理2 如果被计数的事物有A 、B 、C 三类,那么,A 类或B 类或C类元素个数=A类元素个数+B类元素个数+C类元素个数-既是A 类又是B类的元素个数-既是A类又是C类的元素个数-既是B类又是C类的元素个数+既是A类又是B类而且是C类的元素个数。

两个集合的容斥关系公式:A∪B = A+B - A∩B (∩:重合的部分)三个集合的容斥关系公式:A∪B∪C = A+B+C - A∩B - B∩C - C∩A +A∩B∩C三、典型题选练及相关练习例1 向阳中学有530个学生,问:至少有几个学生的生日是同一天?练习1.1 把125本书分给学生,如果其中至少有一个人分到至少4本书,那么,这个班最多有多少人?练习 1.2 海天中学八年级学生身高的厘米数都是整数,并且在150厘米到160厘米之间(包括150厘米到160厘米),那么,至少从多少个学生中保证能找到4个人的身高相同?例2 从2,4,6,……,30这15个偶数中任取9个数,证明:其中一定有两个数之和是34.练习 2 从2、4、6、8、 、50这25个偶数中至少任意取出多少个数,才能保证有2个数的和是52?例3 证明:在任意的52个正整数中,一定可以找到两个数ba,,使得ba-能被100整除。

容斥原理和抽屉原理

容斥原理和抽屉原理

容斥原理在计数时,为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。

容斥原理(1)如果被计数的事物有A、B两类,那么,A类或B类元素个数= A类元素个数+B类元素个数—既是A类又是B类的元素个数。

例1一次期末考试,某班有15人数学得满分,有12人语文得满分,并且有4人语、数都是满分,那么这个班至少有一门得满分的同学有多少人?分析:依题意,被计数的事物有语、数得满分两类,“数学得满分”称为“A类元素”,“语文得满分”称为“B类元素”,“语、数都是满分”称为“既是A类又是B类的元素”,“至少有一门得满分的同学”称为“A类或B类元素个数”的总和。

试一试:某班学生每人家里至少有空调和电脑两种电器中的一种,已知家中有空调的有41人,有电容斥原理(2)如果被计数的事物有A、B、C三类,那么,A类或B类或C类元素个数= A类元素个数+ B类元素个数+C类元素个数—既是A类又是B类的元素个数—既是A类又是C类的元素个数—既是B类又是C类的元素个数+既是A类又是B类而且是C类的元素个数。

例2某校六(1)班有学生54人,每人在暑假里都参加体育训练队,其中参加足球队的有25人,参加排球队的有22人,参加游泳队的有34人,足球、排球都参加的有12人,足球、游泳都参加的有18人,排球、游泳都参加的有14人,问:三项都参加的有多少人?分析:仿照例1的分析,你能先说一说吗?例3 在1到1000的自然数中,能被3或5整除的数共有多少个?不能被3或5整除的数共有多少个?分析:显然,这是一个重复计数问题(当然,如果不怕麻烦你可以分别去数3的倍数,5的倍数)。

我们可以把“能被3或5整除的数”分别看成A类元素和B类元素,能“同时被3或5整除的数(15的倍数)”就是被重复计算的数,即“既是A类又是B类的元素”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

I .抽屉原则10个苹果放入9个抽屉中,无论怎么放,一定有一个抽屉里放了2个或更多个苹果.这个简单的事实就是抽屉原则.由德国数学家狄利克雷首先提出来的.因此,又称为狄利克雷原则.将苹果换成信、鸽子或鞋,把抽屉换成信筒、鸽笼或鞋盒,这个原则又叫做信筒原则、鸽笼原则或鞋盒原则.抽屉原则是离散数学中的一个重要原则,把它推广到一般情形就得到下面几种形式: 原则一:把m 个元素分成n 类(m >n ),不论怎么分,至少有一类中有两个元素. 原则二:把m 个元素分成n 类(m >n )(1)当n |m 时,至少有一类中含有至少n m个元素; (2)当n |m 时,至少有一类中含有至少[nm]+1个元素.其中n m 表示n 是m 的约数,n m 表示n 不是m 的约数,[n m ]表示不超过nm的最大整数.原则三:把1221+-+++n m m m 个元素分成n 类,则存在一个k ,使得第k 类至少有k m 个元素. 原则四:把无穷多个元素分成有限类,则至少有一类包含无穷多个元素. 以上这些命题用反证法极易得到证明,这里从略.一般来说,适合应用抽屉原则解决的数学问题具有如下特征:新给的元素具有任意性.如10个苹果放入9个抽屉,可以随意地一个抽屉放几个,也可以让抽屉空着. 问题的结论是存在性命题,题目中常含有“至少有……”、“一定有……”、“不少于……”、“存在……”、“必然有……”等词语,其结论只要存在,不必确定,即不需要知道第几个抽屉放多少个苹果. 对一个具体的可以应用抽屉原则解决的数学问题还应搞清三个问题: (1)什么是“苹果”?(2)什么是“抽屉”? (3)苹果、抽屉各多少?用抽屉原则解题的本质是把所要讨论的问题利用抽屉原则缩小范围,使之在一个特定的小范围内考虑问题,从而使问题变得简单明确. 用抽屉原则解题的基本思想是根据问题的自身特点和本质,弄清对哪些元素进行分类,找出分类的规律. 用抽屉原则解题的基本思想是根据问题的自身特点和本质,弄清对哪些元素进行分类,找出分类的规律. 用抽屉原则解题的关键是利用题目中的条件构造出与题设相关的“抽屉”. Ⅱ. 容斥原则 当我们试图对某些对象的数目从整体上计数碰到困难时,考虑将整体分解为部分,通过对每个部分的计数来实现对整体的计数是一种明智的选择.将整体分解为部分也就是将有限集X 表示成它的一组两两互异的非空真子集A 1,A 2,…A n 的并集,即},,,{.2121n n A A A A A A X ==ϕ集合叫做集合X 的一个覆盖.一个特殊情况是,集族ϕ中的任意两个集合都不相交,这时我们称集族ϕ为集合X 的一个(完全)划分.如ϕ为集合X 的划分,则对集合X 的计数可通过熟知的加法公式||||||||||321n A A A A X ++++= ①进行,但是,要找到一个划分并且其中所有子集易于计数的有时并非易事. 我们可以考虑通过对任意的集族中的子集的计数来计算|X|,当集族ϕ中至少存在两个集合的交非空时,我们称这个覆盖为集合X 的不完全划分. 对于集合X 的不完全划分,显然有有||||||||21n A A A X +++< ②因为在计算|A i |时出现了对某些元素的重复计数,为了计算|X|,就得将②式右边重复计算的部分减去,如果减得超出了,还得再加上,也就是说我们要做“多退少补”的工作.完成这项工作的准则就是容斥原理. 是十九世纪英国数学家西尔维斯提出的. 容斥原理有两个公式. 1.容斥公式定理1 设则为有限集,),,2,1(n i A i =∑∑=≤<≤=-=-++-=ni nj i i ni n j i ii ni A A A AA 11111||)1(|||||| ③证明:当,/,/,,1221121B A A B A A B A A n ='='== 设时由加法公式有|||||||||)||(||)||(|||||||||||,||||||,|||||2121212121212211A A A A B B A B A B A A B A A A A A B A A B A -+=+-+-=++'+'=''==+'=+'结论成立.若n =k 时结论成立,则由∑∑∑=≤<≤=+=-+=+=+=+=+=-+-++-=-+=-+=ki kj i ki i k i ki k j i i i i ki k i ki k i ki k i k i i k i A A A A A A A A A A A A A A A 1111111111111111||||)1(|||||)(||||||)(|||||||∑≤<≤+=+++-+-+ki i k i ki kk j k i k A A A A A A A 111111|)(|)1(|)()(||∑∑+=+≤<≤+=-++-=111111||)1(||||k i k j i i k i kj i iA A A A知,1+=k n 时结论成立.由归纳原理知,对任意自然数n ,公式③成立. 公式③称为容斥公式,显然它是公式①的推广.如果将i A 看成具有性质i P 的元素的集合,那么n A A A X 21=就是至少具有n个性质n P P P ,,,21 之一的元素的集合. 因此,容斥公式常用来计算至少具有某几个性质之一的元素的数目.数学是一门非常迷人的学科,久远的历史,勃勃的生机使她发展成为一棵枝叶茂盛的参天大树,人们不禁要问:这根大树到底扎根于何处?为了回答这个问题,在19世纪末,德国数学家康托系统地描绘了一个能够为全部数学提供基础的通用数学框架,他创立的这个学科一直是我们数学发展的根植地,这个学科就叫做集合论。

它的概念与方法已经有效地渗透到所有的现代数学。

可以认为,数学的所有内容都是在“集合”中讨论、生长的。

集合是一种基本数学语言、一种基本数学工具。

它不仅是高中数学的第一课,而且是整个数学的基础。

对集合的理解和掌握不能仅仅停留在高中数学起始课的水平上,而要随着数学学习的进程而不断深化,自觉使用集合语言(术语与符号)来表示各种数学名词,主动使用集合工具来表示各种数量关系。

如用集合表示空间的线面及其关系,表示平面轨迹及其关系、表示方程(组)或不等式(组)的解、表示充要条件,描述排列组合,用集合的性质进行组合计数等。

有限集元素的个数(容斥原理) 请看以下问题:开运动会时,高一某班共有28名同学参加比赛,有15人参加游泳比赛,有8人参加田径比赛,有14人参加球类比赛,同时参加游泳比赛和田径比赛的有3人,同时参加游泳比赛和球类比赛的有3人,没有人同时参加三项比赛,问同时参加田径比赛和球类比赛的有多少人?只参加游泳一项比赛的有多少人?解决这个问题需要我们研究集合元素的个数问题(请读者参阅高中教材《数学》第一册(上)P23-P23阅读材料“集合元素的个数”。

)为此我们把有限集合A的元素个数记作card(A)可以证明:(1) card(A∪B)=card(A)+card(B)-card(A∩B);(2) card(A∪B∪C)=card(A)+card(B)+card(C)-car d(A∩B)-card(A∩C)-card(B∩C)+card(A∩B∩C)如下图所示:由图1-3-1,有card(A∪B)=①+②+③=(①+②)+(②+③)-②=card(A)+card(B)-card(A∩B)card(Cu(A∪B))=card(U)-card(A∪B)=card(U)-card(A)-card(B)+card(A∩B)又由图1-3-2,有card(A∪B∪C)=①+②+③+④+⑤+⑥+⑦=(①+④+⑤+⑦)+(②+⑤+⑥+⑦)+(③+④+⑥+⑦)-(⑤+⑦)-(⑥+⑦)-(④+⑦)+⑦=card(A)+card(B)+card(C)-card(A∩B)-card(A∩C)-card(B∩C)+card(A∩B∩C)现在我们可以来回答刚才的问题了:设A={参加游泳比赛的同学},B={参加田径比赛的同学},C={参加球类比赛的同学}则card(A)=15,card(B)=8,card(C)=14,card(A∪B∪C)=28且card(A∩B)=3,card(A∩C)=3,card(A∩B∩C)=0由公式②得28=15+8+14-3-3-card(B∩C)+0即card(B∩C)=3所以同时参加田径和球类比赛的共有3人,而只参加游泳比赛的人有15-3-3=9(人)例6.计算不超过120的合数的个数分析1:用“筛法”找出不超过120的质数(素数),计算它们的个数,从120中去掉质数,再去掉“1”,剩下的即是合数。

解法1:120以内:① 既不是素数又不是合数的数有一个,即“1”;② 素数有2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97、101、103、107、109、113、共30个。

所以不超过120的合数有120-1-30=89(个)(附:筛法:从小到大按顺序写出1-120的所有自然数:先划掉1,保留2,然后划掉2的所有倍数4,6,…120等;保留3,再划掉所有3的倍数6,9…117、120等;保留5,再划掉5的所有倍数10,15,…120;保留7,再划掉7的所有倍数,…这样,上面数表中剩下的数就是120以内的所有素数,这种方法是最古老的寻找素数的方法,叫做“埃斯托拉‘筛法’”) 说明:当n 不很大时,计算1-n 中的合数的个数困难不大;但当n 很大时,利用筛法就很困难、很费时了,必须另觅他途。

[分析2]受解法1的启发,如果能找出1-n 中质数的个数m ,则n -1-m 就是不超过n 的合数的个数。

由初等数论中定理:a 是大于1的整数。

如果所有不大于√a 的质数都不能整除a ,那么a 是质数。

因为120<121=112,√120<11,所以不超过120的合数必是2或3或5或7的倍数,所以只要分别计算出不超过120的2、3、5、7的倍数,再利用“容斥原理”即可。

解法2:设S 1={a∣1≤3≤120,2∣a};S 2={b∣1≤b≤120,3∣b};S 3={c∣1≤3≤120,5∣c};S 4={d∣1≤d≤120,7∣d},则有:card(S 1)=[120/2]=60,card(S 2)=[120/3]=40,card(S 3)=[120/5]=24,card(S 4)=[120/7]=17;([n]表示n 的整数部分,例如[2,4]=2,…)card(S 1∩S 2)=[120/2×3]=20,card(S 1∩S 3)=[120/2×5]=12, card(S 1∩S 4)=[120/2×7]=8,card(S 2∩S 3)=[120/3×5]=8, card(S 2∩S 4)=[120/3×7]=5,card(S 3∩S 4)[120/5×7]=3,card(S 1∩S 2∩S 3)[120/2×3×5]=4,card(S 1∩S 2∩S 4)=[120/2×3×7]=2,card(S 1∩S 3∩S 4)=[120/2×5×7]=1,card(S 2∩S 3∩S 4)=[120/3×5×7]=1,card(S 1∩S 2∩S 3∩S 4)=[120/2×3×5×7]=0∴card(S 1∪S 2∪S 3∪S 4)=card(S 1)+card(S 2)+card(S 3)+card(S 4)-card(S 1∩S 2)-card(S 1∩S 3)-card(S 1∩S 4)-card(S 2∩S 3)-card(S 2∩S 4)-card(S 3∩S 4)+card(S 1∩S 2∩S 3)+card(S 1∩S 2∩S 4)+card(S 1∩S 3∩S 4)+card(S 2∩S 3∩S 4)-card(S 1∩S 2∩S 3∩S 4)=(60+40+24+17)-(20+12+8+8+5+3)+(4+2+1+1)-0=141-56+8=93 ∵2,3,5,7是质数 ∴93-4=89即不超过120的合数共有89个。

相关文档
最新文档