组合优化问题(一)

合集下载

组合优化

组合优化

0 0 3 4 4 7
0 0 3 4 5 7
0 0 3 4 5 7
启发式算法
• 在实际应用中,可以通过数值模拟的方法 来衡量算法的性能,从而免去了理论证明 的困难和局限,使我们可以充分地利用经 验和技巧,自由地调整算法的步骤和参 数,设计出性能尽可能好的算法。这样的 算法称为启发式算法(heuristic)
k 0 w • 实例 0 0 C 5, n 4 p1 3, p2 4, p3 5, p4 6 1 0 w1 2, w2 3, w3 4, w4 5 2 0 • 最优值为 7,最优 3 0 解为物品1,2 放入 4 0 背包 5 0
1 2 3 4
0 0 3 3 3 3
• 由初始条件和递推关系可逐步求得 I (n, C), 外层循环为 k 0,, n ,内层循环为 w 0,, C • 该动态规划时间复杂性为 Ο(nC) ,背包问题 的实例规模为 Ο(n log2 B), B max{ p j , wj , C} , 因此它是一个伪多项式算法
背包问题的动态规划
中国邮递员问题
• 一位邮递员从邮局选好邮件去投 递,然后返回邮局。他必须经过 由他负责投递的每条街道至少一 次。如何为这位邮递员设计一条 投递线路,使其耗时最少。
中国邮递员问题
• Euler环游(一笔画)
• 经过图中所有边恰好一 次的回路称为Euler 回路 ,含有Euler回路的图称 为Euler 图 • 图是Euler 图的充要条件 是图中没有奇度顶点
P NP 假设下
• NP 类中的问题既不是没有多项式时间算法的问题 ,也不是最难的问题。
P NP 假设下
P 与NP-hard
• P问题
• 图的最短路 • 图的最大流、最小割 • 背包问题 • 划分问题 • 图的独立集、团、顶 点覆盖 P 问题 线性规划 (二维)匹配 指派 Euler圈 中国邮递员 最小生成树 NP-hard问题 整数规划 三维匹配 二次指派 Hamiltion圈 TSP 最小Steiner树

组合优化问题及算法

组合优化问题及算法

启发式算法
邻域概念
TSP问题解的另一种表示法为
D={S=(i1,i2,…,in)是1,2,…,n的一个排列} 可以定义它的邻域映射为2-opt,即S中的两个 元素对换。
如4个城市的TSP问题,当S=(1,2,3,4)时, N(S)={(2,1,3,4),(3,2,1,4),(4,2,3,1),(1,3, 2,4),(1,4,3,2),(1,2,4,3)}.
i 1
xi {0,1},
i 1,, n
一些例子
2. 旅行商问题(TSP,traveling salesman problem)
一个商人欲到n个城市推销商品,每两个城市i和j之
间的距离为dij,如何选择一条道路使得商人每个城市正 好走一遍后回到起点且所走路径最短。
n
min dij xij
i j
n
组合优化问题及算法
引言
组合最优化(combinatorial optimization)是通过 对数学方法的研究去寻找离散事件的最优编排、分组、次 序或筛选等,是运筹学(operations research)中的一个 重要分支。所研究的问题涉及信息技术、经济管理、工业 工程、交通运输、通信网络等领域。该问题可用数学模型 描述为:
邻域的构造依赖于问题决策变量的表示,邻 域的结构在现代化优化算法中起重要作用。
启发式算法
邻域概念
例如,前面例子2给出的TSP问题模型。由解空间 D={x{0,1}n(n-1)},可以定义它的一种邻域为:
N (x) {y |yx| |yijxij|k, y D }
i,j
k为一个正整数。 TSP问题解的另一种表示法为 D={S=(i1,i2,…,in)是1,2,…,n的一个排列}

组合优化问题简介

组合优化问题简介

组合优化问题简介在我们的日常生活和工作中,经常会遇到各种各样需要做出最优选择的情况。

比如,在旅行时规划最佳路线,以使花费的时间和费用最少;在生产线上安排工序,以提高生产效率和降低成本;在物流运输中选择最优的配送方案,以减少运输时间和成本等等。

这些问题都属于组合优化问题。

组合优化问题是一类在离散的、有限的可行解集合中,寻找最优解的问题。

这里的“组合”意味着解决方案是由多个元素的组合而成,而“优化”则表示我们要找到其中最好的那个组合。

让我们以一个简单的例子来理解组合优化问题。

假设你要从城市 A 前往城市 C,中间需要经过城市 B。

从 A 到 B 有三条路线可选择,分别需要花费 2 小时、3 小时和 4 小时;从 B 到 C 也有三条路线可选择,分别需要花费 1 小时、2 小时和 3 小时。

那么,要找到从 A 到 C 的最短时间路线,就需要考虑所有可能的组合,即 3×3=9 种组合,然后从中挑选出总时间最短的那一种。

组合优化问题具有一些显著的特点。

首先,可行解的数量通常是有限的,但可能非常庞大。

就像上面的例子,仅仅是两个阶段的选择就有 9 种可能,如果涉及更多的阶段和更多的选择,可行解的数量会呈指数级增长,这使得直接枚举所有可能的解变得非常困难,甚至在计算上是不可行的。

其次,组合优化问题的目标函数通常是明确的。

在上述例子中,目标就是找到从 A 到 C 的总时间最短的路线,这个目标是清晰可度量的。

再者,很多组合优化问题具有实际的应用背景和重要的经济价值。

例如,在资源分配问题中,如何将有限的资源分配给不同的项目或任务,以实现最大的效益;在网络设计中,如何规划网络拓扑结构,以最小化建设成本和提高网络性能;在排班问题中,如何安排员工的工作时间表,以满足业务需求并减少人力成本等。

常见的组合优化问题包括旅行商问题(TSP)、背包问题、装箱问题、指派问题等。

旅行商问题是一个经典的组合优化问题。

假设有一个旅行商要访问n 个城市,每个城市只能访问一次,最后回到出发城市。

组合优化

组合优化

4 组合优化组合优化问题在实践中有着广泛的应用,同时也是计算机科学中的重要研究课题。

本章对于八皇后问题、SAT 问题、装箱问题、背包问题及TSP 问题等五个经典的组合优化问题,给出其定义、串行算法描述、并行算法描述以及并行算法的MPI 源程序。

1.1 八皇后问题1.1.1 八皇后问题及其串行算法所谓八皇后问题(Eight Queens Problem ),是在8*8格的棋盘上,放置8个皇后。

要求每行每列放一个皇后,而且每一条对角线和每一条反对角线上最多只能有一个皇后,即对同时放置在棋盘的任意两个皇后11(,)i j 和22(,)i j ,不允许1212()()i i j j -=-或者1122()()i j i j +=+的情况出现。

八皇后问题的串行解法为如下的递归算法: 算法16.1 八皇后问题的串行递归算法/* 从chessboard 的第row 行开始放置皇后 */ procedure PlaceQueens(chessboard, row) Beginif row > 8 thenOutputResult(chessboard) /* 结束递归并输出结果 */ else for col = 1 to 8 do /* 判断是否有列、对角线或反对角线冲突 */(1)no_collision = true (2)i = 1(3)while no_collision and i < row do(3.1)if collides(i, chessboard[i], row, col) thenno_collision = falseend if (3.2)i = i + 1 end while (4)if no_collision then(4.1)chessboard[row] = col /* 在当前位置放置一个皇后 */(4.2)go(step + 1, place) /* 递归地从下一行开始放置皇后 */end ifend for end ifEnd /* PlaceQueens */1.1.2八皇后问题的并行算法该算法是将八皇后所有可能的解置于相应的棋盘上,主进程负责生成初始化的棋盘,并将该棋盘发送到某个空闲的从进程,由该从进程求出该棋盘上满足初始化条件的所有的解。

组合优化问题

组合优化问题

组合优化问题在我们的日常生活和工作中,常常会遇到各种各样需要做出最优选择的情况。

比如,在安排旅行路线时,如何以最短的时间和最少的费用游览最多的景点;在生产线上,如何安排工人的工作任务,以最大化生产效率;在物流配送中,怎样规划车辆的行驶路线,使得运输成本最低。

这些问题都属于组合优化问题。

组合优化问题是一类在离散的、有限的可行解集合中,寻找最优解的问题。

这里的“组合”指的是可行解通常是由多个元素组合而成,而“优化”则意味着我们要找到其中最好的那个解,也就是使得某个目标函数达到最大值或最小值的解。

让我们以一个简单的例子来理解组合优化问题。

假设有一家快递公司,需要为快递员规划送货路线。

公司有 5 个送货地点,分别是 A、B、C、D、E。

每个地点之间的距离已知,快递员需要从公司出发,访问所有地点并最终返回公司。

那么,如何规划路线才能使得总行程最短呢?这就是一个典型的组合优化问题。

在这个例子中,可能的路线组合数量是非常庞大的。

如果我们简单地列举所有可能的路线,然后计算每条路线的长度,最后找出最短的那条,这种方法在送货地点数量较少时或许可行,但当送货地点数量增加时,计算量会呈指数级增长,很快就变得无法处理。

组合优化问题具有一些显著的特点。

首先,可行解的数量通常是有限的,但可能非常巨大。

这就给寻找最优解带来了巨大的挑战。

其次,目标函数通常是复杂的,可能不是简单的线性函数,而是包含了各种约束条件和复杂的关系。

再者,组合优化问题的解空间往往是不连续的,这与连续优化问题有很大的不同。

解决组合优化问题的方法有很多种。

其中,精确算法能够保证找到问题的最优解,但对于大规模的问题,计算时间往往过长。

常见的精确算法包括分支定界法和动态规划法。

分支定界法通过不断地分支和界定可行解的范围,逐步缩小搜索空间,最终找到最优解。

动态规划法则是将复杂的问题分解为多个子问题,并通过保存子问题的解来避免重复计算。

然而,在实际应用中,由于精确算法的计算复杂性,我们往往更多地使用启发式算法和元启发式算法来求解组合优化问题。

组合优化

组合优化

组合优化组合(最)优化问题是最优化问题的一类。

最优化问题似乎自然地分成两类:一类是连续变量的问题,另一类是离散变量的问题。

具有离散变量的问题,我们称它为组合的。

在连续变量的问题里,一般地是求一组实数,或者一个函数;在组合问题里,是从一个无限集或者可数无限集里寻找一个对象——典型地是一个整数,一个集合,一个排列,或者一个图。

一般地,这两类问题有相当不同的特色,并且求解它们的方法也是很不同的。

概念定义编辑组合优化(Combinatorial Optimization)问题的目标是从组合问题的可行解集中求出最优解,通常可描述为:令Ω={s1,s2,…,sn}为所有状态构成的解空间,C(si)为状态si对应的目标函数值,要求寻找最优解s*,使得对于所有的si∈Ω,有C(s*)=minC(si)。

组合优化往往涉及排序、分类、筛选等问题,它是运筹学的一个重要分支。

问题分类编辑典型的组合优化问题有:旅行商问题(Traveling Salesman Problem-TSP);加工调度问题(Scheduling Problem,如Flow-Shop,Job-Shop);0-1背包问题(Knapsack Problem);装箱问题(Bin Packing Problem);图着色问题(Graph Coloring Problem);聚类问题(Clustering Problem)等。

这些问题描述非常简单,并且有很强的工程代表性,但最优化求解很困难,其主要原因是求解这些问题的算法需要极长的运行时间与极大的存储空间,以致根本不可能在现有计算机上实现,即所谓的“组合爆炸”。

正是这些问题的代表性和复杂性激起了人们对组合优化理论与算法的研究兴趣。

组合优化

组合优化

组合优化问题一个通俗的定义:所谓组合优化,是指在离散的、有限的数学结构上,寻找一个(或一组)满足给定约束条件并使其目标函数值达到最大或最小的解。

—般来说,组合优化问题通常带有大量的局部极值点,往往是不可微的、不连续的、多维的、有约束条件的、高度非线性的NP完全(难)问题,因此,精确地求解组合优化问题的全局最优解的“有效”算法一般是不存在的。

组合优化问题集覆盖问题(set-covering problem)装箱问题(bin-packing problem)背包问题(knapsack problem)指派问题(assignment problem)旅行商问题(traveling salesman problem)影片递送问题(film delivery problem)最小生成树问题(minimum span tree problem) 图划分问题(graph partitioning problem)作业调度问题(job-shop scheduling problem)组合优化问题组合优化问题——装箱问题货运装箱问题截铜棒问题布匹套裁问题。

装箱问题属于NP-难问题组合优化问题——背包问题0/1背包问题:给出几个体积为S 1,S 2,…,S n 的物体和容量为C 的背包;要求找出n 个物件的一个子集使其尽可能多地填满容量为C 的背包。

数学形式:最大化满足∑=n i i i X S 1,1C X S ni i i≤∑=组合优化问题——背包问题广义背包问题:输入由背包容积C和两个向量:物品体积S=(S1,S2,…,Sn)和物品价值P=(P1,P2,…,Pn)组成。

设X为一整数集合(物品的标识),X=1,2,3,…,n,T为X的子集,则问题就是找出满足约束条件,并使总价值最大的子集T。

数学形式:最大化满足∑=niiiXP1,1CXSniii≤∑=niXi≤≤∈1},1,0{组合优化问题——背包问题在应用问题中,设S的元素是n项经营活动各自所需的资源消耗,C是所能提供的资源总量,P的元素是人们从每项经营活动中得到的利润或收益,则背包问题就是在资源有限的条件下,追求总的最大收益的资源有效分配问题。

组合优化问题的分析与求解

组合优化问题的分析与求解

组合优化问题的分析与求解在我们的日常生活和工作中,经常会遇到各种各样需要做出最优决策的情况。

比如,物流运输中如何规划路线以最小化成本,生产线上如何安排工序以最大化效率,资源分配中如何分配有限的资源以满足最大的需求等等。

这些问题都属于组合优化问题,它们的共同特点是在有限的可行解集合中,寻找一个最优的解。

组合优化问题是一个具有广泛应用和重要意义的研究领域。

它不仅在数学、计算机科学、运筹学等学科中有着深厚的理论基础,还在工程、管理、经济等实际领域中发挥着重要的作用。

解决组合优化问题,可以帮助我们提高生产效率、降低成本、优化资源配置,从而实现更好的经济效益和社会效益。

那么,什么是组合优化问题呢?简单来说,组合优化问题就是在给定的约束条件下,从有限个可行解中找出一个最优解的问题。

这些可行解通常是由一些离散的元素组成,比如整数、集合、排列等。

而最优解则是指在满足约束条件的前提下,使得某个目标函数达到最大值或最小值的解。

组合优化问题的一个典型例子是旅行商问题(Travelling Salesman Problem,TSP)。

假设有一个旅行商要访问 n 个城市,每个城市只能访问一次,最后要回到出发城市。

已知城市之间的距离,那么如何规划旅行路线,使得旅行的总距离最短?这个问题看似简单,但实际上是一个非常复杂的组合优化问题,因为可能的路线数量随着城市数量的增加呈指数增长。

再比如背包问题(Knapsack Problem)。

有一个背包,其容量有限,同时有一系列物品,每个物品有一定的价值和重量。

如何选择物品放入背包,使得背包中物品的总价值最大,同时不超过背包的容量限制?这也是一个常见的组合优化问题。

为了求解组合优化问题,人们提出了许多方法。

其中,精确算法是一种能够保证找到最优解的方法,但它们通常只适用于规模较小的问题。

例如,分支定界法就是一种常见的精确算法。

它通过不断地将问题分解为子问题,并对每个子问题进行评估和剪枝,逐步缩小搜索范围,最终找到最优解。

组合最优化问题资料

组合最优化问题资料
对一个算法进行评价时,它的计算时间效果往 往通过目前的计算机设备能否承受,用户能否接 受现有的计算时间来衡量.对它的计算解进行评 价时,一个简单的要求是用户是否满意.
1.5 局部搜索算法
假设算法用以解决如下组合优化问题:
min f ( x) s.t. g( x) 0
xD
其中,f (x)为目标函数,g(x)为约束函数,D定义 域.
k k 1 ;当k n 1 时,停止;否则重复step2. (x1, x2, , xn)为贪婪算法所得解.单位体积价 值比越大越先装包是贪婪算法的原则.
这样的算法非常直观,非常容易操作.
启发式算法的性能分析
大规模计算分析
就是通过大量的实例计算,评价算法的计算效 果.算法的计算效果分成两个方面:一方面是算法 的计算复杂性,它的效果通过计算机的中央处理 器(CPU)的计算时间表现;另一个方面是计算解 的性能,它通过计算停止时输出的解表现.
衡量一个算法的好坏通常是用算法中的加,减, 乘,除和比较等基本运算的总次数同实例在计算 机计算时的二进制输入数据的大小关系来度量.
我们对实例的二进制输入长度和算法的基本计
算总次数是粗略估计的,一般是给予一个上 限.一个求解实例 I 的算法的基本计算总次数 C( I )同实例I 的计算机二进制输入长度d( I ) 的关 系常用符号C( I ) f (d( I )) O(g(d( I )))表示,它 的含义是:求解实例 I 的算法的基本计算总次数 C( I ) 是实例输入长度d( I ) 的一个函数,这个函 数被另一个函数g(x) 控制,即存在一个函数g(x) 和一个正常数,使得C( I ) g(d( I )) .其 中g(x)的函数特性决定了基本计算总次数 的性 能.
择走这条路.i j 的约束可以减少变量的个数,使 得共有n(n1)个决策变量. (1.5)要求商人从城市i

组合优化问题的遗传算法求解

组合优化问题的遗传算法求解

组合优化问题的遗传算法求解一、简介组合优化问题指的是在有限个元素中选取某些元素,以达到最优化的目标。

组合优化问题的求解在实际中应用广泛,如旅行商模型、调度问题、网络优化等领域。

但是这类问题求解面临着复杂度高、难以精确求解等困难。

在这种情况下,遗传算法是一种有效的求解方法。

遗传算法是一种基于达尔文进化论的计算方法,通过模拟生物进化的方式求解组合优化问题。

本文将介绍遗传算法在组合优化问题求解中的应用,着重介绍遗传算法基本框架、编码方法、适应度函数的构建以及遗传算法的优化策略等。

二、遗传算法基本框架遗传算法的求解过程主要包括初始种群生成、适应度评价、选择操作、交叉操作和变异操作等基本步骤。

(1)初始种群生成遗传算法首先需要生成一定数量的初始种群,初始种群可以通过随机生成或其他启发式算法生成。

例如,在旅行商问题中,初始种群可以随机生成多条路径。

(2)适应度评价适应度函数是遗传算法的核心,适应度函数的构建直接关系到遗传算法的性能。

适应度函数是对每个染色体的优劣进行量化评价,用以指导后续优化操作。

适应度函数构建需要根据问题特点进行设计。

(3)选择操作选择操作是指将上一代种群中的某些个体复制到下一代种群中,个体复制的概率与其适应度大小有关。

适应度越高的个体被选择的概率越大,从而使适应度高的个体更有机会进化到下一代。

选择操作可以通过轮盘赌选择、锦标赛选择等方式实现。

(4)交叉操作交叉操作是指对选择后的个体进行杂交,交叉操作是遗传算法的核心,它通过随机杂交个体的染色体,产生新的杂交染色体,从而增加搜索空间。

交叉操作可分为单点交叉、多点交叉、均匀交叉等。

(5)变异操作变异操作是指在交叉操作之后对个体发生变异,从而产生新的个体。

变异操作是通过随机改变染色体中的基因,从而增加多样性。

变异操作可以是简单变异、非一致变异、高斯变异等。

以上是遗传算法的基本框架,遗传算法的性能因素有适应度函数的设计、进化代数、群体大小、交叉概率、变异概率等。

组合优化若干经典问题新进展分析

组合优化若干经典问题新进展分析

组合优化若干经典问题新进展分析组合优化是运筹学的一个重要分支,旨在从众多可能的组合中寻找最优解。

在实际应用中,它涉及到交通规划、资源分配、生产调度等诸多领域。

本文将对组合优化中的若干经典问题的新进展进行分析。

旅行商问题(Travelling Salesman Problem,TSP)是组合优化中最著名的问题之一。

它的目标是找到一个推销员访问多个城市的最短路径,且每个城市只访问一次,并最终回到起始城市。

传统的解决方法包括精确算法和近似算法。

然而,近年来,随着机器学习和人工智能技术的发展,新的思路不断涌现。

一些研究人员将深度学习技术应用于 TSP 的求解。

通过训练神经网络来学习城市之间的距离模式和最优路径的特征,从而能够快速生成较优的解。

另外,基于强化学习的方法也取得了一定的成果。

智能体在与环境的交互中不断学习,逐渐找到更优的决策策略,以获得更短的旅行路径。

背包问题(Knapsack Problem)也是一个经典的组合优化问题。

给定一组物品,每个物品有一定的价值和重量,目标是在背包容量有限的情况下,选择物品放入背包,使得背包内物品的总价值最大。

在新的研究进展中,启发式算法得到了进一步的改进和优化。

例如,一些研究通过对物品的价值和重量进行更精细的分析和评估,设计出了更高效的启发式规则,从而提高了求解的质量和速度。

同时,混合整数规划方法在背包问题中的应用也更加成熟。

通过建立精确的数学模型,并结合先进的求解器,能够在合理的时间内获得高质量的解。

车辆路径问题(Vehicle Routing Problem,VRP)在物流配送中具有重要的应用价值。

它要确定一组车辆的行驶路径,使得满足客户需求的同时,总成本最小。

在这个问题上,新的进展主要体现在算法的融合和创新。

多智能体系统的概念被引入到 VRP 的求解中。

不同的智能体代表不同的车辆,它们通过相互协作和信息共享来优化路径。

此外,考虑实时交通信息和动态需求的模型也逐渐成为研究热点。

组合优化问题的算法与求解

组合优化问题的算法与求解

组合优化问题的算法与求解组合优化问题是一类需要在给定的约束条件下找到最优解的问题。

这些问题在现实生活中有着广泛的应用,比如物流配送问题、旅行商问题等等。

本文将介绍几种常见的组合优化问题的算法以及它们的求解方法。

一、贪婪算法贪婪算法是一种简单而高效的求解组合优化问题的方法。

它通过在每一步选择当前看起来最优的解决方案,逐步建立起最终的解。

贪婪算法通常具有快速的执行速度和较好的近似解质量。

例如,对于旅行商问题,贪婪算法可以从一个起点开始,每次选择离当前位置最近的未访问节点作为下一个访问节点,直到所有节点都被访问过。

这样,贪婪算法可以得到一个近似的最短路径。

二、回溯算法回溯算法是一种穷举搜索的方法,它通过逐个尝试所有可能的解决方案,并逐步剪枝以减少搜索空间。

回溯算法通常适用于组合优化问题的求解,尤其是在问题规模较小的情况下。

以0-1背包问题为例,回溯算法可以通过穷举所有可能的物品选择方式,计算其总价值,并在搜索过程中剪枝以提高效率。

回溯算法的优势在于能够找到最优解,但在问题规模较大时,耗时较长。

三、动态规划算法动态规划算法是一种将问题分解为子问题并记录子问题结果的方法。

它适用于能够将原问题分解为相互重叠的子问题,并利用子问题的解来推导原问题的解。

比如在背包问题中,动态规划算法可以通过定义状态转移方程来解决。

设dp[i][j]表示在前i个物品中选择总重量不超过j的情况下的最大价值,则有以下状态转移方程:dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]] + v[i])通过填表计算,可以获得最终的最优解。

四、遗传算法遗传算法是一种模拟自然选择和遗传机制的搜索算法。

它通过模拟生物种群的遗传、变异、选择等过程,逐步演化出最优解。

遗传算法在求解组合优化问题时,通过编码将解空间中的解表示成染色体,并利用交叉、变异等遗传操作来搜索更优的解。

通过不断迭代,遗传算法能够找到较好的解,但无法保证找到全局最优解。

组合优化问题的算法与求解

组合优化问题的算法与求解

组合优化问题的算法与求解组合优化问题是指在一定的限制条件下找到最优的组合方案的问题。

在实际生活中,这类问题出现的频率非常高,例如装载问题、旅行商问题、背包问题等。

组合优化问题的求解面临的困难在于,它们通常都是NP难问题,即最优解很难在多项式时间内被求出。

因此,设计高效的算法成为了组合优化问题研究的重要方向之一。

组合优化问题的求解方法包括:暴力枚举、贪心算法、动态规划、回溯法、分支定界法等。

下面将对这些算法进行简要介绍。

1. 暴力枚举法暴力枚举法是最朴素的求解组合优化问题的方法,它根据题目中的限制条件和求解目标,列出所有可能的组合方案,然后挨个计算它们的价值,最终选择价值最大的方案作为最优解。

该算法的时间复杂度为O(C^n),其中n为物品个数,C为物品数的组合数。

当n比较小的时候,暴力枚举法是一种有效的求解方法,但当n较大时,其时间复杂度会迅速增大,不再适用。

2. 贪心算法贪心算法是一种优先考虑局部最优解而不考虑全局最优解的算法,它在每一步选择中都采取当前状态下最优的选择。

该算法的优点在于简单易懂,时间复杂度较低,缺点在于无法保证最终的结果为全局最优解。

在解决一些特定类型的问题时,贪心算法是一种有效的求解方法。

3. 动态规划法动态规划法可以求解一类特殊的组合优化问题,即具有最优子结构性质的问题。

其思想是将大问题分解成若干个小问题,通过求解小问题的最优解,逐层递推得到大问题的最优解。

该算法的时间复杂度依赖于问题的规模和限制条件的种类,但通常不会超过O(n^3)。

动态规划法是求解背包问题和最长公共子序列等问题的有效方法。

4. 回溯法回溯法也称为试错法,它通过枚举状态空间中的所有可能的解,每次只选择一种可能的情况进行搜索,直到找到解或搜索完所有的可能性才停止。

该算法的时间复杂度依赖于搜索区域的大小和限制条件的种类,但通常不会超过O(b^d),其中b为每个节点的平均分支数,d为搜索树的深度。

在解决那些实际问题中规模较小且结构复杂的最优化问题时,回溯法是一种有效的求解方法。

组合优化问题及算法

组合优化问题及算法
-12-
启发式算法
近似算法定义
记问题A的任何一个实例I的最优解和启发式 算法H解的目标值分别为zopt(I)和zH(I),若对某 个正数0,有
|zH(I)-zopt(I)| |zopt(I)|,IA 则称H是A的近似算法。
-13-
启发式算法
背包问题的贪婪算法
1)将物品以ci/ai(单位体积的价值)由大到小的顺 序排列,不妨把排列记为{1,2,…,n},k:=1;
n
s.t. xij 1, i 1,, n
j1
n
xij 1, j 1,, n
i1
xij | S | 1, 2 | S | n 2,
i, jS
xij {0,1}, i, j 1,, n, i j.
S {1,2,, n}
-4-
一些例子
3. 有 约 束 的 机 器 调 度 问 题 ( capacitated machine scheduling)
min f ( x) s.t. g( x) 0
xD
其中D表示有限个点组成的集合。
-2-
一些例子
1. 0-1分别为
ai(i=1,2,…,n),价值分别为ci (i=1,2,…,n)的物品,如 何以最大的价值装包?
n
max ci xi
i 1
n
s.t. ai xi b
-27-
冷却进度表的参数设置
3.Markov链的长度Lk的选取 2)由接受和拒绝的比率来控制Lk
实现的第一种方法是:给定一个充分大的 长度上限U和一个接受次数指标R,当接受次数等 于R时,此温度不再迭代而使温度下降。
实现的第二种方法是:给定一个接受比率 指标R,长度上限U和下限L,当迭代次数超过L时 ,若接受次数与迭代次数的比率不小于R时,此 温度不再迭代而使温度下降,否则,一直迭代 到上限步数U。

组合优化问题的计算方法

组合优化问题的计算方法

组合优化问题的计算方法组合优化问题是数学、计算机科学、运筹学等学科中的一个重要研究领域,其研究的主要是在一定限制下,如何从一组可行解中找到最优解。

这种问题的特点是通常具有指数级别的计算复杂度,因此需要使用特殊的计算方法来求解,本文将对组合优化问题的计算方法进行分类介绍。

一、启发式算法启发式算法是解决组合优化问题的一种常用方法,通常基于一些贪心策略和随机性的思路,运用启发式搜索来不断寻找最优解。

常见的启发式算法有遗传算法、蚁群算法、模拟退火算法等。

1.1 遗传算法遗传算法是从生物遗传学中得到灵感而发展出来的一种基于种群的搜索算法,其主要模拟了生物进化论中基因变异、自然选择等过程。

具体工作流程如下:1)初始化种群2)选择运算3)交叉(重组)运算4)变异运算5)选择运算6)重复第2步到第5步,直到达到预设的终止条件。

1.2 蚁群算法蚁群算法是基于蚂蚁觅食行为而发展出来的一种启发式算法,在其过程中,蚂蚁相互合作通过信息素的沉积和蒸发来寻找最优路径。

具体的工作流程如下:1)初始化目标问题的信息素2)每只蚂蚁按照信息素选择寻找路径3)在路径上更新信息素4)重复第2步到第3步,直到达到预设的终止条件。

1.3 模拟退火算法模拟退火算法是一种启发式优化算法,旨在模拟物理学中固体物体冷却的过程,寻找全局最优解。

具体的工作流程如下:1)初始化初始解和温度2)在当前温度下尝试多次跳转到现有解空间内的随机解3)更新温度4)重复第2步到第3步,直到达到终止条件。

二、穷举算法穷举算法是指对所有可能的情况进行搜索的算法,它能找到所有可行解并寻找最优解。

但由于其计算复杂度极高,因此在实际生产中很少使用。

三、线性规划算法线性规划算法是解决线性约束条件下的目标函数最优化问题的一类算法,其主要的思路是将最优化问题转化为线性规划问题并进行求解。

常见的线性规划算法有单纯形法、内点法、分支定界法等。

3.1 单纯形法单纯形法是求解线性规划问题的一种常用方法,它是从全约束角的某一点开始(常为初始点),不断朝外跳到更优解处,并最终找到全局最优解。

数学学习中的常见组合优化和论问题解析

数学学习中的常见组合优化和论问题解析

数学学习中的常见组合优化和论问题解析在数学学习中,组合优化和论问题是非常常见且重要的内容。

组合优化所涉及的组合数学是研究离散对象的学科,而论问题则是研究数学逻辑推理的一种方法。

本文将从组合优化和论问题的概念、应用领域以及解析方法等方面进行探讨。

一、组合优化组合优化是研究在给定条件下,如何通过不同组合方式达到最优解的数学分支。

它涵盖了一系列的问题,包括排列组合、图论、网络流、整数规划等等。

以下将介绍其中几个常见的组合优化问题。

1. 排列组合问题排列组合问题是组合优化中最基础的问题类型之一。

它涉及到选择、排列、组合等操作,常见的有排列数、组合数、全排列等。

例如,将8个球放入3个不同的盒子中,每个盒子至少放一个球,有多少种不同的放法?2. 图论问题图论是组合优化中的一个重要分支,研究了如何用图和相关的算法解决问题。

常见的图论问题有最短路径问题、最小生成树问题、最大流问题等。

例如,如何在一个有向图中找到从节点A到节点B的最短路径?3. 整数规划问题整数规划是组合优化中的一个重要问题类型,它涉及到求解一系列线性约束条件下的整数解。

常见的整数规划问题有旅行商问题、背包问题等。

例如,在给定的一组物品中,如何选择一些物品放入背包中,使得背包的总重量最大或总价值最大?二、论问题论问题是一种以逻辑推理为基础的问题解决方法。

它通过使用论证(证明)的方法,从已知的前提出发解决问题。

以下将介绍论问题的几个常见类型。

1. 数学归纳法数学归纳法是证明或解答一类问题的一种常见方法。

它包括了基础情况的验证和归纳假设的使用,通过递推的方式来证明该问题在所有情况下都成立。

例如,证明等差数列的通项公式。

2. 反证法反证法是一种通过假设问题的反面来推导出矛盾,从而证明问题的方法。

它常用于证明某个命题的否定是不成立的。

例如,证明根号2是无理数。

3. 推理法推理法是通过利用已知事实的关系和推理规则,推导出未知真理的方法。

它可以通过演绎推理和归纳推理两种方式进行。

遗传算法解决组合优化问题

遗传算法解决组合优化问题
采用逐步构造最优解的方法。在每个阶段, 都作出一个看上去最优的决策(在一定的标 准下)。决策一旦作出,就不可再更改。
作出贪婪决策的依据称为贪婪准则(greedy criterion)。
一种近似求解方法 货箱装船、机器调度、最短路径、背包问题
等方面都有应用
典型优化问题的模型与算法-R03
14
贪婪算法
67美分 零钱
25*2 =50美分 + 10=60美分 + 5=65美分 + 1*2=67美分
贪婪算法有种直觉的倾向,在找零钱时,直觉告诉我们应使找 出的硬币数目最少(至少是接近最少的数目)。可以证明采用 上述贪婪算法找零钱时所用的硬币数目的确最少。
典型优化问题的模型与算法-R03
15
贪婪算法
例 [最短路径]:
GA就是其中之一,另外还有 TS,SA,PSO等算法。
典型优化问题的模型与算法-R03
8
近似求解方法
亚启发式(Meta-Heuristics)
从算法的角度来讲,是指不依赖于特定问题的启发 式算法。
其算法的基本框架被设计成不论对什么样的问题都 具有通用性。
一般情况下,亚启发式算法要比特定问题专用的启 发式算法的解的精度要差。
……
典型优化问题的模型与算法-R03
32
应用
资源有效分配问题
设 wj 是 n 项经营活动 xj 各自所需的资源消耗,W是所能提供的资源 总量,pj 是人们从每项经营活动中得到的利润或收益,则背包问题
就是在资源有限的条件下,追求总的最大收益的资源有效分配问题。
资金预算
企业可投入的资金是有限的,不同的项目需要的投入资金是不一样 的,投给不同的项目所能获得的净收益也是不一样的,问题是选择 哪些项目进行投资,才能使投资的收益最大。

组合优化中的背包问题

组合优化中的背包问题

组合优化中的背包问题背景介绍:组合优化是一种数学领域的研究,它主要关注如何在给定的限制条件下,找到最佳的组合方式。

背包问题是组合优化中的经典问题之一,它在实际生活和工业领域中都有广泛的应用。

本文将重点探讨组合优化中的背包问题。

一、问题描述:背包问题是指在给定的一组物品中,选择一部分放入背包中,使得所选物品的总价值最大化,同时不超过背包的容量限制。

背包问题通常包括两种类型:0-1背包和分数背包。

1. 0-1背包问题:0-1背包问题是指每个物品要么完全装入背包,要么完全不装入背包。

每个物品的重量和价值可能不同,背包的容量限制固定。

2. 分数背包问题:分数背包问题允许物品被分割成若干部分,可以选择物品的一部分放入背包,以满足容量的限制。

每个物品的重量和价值可能不同,背包的容量限制也可能不同。

二、解决方法:1. 动态规划:动态规划是解决背包问题最常用的方法之一。

通过构建一个二维数组,其中行表示物品的选择,列表示背包的容量限制,数组中的每个元素表示当前状态下的最优解。

通过迭代计算,找到最优解并记录在数组中。

2. 贪心算法:贪心算法是另一种解决背包问题的方法。

贪心算法的基本思想是每次选择当前状态下最优的物品放入背包中,直到达到容量限制或者所有物品都被选择。

贪心算法可能并不一定能得到全局最优解,但在某些情况下可以得到较好的结果。

三、应用领域:背包问题在实际生活和工业领域中有广泛的应用,如以下几个例子:1. 物流配送问题:在物流配送中,背包问题可以用来决定每个物流车辆应该运输哪些货物,以最大化运输总价值,同时不超过车辆的运载能力。

2. 投资组合优化问题:在金融领域中,背包问题可以用来优化投资组合,选择哪些证券或资产应该包括在投资组合中,以最大化组合的收益,同时控制总投资金额。

3. 选课问题:在学校选课系统中,背包问题可以用来确定学生应该选择哪些课程,以满足学分要求,并尽可能选择喜欢的课程。

结论:以上是关于组合优化中的背包问题的介绍。

组合优化问题ppt课件

组合优化问题ppt课件
一般性描述:
➢ 有一个推销员,要到 n 个城市推销商品,他要找出一个包含所有 n 个城市的具有最短路程的环路。
同样的问题,在中国还有另一个描述方法:
➢ 中国邮递员问题(Chinese Postman Problem CPP):一个邮递员从 邮局出发,到所辖街道投递邮件,最后返回邮局,如果他必须走遍 每条街道至少一次,应如何选择投递路线,使所走的路程最短。
在过去的几十年中,在求旅行商问题的最优解方面取得了极大 的进展。
➢ 48个城市的问题、120、318、532、666、2392、 24978个城市的问题
尽管有这些成就,但旅行商问题还远未解决。问题的许多方面 还要研究,很多问题还在期待满意的回答。
特点
NP完全问题 它的解是多维的、多局部极值的 很难用数学公式描述 TSP 问题 吸引了许多不同领域的研究者,包括
某些算法,只要稍微做些改变,就有可能导致 解的精度或搜索效率的大幅度提高。
因此,对于什么样的问题,应该采用什么样的 方法,怎样使用这种方法才更有效果,在这方 面人们已经进行了很多的研究。
典型问题
旅行商问题
(Traveling Salesman Problem)
旅行商问题
TSP的历史很久
➢ 最早的描述是 1759 年欧拉研究的骑士周游问题,即对于国际象棋棋 盘中的 64 个方格,走访 64 个方格一次且仅一次,并且最终返回到 起始点。
组合最优化无法利用导数信息 精确地求解组合优化问题的全局最优解的“有效”算法一
般是不存在的。
组合优化的研究
怎么才能把一些社会现象、活动等捕捉归纳 为组合优化问题?
怎种组合优化问题拥有什么性质?
为了构造快速解法,什么样的性质是有用的?

组合优化问题的分析与求解

组合优化问题的分析与求解

组合优化问题的分析与求解组合优化问题是运筹学中的一类常见问题,其涉及的领域包括网络优化、物流规划、生产调度、金融投资、智能算法等等,有着广泛的应用。

组合优化问题的核心思想是在可行解集中寻找最优解,因此其解法需要基于搜索、贪心、动态规划等方法。

本文将从定义入手,详细介绍组合优化问题的常见类型和求解算法。

一、什么是组合优化问题?组合优化问题是在一组限制条件下通过组合某些元素来使得目标函数取得最大值或最小值的问题。

具体来说,组合优化问题有以下三个特点:1. 可行解集有限:组合优化问题会限制决策变量的可行取值范围,因此其可行解集合是有限的。

2. 目标函数离散:组合优化问题的自变量和因变量均为离散变量,而且目标函数的取值也都是离散的。

3. 过程可重复:组合优化问题中某些元素可以复用,因此求解过程可以重复应用,通过组合不同的元素得到不同的解。

二、组合优化问题的常见类型根据组合优化问题的不同特点,可以将其分为三类:线性规划、整数规划和组合优化。

其中,线性规划的决策变量是连续的,整数规划的决策变量是整数,而组合优化问题所固有的特点,则决定了其决策变量是离散的。

组合优化问题可以进一步细分为以下几个常见类型:1. 任务分配问题:将n个任务分配给m个成员,以完成目标任务。

例如,物流调度问题可以转化为任务分配问题,即将若干个物品分配给若干个货车进行运输。

2. 连接问题:在由若干个点组成的图中,找到一组连通的边或者节点,以使得目标函数达到最大或最小。

例如,城市间公路修建问题就是一个典型的连接问题,需要在城市间建立最优的公路网络。

3. 划分问题:将一个集合划分成若干个子集,然后分别加以处理。

例如,教室安排问题可以转化为划分问题,即将某些学生分配到同一间教室中。

4. 车辆路径问题:在给定的时间和空间限制下,找到一组路径以使得目标函数取得最优值。

例如,物流配送问题通常涉及到车辆路径问题,需要在限制条件下找到最短路径。

三、组合优化问题的求解算法1. 穷举法穷举法是最原始的求解算法,其思路是枚举出所有可能的方案,并对每个方案求解目标函数的值,然后选出最优方案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
优 化问题
无约束优化问题
用Matlab解无约束优化问题
1. 一 元 函 数 无 约 束 优 化 问 题 :
min f( x)
x1 x x 2
常用格式如下: (1)x= fminbnd (fun,x1,x2) (2)x= fminbnd (fun,x1,x2 ,options) (3)[x,fval]= fminbnd(...) (4)[x,fval,exitflag]= fminbnd(...) (5)[x,fval,exitflag,output]= fminbnd(...) 其中(3)、(4)、(5)的等式右边可选用(1)或 (2)的等式右边。 函数fminbnd的算法基于黄金分割法和二次插值法,它 要求目标函数必须是连续函数,并可能只给出局部最优解。
4. 用fminunc 函数 (1)输入命令 [x,fval,exitflag,output]=fminunc(f, [-1.2 2]) 运行结果 x =1.0000 1.0000 fval =9.5505e-008 exitflag = 1 output = iterations: 24 funcCount: 152 stepsize: 1.3832 firstorderopt: 0.0375 algorithm: 'medium-scale: Quasi-Newton line search'
3、运行结果: x= 0.5000 -1.0000 y = 1.3029e-10
例4
R o s e n b r o c k 函 数 f ( x 1 , x 2 ) = 1 0 0 ( x 2- x 1 ) + ( 1 - x 1) 不同算法(搜索方向和步长搜索)求数值最优解. 初 值 选 为 x0=( -1.2 , 2) .
例3 min f(x)=(4x12+2x22+4x1x2+2x2+1)*exp(x1)
1、编写M-文件 fun1.m: function f = fun1 (x) f = exp(x(1))*(4*x(1)^2+2*x(2)^2+4*x(1)*x(2)+2*x(2)+1); 2、输入M文件wliti3.m如下: x0 = [-1, 1]; x=fminunc(‘fun1’,x0); y=fun1(x)
2
2
2
的 最 优 解 ( 极 小 ) 为 x*=( 1, 1) 极 小 值 为 f*=0.试 用 ,
1.为获得直观认识,先画出 Rosenbrock 函数的三维图形, 输入以下命令: [x,y]=meshgrid(-2:0.1:2,-1:0.1:3); z=100*(y-x.^2).^2+(1-x).^2; mesh(x,y,z)
Rosenbrock函数不同算法的计算结果
搜索方向 步长搜索 混合二、三次插值 BFGS 三次插值 混合二、三次插值 DFP 三次插值 (0.8994, 0.7995) ( - 1 . 1 6 3 4 ,1 . 3 6 1 0 ) 最速下降 混合二、三次插值 (0.9446, 0.8920) ( 0.9959, 0.9916 最优解 (0.9996, 0.9992) 最优值 2.3109 迭代次数 155
2. 画出 Rosenbrock 函数的等高线图,输入命令: contour(x,y,z,20) hold on plot(-1.2,2,' o '); text(-1.2,2,'start point') plot(1,1,'o') text(1,1,'solution')
3.用fminsearch函数求解
p 1, q 1, x 1 分 别 表 示 甲 的 价 格 、 成 本 、 销 量 ; p 2, q 2, x 2 分 别 表 示 乙 的 价 格 、 成 本 、 销 量 ; a ij, b i , λ

,ci( i, j = 1, 2) 是 待 定 系 数 .
基本假设
1.价格与销量成线性关系
利润既取决于销量和价格,也依赖于产量和成本。按照市场规律, 甲 的 价 格 p1 会 随 其 销 量 x1 的 增 长 而 降 低 , 同 时 乙 的 销 量 x2 的 增 长 也 会使甲的价格有稍微的下降,可以简单地假设价格与销量成线性关系, 即:
5
1.9151
202
10
10
可以看出,最速下降法的结果最差.因为最速下降法 特别不适合于从一狭长通道到达最优解的情况.
例5
产销量的最佳安排
某厂生产一种产品有甲、乙两个牌号,讨论在产销 平衡的情况下如何确定各自的产量,使总利润最大. 所 谓产销平衡指工厂的产量等于市场上的销量.
符号说明
z ( x 1 ,x 2 ) 表 示 总 利 润 ;
2、多元函数无约束优化问题
标准型为:min F(X)
命令格式为: (1)x= fminunc(fun,X0 );或x=fminsearch(fun,X0 ) (2)x= fminunc(fun,X0 ,options); 或x=fminsearch(fun,X0 ,options) (3)[x,fval]= fminunc(...); 或[x,fval]= fminsearch(...) (4)[x,fval,exitflag]= fminunc(...); 或[x,fval,exitflag]= fminsearch (5)[x,fval,exitflag,output]= fminunc(...); 或[x,fval,exitflag,output]= fminsearch(...)
2
建 立 无 约 束 优 化 模 型 为 : m i n y = - ( 3 2 x ) x , 0 < x < 1 .5
2
先编写M文件fun0.m如下: function f=fun0(x) f=-(3-2*x).^2*x; 主程序为wliti2.m: [x,fval]=fminbnd('fun0',0,1.5); xmax=x fmax=-fval 运算结果为: xmax = 0.5000,fmax =2.0000.即剪掉的正方形的 边长为0.5米时水槽的容积最大,最大容积为2立方米.
p 1 = b 1 - a 1 1 x 1 - a 12 x 2 , b 1 , a 11 , a 12 > 0 , 且 a 11 > a 12 ;
同 理 , p 2 = b 2 - a 2 1 x 1 - a 2 2 x 2 , b 2 , a 21 , a 22 > 0 , 且 a 22 > a 2 1 .
典型的组合优化问题有旅行商问题、加 工调度问题、0-1背包问题、装箱问题、 图着色问题等。 组合优化问题的数学模型为:
m in f ( x ) s .t . g ( x ) 0 x D
例 1

f = 2e
x
sin x 在 0<x<8 中 的 最 小 值 与 最 大 值
主程序为wliti1.m: f='2*exp(-x).*sin(x)'; fplot(f,[0,8]); %作图语句 [xmin,ymin]=fminbnd (f, 0,8) f1='-2*exp(-x).*sin(x)'; [xmax,ymax]=fminbnd (f1, 0,8)
说明: •fminsearch是用单纯形法寻优. fminunc的算法见以下几点说明: [1] fminunc为无约束优化提供了大型优化和中型优化算法。 由options中的参数LargeScale控制: LargeScale=’on’(默认值),使用大型算法 LargeScale=’off’(默认值),使用中型算法 [2] fminunc为中型优化算法的搜索方向提供了4种算法,由 options中的参数HessUpdate控制: HessUpdate=’bfgs’(默认值),拟牛顿法的BFGS公式; HessUpdate=’dfp’,拟牛顿法的DFP公式; HessUpdate=’steepdesc’,最速下降法 [3] fminunc为中型优化算法的步长一维搜索提供了两种算法, 由options中参数LineSearchType控制: LineSearchType=’quadcubic’(缺省值),混合的二次和三 次多项式插值; LineSearchType=’cubicpoly’,三次多项式插 •使用fminunc和 fminsearch可能会得到局部最优解.
模型求解
1.建立M-文件fun.m: function f = fun(x) y1=((100-x(1)- 0.1*x(2))-(30*exp(-0.015*x(1))+20))*x(1); y2=((280-0.2*x(1)- 2*x(2))-(100*exp(-0.02*x(2))+30))*x(2); f=-y1-y2; 2.输入命令: x0=[50,70]; x=fminunc(‘fun’,x0), z=fun(x)
q 2 r2 e
模型建立
总利润为: z(x1,x2)=(p1-q1)x1+(p2-q2)x2 若根据大量的统计数据,求出系数b1=100,a11=1,a12=0.1,b2=280, a21=0.2,a22=2,r1=30,λ 1=0.015,c1=20, r2=100,λ 2=0.02,c2=30,则 问题转化为无约束优化问题:求甲,乙两个牌号的产量x1,x2,使 总利润z最大. 为简化模型,先忽略成本,并令a12=0,a21=0,问题转化为求: z1 = ( b1 - a11x1 ) x1 + ( b2 - a22x2 ) x2 的极值. 显然其解为x1 = b1/2a11 = 50, x2 = b2/2a22 = 70, 我们把它作为原问题的初始值.
输入命令: f='100*(x(2)-x(1)^2)^2+(1-x(1))^2';
相关文档
最新文档