电介质
电介质理论(一)课件
击穿电压是电介质的重要电气性能参数,它反映了电介质在 强电场下的耐受能力。击穿电压的大小与电场强度、电介质 厚度、温度、湿度等因素有关。
击穿的微观机制
电极过程
在强电场的作用下,电介质中的 电子或离子在电极表面附近聚集 形成空间电荷层,形成导电通道
,导致电介质击穿。
热击穿
电介质在强电场作用下,内部热量 积累导致温度升高,当温度达到电 介质的热分解温度或熔点时,电介 质失去绝缘性能。
02
电介质的理论基础
电极化现象
定义
电极化现象是指电介质在电场作 用下发生的极化状态变化,即电 介质内部正负电荷中心发生相对 位移,导致电介质表面出现极化
电荷的现象。
分类
电极化现象可分为电子极化、离 子极化和取向极化等类型。
Байду номын сангаас
影响因素
电极化现象受到电场强度、电介 质种类和温度等因素的影响。
电极化的微观机制
电极化强度
电极化强度是描述电介质极化状态的物理量,表示单位体积内电 介质极化电荷的总量。
电场与电极化强度关系
电场与电极化强度之间存在一定的关系,即电极化强度与电场成正 比,与电介质种类和温度等因素有关。
电极化的能量损耗
电极化的过程中会产生能量损耗,主要表现在电介质内部的摩擦和 热能散失等方面。
03
电子极化
取向极化
电子极化是由于电场作用下电子云相 对于原子核发生位移,导致电子和原 子核之间的相互作用发生变化。
取向极化是由于电场作用下分子或分 子的排列方向发生变化,导致正负电 荷中心相对位移。
离子极化
离子极化是由于电场作用下离子在电 介质中的位移,导致正负离子之间的 相互作用发生变化。
第四章 电介质
第四章 电磁介质第一节 电介质一、电介质—绝缘介质1.电介质内没有可以自由移动的电荷 在电场作用下,电介质中的电荷只能在 分子范围内移动。
2.分子电矩·分子—电偶极子(模型)分子的正负电中心相对错开。
·分子电矩二、电介质的极化1.极性电介质的极化p 分+- 电介质分子(1) 极性分子·正常情况下,内部电荷分布不对称, 正负电中心已错开,有固有电矩p 分, ·极性分子:如HCl 、H 2O 、CO 等。
(2)无外电场时·每个分子p 分 ≠ 0·由于热运动,各p 分取向混乱·小体积∆V (宏观小、微观大,内有大量 分子)内 ∑ p 分= 0(3)有外电场时·各 p 分向电场方向取向(由于热运动,取向 并非完全一致)外有外电场 无外电场分 ·且外电场越强 ⇒ | ∑ p 分| 越大·这种极化称取向极化2.非极性电介质的极化(1)非极性分子·正常情况下电荷分布对称,正负电中心重 合,无固有电矩。
·非极性分子:如He 、 H 2、 N 2、 O 2、 CO 2等。
(2)无外电场时·每个分子 p 分 = 0·∆V 内∑ p 分 = 0 (3)有外电场时·正负电中心产生相对位移,p 分(称感应电矩) ≠ 0E 外分 ·且外电场越强 ⇒ | ∑ p 分| 越大·这种极化称位移极化三、电极化强度1.电极化强度·为描写电介质极化的强弱,引入电极化强度矢量。
·定义:单位体积内分子电矩的矢量和或·P 是位置的函数·单位: C/m 2·对非极性电介质,因各p 分相同,有 P = n p 分n ---单位体积内的分子数·综上,对极性、非极性电介质都有 无外电场时, P = 0 有外电场时,P ≠ 0且电场越强 ⇒ | P | 越大2.电极化强度和场强的关系·由实验,对各向同性电介质,当电介质中 电场E 不太强时,有·χe :电极化率(χe ≥ 0),决定于电介质性质。
电介质的分类
电介质的分类
一、电介质的种类与特点:
1.有极分子电介质:电介质中各分子的等效正电中心与等效负电中心不重合的电介质;正电中心和负电中心分别可用等量异号电荷代替,二者有一相对位移,这样每个分子对外界的电性效果可以等效为一个电偶极子的作用。
2.无极分子电介质:电介质中各分子的等效正电中心与等效负电中心重合的电介质。
2、提高电介质材料储能密度的方法
储能密度与介电常数、击穿场强有直接的关系,所以我们我们选择材料要有尽可能提高材料的击穿场强和相对介电常数,才能获得较高的储能密度。
从介电常数考虑,铁电体、反铁电体和弛豫铁电体通常具有较高的介电常数。
单相电介质储能材料:作为储能材料的单相材料主要指陶瓷。
一般的无机氧化物陶瓷的介电常数较低,需要通过掺杂等方法提高介电常数,可以提高储能密度。
复合电介质储能材料:聚合物通常介电常数很低,为了实现高储能密度,可以在聚合物中填充高介电陶瓷。
微晶玻璃电介质储能材料:微晶玻璃是另一大类电介质储能材料,在在陶瓷中添加玻璃,玻璃的添加会减小气孔率从而提高击穿场强,使储能密度提高。
薄膜材料:在薄膜材料中可降低缺陷,因此击穿场强提高,从而提高了储能密度。
电介质物理.
65oC 276oC
50Hz 3×106 Hz
6×10-4 3×10-4
1×1010 3.5×106
1.4×1011 4×106
结论:
① 与 基本相当;
②高频(2×106 Hz)下,介质损耗也是电导损耗。
电介质的损耗
无机玻璃——以共价键结合为主, s
,g
0, tan
0 r
如食盐Nacl晶体,石英,云母等。
只有e和a,r n2 , g 0
损耗主要来自电导
tan 1.81010 1 ( 1 )
0 r
f r
电介质的损耗
Nacl晶体的tan,与计算值
温度
f
tan ( m) ( m)
低频 高频
电介质在电场作用下的往往会发生电能转变为其 它形式的能(如热能)的情况,即发生电能的损 耗。常将电介质在电场作用下,单位时间消耗的 电能叫介质损耗。
电介质的损耗
电介质的损耗
在电压U的作用下,电介质单位时间内消耗的能量
电导损耗
产生原因
松弛极化 典型的为偶极子转向极化
电介质的损耗
在直流电压作用下,介质中存在载流子,有泄露电流 I R
偶极子取向极化(Dipolar Polarizability)
Response is still slower
空间电荷极化(Space Charge Polarizability)
Response is quite slow, τ is large
4. 材料的介电性
4.2 电介质的极化
4. 材料的介电性
①瓷——较常用 绝缘子 ②玻璃
③有机——复合的 陶瓷:不均匀结构,含三相①结晶相,②玻璃相,③气隙
电介质和磁介质的比较
一、电介质和磁介质的定义电介质定义:能够被电极化的介质。
在特定的频带内,时变电场在其内给定方向产生的传导电流密度分矢量值远小于在此方向的位移电流密度的分矢量值。
在正弦条件下,各向同性的电介质满足下列关系式:式中是电导率,是电常数,是角频率,是实相对电常数。
各向异性介质可能仅在某些方向是介电的。
电介质包括气态、液态和固态等范围广泛的物质。
固态电介质包括晶态电介质和非晶态电介质两大类,后者包括玻璃、树脂和高分子聚合物等,是良好的绝缘材料。
凡在外电场作用下产生宏观上不等于零的电偶极矩,因而形成宏观束缚电荷的现象称为电极化,能产生电极化现象的物质统称为电介质。
电介质的电阻率一般都很高,被称为绝缘体。
有些电介质的电阻率并不很高,不能称为绝缘体,但由于能发生极化过程,也归入电介质。
通常情形下电介质中的正、负电荷互相抵消,宏观上不表现出电性,但在外电场作用下可产生如下3种类型的变化:①原子核外的电子云分布产生畸变,从而产生不等于零的电偶极矩,称为畸变极化;②原来正、负电中心重合的分子,在外电场作用下正、负电中心彼此分离,称为位移极化;③具有固有电偶极矩的分子原来的取向是混乱的,宏观上电偶极矩总和等于零,在外电场作用下,各个电偶极子趋向于一致的排列,从而宏观电偶极矩不等于零,称为转向极化。
磁介质定义:由于磁场和事物之间的相互作用,使实物物质处于一种特殊状态,从而改变原来磁场的分布。
这种在磁场作用下,其内部状态发生变化,并反过来影响磁场存在或分布的物质,称为磁介质引。
磁介质在磁场作用下内部状态的变化叫做磁化。
真空也是一种磁介质。
磁场强度与磁通密度间的关系决定于所在之处磁介质的性质。
这种性质来源于物质内分子、原子和电子的性状及其相互作用,有关理论属于固体物理学的重要内容。
在磁场作用下表现出磁性的物质。
物质在外磁场作用下表现出磁性的现象称为磁化。
所有物质都能磁化,故都是磁介质。
按磁化机构的不同,磁介质可分为抗磁体、顺磁体、铁磁体、反铁磁体和亚铁磁体五大类。
第十三章(2)电介质
斜圆柱体元内的电偶极矩为
pi
P dl dS cosθ
i
介质的极化使两底面产生极
化电荷 dS
因此斜柱体元又可看成一个
电偶极子
pi
σ dSdl
i
所以
pi
dl dS
c osθ P
i
P dl dS cosθ σ dSdl
五、闭合曲面内的极化电荷
在已极化的介质内任意作一闭合面S(如图所示)
S 将把位于 S 附近的电介质分子分为两部分: 一部分在 S 内,一部分在 S 外。 电偶极矩穿过S 的分子对S内的极化电荷有贡献。
S
q0
q' q0
设在介质内闭合曲面
S附近极化强度矢量
如图示。
S
取一宏观上足够小
、微观上足够大的 斜圆柱体元。
r R sin θ x R cos θ
知该带电圆环在球心的场强为
-+
-R +
- -P
- -
θ++
o R+s+in
z
- +R d
en
P
dEz
σ(2πR sin θRdθ) 4πε0
R cosθ [(R cosθ)2 (R sin θ)2 ]3/2
知该带电圆环在球心的场强为
pi
0
有极分子在外场中同样有位i 移极化,但是取向极化
效应要比位移极化效应更强。
有极分子的极化
电介质的极化: ①位移极化 位移极化
主要是电子发生位移
E0
无极分子只有位移极化,感生电矩的方向沿外场方向。 ②取向极化
不同材质的电介质参数
不同材质的电介质参数
1. 空气:相对介电常数约为 1,介质损耗角正切很小,击穿场强约为 3kV/mm。
2. 纸:相对介电常数约为 2-4,介质损耗角正切较小,击穿场强约为 10kV/mm。
3. 聚氯乙烯 PVC):相对介电常数约为 3-4,介质损耗角正切较小,击穿场强约为 20kV/mm。
4. 聚酯薄膜:相对介电常数约为 3.1,介质损耗角正切较小,击穿场强约为 25kV/mm。
5. 云母:相对介电常数约为 5-8,介质损耗角正切很小,击穿场强约为 150kV/mm。
6. 氧化铝:相对介电常数约为 9-10,介质损耗角正切很小,击穿场强约为 150kV/mm。
这些参数会受到温度、频率等因素的影响。
在实际应用中,需要根据具体情况选择合适的电介质材料,并考虑其电介质参数对电路性能的影响。
电介质物理学
电介质物理学绪论电介质(dielectric)是在电场作用下具有极化能力并能在其中长期存在电场的一种物质。
电介质具有极化能力和其中能够长期存在电场这种性质是电介质的基本属性.也是电介质多种实际应用(如储存静电能)的基础。
静电场中电介质内部能够存在电场这一事实,已在静电学中应用高斯定理得到了证明,电介质的这一特性有别于金属导体材料,因为在静电平衡态导体内部的电场是等于零的。
如果运用现代固体物理的能带理论来定义电介质,则可将电介质定义为这样一种物质:它的能级图中基态被占满.基态与第一激发态之间被比较宽的禁带隔开,以致电子从正常态激发到相对于导带所必须的能量,大到可使电介质变到破坏。
电介质的能带结构可以用图一示意,为了便于将电介质的能带结构和半导体、导体的能带结构相比较,图中分别画出了它们的能带结构示意图.电介质对电场的响应特性不同于金属导体。
金属的特点是电子的共有化,体内有自由载流子,从而决定了金属具有良好的导电件,它们以传导方式来传递电的作用和影响。
然而,在电介质体内,一股情况下只具有被束缚着的电荷。
在电场的作用下,将不能以传导方式而只能以感应的方式,即以正、负电荷受电场驱使形成正、负电荷中心不相重合的电极化方式来传递和记录电的影响。
尽管对不同种类的电介质,电极化的机制各不相同,然而,以电极化方式响应电场的作用,却是共同的。
正因为如此研究电介质在电场作用下发生极化的物理过程并导出相应的规律,是电介质物理的一个重要课题。
由上所述,电介质体内一般没有自由电荷,具有良好的绝缘性能。
在工程应用上,常在需要将电路中具有不同电势的导体彼此隔开的地方使用电介质材料,就是利用介质的绝缘特性,从这个意义上讲,电介质又可称为绝缘材料(Insulating material)或绝缘体(insulator)。
与理想电介质不同,工程上实际电介质在电场作用下存在泄漏电流相电能的耗散以及在强电场下还可能导致电介质的破坏。
因此,如果将电介质物理看成是一种技术物理,那么除要研究极化外,还要研究有关电介质的电导、损耗以及击穿特性,这些就是电介质物理需要研究的主要问题。
大学物理 电介质
χ = εr − 1 电极化率
令 ε r = (1 + χ e ) 为相对介电常量(相对电容率)
ε = ε 0ε r ~电介质的电容率
5
四、极化电荷与自由电荷的关系
E
=
E0
−
E'=
E0 εr
E'=
εr − 1 εr
E0
d
σ'=
εr − εr
1
σ
0
Q' =
εr − εr
即 D⇒ E ⇒ P ⇒σ′ ⇒q′
9
物理意义
E
单位试验电荷 的受力
单位体积内的 P 电偶极矩的矢
量和 无物理意义, D 只有一个数学 上的定义 D = ε0E + P
= ε 0ε r E
特点
真空中关于电场的讨论都 适用于电介质:高斯定律、 电势的定义、环路定理等
各向同性均匀电介质中
P = ε0χe E ,表面束缚电荷 σ ′ = P ⋅ n ,电介质中P ≠ 0
D = (1+ χ )ε0E
ε r = (1 + χ )
ε = ε rε 0
相对电容率或相对介电常量
电容率或介电常量
D=ε0ε r E = εE
•注意: D 是辅助矢量,描写电场性质的物理量仍为 E ,V
对于真空 χ e = 0 ε r = 1 ε = ε 0 则 D = ε 0 E
3、有电介质时的高斯定理的应用
在垂直于电场方向的两个表面上,将产生极化电荷。
4.极化电荷
在外电场中,均匀介质内部各处仍呈电中性,但在介质表 面要出现电荷,这种电荷不能离开电介质到其它带电体,也不 能在电介质内部自由移动。我们称它为束缚电荷或极化电荷。 它不象导体中的自由电荷能用传导方法将其引走。
静电场中的电介质
C 与 d S 0 有关
S
C ; d C
插入介质
0S q C u A uB d
C
0 r S
d
C
(2)球形电容器 已知
设+q、-q 场强分布: E 电势差:
RB
RA RB
q
r q
B A
RA
q 4 0 r 2
q q
RB
1 1 u A uB dr ( ) 2 4 0 RA RB R A 4 0 r
f
pe
pe
3;
+ E + 外 + + + +
在外电场中有极分子的固有电 矩要受到一个力矩作用,电矩方 向趋于外电场方向。但由于热运 动的存在,不会完全一致。
有极分子的取向极化!
+ E + 外 + + + +
+
两端面出现极化电荷层
电介质被极化的宏观效果
①外电场越强,极化电荷越多; ②电介质不均匀,则不仅在电介质表面会出现极 化电荷,在电介质内部也会出现极化电荷; ③对均匀电介质,在其内部任一小区域内,正负 电荷数量仍然相等,因而仍然表现出电中性。
二、电极化强度和极化电荷
单位体积内分子电偶极矩的矢量和 P
1、电极化强度(矢量)
pi
V
物理意义:描述了电介质极化强弱,反映了电介质 内分子电偶极矩排列的有序或无序程度。
在各向同性的电介质中,P 0 E
称为电介质的电极化率,它取决于电介质的性质。
2、极化电荷和自由电荷 极化电荷
E E0
++++++ r + ------- C
介质和电介质的特性和应用有哪些
介质和电介质的特性和应用有哪些一、介质的概念介质,又称传播介质,是指电磁波传播的媒介。
介质可以是固体、液体、气体,甚至是真空。
不同的介质对电磁波的传播有不同的影响。
介质中电磁波的传播速度与介质的性质有关,如介质的折射率、介电常数等。
二、电介质的特性电介质是指在电场作用下,其内部会产生极化现象,从而影响电场分布的物质。
电介质的主要特性有:1.极化:电介质在外加电场的作用下,内部会产生极化现象,即正负电荷分别向电场方向和相反方向移动,形成局部电荷分布。
2.介电常数:电介质的介电常数(ε)是描述电介质极化程度的物理量,反映了电介质对电场的响应能力。
介电常数越大,电介质的极化程度越高。
3.绝缘性:电介质具有良好的绝缘性能,可以阻止电流的流动。
绝缘材料广泛应用于电力系统和电子设备中,以防止漏电和短路。
4.存储电荷:电介质在去除电场后,仍能保留一定量的电荷,称为电容。
电容是电介质储存电能的能力,广泛应用于电容器中。
三、电介质的应用1.电容器:电容器是利用电介质的储存电荷能力,实现电能存储和释放的元件。
电容器广泛应用于电子设备、电力系统、通讯等领域。
2.绝缘材料:电介质具有良好的绝缘性能,可以阻止电流的流动。
绝缘材料广泛应用于电力系统和电子设备中,以防止漏电和短路。
3.屏蔽材料:电介质可以用于屏蔽电磁干扰,保护电子设备免受外部干扰。
4.介质波导:电介质波导是一种用于传输电磁波的介质管道,广泛应用于光纤通信、微波传输等领域。
四、介质的分类及应用1.固体介质:如陶瓷、玻璃、塑料等。
固体介质在电子元件和微波器件中有广泛应用,如微波谐振器、滤波器等。
2.液体介质:如水、油、酸碱盐溶液等。
液体介质在电力系统中作为绝缘材料和冷却剂,以及化学实验室中的试剂。
3.气体介质:如空气、氮气、氧气等。
气体介质在电力系统中作为绝缘气体,以及灯泡中的填充气体。
4.真空介质:真空是一种特殊的介质,具有极低的介电常数。
在某些高频电路和微波器件中,真空介质可以作为优良的传播介质。
电介质极化现象与介电常数
电介质极化现象与介电常数引言:电介质是指在电场作用下发生极化现象的材料,其极化现象涉及到电子和离子在外电场作用下的移动与重新排列。
电介质的极化现象与介电常数紧密相关,介电常数是描述介质在电场中的性质的物理量,本文将探讨电介质极化现象与介电常数之间的关系。
一、电介质极化现象在电介质中,当外加电场从无到有时,电子和离子在电场力作用下发生了移动以及重新排列的现象。
这种现象被称为电介质的极化。
电介质的极化可以由以下两种类型来描述:1. 电子极化:当电介质中存在自由电子时,外电场对自由电子的作用会使电子产生位移,从而在材料中产生电荷分布不均的现象。
电子极化是导致电介质具有介电性质的重要因素之一。
2. 离子极化:当电介质为离子晶体或者液体时,外电场会对离子产生作用,使得正负离子发生位移,导致电介质内部发生异种电荷的聚集。
这种离子的位移和重新排列又分为电子云位移和离子团聚两种形式,共同导致电介质极化。
二、介电常数的定义和意义介电常数是描述介质对电场作用的响应程度的物理量。
它可以通过电介质在极化过程中储存的电能和电场强度之间的关系来定义。
在一个恒定电场下,介电常数可以用来衡量电介质能储存多少电场能量。
介电常数用来比较电场作用下不同介质的性质,具有以下几点重要意义:1. 储存电能:通过极化现象,电介质可以吸收并储存电荷,从而形成电场梯度。
介电常数越大,说明介质储存的电能越高,这也是一些电容器的重要性能指标。
2. 屏蔽电场:介电常数高的材料对电场有较好的屏蔽作用。
在电子设备中,为了防止电磁辐射对周围环境产生干扰,常常使用具有高介电常数的材料进行屏蔽。
3. 改善电容器性能:对于电容器而言,介电常数的大小决定了电容器的储能量,同时也影响着电容器的电容值。
通过选择不同介电常数的材料,可以改变电容器的性能,以适应不同的应用需求。
三、影响介电常数的因素介电常数受多种因素影响,以下列举了几个主要因素:1. 材料种类:不同的电介质材料具有不同的化学成分和晶格结构,因此其极化现象和介电常数也有所不同。
电介质名词解释
电介质名词解释
电介质是指那些不能自由导电的材料,也是电路中的一种基本元件。
与导体相比,电介质的电阻较大,可以在电场中存储能量,因而广泛应用于电子、电信、电力等领域。
常见的电介质材料包括玻璃、橡胶、塑料、陶瓷、石英、石墨、木材等。
这些材料的电介质性质不同,有的可以承受高电场强度,有的具有较低的介电损失,有的可以承受高温、高压等特殊环境。
在电路中,电介质可以用于电容器、绝缘体、隔离器、电感等元件中。
电容器是利用电介质的极化性质来存储电荷和电能的器件,常见的电容器有电解电容器、陶瓷电容器、聚酯电容器等。
绝缘体则用于隔离电路中的导体,防止电流泄漏或干扰,常见的绝缘材料有绝缘漆、尼龙、聚四氟乙烯等。
隔离器则用于将不同电位的导体隔离开来,常见的隔离器有变压器、光隔离器等。
电感则是通过在电路中使用线圈来存储电磁能量,常见的电感材料有铁氧体、陶瓷、聚酰亚胺等。
总之,电介质在电路中有着广泛的应用,通过选择合适的电介质材料可以满足不同电路的需求。
电介质的概念
电介质的概念电介质是指具有一定电阻率的物质,在电场中受到极化而产生电荷,但电荷的产生和导电性能都比较差。
以下是电介质的相关概念和特性的详细介绍:一、电介质的定义电介质是指在电场中能够产生电极化现象,但不能通过自身导电的物质。
它是导体和绝缘体之间的一种特殊材料,具有一定的电阻性质,可以通过材料将电能转化成其他形式的能量。
二、电介质的分类1. 按材料分类电介质可以根据材料的不同,分为有机电介质和无机电介质两类。
有机电介质包括纸质、塑料、橡胶等,而无机电介质则包括陶瓷、玻璃、氧化物等。
2. 按电极化特性分类电介质可以根据其在电场中的电极化特性分为自然电介质和极化电介质两类。
自然电介质,如大气、水、岩石等,不具有电导性,电极化主要是由于材料自身分子的结构和构成导致的。
极化电介质,如电容器、电缆绝缘体等,是由于材料被电场强烈极化而产生的电荷。
三、电介质的特性1. 阻抗性能:电介质的阻抗特性可以降低场强,在电路中可以起到隔离和电容的作用。
2. 介电强度:介电强度是指在给定的电场强度下,电介质能够承受的最大电压。
3. 极化:电介质在电场中会发生电极化现象,分为取向极化、旋转极化和离子极化三种。
4. 稳定性:电介质在不同温度和湿度下都要具有一定的稳定性,以保障其使用寿命和性能。
四、应用范围电介质广泛应用于电力系统、通讯系统和电子系统中,用于隔离和电容。
例如电缆绝缘体、变压器油、高分子绝缘材料等都是电介质的应用范畴。
此外,电介质还可以应用于电容器、电势器、电感电路等电子元器件中。
总之,电介质对于电气能量的转化和传输具有非常重要的作用,是现代电子技术发展的重要基础之一。
电介质
什么是电介质?电介质是什么意思?所谓电介质,是指不导电的物质,即绝缘体,内部没有可以移动的电荷。
若把电介质放入静电场场中。
电介质原子中的电子和原子核在电场力的作用下在原子范围内作微观的相对位移,而不能象导体中的自由电子那样脱离所属的原子作宏观的移动。
达到静电平衡时,电介质内部的场强也不为零。
这是电介质与导体电性能的主要差别。
电介质包括气态、液态和固态等范围广泛的物质。
固态电介质包括晶态电介质和非晶态电介质两大类,后者包括玻璃、树脂和高分子聚合物等,是良好的绝缘材料。
凡在外电场作用下产生宏观上不等于零的电偶极矩,因而形成宏观束缚电荷的现象称为电极化,能产生电极化现象的物质统称为电介质。
电介质的电阻率一般都很高,被称为绝缘体。
有些电介质的电阻率并不很高,不能称为绝缘体,但由于能发生极化过程,也归入电介质。
通常情形下电介质中的正、负电荷互相抵消,宏观上不表现出电性,但在外电场作用下可产生如下3种类型的变化:①原子核外的电子云分布产生畸变,从而产生不等于零的电偶极矩,称为畸变极化;②原来正、负电中心重合的分子,在外电场作用下正、负电中心彼此分离,称为位移极化;③具有固有电偶极矩的分子原来的取向是混乱的,宏观上电偶极矩总和等于零,在外电场作用下,各个电偶极子趋向于一致的排列,从而宏观电偶极矩不等于零,称为转向极化。
电介质的特征是以正、负电荷重心不重合的电极化方式传递或记录(存储)电的作用和影响;在其中起主要作用的是束缚电荷。
电介质物理主要是研究介质内部束缚电荷在电或和光的作用下的电极化过程,阐明其电极化规律与介质结构的关系,揭示介质宏观介电性质的微观机制,进而发展电介质的效用。
电介质物理也研究电介质绝缘材料的电击穿过程及其原理,以利于发展电绝缘材料。
实际上金属也具有介电性质;但金属的介电性是来源于电子气在运动过程中感生出虚空穴(正电荷)所引起的动态屏蔽效应。
因其基本上不涉及束缚电荷,故不把金属的介电性列入电介质物理研究的范畴。
电介质
高斯定理的应用
∫∫ D ⋅ dS = ∑ q
(S) ( S内 )
0
D= ε r ε 0 E
v v v D= ε 0 E + P
D = ε 0 E0
r r r D ⇒ E ⇒ P ⇒ σ ′ ⇒ q′
D P
+σ0 -σ'
E = E0 − E '
E E 0
+σ' -σ0
[例] 例
r r r 请画 D, E , P 线。
−
dq
A + +Q + + +
B -Q -
1 1 1 Q2 2 We = U c Q = CU c = 2 2 2 C
二 、电场的能量和能量密度
1、静电场的能量 、
以平行板电容器为例 1 1 W e = Q0 U = ( DS )( Ed ) 2 2
We = 1 D EV 2
2、电场的能量密度
定义: 定义:单位体积内的能量
−q
q
q
E=
q 4πε 0 r 2
r
R1 E1
R2
电场的能量密度为
E2
dWe = ω e dV =
R1
1 q2 ω e = ε 0 E 2= 2 32π 2ε 0 r 4
q2
2 4
32π ε 0 r
4πr 2 dr =
q2 8πε 0 r
2
dr
q2 1 1 − We = ∫ dr = 2 r R 8πε 0 r 8πε 0 1 r q2
位移极化
E0
E0
取向极化
在外电场作用下, 在外电场作用下,电介质表面出现正负电荷层的 现象叫做电介质的极化 电介质的极化。 现象叫做电介质的极化。
电介质的极化
电介质(dielectric)也就是绝缘体,它们本身是不导电的,即它们不含有自由电子。
因此,与导体相比,电介质对外场的响应是不同的。
对于导体而言,其对外电场的响应就是自由电子定向移动,产生感应电荷,最终达到静电平衡。
而对于电介质而言,其对外电场的响应是束缚电荷的受限移动(移动范围不能超出原子),从而产生宏观的极化电荷。
这种对外电场的响应称为电介质的极化。
极化的微观过程是束缚电荷在外电场中的运动。
任何物质的分子都是由电子和原子核构成的,整个分子是电中性的。
正(原子核)、负电荷(各个电子)在空间中都具有一定的分布。
利用等效理论(原理),对正、负电荷分开处理,可以得到这个分子的等效正电荷的大小、位置以及等效负电荷的大小、位置。
这样,就可以得到分子的等效固有电偶极矩。
根据对称性,可以将分子分为无极分子和有极分子。
顾名思义,无极分子就是分子等效电极距为0的分子,即分子的正、负等效电荷的位置重合,这要求分子的结构具有某些对称性,如氢分子,四氯化碳分子等。
有极分子就是分子等效电极距不为0的分子,这种情况更为多见。
自然地,这两种分子的极化机制不同。
对于无极分子而言,一旦加上了外电场,原本重合的正、负等效电荷点会分开,产生感生电极距,也称为位移极化。
而对于有极分子而言,不仅仅有位移极化,本身的固有电极距会在外场作用下从原本的杂乱无章到逐渐有序,这种极化称为取向极化。
那么如何定量描述极化的强度呢?极化强度是宏观量,而极化微观机制是微观图像。
将宏观量和微观图像联系起来的有效工具便是微元法,即取一小块体积元,将体积元内所有电极距叠加起来,除以体积元的大小,定义为极化强度矢量。
那么极化电荷的分布情况如何呢?对于均匀的电介质而言,可以想象,电介质体内是不会出现宏观的极化电荷的,因为它们都抵消掉了(想象一下极化的微观过程可知)。
但在表面情况就不同了。
这个表面并不是电介质的理想表面,而是指距离理想表面的距离小于L的地方。
其中L为分子感生电极距中等效正电荷点与等效负电荷点的距离。
电介质四大基本参数
电介质四大基本参数
电介质四大基本参数是指电介质的电阻率、电导率、介电常数和介电损耗因数。
1. 电阻率:电阻率是指电介质中电流通过时所需要的电势差,单位是欧姆/米,符号为ρ,其计算公式为:ρ=U/I,其中U为
电介质中电流通过时所需要的电势差,单位是伏特,I为电流,单位是安培。
2. 电导率:电导率是指电介质中电流通过时所需要的电势差,单位是西门子/米,符号为σ,其计算公式为:σ=I/U,其中U
为电介质中电流通过时所需要的电势差,单位是伏特,I为电流,单位是安培。
3. 介电常数:介电常数是指电介质中电场强度和电介质中电位的比值,单位是介电常数,符号为ε,其计算公式为:ε=E/U,其中E为电场强度,单位是伏/米,U为电介质中电位,单位
是伏特。
4. 介电损耗因数:介电损耗因数是指电介质中电流通过时所需要的电势差,单位是无量纲,符号为tanδ,其计算公式为:
tanδ=Im/Re,其中Im为电介质中电流的虚部,Re为电介质中
电流的实部。
电介质四大基本参数是电介质特性的重要指标,它们的测量和分析对于研究电介质的特性和性能具有重要意义。
《静电场中的电介质》课件
电介质的极化机制可以分为电子式极化、离子式极化和取向式极化三种。电子式极化是由于电介质中的电子受到 电场作用而产生的位移;离子式极化是由于电介质中的离子受到电场作用而产生的位移;取向式极化是由于电介 质中的分子或分子的取向受到电场作用而产生的改变。
02 静电场中的电介质
电介质在静电场中的表现
压电材料的研究涉及晶体、陶瓷、复合材料等多个领域,研究者通过优化材料成分、结 构及制备工艺,提高压电材料的性能,如压电常数、机电耦合系数等,以拓展其应用范
围。
新型电介质材料的研究
总结词
新型电介质材料在能源、环保、医疗等领域 具有广阔的应用前景。
详细描述
随着科技的发展,新型电介质材料不断涌现 ,如铁电材料、弛豫铁电体、多铁性材料等 。这些材料在储能、传感、信息处理等方面 展现出独特的优势,为相关领域的技术创新
VS
详细描述
压电材料中的电介质在受到外力作用时, 会发生形变导致分子间的电荷重新分布, 产生电压。这种现象称为压电效应。利用 压电效应可以制作传感器和换能器等器件 ,广泛应用于声学、电子学和物理学等领 域。
05 电介质在静电场中的研究进展
高介电常数材料的研究
总结词
高介电常数材料在静电场中表现出优异的电 学性能,是当前研究的热点之一。
电介质的极化机制包括电子极化、离子极化和取向极化等,这些机制在不同频率和 强度的电场中表现不同。
电介质的极化状态会影响其在静电场中的行为,如介电常数和电导率等,这些性质 在电子设备和电磁波传播等领域有重要应用。
电介质极化对电场的影响
01
电介质的极化状态会改变静电场的分布,因为电介质的存在会 导致电场畸变。
02
电介质在静电场中的行为可以用Maxwell方程组描述,通过求
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十三章 电介质一、选择题1、关于高斯定理,下列说法中哪一个是正确的(A) 高斯面内不包围自由电荷,则面上各点电位移矢量D 为零.(B) 高斯面的D通量仅与面内自由电荷有关. (C) 高斯面上处处D 为零,则面内必不存在自由电荷.(D) 以上说法都不正确. [ B ]2、关于静电场中的电位移线,下列说法中,哪一个是正确的(A) 起自正电荷,止于负电荷,不形成闭合线,不中断.(B) 任何两条电位移线互相平行.(C) 起自正自由电荷,止于负自由电荷,任何两条电位移线在无自由电荷的空间不相交.(D) 电位移线只出现在有电介质的空间. [ C ]3、一导体球外充满相对介电常量为r 的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度为 (A)0 E . (B) 0 r E . (C)r E . (D) (0 r -0)E . [ B ]4、在空气平行板电容器中,平行地插上一块各向同性均匀电介质板,如图所示.当电容器充电后,若忽略边缘效应,则电介质中的场强E 与空气中的场强0E 相比较,应有(A) E = E 0,两者方向相同. (B) E > E 0,两者方向相同.(C) E < E 0,两者方向相同. (D) E < E 0,两者方向相反. [ C ]5、设有一个带正电的导体球壳.当球壳内充满电介质、球壳外是真空时,球壳外一点的场强大小和电势用E 1,U 1表示;而球壳内、外均为真空时,壳外一点的场强大小和电势用E 2,U 2表示,则两种情况下壳外同一点处的场强大小和电势大小的关系为(A) E 1 = E 2,U 1 = U 2. (B) E 1 = E 2,U 1 > U 2.E E 0(C) E 1 > E 2,U 1 > U 2. (D) E 1 < E 2,U 1 < U 2. [ A ]6、在一点电荷q 产生的静电场中,一块电介质如图放置,以点电荷所在处为球心作一球形闭合面S ,则对此球形闭合面: (A) 高斯定理成立,且可用它求出闭合面上各点的场强.(B) 高斯定理成立,但不能用它求出闭合面上各点的场强.(C) 由于电介质不对称分布,高斯定理不成立.(D) 即使电介质对称分布,高斯定理也不成立.[ B ]7、一平行板电容器中充满相对介电常量为r 的各向同性均匀电介质.已知介质表面极化电荷面密度为±′,则极化电荷在电容器中产生的电场强度的大小为:(A) 0εσ'. (B) rεεσ0'. (C) 02εσ'. (D) rεσ'. [ A ] 8、一平行板电容器始终与端电压一定的电源相联.当电容器两极板间为真空时,电场强度为0E ,电位移为0D ,而当两极板间充满相对介电常量为r 的各向同性均匀电介质时,电场强度为E ,电位移为D,则 (A) r E E ε/0 =,0D D =. (B) 0E E =,0D D r ε=.(C) r E E ε/0 =,r D D ε/0 =. (D) 0E E =,0D D=. [ B ] 9、在静电场中,作闭合曲面S ,若有0d =⎰⋅SS D (式中D 为电位移矢量),则S 面内必定(A) 既无自由电荷,也无束缚电荷.(B) 没有自由电荷.(C) 自由电荷和束缚电荷的代数和为零.(D) 自由电荷的代数和为零. [ D ]qS10、一个大平行板电容器水平放置,两极板间的一半空间充有各向同性均匀电介质,另一半为空气,如图.当两极板带上恒定的等量异号电荷时,有一个质量为m 、带电荷为+q 的质点,在极板间的空气区域中处于平衡.此后,若把电介质抽去 ,则该质点(A) 向下运动. (B) 向上运动.(C) 保持不动. (D) 是否运动不能确定.[ B ]11、C 1和C 2两空气电容器串联以后接电源充电.在电源保持联接的情况下,在C 2中插入一电介质板,则(A) C 1极板上电荷增加,C 2极板上电荷增加. (B) C 1极板上电荷减少,C 2极板上电荷增加.(C) C 1极板上电荷增加,C 2极板上电荷减少.(D) C 1极板上电荷减少,C 2极板上电荷减少. [ A ]12、C 1和C 2两空气电容器并联以后接电源充电.在电源保持联接的情况下,在C 1中插入一电介质板,如图所示, 则(A) C 1极板上电荷增加,C 2极板上电荷减少. (B) C 1极板上电荷减少,C 2极板上电荷增加.(C) C 1极板上电荷增加,C 2极板上电荷不变.(D) C 1极板上电荷减少,C 2极板上电荷不变. [ C ]13、C 1和C 2两空气电容器,把它们串联成一电容器组.若在C 1中插入一电介质板,则 (A) C 1的电容增大,电容器组总电容减小.(B) C 1的电容增大,电容器组总电容增大.(C) C 1的电容减小,电容器组总电容减小. +Q12(D) C 1的电容减小,电容器组总电容增大. [ B ]14、C 1和C 2两空气电容器并联起来接上电源充电.然后将电源断开,再把一电介质板插入C 1中,如图所示, 则 (A) C 1和C 2极板上电荷都不变. (B) C 1极板上电荷增大,C 2极板上电荷不变.(C) C 1极板上电荷增大,C 2极板上电荷减少.(D) C 1极板上电荷减少,C 2极板上电荷增大. [ C ]15、如果在空气平行板电容器的两极板间平行地插入一块与极板面积相同的各向同性均匀电介质板,由于该电介质板的插入和它在两极板间的位置不同,对电容器电容的影响为:(A) 使电容减小,但与介质板相对极板的位置无关.(B) 使电容减小,且与介质板相对极板的位置有关.(C) 使电容增大,但与介质板相对极板的位置无关.(D) 使电容增大,且与介质板相对极板的位置有关. [ C ]16、如果在空气平行板电容器的两极板间平行地插入一块与极板面积相同的金属板,则由于金属板的插入及其相对极板所放位置的不同,对电容器电容的影响为:(A) 使电容减小,但与金属板相对极板的位置无关.(B) 使电容减小,且与金属板相对极板的位置有关.(C) 使电容增大,但与金属板相对极板的位置无关.(D) 使电容增大,且与金属板相对极板的位置有关. [ C ]17、如果某带电体其电荷分布的体密度增大为原来的2倍,则其电场的能量变为原来的(A) 2倍. (B) 1/2倍.(C) 4倍. (D) 1/4倍. [ C ]C 1C 2用导线将两者连接后,则与未连接前相比系统静电场能量将(A) 增大. (B) 减小.(C) 不变. (D) 如何变化无法确定.[ B ]19、一空气平行板电容器充电后与电源断开,然后在两极板间充满某种各向同性、均匀电介质,则电场强度的大小E、电容C、电压U、电场能量W四个量各自与充入介质前相比较,增大(↑)或减小(↓)的情形为(A) E↑,C↑,U↑,W↑.(B) E↓,C↑,U↓,W↓.(C) E↓,C↑,U↑,W↓.(D) E↑,C↓,U↓,W↑.[ B ]20、一平行板电容器充电后仍与电源连接,若用绝缘手柄将电容器两极板间距离拉大,则极板上的电荷Q、电场强度的大小E和电场能量W将发生如下变化(A) Q增大,E增大,W增大.(B) Q减小,E减小,W减小.(C) Q增大,E减小,W增大.(D) Q增大,E增大,W减小.[ B ]21、真空中有“孤立的”均匀带电球体和一均匀带电球面,如果它们的半径和所带的电荷都相等.则它们的静电能之间的关系是(A) 球体的静电能等于球面的静电能.(B) 球体的静电能大于球面的静电能.(C) 球体的静电能小于球面的静电能.(D) 球体内的静电能大于球面内的静电能,球体外的静电能小于球面外的静电能.[ B ]22、将一空气平行板电容器接到电源上充电到一定电压后,断开电源.再将一块与极板面积相同的金属板平行地插入两极板之间,如图所示, 则由于金属板的插入及其所放位置的不同,对电容器储能的影响为:(A) 储能减少,但与金属板相对极板的位置无关.(B) 储能减少,且与金属板相对极板的位置有关.(C) 储能增加,但与金属板相对极板的位置无关.(D) 储能增加,且与金属板相对极板的位置有关. [ A ]23、将一空气平行板电容器接到电源上充电到一定电压后,在保持与电源连接的情况下,再将一块与极板面积相同的金属板平行地插入两极板之间,如图所示.金属板的插入及其所处位置的不同,对电容器储存电能的影响为:(A) 储能减少,但与金属板相对极板的位置无关.(B) 储能减少,且与金属板相对极板的位置有关.(C) 储能增加,但与金属板相对极板的位置无关.(D) 储能增加,且与金属板相对极板的位置有关. [ C ]24、将一空气平行板电容器接到电源上充电到一定电压后,断开电源.再将一块与极板面积相同的各向同性均匀电介质板平行地插入两极板之间,如图所示. 则由于介质板的插入及其所放位置的不同,对电容器储能的影响为:(A) 储能减少,但与介质板相对极板的位置无关.(B) 储能减少,且与介质板相对极板的位置有关. (C) 储能增加,但与介质板相对极板的位置无关.(D) 储能增加,且与介质板相对极板的位置有关.[ A ]25、将一空气平行板电容器接到电源上充电到一定电压后,在保持与介质板电源连接的情况下,把一块与极板面积相同的各向同性均匀电介质板平行地插入两极板之间,如图所示.介质板的插入及其所处位置的不同,对电容器储存电能的影响为:(A) 储能减少,但与介质板相对极板的位置无关.(B) 储能减少,且与介质板相对极板的位置有关.(C) 储能增加,但与介质板相对极板的位置无关.(D) 储能增加,且与介质板相对极板的位置有关.[ C ]二、填空题1、分子的正负电荷中心重合的电介质叫做_______________ 电介质。
答案:无极分子2、在外电场作用下,分子的正负电荷中心发生相对位移,形成___________________答案:电偶极子7、一平行板电容器,充电后与电源保持联接,然后使两极板间充满相对介电常量为r的各向同性均匀电介质,这时两极板上的电场强度是原来的 _________倍。
答案:117、如图所示,平行板电容器中充有各向同性均匀电介质.图中两组带有箭头的线分别表示电场线、电位移线.则其中(1)为__________________线。
(1)(2)答案:电位移18、如图所示,平行板电容器中充有各向同性均匀电介质.图中两组带有箭头的线分别表示电场线、电位移线.则其中(2)为__________________线。
(1)(2)答案:电场21、两个点电荷在真空中相距d1 = 7 cm时的相互作用力与在煤油中相距d2 = 5cm时的相互作用力相等,则煤油的相对介电常量r =___________答案:24、两个电容器1和2,串联以后接上电动势恒定的电源充电.在电源保持联接的情况下,若把电介质充入电容器2中,则电容器1上的电势差____________。