初三数学试题 全等与相似三角形

合集下载

数学初三相似三角形试卷

数学初三相似三角形试卷

一、选择题(每题4分,共20分)1. 下列各组图形中,能够构成相似三角形的是()A. 两个等腰三角形B. 两个等边三角形C. 两个直角三角形D. 两个锐角三角形2. 已知两个三角形ABC和DEF,若∠A=∠D,∠B=∠E,则下列说法正确的是()A. 三角形ABC与三角形DEF相似B. 三角形ABC与三角形DEF不一定相似C. 三角形ABC与三角形DEF一定不相似D. 无法判断三角形ABC与三角形DEF是否相似3. 在相似三角形中,对应边的比称为()A. 相似比B. 对应角C. 相似中心D. 相似轴4. 若一个三角形的边长分别为3、4、5,那么与这个三角形相似的三角形的边长可能是()A. 6、8、10B. 6、9、12C. 7、10、14D. 8、12、165. 在相似三角形中,若相似比为2:1,则周长比是()A. 2:1B. 1:2C. 4:1D. 1:4二、填空题(每题4分,共16分)6. 如果两个相似三角形的相似比是3:2,那么它们的面积比是_______。

7. 在相似三角形中,如果相似比是5:3,那么对应高的比是_______。

8. 若三角形ABC与三角形DEF相似,且AB=6cm,DE=4cm,那么BC与EF的比是_______。

9. 在相似三角形中,若一个三角形的周长是另一个三角形的3倍,则它们的相似比是_______。

10. 两个相似三角形的相似比为1:2,那么它们的面积比是_______。

三、解答题(每题10分,共30分)11. (10分)已知三角形ABC中,∠A=45°,∠B=90°,∠C=45°,点D、E分别在边AB、BC上,且AD=DE=EC。

求证:三角形ADE与三角形ABC相似。

12. (10分)已知两个相似三角形ABC和DEF,其中∠A=30°,∠D=45°,∠B=∠E=75°。

求证:三角形ABC与三角形DEF相似。

备战2021年九年级中考数学考点提升训练——专题:《三角形综合:全等与相似》(一)

备战2021年九年级中考数学考点提升训练——专题:《三角形综合:全等与相似》(一)

备战2021年九年级中考数学考点提升训练——专题:《三角形综合:全等与相似》(一)1.已知:等边△ABC中.(1)如图1,点M是BC的中点,点N在AB边上,满足∠AMN=60°,求的值;(2)如图2,点M在AB边上(M为非中点,不与A、B重合),点N在CB的延长线上且∠MNB=∠MCB,求证:AM=BN.(3)如图3,点P为AC边的中点,点E在AB的延长线上,点F在BC的延长线上,满足∠AEP=∠PFC,求的值.2.(1)发现如图1,△ABC和△ADE均为等边三角形,点D在BC边上,连接CE.填空:①∠DCE的度数是;②线段CA、CE、CD之间的数量关系是.(2)探究如图2,△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,点D在BC 边上,连接CE.请判断∠DCE的度数及线段CA、CE、CD之间的数量关系,并说明理由.(3)应用如图3,在Rt△ABC中,∠A=90°,AC=4,AB=6.若点D满足DB=DC,且∠BDC=90°,请直接写出DA的长.3.(1)问题发现:如图1,△ABC和△ADE均为等边三角形,点D在BC的延长线上,连接CE,求证:△ABD≌△ACE.(2)类比探究:如图2,△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,D点在边BC的延长线上,连接CE.请判断:①∠ACE的度数为.②线段BC,CD,CE之间的数量关系是.(3)问题解决:在(2)中,如果AB=AC=,CD=1,求线段DE的长.4.直角三角形ABC中,∠ACB=90°,直线l过点C.(1)当AC=BC时,如图①,分别过点A、B作AD⊥l于点D,BE⊥l于点E.求证:△ACD≌△CBE.(2)当AC=8,BC=6时,如图②,点B与点F关于直线l对称,连接BF,CF,动点M从点A出发,以每秒1个单位长度的速度沿AC边向终点C运动,同时动点N从点F出发,以每秒3个单位的速度沿F→C→B→C→F向终点F运动,点M、N到达相应的终点时停止运动,过点M作MD⊥l于点D,过点N作NE⊥l于点E,设运动时间为t秒.①CM=,当N在F→C路径上时,CN=.(用含t的代数式表示)②直接写出当△MDC与△CEN全等时t的值.5.已知在△ABC中,AB=AC,过点B引一条射线BM,D是BM上一点.(1)如图1,∠ABC=60°,射线BM在∠ABC内,∠ADB=60°,求证:∠BDC =60°.请根据以下思维框图,写出证明过程.(2)如图2,已知∠ABC=∠ADB=30°.①当射线BM在∠ABC内,求∠BDC的度数.②当射线BM在BC下方,请问∠BDC的度数会变吗?若不变,请说明理由;若改变,请直接写出∠BDC的度数.(3)在第(2)题的条件下,作AF⊥BD于点F,连结CF,已知BD=6,CD=2,求△CDF的面积.6.(1)问题发现如图1,在Rt△ABC和Rt△DBE中,∠ABC=∠DBE=90°,∠ACB=∠BED=45°,点E是线段AC上一动点,连接DE.填空:①则的值为;②∠EAD的度数为.(2)类比探究如图2,在Rt△ABC和Rt△DBE中,∠ABC=∠DBE=90°,∠ACB=∠BED=60°,点E是线段AC上一动点,连接DE.请求出的值及∠EAD的度数;(3)拓展延伸如图3,在(2)的条件下,取线段DE的中点M,连接AM、BM,若BC=4,则当△ABM是直角三角形时,求线段AD的长.7.如图,在△ABC中,AB=AC,点D在△ABC内,BD=BC,∠DBC=60°,点E 在△ABC外,∠CBE=150°,∠ACE=60°.(1)求∠ADC的度数.(2)判断△ACE的形状并加以证明.(3)连接DE,若DE⊥CD,AD=3,求DE的长.8.在等腰直角△ABC中,AB=AC,∠BAC=90°,以CA为边在∠ACB的另一侧作∠ACM=∠ACB,点D为射线BC上任意一点,在射线CM上截取CE=BD,连接AD、DE、AE.(1)如图1,当点D落在线段BC的延长线上时,直接写出∠ADE的度数;(2)如图2,当点D落在线段BC(不含边界)上时,AC与DE交于点F,请问(1)中的结论是否仍成立?如果成立,请给出证明;如果不成立,请说明理由;(3)如图2,作AH⊥BC,垂足为H,作AG⊥EC,垂足为G,连接HG,判断△GHC 的形状,并说明理由.9.如图,已知在ABC中,AB=AC=5,BC=6,点M在△ABC内,AM平分∠BAC.点E与点M在AC所在直线的两侧,AE⊥AB,AE=BC,点N在AC边上,CN=AM,连接ME、BN;(1)根据题意,补全图形;(2)ME与BN有何数量关系,判断并说明理由;(3)点M在何处时BM+BN取得最小值?请确定此时点M的位置,并求出此时BM+BN 的最小值.10.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,以AB为一边向上作等边三角形ABD,点E在BC垂直平分线上,且EB⊥AB,连接CE,AE,CD.(1)判断△CBE的形状,并说明理由;(2)求证:AE=DC;(3)填空:①若AE,CD相交于点F,则∠AFD的度数为.②在射线AB上有一动点P,若△PBC为等腰三角形,则∠ACP的度数为.参考答案1.解:(1)∵△ABC为等边三角形,∴∠B=∠BAC=60°,AB=AC,∵点M是BC的中点,∴∠MAN=30°,∠AMB=90°,∵∠AMN=60°,∴∠BMN=30°,∴BM=2BN,AB=2BM,设BN=x,则BM=2x,AB=4x,∴AN=3x,∴;(2)证明:如图2,过点M作MG∥NC交AC于点G,∴∠A=∠AMG=∠AGM=60°,∴△AMG为等边三角形,∴AM=AG,∴BM=CG,∵∠AGM=∠ABC=60°,∴∠MGC=∠NBM=120°,∵MG∥BC,∴∠GMC=∠MCB,∵∠MNB=∠MCB,∴∠GMC=∠MNB,∴△MGC≌△NBM(AAS),∴MG=BN,∵△AMG为等边三角形,∴AM=MG,∴AM=BN;(3)如图3,过点P作PM∥BC交AB于点M,∴△AMP为等边三角形,∴AP=MP,∠AMP=60°,∵P为AC的中点,∴AP=PC,∴MP=PC,∵∠ACB=60°,∴∠EMP=∠PCF=120°,∵∠AEP=∠PFC,∴△PCF≌△PME(AAS),∴CF=ME,∴BF﹣BE=BC+CF﹣ME+MB,又∵P为AC的中点,MP∥BC,∴MB=,∴BF﹣BE=BC+BC=,∴.2.(1)发现解:①∵在△ABC中,AB=AC,∠BAC=60°,∴∠BAC=∠DAE=60°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴∠ACE=∠B=60°,∴∠DCE=∠ACE+∠ACB=60°+60°=120°;故答案为:120°,②∵△BAD≌△CAE,∴BD=CE,∴BC=BD+CD=EC+CD,∴CA=BC=CE+CD;故答案为:CA=CE+CD.(2)探究∠DCE=90°;CA=CD+CE.理由:∵△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,∴AB=AC,AD=AE,∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE.∴△BAD≌△CAE(SAS).∴BD=CE,∠B=∠ACE=45°.∴∠DCE=∠ACB+∠ACE=90°.在等腰直角三角形ABC中,CB=CA,∵CB=CD+DB=CD+CE,∴CA=CD+CE.(3)应用DA=5或.作DE⊥AB于E,连接AD,∵在Rt△ABC中,AB=6,AC=4,∠BAC=90°,∴BC===2,∵∠BDC=90°,DB=DC,∴DB=DC=,∠BCD=∠CBD=45°,∵∠BDC=∠BAC=90°,∴点B,C,A,D四点共圆,∴∠DAE=45°,∴△ADE是等腰直角三角形,∴AE=DE,∴BE=6﹣DE,∵BE2+DE2=BD2,∴DE2+(6﹣DE)2=26,∴DE=1,DE=5,∴AD=或AD=5.3.(1)问题发现:证明:∵△ABC和△ADE是等边三角形∴AB=AC,AD=AE,且∠BAC=∠DAE=60°∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△ABD和△ACE中AB=AC,∠BAD=∠CAE,AD=AE,∴△ABD≌△ACE(SAS);(2)类比探究:①∵△ABC和△ADE均为等腰直角三角形,∴AB=AC,∠BAD=∠CAE,AD=AE,在△ACE与△ABD中,,∴△ACE≌△ABD(SAS),∴∠ACE=∠B=45°,故答案为:45°;②∵△ACE≌△ABD,∴BD=CE,∴BC+CD=CE,故答案为:BC+CD=CE;(3)问题解决:解:在(2)中,同(1)的方法可证:△ABD≌△ACE,∴∠ACE=∠ABD=45°,又∵∠ACB=45°,∴∠BCE=∠ACB+∠ACE=90°,在Rt△BAC中,,∴,又∵CD=1,由(2)得CE=BC+CD=3,在Rt△BAC中,,则线段DE的长是.4.解:(1)△ACD与△CBE全等.理由如下:∵AD⊥直线l,∴∠DAC+∠ACD=90°,∵∠ACB=90°,∴∠BCE+∠ACD=90°,∴∠DAC=∠ECB,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS);(2)①由题意得,AM=t,FN=3t,则CM=8﹣t,由折叠的性质可知,CF=CB=6,∴CN=6﹣3t.故答案为:8﹣t;6﹣3t.②由折叠的性质可知,∠BCE=∠FCE,∵∠MCD+∠CMD=90°,∠MCD+∠BCE=90°,∴∠NCE=∠CMD,∴当CM=CN时,△MDC与△CEN全等,当点N沿F→C路径运动时,8﹣t=6﹣3t,解得,t=﹣1(不合题意),当点N沿C→B路径运动时,8﹣t═3t﹣6,解得,t=3.5,当点N沿B→C路径运动时,由题意得,8﹣t=18﹣3t,解得,t=5,当点N沿C→F路径运动时,由题意得,8﹣t=3t﹣18,解得,t=6.5,综上所述,当t=3.5秒或5秒或6.5秒时,△MDC与△CEN全等.5.(1)证明:在BM上取一点E,使AE=AD.∵∠ADB=60°,∴△ADE是等边三角形.∵AB=AC,∠ABC=60°,∴△ABC是正三角形,∴∠BAE=60°﹣∠EAC=∠CAD,∴△BAE≌△CAD(SAS),∴∠ADC=∠AEB=120°,∴∠BDC=120°﹣60°=60°.(2)①在BD上取一点E,AE=AD,如图2,∵∠ABC=∠ADB=30°,且AB=AC,∴∠ABC=∠ACB=30°,∠AED=∠ADE=30°,∴∠BAC=∠EAD=120°,∴∠BAE=∠CAD,∴△BAE≌△CAD(SAS),∴∠ADC=∠AEB=180°﹣30°=150°,∴∠BDC=150°﹣30°=120°.②会变.如图3.在DB延长线上取一点E,使得AE=AD,同理可得:△BAE≌△CAD,∴∠ADC=∠E=30°,∴∠BDC=∠ADE+∠ADC=30°+30°=60°.(3)如图,∵△BAE≌△CAD,∴BE=CD,且AE=AD,AF⊥DE,∴,作CH⊥BM,如图4,∵∠BDC=120°,∴∠CDH=60°,∴∠DCH=30°,∴,∴,∴如图5,∵△BAE≌△CAD,∴BE=CD,且AE=AD,AF⊥DE,∴,,∴.6.解:(1)∵∠ABC=∠DBE=90°,∴∠ABC﹣∠ABE=∠DBE﹣∠ABE即∠CBE=∠ABD,∵∠ACB=∠BED=45°,∴∠ACB=∠CAB=45°,∠BED=∠BDE=45°,∴AB=BC,DB=BE,∴△ABD≌△CBE(SAS),∴AD=CE,∠DAB=∠ECB=45°,∴=1,∠EAD=45°+45°=90°.故答案为:1,90°.(2),∠EAD=90°.理由如下:∵∠ABC=∠DBE=90°,∠ACB=∠BED=60°,∴∠ABD=∠EBC,∠BAC=∠BDE=30°,∴在Rt△ABC中,tan∠ACB==tan60°=,在Rt△DBE中,tan∠BED==tan60°=,∴=,又∵∠ABD=∠EBC,∴△ABD∽△∠CBE,∴==,∠BAD=∠ACB=60°.∵∠BAC=30°,∴∠EAD=∠BAD+∠BAC=60°+30°=90°.(3)如图,由(2)知:==,∠EAD=90°,∴AD=CE,在Rt△ABC中,∠BAC=30°,BC=4,∴AC=8,AB=4,∵∠EAD=∠EBD=90°,且点M是DE的中点,∴AM=BM=DE,∵△ABM为直角三角形,∴AM2+BM2=AB2=(4)2=48,∴AM=BM=2,∴DE=4,设EC=x,则AD=x,AE=8﹣x,Rt△ADE中,AE2+AD2=DE2,∴(8﹣x)2+(x)2=(4)2,解之得:x=2+2(负值舍去).∴EC=2+2.∴AD=CE=2+6.∴线段AD的长为(2+6).7.(1)解:∵BD=BC,∠DBC=60°,∴△DBC是等边三角形.∴DB=DC,∠BDC=∠DBC=∠DCB=60°.在△ADB和△ADC中,∵,∴△ADC≌△ADB(SSS).∴∠ADC=∠ADB.∴∠ADC=(360°﹣60°)=150°.(2)解:△ACE是等边三角形.理由如下:∵∠ACE=∠DCB=60°,∴∠ACD=∠ECB.∵∠CBE=150°,∠ADC═150°,∴∠ADC=∠EBC.在△ACD和△ECB中,∵,∴△ACD≌△ECB(ASA).∴AC=CE.∵∠ACE=60°,∴△ACE是等边三角形.(3)解:连接DE.∵DE⊥CD,∴∠EDC=90°.∵∠BDC=60°,∴∠EDB=30°.∵∠CBE=150°,∠DBC=60°,∴∠DBE=90°.∴EB=DE.∵△ACD≌△ECB,AD=3,∴EB=AD=3.∴DE=2EB=6.8.(1)解:∠ADE=45°.∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∵∠ACM=∠ACB,∴∠ACM=∠ABC,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴AD=AE,∠CAE=∠BAD,∴∠DAE=∠BAC=90°,∴∠ADE=45°;(2)(1)中的结论成立证明:∵∠BAC=90°,AB=AC,∴∠B=∠ACB=45°.∵∠ACM=∠ACB,∴∠B=∠ACM=45°.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS).∴AD=AE,∠BAD=∠CAE.∴∠CAE+∠DAC=∠BAD+∠DAC=∠BAC=90°.即∠DAE=90°.∵AD=AE,∴∠ADE=∠AED=45°.(3)△CGH为等腰直角三角形.理由如下:∵∠BCA=∠ACE=45°,∴∠GCH=90°,又∵AH⊥BC,AG⊥CE,∴AG=AH,∵∠ACG=∠AGC=45°,∴AG=CG,∵AB=AC,AH⊥BC,∴∠HCA=∠HAC=45°,∴AH=HC,∴CH=CG,∴△CGH为等腰直角三角形.9.解:(1)如图1所示:(2)ME=BN.证明:延长AM交BC于点F,如图.∵AM平分∠BAC,∴∠BAM=∠CAM.∵AE⊥AB,∴∠MAE+∠BAM=90°.∴∠MAE+∠CAM=90°∵AB=AC,AM平分∠BAC,∴AF⊥BC.∴∠C+∠CAM=90°.∴∠MAE=∠C.又∵AM=CN,AE=BC,∴△AME≌△CNB(SAS).∴ME=BN.(3)由(2)知ME=BN,则当B,M,E三点共线时,此时BM+BN取得最小值,点M的位置如图2,∵AB=5,BC=6,∴AE=BC=6,∴BE===.∴BM+BN的最小值是.10.解:(1)△CBE是等边三角形.理由如下:∵点E在BC垂直平分线上,∴EC=EB,∵EB⊥AB,∴∠ABE=90°,∵∠ABC=30°,∴∠CBE=60°,∴△CBE是等边三角形.(2)∵△ABD是等边三角形,∴AB=DB,∠ABD=60°,∵∠ABC=30°,∴∠DBC=90°,∵EB⊥AB,∴∠ABE=90°,∴∠ABE=∠DBC,由(1)可知:△CBE是等边三角形,∴EB=CB,∴△ABE≌△DBC(SAS).∴AE=DC;(3)①设AB与CD交于点G,∴∠EAB=∠CDB,又∵∠AGC=∠BGD,∴∠AFD=∠ABD=60°.故答案为:60°.②∵△BCP为等腰三角形,当BC=BP时,如图2,∠ABC=∠BCP+∠BPC=30°,∴∠BCP=15°,∴∠ACP=90°+15°=105°;当PC=PB时,如图3,∴∠PCB=30°,∵∠ACB=90°,∴∠ACP=60°;当BP=BC时,如图4,∵∠ABC=30°,∴∠PCB=∠CPB=(180°﹣30°)=75°,∴∠ACP=90°﹣75°=15°.综合上述可得∠ACP的度数为15°或60°或105°.故答案为:15°或60°或105°.。

初中数学练习题相似与全等的证明

初中数学练习题相似与全等的证明

初中数学练习题相似与全等的证明数学是一门逻辑性很强的学科,其中相似与全等也是重要的概念。

下面将通过一些初中数学练习题来进行相似与全等的证明。

题目一:已知三角形ABC中,AB=AC,角B=角C。

E是AB上一点,D是AC上一点,使得BD=CE,连接DE。

证明:△EDC≌△EBD。

解答一:首先,由题目中已知可以得出△ABC是一个等腰三角形,即AB=AC,角B=角C。

又因为BD=CE,连接DE,所以可以得到△BED≌△CED。

然后,根据相等三角形的性质可以知道,△BED和△CED的对应边分别相等,即BE=CE,BD=CD,角B=角C。

根据三角形全等的定义,我们只需再证明DE=DE即可,而这是显然成立的,因此,根据三角形全等的定义,可以得出△EDC≌△EBD。

证毕。

题目二:已知△ABC,其中AB=BC,角A=角C。

D是AC上的一点,使得AD=DC。

证明:△ABD≌△BDC。

解答二:题目中给出了△ABC中的已知条件:AB=BC,角A=角C。

并且有一辅助线段AD=DC,并连接BD。

首先,连接AD与BD,根据题目中给出的条件可以得知△ABD和△BDC的一组边相等,即BD=BD,AD=DC。

其次,根据三角形的全等定理,我们只需证明△ABD和△BDC的另一组边相等即可,即证明AB=BC。

因为△ABC中已知AB=BC,而根据题目给出的条件,角A=角C,所以根据等角的性质可以得到∠B=∠B。

由于∠B是共有的顶点,而且∠B相等,所以可以得出△ABD≌△BDC。

证毕。

通过以上两个题目的证明,我们可以总结得出相似与全等的证明方法。

对于相似的证明,我们可以通过找到相等的角度以及对应的边长比例,根据相似三角形的定义来进行证明。

而对于全等的证明,我们需要找到两组边长完全相等的三角形,或者找到相等的角度以及对应的边长,根据全等三角形的定义来进行证明。

相似与全等是初中数学中非常重要的概念,它们在几何图形的研究中起着重要的作用。

通过掌握相似与全等的证明方法,我们能够更好地理解数学知识,并在解题过程中运用得当。

(完整word版)九年级数学相似三角形知识点及习题

(完整word版)九年级数学相似三角形知识点及习题

相似三角形要点一、本章的两套定理第一套(比例的有关性质): b a n d b m c a n d b n m d c b a =++++++⇒≠+++=== :)0(等比性质 涉及概念:①第四比例项②比例中项③比的前项、后项,比的内项、外项④黄金分割等。

二、有关知识点:1.相似三角形定义: 对应角相等,对应边成比例的三角形,叫做相似三角形。

2.相似三角形的表示方法:用符号“∽”表示,读作“相似于”。

3.相似三角形的相似比: 相似三角形的对应边的比叫做相似比。

4.相似三角形的预备定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截成的三角形与原三角形相似。

5.相似三角形的判定定理:(1)三角形相似的判定方法与全等的判定方法的联系列表如下:类型斜三角形 直角三角形 全等三角形的判定 SASSSS AAS (ASA ) HL 相似三角形的判定 两边对应成比例夹角相等 三边对应成比例 两角对应相等一条直角边与斜边对应成比例 从表中可以看出只要将全等三角形判定定理中的“对应边相等”的条件改为“对应边成比例”就可得到相似三角形的判定定理,这就是我们数学中的用类比的方法,在旧知识的基础上找出新知识并从中探究新知识掌握的方法。

6.直角三角形相似:(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。

(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。

7.相似三角形的性质定理:(1)相似三角形的对应角相等。

(2)相似三角形的对应边成比例。

(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。

(4)相似三角形的周长比等于相似比。

(5)相似三角形的面积比等于相似比的平方。

8.相似三角形的传递性 如果△ABC ∽△A 1B 1C 1,△A 1B 1C 1∽△A 2B 2C 2,那么△ABC ∽A 2B 2C 2三、注意1、相似三角形的基本定理,它是相似三角形的一个判定定理,也是后面学习的相似三角形的判定定理的基础,这个定理确定了相似三角形的两个基本图形“A ”型和“ X ”型。

九年级数学相似三角形经典题(含答案)

九年级数学相似三角形经典题(含答案)

相似三角形经典习题教师版例1 从下面这些三角形中,选出相似的三角形.例2 已知:如图,ABCD 中,2:1:=EB AE ,求AEF ∆与CDF ∆的周长的比,如果2cm 6=∆AEF S ,求CDF S ∆.例3 如图,已知ABD ∆∽ACE ∆,求证:ABC ∆∽ADE ∆.例4 下列命题中哪些是正确的,哪些是错误的?(1)所有的直角三角形都相似. (2)所有的等腰三角形都相似. (3)所有的等腰直角三角形都相似. (4)所有的等边三角形都相似.例5 如图,D 点是ABC ∆的边AC 上的一点,过D 点画线段DE ,使点E 在ABC ∆的边上,并且点D 、点E 和ABC ∆的一个顶点组成的小三角形与ABC ∆相似.尽可能多地画出满足条件的图形,并说明线段DE 的画法.例6 如图,一人拿着一支刻有厘米分画的小尺,站在距电线杆约30米的地方,把手臂向前伸直,小尺竖直,看到尺上约12个分画恰好遮住电线杆,已知手臂长约60厘米,求电线杆的高.例7 如图,小明为了测量一高楼MN 的高,在离N 点20m 的A 处放了一个平面镜,小明沿NA 后退到C 点,正好从镜中看到楼顶M 点,若5.1=AC m ,小明的眼睛离地面的高度为1.6m ,请你帮助小明计算一下楼房的高度(精确到0.1m ).例8 格点图中的两个三角形是否是相似三角形,说明理由.例9 根据下列各组条件,判定ABC ∆和C B A '''∆是否相似,并说明理由:(1),cm 4,cm 5.2,cm 5.3===CA BC AB cm 28,cm 5.17,cm 5.24=''=''=''A C C B B A . (2)︒='∠︒='∠︒=∠︒=∠35,44,104,35A C B A .(3)︒='∠=''=''︒=∠==48,3.1,5.1,48,6.2,3B C B B A B BC AB .例10 如图,下列每个图形中,存不存在相似的三角形,如果存在,把它们用字母表示出来,并简要说明识别的根据.例11 已知:如图,在ABC ∆中,BD A AC AB ,36,︒=∠=是角平分线,试利用三角形相似的关系说明AC DC AD ⋅=2.例12 已知ABC ∆的三边长分别为5、12、13,与其相似的C B A '''∆的最大边长为26,求C B A '''∆的面积S .例13 在一次数学活动课上,老师让同学们到操场上测量旗杆的高度,然后回来交流各自的测量方法.小芳的测量方法是:拿一根高3.5米的竹竿直立在离旗杆27米的C 处(如图),然后沿BC 方向走到D 处,这时目测旗杆顶部A 与竹竿顶部E 恰好在同一直线上,又测得C 、D 两点的距离为3米,小芳的目高为1.5米,这样便可知道旗杆的高.你认为这种测量方法是否可行?请说明理由.例14.如图,为了估算河的宽度,我们可以在河对岸选定一个目标作为点A ,再在河的这一边选点B 和C ,使BC AB ⊥,然后再选点E ,使BC EC ⊥,确定BC 与AE 的交点为D ,测得120=BD 米,60=DC 米,50=EC 米,你能求出两岸之间AB 的大致距离吗?例15.如图,为了求出海岛上的山峰AB 的高度,在D 和F 处树立标杆DC 和FE ,标杆的高都是3丈,相隔1000步(1步等于5尺),并且AB 、CD 和EF 在同一平面内,从标杆DC 退后123步的G 处,可看到山峰A 和标杆顶端C 在一直线上,从标杆FE 退后127步的H 处,可看到山峰A 和标杆顶端E 在一直线上.求山峰的高度AB 及它和标杆CD 的水平距离BD 各是多少?(古代问题)例16 如图,已知△ABC 的边AB =32,AC =2,BC 边上的高AD =3.(1)求BC 的长;(2)如果有一个正方形的边在AB 上,另外两个顶点分别在AC ,BC 上,求这个正方形的面积.相似三角形经典习题答案例1. 解 ①、⑤、⑥相似,②、⑦相似,③、④、⑧相似例2. 解 ABCD 是平行四边形,∴CD AB CD AB =,//,∴AEF ∆∽CDF ∆,又2:1:=EB AE ,∴3:1:=CD AE ,∴AEF ∆与CDF ∆的周长的比是1:3. 又)cm (6,)31(22==∆∆∆AEF CDF AEF S S S ,∴)cm (542=∆CD F S . 例3 分析 由于ABD ∆∽ACE ∆,则CAE BAD ∠=∠,因此DAE BAC ∠=∠,如果再进一步证明AECAAD BA =,则问题得证.证明 ∵ABD ∆∽ACE ∆,∴CAE BAD ∠=∠.又DAC BAD BAC ∠+∠=∠ ,∴CAE DAC DAE ∠+∠=∠, ∴DAE BAC ∠=∠.∵ABD ∆∽ACE ∆,∴AEACAD AB =. 在ABC ∆和ADE ∆中,∵AEACAD AB ADE BAC =∠=∠,,∴ABC ∆∽ADE ∆ 例4.分析 (1)不正确,因为在直角三角形中,两个锐角的大小不确定,因此直角三角形的形状不同.(2)也不正确,等腰三角形的顶角大小不确定,因此等腰三角形的形状也不同. (3)正确.设有等腰直角三角形ABC 和C B A ''',其中︒='∠=∠90C C ,则︒='∠=∠︒='∠=∠45,45B B A A ,设ABC ∆的三边为a 、b 、c ,C B A '''∆的边为c b a '''、、, 则a c b a a c b a '=''='==2,,2,,∴a ac c b b a a '=''=',,∴ABC ∆∽C B A '''∆. (4)也正确,如ABC ∆与C B A '''∆都是等边三角形,对应角相等,对应边都成比例,因此ABC ∆∽C B A '''∆.答:(1)、(2)不正确.(3)、(4)正确. 例5.解:画法略.例6.分析 本题所叙述的内容可以画出如下图那样的几何图形,即60=DF 厘米6.0=米,12=GF 厘米12.0=米,30=CE 米,求BC .由于ADF ∆∽ACAF EC DF AEC =∆,,又ACF ∆∽ABC ∆,∴BC GFEC DF =,从而可以求出BC 的长.解 EC DF EC AE //,⊥ ,∴EAC DAF AEC ADF ∠=∠∠=∠,,∴ADF ∆∽AEC ∆.∴ACAFEC DF =. 又EC BC EC GF ⊥⊥,,∴ABC AGF ACB AFG BC GF ∠=∠∠=∠,,//, ∴AGF ∆∽ABC ∆,∴BC GF AC AF =,∴BCGFEC DF =.又60=DF 厘米6.0=米,12=GF 厘米12.0=米,30=EC 米,∴6=BC 米.即电线杆的高为6米. 例7.分析 根据物理学定律:光线的入射角等于反射角,这样,BCA ∆与MNA ∆的相似关系就明确了.解 因为MAN BAC AN MN CA BC ∠=∠⊥⊥,,,所以BCA ∆∽MNA ∆.所以AC AN BC MN ::=,即5.1:206.1:=MN .所以3.215.1206.1≈÷⨯=MN (m ). 说明 这是一个实际应用问题,方法看似简单,其实很巧妙,省却了使用仪器测量的麻烦.例8.分析 这两个图如果不是画在格点中,那是无法判断的.实际上格点无形中给图形增添了条件——长度和角度.解 在格点中BC AB EF DE ⊥⊥,,所以︒=∠=∠90B E , 又4,2,2,1====AB BC DE EF .所以21==BC EF AB DE .所以DEF ∆∽ABC ∆. 说明 遇到格点的题目一定要充分发现其中的各种条件,勿使遗漏.例9.解 (1)因为7128cm 4cm ,7117.5cm 2.5cm ,7124.5cm 3.5cm ==''==''==''A C CA C B BC B A AB ,所以ABC ∆∽C B A '''∆; (2)因为︒=∠-∠-︒=∠41180B A C ,两个三角形中只有A A '∠=∠,另外两个角都不相等,所以ABC ∆与C B A '''∆不相似;(3)因为12,=''='''∠=∠C B BC B A AB B B ,所以ABC ∆相似于C B A '''∆. 例10.解 (1)ADE ∆∽ABC ∆ 两角相等; (2)ADE ∆∽ACB ∆ 两角相等;(3)CDE ∆∽CAB ∆ 两角相等; (4)EAB ∆∽ECD ∆ 两边成比例夹角相等; (5)ABD ∆∽ACB ∆ 两边成比例夹角相等; (6)ABD ∆∽ACB ∆ 两边成比例夹角相等.例11.分析 有一个角是65°的等腰三角形,它的底角是72°,而BD 是底角的平分线,∴︒=∠36CBD ,则可推出ABC ∆∽BCD ∆,进而由相似三角形对应边成比例推出线段之间的比例关系.证明 AC AB A =︒=∠,36 ,∴︒=∠=∠72C ABC . 又BD 平分ABC ∠,∴︒=∠=∠36CBD ABD .∴BC BD AD ==,且ABC ∆∽BCD ∆,∴BC CD AB BC ::=,∴CD AB BC ⋅=2,∴CD AC AD ⋅=2.说明 (1)有两个角对应相等,那么这两个三角形相似,这是判断两个三角形相似最常用的方法,并且根据相等的角的位置,可以确定哪些边是对应边.(2)要说明线段的乘积式cd ab =,或平方式bc a =2,一般都是证明比例式,b dc a =,或caa b =,再根据比例的基本性质推出乘积式或平方式.例12分析 由ABC ∆的三边长可以判断出ABC ∆为直角三角形,又因为ABC ∆∽C B A '''∆,所以C B A '''∆也是直角三角形,那么由C B A '''∆的最大边长为26,可以求出相似比,从而求出C B A '''∆的两条直角边长,再求得C B A '''∆的面积.解 设ABC ∆的三边依次为,13,12,5===AB AC BC ,则222AC BC AB += ,∴︒=∠90C .又∵ABC ∆∽C B A '''∆,∴︒=∠='∠90C C .212613==''=''=''B A AB C A AC C B BC , 又12,5==AC BC ,∴24,10=''=''C A C B . ∴12010242121=⨯⨯=''⨯''=C B C A S .例13.分析 判断方法是否可行,应考虑利用这种方法加之我们现有的知识能否求出旗杆的高.按这种测量方法,过F作AB FG ⊥于G ,交CE 于H ,可知AGF ∆∽EHF ∆,且GF 、HF 、EH 可求,这样可求得AG ,故旗杆AB 可求.解 这种测量方法可行.理由如下:设旗杆高x AB =.过F 作AB FG ⊥于G ,交CE 于H (如图).所以AGF ∆∽EHF ∆.因为3,30327,5.1==+==HF GF FD ,所以5.1,25.15.3-==-=x AG EH .由AGF ∆∽EHF ∆,得HF GF EH AG =,即33025.1=-x ,所以205.1=-x ,解得5.21=x (米) 所以旗杆的高为21.5米.说明 在具体测量时,方法要现实、切实可行. 例14. 解:︒=∠=∠∠=∠90,ECD ABC EDC ADB ,∴ABD ∆∽ECD ∆,1006050120,=⨯=⨯==CD EC BD AB CD BD EC AB (米),答:两岸间AB 大致相距100米. 例15. 答案:1506=AB 米,30750=BD 步,(注意:AK FEFHKE AK CD DG KC ⋅=⋅=,.) 例16. 分析:要求BC 的长,需画图来解,因AB 、AC 都大于高AD ,那么有两种情况存在,即点D 在BC 上或点D 在BC 的延长线上,所以求BC 的长时要分两种情况讨论.求正方形的面积,关键是求正方形的边长. 解:(1)如上图,由AD ⊥BC ,由勾股定理得BD =3,DC =1,所以BC =BD +DC =3+1=4. 如下图,同理可求BD =3,DC =1,所以BC =BD -CD =3-1=2.(2)如下图,由题目中的图知BC =4,且162)32(2222=+=+AC AB ,162=BC ,∴222BC AC AB =+.所以△ABC 是直角三角形.由AE G F 是正方形,设G F =x ,则FC =2-x , ∵G F ∥AB ,∴AC FC AB GF =,即2232xx -=. ∴33-=x ,∴3612)33(2-=-=AEG F S 正方形. 如下图,当BC =2,AC =2,△ABC 是等腰三角形,作CP ⊥AB 于P ,∴AP =321=AB ,在Rt △APC 中,由勾股定理得CP =1, ∵GH ∥AB ,∴△C GH ∽△CBA ,∵x x x -=132,32132+=x ∴121348156)32132(2-=+=GFEH S 正方形 因此,正方形的面积为3612-或121348156-.相似三角形 一,比例线段 1, 成比例线段对于四条线段a ,b ,c ,d ,如果其中两条线段的长度的比等于另外两条线段的比,如b a =dc(或a :b=c :d ),那么,这四条线段叫做成比例线段,简称比例线段。

初三数学13 相似三角形-2024年中考数学真题分项汇编(全国通用)(解析版)

初三数学13 相似三角形-2024年中考数学真题分项汇编(全国通用)(解析版)

专题13 相似三角形一.选择题1.(2022·黑龙江哈尔滨)如图,,,AB CD AC BD ∥相交于点E ,1,2,3AE EC DE ===,则BD 的长为( )A .32B .4C .92D .6【答案】C【分析】根据相似三角形对应边长成比例可求得BE 的长,即可求得BD 的长.【详解】∵//AB CD ∴ABE CDE ∽ ∴AE BE EC DE= ∵1,2,3AE EC DE ===,∴32BE =∵BD BE ED =+ ∴92BD = 故选:C .【点睛】本题考查了相似三角形的对应边长成比例,解题的关键在于找到对应边长.2.(2022·广西贺州)如图,在ABC 中,25DE BC DE BC ==∥,,,则:ADE ABC S S 的值是( )A .325B .425C .25D .35【答案】B【分析】根据相似三角形的判定定理得到ADE ABC ,根据相似三角形的面积比等于相似比的平方计算,得到答案.【详解】解:25DE BC DE BC ==∥,,∴ADE ABC ,∴2224525ADE ABC S DE S BC ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭ ,故选:B .【点睛】此题考查相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.3.(2022·广西梧州)如图,以点O 为位似中心,作四边形ABCD 的位似图形''''A B C D ﹐已知'13OA OA =,若四边形ABCD 的面积是2,则四边形''''A B C D 的面积是( )A .4B .6C .16D .18【答案】D 【分析】两图形位似必相似,再由相似的图形面积比等于相似比的平方即可求解.【详解】解:由题意可知,四边形ABCD 与四边形''''A B C D 相似,由两图形相似面积比等于相似比的平方可知:''''22'1139ABCD A B C D S OA S OA ⎛⎫⎛⎫= ⎪= ⎪= ⎪ ⎪⎝⎭⎝⎭,又四边形ABCD 的面积是2,∴四边形''''A B C D 的面积为18,故选:D .【点睛】本题考察相似多边形的性质,属于基础题,熟练掌握相似图形的性质是解决本题的关键.4.(2022·四川雅安)如图,在△ABC 中,D ,E 分别是AB 和AC 上的点,DE ∥BC ,若AD BD =21,那么DE BC =( )A .49B .12C .13D .23【答案】D【分析】先求解2,3AD AB =再证明,ADE ABC ∽可得2.3DE AD BC AB ==【详解】解: AD BD =21,2,3AD AB ∴= DE ∥BC ,,ADE ABC ∴ ∽ 2,3DE AD BC AB ∴== 故选D 【点睛】本题考查的是相似三角形的判定与性质,证明ADE ABC △△∽是解本题的关键.5.(2022·内蒙古包头)如图,在边长为1的小正方形组成的网格中,A ,B ,C ,D 四个点均在格点上,AC 与BD 相交于点E ,连接,AB CD ,则ABE △与CDE △的周长比为( )A .1:4B .4:1C .1:2D .2:1【答案】D 【分析】运用网格图中隐藏的条件证明四边形DCBM 为平行四边形,接着证明ABE CDE ∽,最后利相似三角形周长的比等于相似比即可求出.【详解】如图:由题意可知,3DM =,3BC =, ∴DM BC =,而DM BC ∥,∴四边形DCBM 为平行四边形,∴AB DC ∥,∴BAE DCE ∠=∠,ABE CDE ∠=∠,∴ABE CDE ∽,∴21ABE CDE C AB C CD ===△△.故选:D .【点睛】本题考查了平行四边形的判定与性质、相似三角形的判定与性质及勾股定理,熟练掌握相关知识并正确计算是解题关键.6.(2022·黑龙江绥化)如图,在矩形ABCD 中,P 是边AD 上的一个动点,连接BP ,CP ,过点B 作射线,交线段CP 的延长线于点E ,交边AD 于点M ,且使得ABE CBP =∠∠,如果2AB =,5BC =,AP x =,PM y =,其中25x < .则下列结论中,正确的个数为( )(1)y 与x 的关系式为4y x x =-;(2)当4AP =时,ABP DPC ∽;(3)当4AP =时,3tan 5EBP ∠=.A .0个B .1个C .2个D .3个【答案】C 【分析】(1)证明ABM APB ∽,得AB AM AP AB=,将2AB =,AP x =,PM y =代入,即可得y 与x 的关系式;(2)利用两组对应边成比例且夹角相等,判定ABP DPC ∽;(3)过点M 作MF BP ⊥垂足为F ,在Rt APB △中,由勾股定理得BP 的长,证明FPM APB ∽,求出MF ,PF ,BF 的长,在Rt BMF △中,求出tan EBP ∠的值即可.【详解】解:(1)∵在矩形ABCD 中,∴AD BC ∥,90A D ∠=∠=︒,5BC AD ==,2AB DC ==,∴APB CBP ∠=∠,∵ABE CBP =∠∠,∴ABE APB ∠=∠,∴ABM APB ∽,∴AB AM AP AB=,∵2AB =,AP x =,PM y =,∴22x y x -=,解得:4y x x=-,故(1)正确;(2)当4AP =时,541DP AD AP =-=-=,∴12DC DP AP AB ==,又∵90A D ∠=∠=︒,∴ABP DPC ∽,故(2)正确;(3)过点M 作MF BP ⊥垂足为F ,∴90A MFP MFB ∠=∠=∠=︒,∵当4AP =时,此时4x =,4413y x x =-=-=,∴3PM =,在Rt APB 中,由勾股定理得:222BP AP AB =+,∴BP ===,∵FPM APB ∠=∠,∴FPM APB ∽,∴MF PF PM AB AP PB ==,∴24MF PF ==∴MF =PF =∴BF BP PF =-=∴3tan 4MF EBP BF ∠===故(3)不正确;故选:C .【点睛】本题主要考查相似三角形的判定和性质,勾股定理的应用,矩形的性质,正确找出相似三角形是解答本题的关键.7.(2022·湖北鄂州)如图,定直线MN ∥PQ ,点B 、C 分别为MN 、PQ 上的动点,且BC =12,BC 在两直线间运动过程中始终有∠BCQ =60°.点A 是MN 上方一定点,点D 是PQ 下方一定点,且AE ∥BC ∥DF ,AE =4,DF =8,ADBC 在平移过程中,AB +CD 的最小值为()A .B .C .D .【答案】C 【分析】如图所示,过点F 作FH CD ∥交BC 于H ,连接EH ,可证明四边形CDFH 是平行四边形,得到CH =DF =8,CD =FH ,则BH =4,从而可证四边形ABHE 是平行四边形,得到AB =HE ,即可推出当E 、F 、H 三点共线时,EH +HF 有最小值EF 即AB +CD 有最小值EF ,延长AE 交PQ 于G ,过点E 作ET ⊥PQ 于T ,过点A 作AL ⊥PQ 于L ,过点D 作DK ⊥PQ 于K ,证明四边形BEGC 是平行四边形,∠EGT =∠BCQ =60°,得到EG =BC =12,然后通过勾股定理和解直角三角形求出ET 和TF 的长即可得到答案.【详解】解:如图所示,过点F 作FH CD ∥交BC 于H ,连接EH ,∵BC DF FH CD ∥∥,,∴四边形CDFH 是平行四边形,∴CH =DF =8,CD =FH ,∴BH =4,∴BH =AE =4,又∵AE BC ∥,∴四边形ABHE 是平行四边形,∴AB =HE ,∵EH FH EF +≥,∴当E 、F 、H 三点共线时,EH +HF 有最小值EF 即AB +CD 有最小值EF ,延长AE 交PQ 于G ,过点E 作ET ⊥PQ 于T ,过点A 作AL ⊥PQ 于L ,过点D 作DK ⊥PQ 于K ,∵MN PQ BC AE ∥∥,,∴四边形BEGC 是平行四边形,∠EGT =∠BCQ =60°,∴EG =BC =12,∴=cos =6=sin GT GE EGT ET GE EGT ⋅⋅∠,∠,同理可求得8GL AL ==,,4KF DK ==,,∴2TL =,∵AL ⊥PQ ,DK ⊥PQ ,∴AL DK ∥,∴△ALO ∽△DKO ,∴2AL AO DK DO==,∴2133AO AD DO AD ====∴24OL OK ===,,∴42TF TL OL OK KF =+++=,∴EF ==故选C .【点睛】本题主要考查了平行四边形的性质与判定,相似三角形的性质与判定,勾股定理,解直角三角形,正确作出辅助线推出当E 、F 、H 三点共线时,EH +HF 有最小值EF 即AB +CD 有最小值EF 是解题的关键.8.(2022·广西贵港)如图,在边长为1的菱形ABCD 中,60ABC ∠=︒,动点E 在AB 边上(与点A 、B 均不重合),点F 在对角线AC 上,CE 与BF 相交于点G ,连接,AG DF ,若AF BE =,则下列结论错误的是( )A .DF CE =B .120BGC ∠=︒C .2AF EG EC =⋅D .AG【答案】D【分析】先证明△BAF ≌△DAF ≌CBE ,△ABC 是等边三角形,得DF =CE ,判断A 项答案正确,由∠GCB +∠GBC =60゜,得∠BGC =120゜,判断B 项答案正确,证△BEG ∽△CEB 得BE CE GE BE= ,即可判断C 项答案正确,由120BGC ∠=︒,BC =1,得点G 在以线段BC 为弦的弧BC 上,易得当点G 在等边△ABC 的内心处时,AG 取最小值,由勾股定理求得AG D 项错误.【详解】解:∵四边形ABCD 是菱形,60ABC ∠=︒,∴AB =AD =BC =CD ,∠BAC =∠DAC =12∠BAD =12(180)ABC ⨯︒-∠=60ABC ︒=∠,∴△BAF ≌△DAF ≌CBE ,△ABC 是等边三角形,∴DF =CE ,故A 项答案正确,∠ABF =∠BCE ,∵∠ABC =∠ABF +∠CBF =60゜,∴∠GCB +∠GBC =60゜,∴∠BGC =180゜-60゜=180゜-(∠GCB +∠GBC )=120゜,故B 项答案正确,∵∠ABF =∠BCE ,∠BEG =∠CEB ,∴△BEG ∽△CEB ,∴BE CE GE BE = ,∴2BE GE CE = ,∵AF BE =,∴2AF GE CE = ,故C 项答案正确,∵120BGC ∠=︒,BC =1,点G 在以线段BC 为弦的弧BC 上,∴当点G 在等边△ABC 的内心处时,AG 取最小值,如下图,∵△ABC 是等边三角形,BC =1,∴BF AC ⊥,AF =12AC =12,∠GAF =30゜,∴AG =2GF ,AG 2=GF 2+AF 2,∴2221122AG AG ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭, 解得AG D 项错误,故应选:D【点睛】本题主要考查了菱形的基本性质、等边三角形的判定及性质、圆周角定理,熟练掌握菱形的性质是解题的关键.9.(2022·贵州贵阳)如图,在ABC 中,D 是AB 边上的点,B ACD ∠=∠,:1:2AC AB =,则ADC 与ACB △的周长比是( )A .B .1:2C .1:3D .1:4【答案】B 【分析】先证明△ACD ∽△ABC ,即有12AC AD CD AB AC BC ===,则可得12AC AD CD AB AC BC ++=++,问题得解.【详解】∵∠B =∠ACD ,∠A =∠A ,∴△ACD ∽△ABC ,∴AC AD CD AB AC BC ==,∵12AC AB =,∴12AC AD CD AB AC BC ===,∴12AC AD CD AC AD CD AB AC BC AB AC BC ++====++,∴△ADC 与△ACB 的周长比1:2,故选:B .【点睛】本题主要考查了相似三角形的判定与性质,证明△ACD ∽△ABC 是解答本题的关键.10.(2022·广西)已知△ABC 与△A 1B 1C 1是位似图形,位似比是1:3,则△ABC 与△A 1B 1C 1的面积比( )A .1 :3B .1:6C .1:9D .3:1【答案】C【分析】根据位似图形的面积比等于位似比的平方,即可得到答案.【详解】∵△ABC 与△A 1B 1C 1是位似图形,位似比是1:3,∴△ABC 与△A 1B 1C 1的面积比为1:9,故选:C .【点睛】本题考查位似图形的性质,熟练掌握位似图形的面积比等于位似比的平方是解题的关键.11.(2022·山东临沂)如图,在ABC 中,∥DE BC ,23AD DB =,若6AC =,则EC =( )A .65B .125C .185D .245【答案】C【分析】由∥DE BC ,23AD DB =,可得2,3AD AE DB EC ==再建立方程即可.【详解】解: ∥DE BC ,23AD DB =,2,3AD AE DB EC ∴== 6AC =,62,3CE CE -∴= 解得:18.5CE =经检验符合题意故选C 【点睛】本题考查的是平行线分线段成比例,证明“23AD AE DB EC ==”是解本题的关键.12.(2022·山东威海)由12个有公共顶点O 的直角三角形拼成如图所示的图形,∠AOB =∠BOC =∠COD =…=∠LOM =30°.若S △AOB =1,则图中与△AOB 位似的三角形的面积为( )A .(43)3B .(43)7C .(43)6D .(34)6【答案】C【分析】根据题意得出A 、O 、G 在同一直线上,B 、O 、H 在同一直线上,确定与△AOB 位似的三角形为△GOH ,利用锐角三角函数找出相应规律得出OG=6x ,再由相似三角形的性质求解即可.【详解】解:∵∠AOB =∠BOC =∠COD =…=∠LOM =30°∴∠AOG =180°,∠BOH =180°,∴A 、O 、G 在同一直线上,B 、O 、H 在同一直线上,∴与△AOB 位似的三角形为△GOH ,设OA =x ,则OB=1cos30OA x ==︒,∴OC=24cos303OB x x ==︒,∴OD=3cos30OC x ==︒,…∴OG=6x ,∴6OG OA =,∴12643GOH AOB S S ⎛⎫== ⎪⎝⎭ ,∵1AOB S = ,∴643GOH S ⎛⎫= ⎪⎝⎭ ,故选:C .【点睛】题目主要考查利用锐角三角函数解三角形,找规律问题,相似三角形的性质等,理解题意,找出相应边的比值规律是解题关键.二.填空题13.(2022·贵州黔东南)如图,折叠边长为4cm 的正方形纸片ABCD ,折痕是DM ,点C 落在点E 处,分别延长ME 、DE 交AB 于点F 、G ,若点M 是BC 边的中点,则FG =______cm.【答案】53【分析】根据折叠的性质可得DE =DC =4,EM =CM =2,连接DF ,设FE =x ,由勾股定理得BF ,DF ,从而求出x 的值,得出FB ,再证明FEG FBM ∆∆ ,利用相似三角形对应边成比例可求出FG .【详解】解:连接,DF 如图,∵四边形ABCD 是正方形,∴4,90.AB BC CD DA A B C CDA ︒====∠=∠=∠=∠=∵点M 为BC 的中点,∴114222BM CM BC ===⨯=由折叠得,2,4,ME CM DE DC ====∠90,DEM C ︒=∠=∴∠90DEF ︒=,90,FEG ∠=︒设,FE x =则有222DF DE EF =+∴2224DF x =+又在Rt FMB ∆中,2,2FM x BM =+=,∵222FM FB BM =+∴FB ==∴4AF AB FB =-=在Rt DAF ∆中,222,DA AF DF +=∴2224(44,x +=+解得,124,83x x ==-(舍去)∴4,3FE =∴410233FM FE ME =+=+=∴83FB ==∵∠90DEM ︒=∴∠90FEG ︒=∴∠,FEG B =∠又∠.GFE MFB =∠∴△FEG FBM∆ ∴,FG FE FM FB=即4310833FG =∴5,3FG =故答案为:53【点睛】本题主要考查了正方形的性质,折叠的性质,勾股定理,相似三角形的判定与性质,正确作出辅助线是解答本题的关键.14.(2022·上海)如图,在△ABC 中,∠A =30°,∠B =90°,D 为AB 中点,E 在线段AC 上,AD DE AB BC=,则AE AC =_____.【答案】12或14【分析】由题意可求出12DE BC =,取AC 中点E 1,连接DE 1,则DE 1是△ABC 的中位线,满足112DE BC =,进而可求此时112AE AC =,然后在AC 上取一点E 2,使得DE 1=DE 2,则212DE BC =,证明△DE1E2是等边三角形,求出E1E2=14AC ,即可得到214AE AC =,问题得解.【详解】解:∵D 为AB中点,∴12AD DE AB BC ==,即12DE BC =,取AC 中点E 1,连接DE 1,则DE 1是△ABC 的中位线,此时DE 1∥BC ,112DE BC =,∴112AE AD AC AB ==,在AC 上取一点E 2,使得DE 1=DE 2,则212DE BC =,∵∠A =30°,∠B =90°,∴∠C =60°,BC =12AC ,∵DE 1∥BC ,∴∠DE1E2=60°,∴△DE1E2是等边三角形,∴DE 1=DE 2=E1E2=12BC ,∴E1E2=14AC ,∵112AE AC =,∴214AE AC =,即214AE AC =,综上,AE AC 的值为:12或14,故答案为:12或14.【点睛】本题考查了三角形中位线的性质,平行线分线段成比例,等边三角形的判定和性质以及含30°角的直角三角形的性质等,根据12DE BC =进行分情况求解是解题的关键.15.(2022·北京)如图,在矩形ABCD 中,若13,5,4AF AB AC FC ===,则AE 的长为_______.【答案】1【分析】根据勾股定理求出BC ,以及平行线分线段成比例进行解答即可.【详解】解:在矩形ABCD 中:AD BC ∥,90ABC ∠=︒,∴14AE AF BC FC ==,4BC =,∴144AE =,∴1AE =,故答案为:1.【点睛】此题考查了勾股定理以及平行线分线段成比例,掌握平行线分线段成比例是解题的关键.16.(2022·江苏常州)如图,在Rt ABC △中,90C ∠=︒,9AC =,12BC =.在Rt DEF 中,90F ∠=︒,3DF =,4EF =.用一条始终绷直的弹性染色线连接CF ,Rt DEF 从起始位置(点D 与点B 重合)平移至终止位置(点E 与点A 重合),且斜边DE 始终在线段AB 上,则Rt ABC △的外部被染色的区域面积是______.【答案】28【分析】过点F 作AB 的垂线交于G ,同时在图上标出,,M N F '如图,需要知道的是Rt ABC 的被染色的区域面积是MNF F S '梯形,所以需要利用勾股定理,相似三角形、平行四边形的判定及性质,求出相应边长,即可求解.【详解】解:过点F 作AB 的垂线交于G ,同时在图上标出,,M N F '如下图:90C ∠=︒ ,9AC =,12BC =,15AB ∴==,在Rt DEF 中,90F ∠=︒,3DF =,4EF =.5DE ∴==,15510AE AB DE =-=-= ,//,EF AF EF AF ''= ,∴四边形AEFF '为平行四边形,10AE FF '∴==,11622DEF S DF EF DE GF =⋅=⋅= ,解得:125GF =, //DF AC ,,DFM ACM FDM CAM ∴∠=∠∠=∠,DFM ACM ∴ ∽,13DM DF AM AC ∴==,1115344DM AM AB ∴===,//BC AF ' ,同理可证:ANF DNC ' ∽,13AF AN BC DN '∴==,345344DN AN AB ∴===,451530444MN DN DM ∴=-=-=,Rt ABC 的外部被染色的区域面积为130121028245MNF F S '⎛⎫=⨯+⨯= ⎪⎝⎭梯形,故答案为:28.【点睛】本题考查了直角三角形,相似三角形的判定及性质、勾股定理、平行四边形的判定及性质,解题的关键是把问题转化为求梯形的面积.17.(2022·广西)数学兴趣小组通过测量旗杆的影长来求旗杆的高度,他们在某一时刻测得高为2米的标杆影长为1.2米,此时旗杆影长为7.2米,则旗杆的高度为______米.【答案】12【分析】根据同时、同地物高和影长的比不变,构造相似三角形,然后根据相似三角形的性质解答.【详解】解:设旗杆为AB ,如图所示:根据题意得:ABC DEF ∆∆ ,∴DE EF AB BC= ∵2DE =米, 1.2EF =米,7.2BC =米,∴2 1.2=7.2AB 解得:AB =12米.故答案为:12.【点睛】本题考查了中心投影、相似三角形性质的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.18.(2022·广东深圳)已知ABC 是直角三角形,90,3,5,B AB BC AE ∠=︒===连接CE 以CE 为底作直角三角形CDE 且,CD DE =F 是AE 边上的一点,连接BD 和,BF BD 且45,FBD ∠=︒则AF 长为______.【分析】将线段BD 绕点D 顺时针旋转90︒,得到线段HD ,连接BH ,HE ,利用SAS 证明EDH CDB ∆≅∆,得5EH CB ==,90HED BCD ∠=∠=︒,从而得出////HE DC AB ,则ABF EHF ∆∆∽,即可解决问题.【详解】解:将线段BD 绕点D 顺时针旋转90︒,得到线段HD ,连接BH ,HE ,BDH ∴∆是等腰直角三角形,又EDC ∆ 是等腰直角三角形,HD BD ∴=,EDH CDB ∠=∠,ED CD =,()EDH CDB SAS ∴∆≅∆,5EH CB ∴==,90HED BCD ∠=∠=︒,90EDC ∠=︒ ,90ABC ∠=︒,////HE DC AB ∴,,ABF EHF BAF HEF ∴∠=∠∠=∠,ABF EHF ∴∆∆∽,∴==-AB AF AF EH EF AE AF ,AE =∴35=AF ∴=,【点睛】本题主要考查了等腰直角三角形的性质,全等三角形的判定与性质,相似三角形的判定与性质等知识,解题的关键是作辅助线构造全等三角形.19.(2022·广西河池)如图,把边长为1:2的矩形ABCD 沿长边BC ,AD 的中点E ,F 对折,得到四边形ABEF ,点G ,H 分别在BE ,EF 上,且BG =EH =25BE =2,AG 与BH 交于点O ,N 为AF 的中点,连接ON ,作OM ⊥ON 交AB 于点M ,连接MN ,则tan ∠AMN =_____.【答案】58##0.625【分析】先判断出四边形ABEF 是正方形,进而判断出△ABG ≌△BEH ,得出∠BAG =∠EBH ,进而求出∠AOB =90°,再判断出△AOB ~△ABG ,求出OA OB ==△OBM ~△OAN ,求出BM =1,即可求出答案.【详解】解:∵点E ,F 分别是BC ,AD 的中点,∴11,22AF AD BE BC ==,∵四边形ABCD 是矩形,∴∠A =90°,AD ∥BC ,AD =BC ,∴12AF BE AD ==,∴四边形ABEF 是矩形,由题意知,AD =2AB ,∴AF =AB ,∴矩形ABEF 是正方形,∴AB =BE ,∠ABE =∠BEF =90°,∵BG =EH ,∴△ABG≌△BEH(SAS),∴∠BAG=∠EBH,∴∠BAG+∠ABO=∠EBH+∠ABO=∠ABG=90°,∴∠AOB=90°,∵BG=EH=25BE=2,∴BE=5,∴AF=5,∴AG==∵∠OAB=∠BAG,∠AOB=∠ABG,∴△AOB∽△ABG,∴OA OB ABAB BG AG==,即52OA OB==∴OA OB==∵OM⊥ON,∴∠MON=90°=∠AOB,∴∠BOM=∠AON,∵∠BAG+∠FAG=90°,∠ABO+∠EBH=90°,∠BAG=∠EBH,∴∠OBM=∠OAN,∴△OBM~△OAN,∴OB BM OA AN=,∵点N是AF的中点,∴1522AN AF==,52BM=,解得:BM=1,∴AM=AB-BM=4,∴552tan48ANAMNAM∠===.故答案为:5 8【点睛】此题主要考查了矩形性质,正方形性质和判定,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,求出BM 是解本题的关键.20.(2022·内蒙古赤峰)如图,为了测量校园内旗杆AB 的高度,九年级数学应用实践小组,根据光的反射定律,利用镜子、皮尺和测角仪等工具,按以下方式进行测量:把镜子放在点O 处,然后观测者沿着水平直线BO 后退到点D ,这时恰好能在镜子里看到旗杆顶点A ,此时测得观测者观看镜子的俯角α=60°,观测者眼睛与地面距离CD =1.7m ,BD =11m ,则旗杆AB 的高度约为_________m . 1.7≈)【答案】17【分析】如图容易知道CD ⊥BD ,AB ⊥BD ,即∠CDO =∠ABO =90°.由光的反射原理可知∠COD =∠AOB =60°,这样可以得到△COD ∽△AOB ,然后利用对应边成比例就可以求出AB .【详解】解:由题意知∠COD =∠AOB =60°,∠CDE =∠ABE =90°,∵CD =1.7m ,∴OD =60CD tan =︒≈1(m),∴OB =11-1=10(m),∴△COD ∽△AOB .∴CD OD AB OB =,即1.7110AB =,∴AB =17(m),答:旗杆AB 的高度约为17m .故答案为:17.【点睛】本题考查了解直角三角形的应用,相似三角形的应用,本题只要是把实际问题抽象到相似三角形中,利用相似三角形的性质就可以求出结果.21.(2022·湖北鄂州)如图,在边长为6的等边△ABC 中,D 、E 分别为边BC 、AC 上的点,AD 与BE 相交于点P ,若BD =CE =2,则△ABP 的周长为 _____.【答案】6+【分析】如图所示,过点E 作EF ⊥AB 于F ,先解直角三角形求出AF ,EF ,从而求出BF ,利用勾股定理求出BE 的长,证明△ABD ≌△BCE 得到∠BAD =∠CBE ,AD =BE ,再证明△BDP ∽△ADB ,得到62BP PD==,即可求出BP ,PD ,从而求出AP ,由此即可得到答案.【详解】解:如图所示,过点E 作EF ⊥AB 于F ,∵△ABC 是等边三角形,∴AB =BC ,∠ABD =∠BAC =∠BCE =60°,∵CE =BD =2,AB =AC =6,∴AE =4,∴cos 2sin AF AE EAF EF AE EAF =⋅∠==⋅∠=,,∴BF =4,∴BE =又∵BD =CE ,∴△ABD ≌△BCE (SAS ),∴∠BAD =∠CBE ,AD =BE ,又∵∠BDP =∠ADB ,∴△BDP ∽△ADB ,∴BD BP DP AD AB BD==,62BP PD==,∴BP PD =∴AP AD AP =-=,∴△ABP 的周长=6AB BP AP ++=故答案为:6+【点睛】本题主要考查了等边三角形的性质,解直角三角形,勾股定理,相似三角形的性质与判定,全等三角形的性质与判定,正确作出辅助线是解题的关键.22.(2022·山东潍坊)《墨子·天文志》记载:“执规矩,以度天下之方圆.”度方知圆,感悟数学之美.如图,正方形ABCD 的面积为4,以它的对角线的交点为位似中心,作它的位似图形A B C D '''',若:2:1A B AB ='',则四边形A B C D ''''的外接圆的周长为___________.【答案】【分析】根据正方形ABCD 的面积为4,求出2AB =,根据位似比求出4A B ''=,周长即可得出;【详解】解: 正方形ABCD 的面积为4,∴2AB =,:2:1A B AB ''=,∴4A B ''=,∴A C ''==所求周长=;故答案为:.【点睛】本题考查位似图形,涉及知识点:正方形的面积,正方形的对角线,圆的周长,解题关键求出正方形ABCD 的边长.23.(2022·内蒙古包头)如图,在Rt ABC 中,90ACB ∠=︒,3AC BC ==,D 为AB 边上一点,且BD BC =,连接CD ,以点D 为圆心,DC 的长为半径作弧,交BC 于点E (异于点C ),连接DE ,则BE的长为___________.【答案】3##3-+【分析】过点D 作DF ⊥BC 于点F ,根据题意得出DC DE =,根据等腰三角形性质得出CF EF =,根据90ACB ∠=︒,3AC BC ==,得出AB =CF x =,则3BF x =-,证明DF AC ,得出BF BDCF AD=,列出关于x 的方程,解方程得出x 的值,即可得出3BE =.【详解】解:过点D 作DF ⊥BC 于点F ,如图所示:根据作图可知,DC DE =,∵DF ⊥BC ,∴CF EF =,∵90ACB ∠=︒,3AC BC ==,∴AB ===∵3BD BC ==,∴3AD =,设CF x =,则3BF x =-,∵90ACB ∠=︒,∴AC BC ⊥,∵DF BC ⊥,∴DF AC ,∴BF BDCF AD =,即3x x -=,解得:x =,∴226CE x ===-,∴3363BE CE =-=-+=.故答案为:3.【点睛】本题主要考查了等腰三角形的性质和判定,勾股定理,平行线分线段成比例定理,平行线的判定,作出辅助线,根据题意求出CF 的长,是解题的关键.24.(2022·江苏泰州)如图上,Δ,90,8,6,ABC C AC BC ∠=== 中O 为内心,过点O 的直线分别与AC 、AB 相交于D 、E ,若DE=CD+BE ,则线段CD 的长为__________.【答案】2或12##12或2【分析】分析判断出符合题意的DE 的情况,并求解即可;【详解】解:①如图,作//DE BC ,OF BC OG AB ⊥⊥,,连接OB ,则OD ⊥AC ,∵//DE BC ,∴OBF BOE ∠=∠∵O 为ABC ∆的内心,∴OBF OBE ∠=∠,∴BOE OBE ∠=∠∴BE OE =,同理,CD OD =,∴DE=CD+BE ,10AB ===∵O 为ABC ∆的内心,∴OF OD OG CD ===,∴BF BG AD AG==,∴6810AB BG AG BC CD AC CD CD CD =+=-+-=-+-=∴2CD =②如图,作DE AB ⊥,由①知,4BE =,6AE =,∵ACB AED CAB EAD ∠=∠∠=∠,∴ABC ADE ∆∆ ∴AB ADAC AE=∴1061582AB AE AD AC ⋅⨯===∴151822CD AC AD =-=-=∵92DE ===∴19422DE BE CD =+=+=∴12CD =故答案为:2或12.【点睛】本题主要考查三角形内心的性质、勾股定理、三角形的相似,根据题意正确分析出符合题意的情况并应用性质定理进行求解是解题的关键.25.(2022·黑龙江绥化)如图,60AOB ∠=︒,点1P 在射线OA 上,且11OP =,过点1P 作11PK OA ⊥交射线OB 于1K ,在射线OA 上截取12PP ,使1211PPPK =;过点2P 作22P K OA ⊥交射线OB 于2K ,在射线OA 上截取23P P ,使2322P P P K =.按照此规律,线段20232023P K 的长为________.20221【分析】解直角三角形分别求得11PK ,22P K ,33P K ,……,探究出规律,利用规律即可解决问题.【详解】解:11PK OA ⊥ ,11OPK ∴△是直角三角形,在11Rt OPK 中,60AOB ∠=︒,11OP =,12111tan 60PP PK OP ∴==⋅︒=11PK OA ⊥ ,22P K OA ⊥,1122PK P K ∴∥,2211OP K OPK ∴△∽△,222111P K OP PK OP ∴=,=221P K ∴,同理可得:2331P K =+,3441P K =,……,11n n n P K -∴=,2022202320231P K ∴=,20221.【点睛】本题考查了图形的规律,解直角三角形,平行线的判定,相似三角形的判定与性质,解题的关键是学会探究规律的方法.26.(2022·黑龙江)如图,在平面直角坐标系中,点1A ,2A ,3A ,4A ……在x 轴上且11OA =,212OA OA =,322OA OA =,432OA OA =……按此规律,过点1A ,2A ,3A ,4A ……作x轴的垂线分别与直线y =交于点1B ,2B ,3B ,4B ……记11OA B ,22OA B △,33 OA B ,44 OA B ……的面积分别为1S ,2S ,3S ,4S ……,则2022S =______.【答案】2【分析】先求出11A B =,可得11OA B S =112233n n A B A B A B A B ⋯⋯∥∥∥∥,从而得到11OA B ∽22OA B △∽33 OA B ∽44 OA B ∽……∽n n OA B △,再利用相似三角形的性质,可得11OA B S ∶22OA B S ∶33OA B S ∶44OA B S ∶……∶n n OA B S =()()()2222231:2:2:2::2n ,即可求解.【详解】解:当x =1时,y =,∴点(1B ,∴11A B =∴11112OA B S =⨯= ,∵根据题意得:112233n n A B A B A B A B ⋯⋯∥∥∥∥,∴11OA B ∽22OA B △∽33 OA B ∽44 OA B ∽……∽n n OA B △,∴11OA B S ∶22OA B S ∶33OA B S ∶44OA B S :……∶n n OA B S = OA 12∶OA 22∶OA 32∶……∶OAn 2,∵11OA =,212OA OA =,322OA OA =,432OA OA =,……,∴22OA =,2342OA ==,3482OA ==,……,12n n OA -=,∴11OA B S ∶22OA B S ∶33OA B S ∶44OA B S ∶……∶n n OA B S =()()()2222231246221:2:2:2::21:2:2:2::2n n --= ,∴11222n n n OA B OA B S S -= ,∴220222202222S ⨯-==故答案为:2【点睛】本题主要考查了图形与坐标的规律题,相似三角形的判定和性质,明确题意,准确得到规律,是解题的关键.27.(2022·广西)如图,在正方形ABCD 中,AB =,对角线,AC BD 相交于点O .点E 是对角线AC 上一点,连接BE ,过点E 作EF BE ⊥,分别交,CD BD 于点F 、G ,连接BF ,交AC 于点H ,将EFH △沿EF 翻折,点H 的对应点H '恰好落在BD 上,得到EFH '△若点F 为CD 的中点,则EGH '△的周长是_________.【答案】5+【分析】过点E 作PQ //AD 交AB 于点P ,交DC 于点Q ,得到BP =CQ ,从而证得BPE ≌EQF △,得到BE =EF ,再利用BC =F 为中点,求得BF ==BE EF ===,再求出2EO ==,再利用AB //FC ,求出ABH CFH △∽△21AH CH ==,求得216833AH =⨯=,18833CH =⨯=,从而得到EH =AH -AE =1610233-=,再求得EOB GOE △∽△得到21242OG ===,求得EG OG =1, 过点F 作FM ⊥AC 于点M ,作FN ⊥OD 于点N ,求得FM =2,MH =23,FN =2,证得Rt FH N '△≌Rt FMH 得到23H N MH '==,从而得到ON =2,NG =1,25133GH '=+=,从而得到答案.【详解】解:过点E 作PQ //AD 交AB 于点P ,交DC 于点Q ,∵AD //PQ ,∴AP =DQ ,BPQ CQE ∠=∠,∴BP =CQ ,∵45ACD ∠=︒,∴BP =CQ =EQ ,∵EF ⊥BE ,∴90PEB FEQ ∠+∠=︒∵90PBE PEB ∠+∠=︒∴PBE FEQ ∠=∠,在BPE 与EQF △中BPQ FQE PB EQPBE FEQ ∠=∠⎧⎪=⎨⎪∠=∠⎩∴BPE ≌EQF △,∴BE =EF ,又∵BC AB ==F 为中点,∴CF =∴BF ==∴BE EF ===,又∵4BO ==,∴2EO ==,∴AE =AO -EO =4-2=2,∵AB //FC ,∴ABH CFH △∽△,∴AB AH CF CH=,21AH CH ==,∵8AC ==, ∴216833AH =⨯=,18833CH =⨯=,∴EH =AH -AE =1610233-=,∵90BEO FEO ∠+∠=︒,+90BEO EBO ∠∠=︒,∴FEO EBO ∠=∠,又∵90EOB EOG ∠=∠=︒,∴EOB GOE△∽△∴EG OG OE BE OE OB==,21242OG ===,∴EG OG =1,过点F 作FM ⊥AC 于点M ,∴FM=MC 2=,∴MH =CH -MC =82233-=, 作FN ⊥OD 于点N ,2,FN ==,在Rt FH N '△与Rt FMH 中FH FH FN FM'=⎧⎨=⎩∴Rt FH N '△≌Rt FHM∴23H N MH '==,∴ON =2,NG =1,∴25133GH '=+=,∴10533EGH C EH EG GH EH EG GH '''=++=++=△,故答案为:【点睛】本题考查了正方形的性质应用,重点是与三角形相似和三角形全等的结合,熟练掌握做辅助线是解题的关键.28.(2022·辽宁)如图,在正方形ABCD 中,E 为AD 的中点,连接BE 交AC 于点F .若6AB =,则AEF 的面积为___________.【答案】3【分析】由正方形的性质可知1113222AE AD AB BC ====,//AD BC ,则有AEF CBF ∽△△,然后可得12EF AE BF BC ==,进而问题可求解.【详解】解:∵四边形ABCD 是正方形,6AB =,∴6AD BC AB ===,//AD BC ,∴AEF CBF ∽△△,∴EF AE BF BC=,∵E 为AD 的中点,∴1113222AE AD AB BC ====,∴12EF AE BF BC ==,192ABE S AE AB =⋅= ,∴13EF BE =,∴133AEF ABE S S == ;故答案为3.【点睛】本题主要考查正方形的性质及相似三角形的性质与判定,熟练掌握正方形的性质及相似三角形的性质与判定是解题的关键.29.(2022·贵州贵阳)如图,在四边形ABCD 中,对角线AC ,BD 相交于点E ,6cm AC BC ==,90ACB ADB ∠=∠=︒.若2BE AD =,则ABE △的面积是_______2cm ,AEB ∠=_______度.【答案】 36-36- 112.5【分析】通过证明ADE BCE ,利用相似三角形的性质求出23m AE =,263m CE =-,再利用勾股定理求出其长度,即可求三角形ABE 的面积,过点E 作EF ⊥AB ,垂足为F ,证明AEF 是等腰直角三角形,再求出AE CE =,继而证明()Rt BCE Rt BFE HL ≅ ,可知122.52EBF EBC ABC ∠=∠=∠=︒,利用外角的性质即可求解.【详解】90,ACB ADB AED BEC ∠=∠=︒∠=∠ ,ADE BCE ∴ ,AD AE BC BE∴=,6,2BC AC BE AD === ,设,2AD m BE m ==,62m AE m∴=,23m AE ∴=,263m CE ∴=-,在Rt BCE 中,由勾股定理得222BC CE BE +=,22226(6)(2)2m m ∴+-=,解得236m =-或236m =+ 对角线AC ,BD 相交于点E ,236m ∴=-,12AE ∴=-,6CE ∴=,∴(2111263622ABE S AE BC =⋅⋅=⨯-⨯=- ,过点E 作EF ⊥AB ,垂足为F ,90,ACB AC BC ∠=︒= ,45BAC ABC AEF ∴∠=∠=︒=∠,6AE AF AE CE ∴====,BE BE = ,()Rt BCE Rt BFE HL ∴≅ ,122.52EBF EBC ABC ∴∠=∠=∠=︒,112.5AEB ACB EBC ∴∠=∠+∠=︒,故答案为:36-,112.5.【点睛】本题考查了相似三角形的判定和性质,勾股定理,等腰直角三角形的判定和性质,全等三角形的判定和性质及三角形外角的性质,熟练掌握知识点是解题的关键.三.解答题30.(2022·河北)如图,某水渠的横断面是以AB 为直径的半圆O ,其中水面截线MN AB ∥.嘉琪在A 处测得垂直站立于B 处的爸爸头顶C 的仰角为14°,点M 的俯角为7°.已知爸爸的身高为1.7m .(1)求∠C 的大小及AB 的长;(2)请在图中画出线段DH ,用其长度表示最大水深(不说理由),并求最大水深约为多少米(结果保留小数点后一位).(参考数据:tan 76︒取4 4.1)【答案】(1)=76C ∠︒, 6.8(m)AB =(2)见详解,约6.0米【分析】(1)由水面截线MN AB ∥可得BC AB ⊥,从而可求得76C ∠=︒,利用锐角三角形的正切值即可求解.(2)过点O 作O H M N ⊥,交MN 于D 点,交半圆于H 点,连接OM ,过点M 作MG ⊥OB 于G ,水面截线MN AB ∥,即可得DH 即为所求,由圆周角定理可得14BOM ∠=︒,进而可得ABC OGM ,利用相似三角形的性质可得4OG GM =,利用勾股定理即可求得GM 的值,从而可求解.(1)解:∵水面截线MN AB∥BC AB ∴⊥,90ABC ∴∠=︒,90=76C CAB ∴∠=︒-∠︒,在t R ABC 中,90ABC ∠=︒, 1.7BC =,tan 76 1.7AB AB BC ∴︒==,解得 6.8(m)AB ≈.(2)过点O 作O H M N ⊥,交MN 于D 点,交半圆于H 点,连接OM ,过点M 作MG ⊥OB 于G ,如图所示:水面截线MN AB ∥,OH AB ⊥,DH MN ∴⊥,GM OD =,DH ∴为最大水深,7BAM ∠=︒ ,214BOM BAM ∴∠=∠=︒,90ABC OGM ∠=∠=︒ ,且14BAC ∠=︒,ABC OGM ∴ ,OG MG AB CB ∴=,即6.8 1.7OG MG =,即4OG GM =,在Rt OGM △中,90OGM ∠=︒, 3.42AB OM =≈,222OG GM OM ∴+=,即2224(3.4)GM GM +=(),解得0.8GM ≈,= 6.80.86DH OH OD ∴-=-≈,∴最大水深约为6.0米.【点睛】本题考查了解直角三角形,主要考查了锐角三角函数的正切值、圆周角定理、相似三角形的判定及性质、平行线的性质和勾股定理,熟练掌握解直角三角形的相关知识是解题的关键.31.(2022·吉林)下面是王倩同学的作业及自主探究笔记,请认真阅读并补充完整.【作业】如图①,直线12l l ∥,ABC 与DBC △的面积相等吗?为什么?解:相等.理由如下:设1l 与2l 之间的距离为h ,则12ABC S BC h =⋅ ,12DBC S BC h =⋅△.∴ABC DBC S S = .【探究】(1)如图②,当点D 在1l ,2l 之间时,设点A ,D 到直线2l 的距离分别为h ,h ',则ABC DBC S h S h ='△△.证明:∵ABC S(2)如图③,当点D 在1l ,2l 之间时,连接AD 并延长交2l 于点M ,则ABC DBC S AM S DM =△△.证明:过点A 作AE BM ⊥,垂足为E ,过点D 作DF BM ⊥,垂足为F ,则90AEM DFM ∠=∠=︒,∴AE ∥ .∴AEM △∽ .∴AE AM DF DM =.由【探究】(1)可知ABC DBC S S =△△ ,∴ABC DBC S AM S DM =△△.(3)如图④,当点D 在2l 下方时,连接AD 交2l 于点E .若点A ,E ,D 所对应的刻度值分别为5,1.5,0,ABC DBC S S △△的值为 .【答案】(1)证明见解析(2)证明见解析(3)73【分析】(1)根据三角形的面积公式可得11,22ABC DBC S S BC h BC h '=⋅=⋅ ,由此即可得证;(2)过点A 作AE BM ⊥,垂足为E ,过点D 作DF BM ⊥,垂足为F ,先根据平行线的判定可得AE DF ,再根据相似三角形的判定可证AEM DFM ~ ,根据相似三角形的性质可得AE AM DF DM=,然后结合【探究】(1)的结论即可得证;(3)过点A 作AM BC ⊥于点M ,过点D 作DN BC ⊥于点N ,先根据相似三角形的判定证出AME DNE ~ ,再根据相似三角形的性质可得73AM AE DN DE ==,然后根据三角形的面积公式可得12ABC S BC AM =⋅ ,12DBC S BC DN =⋅ ,由此即可得出答案.(1)证明:12ABC S BC h =⋅ ,12DBC BC h S '=⋅ ,ABC DBC S h S h ∴='.(2)证明:过点A 作AE BM ⊥,垂足为E ,过点D 作DF BM ⊥,垂足为F ,则90AEM DFM ∠=∠=︒,AE DF ∴∥.AEM DFM ~∴ .AE AM DF DM∴=.由【探究】(1)可知ABC DBC S AE S DF= ,ABC DBC S AM S DM ∴= .(3)解:过点A 作AM BC ⊥于点M ,过点D 作DN BC ⊥于点N ,则90AME DNE ∠=∠=︒,AM DN ∴ ,AME DNE ∴~ ,AM AE DN DE∴=, 点,,A E D 所对应的刻度值分别为5,1.5,0,5 1.5 3.5AE ∴=-=, 1.5DE =,3.571.53AM DN ∴==,又12ABC S BC AM =⋅ ,12DBC S BC DN =⋅ ,73ABCDBC S AM S DN =∴= ,故答案为:73.【点睛】本题考查了相似三角形的判定与性质、平行线的判定、三角形的面积等知识点,熟练掌握相似三角形的判定与性质是解题关键.32.(2022·山东青岛)如图,在Rt ABC △中,90,5cm,3cm ACB AB BC ∠=︒==,将ABC 绕点A 按逆时针方向旋转90︒得到ADE ,连接CD .点P 从点B 出发,沿BA 方向匀速运动,速度为1cm/s ;同时,点Q 从点A 出发,沿AD 方向匀速运动,速度为1cm/s .PQ 交AC 于点F ,连接,CP EQ .设运动时间为(s)(05)t t <<.解答下列问题:(1)当EQ AD ⊥时,求t 的值;(2)设四边形PCDQ 的面积为()2cm S ,求S 与t 之间的函数关系式;(3)是否存在某一时刻t ,使PQ CD ∥?若存在,求出t 的值;若不存在,请说明理由.【答案】(1)16s 5(2)213714210S t t =-+(3)存在,65s 29t =【分析】(1)利用AQE AED △∽△得AQ AE AE AD =,即445t =,进而求解;(2)分别过点C ,P 作,CM AD PN BC ⊥⊥,垂足分别为M ,N ,证ABC CAM △∽△得,AB BC AC CA AM CM ==,求得121655AM CM ==,再证BPN BAC △∽△得BP PN BA AC=,得出45PN t =,根据ABC ACD APQ BPC PCDQ S S S S S S ==+-- 四边形即可求出表达式;(3)当PQ CD ∥时AQP ADC ∠=∠,易证APQ MCD △∽△,得出AP AQ MC MD =,则5161355t t -=,进而求出t 值.(1)解:在Rt ABC △中,由勾股定理得,4AC ===∵ABC 绕点A 按逆时针方向旋转90︒得到ADE。

初三相似三角形模型题

初三相似三角形模型题

在△ABC和△DEF中,若AB/DE = BC/EF,且△A = △D,则下列结论正确的是:A. △ABC △ △DEFB. △ABC △ △DFEC. △ABC与△DEF无法确定关系D. △ABC △ △EDF(正确答案)已知△PQR中,PQ = 6,QR = 8,RP = 10,△STU中,ST = 9,TU = 12,若△PQR △ △STU,则下列US的长度可能正确的是:A. 15B. 13.5C. 16(正确答案)D. 18两个三角形若两边对应成比例,且其中一边的对角相等,则这两个三角形:A. 一定全等B. 一定相似C. 可能相似,也可能不相似D. 一定不相似(正确答案)在△MNO和△PQR中,MN/PQ = NO/QR,且△M = △Q,则:A. △N = △R(正确答案)B. △O = △PC. △MNO与△PQR无法判定关系D. △MNO △ △PQR若△ABC的三个内角度数比为1:2:3,△DEF的三个内角度数比为3:4:5,则:A. △ABC △ △DEF(正确答案)B. △ABC △ △DEFC. △ABC与△DEF是等腰三角形D. △ABC与△DEF是等边三角形在△GHK和△LMN中,若GH/LM = HK/MN,且△G = △M,则下列说法错误的是:A. △GHK △ △LMN(正确答案应为相似,但此选项要求选错误说法)B. △K = △NC. △H = △M(已知)D. 对应边之间的比例相等已知△XYZ中,XY = 5,YZ = 6,ZX = 7.5,△ABC中,AB = 10,BC = 12,则当AC = _______ 时,△XYZ △ △ABC。

A. 13B. 14C. 15(正确答案)在△IJK和△LMN中,若IJ/LM = JK/MN,且△J = △N为钝角,则:A. △IJK △ △LMNB. △IJK与△LMN无法判定关系C. △I = △L(正确答案)D. △K = △M两个三角形若三边对应成比例,则它们:A. 一定全等B. 一定不相似C. 一定相似(正确答案)D. 无法确定关系。

中考数学复习---《二次函数与三角形全等、相似(位似)有关的问题》PPT典型例 题讲解

中考数学复习---《二次函数与三角形全等、相似(位似)有关的问题》PPT典型例 题讲解

本课结束
中考数学复习---《二次函数与三角形全等、相似(位似) 有关的问题》PPT典型例 题讲解
1、如图 1,已知二次函数 y ax2 bx ca 0 的图像与 x 轴交于点 A1,0 、 B2,0 ,与
y 轴交于点 C,且 tanOAC 2 .
(1)求二次函数的解析式; (2)如图 2,过点 C 作 CD∥x 轴交二次函数图像于点 D,P 是二次函数图像上异于点 D 的一
示出△PBC 的面积,根据 S△PBC=S△BCD,列出方程,进一步求得结果,当 P 在第一象限,同
样的方法求得结果;
(3)作 PN⊥AB 于 N,交 BC 于 M,根据 P(t, t2 t 2 ),M(t, t 2 ),表示出 PM 的长,
根据 PN∥OC,得出△PQM∽△OQC,从而得出 PQ PM ,从而得出 PQ 的函数表达式,进一
2
∵抛物线的对称轴为 y= 1 ,CD∥x 轴,C(0,-2), 2
∴点 D(1,-2),
∴CD=1,
∴S△BCD= 1 CD·OC, 2
∴ 1 PE·OC= 1 CD·OC,
2
2
∴a2-2a=1,
解得 a1=1+ 2 (舍去),a2=1- 2 ;
当 x=1- 2 时,y= a2 a 2 =a-1=- 2 ,
当 a=1+ 2 时,y= a2 a 2 = 2 , ∴P(1+ 2 , 2 ),
综上所述,P 点坐标为(1+ 2,2 )或(1- 2, 2 );
(3) 如图,作 PN⊥AB 于 N,交 BC 于 M,
由题意可知,P(t, t2 t 2 ),M(t,t-2),
∴PM=(t-2)-( t2 t 2 )=- t2 2t ,

多边形证明--三角形全等与相似(原卷版)-中考数学重难点题型专题汇总

多边形证明--三角形全等与相似(原卷版)-中考数学重难点题型专题汇总

多边形证明-中考数学重难点题型三角形全等与相似(专题训练)1.如图,//BD AC ,BD BC =,点E 在BC 上,且BE AC =.求证:D ABC ∠=∠.2.如图,点A 、B 、D 、E 在同一条直线上,,//,//AB DE AC DF BC EF =.求证:ABC DEF △≌△.3.如图,已知AB DC =,A D ∠=∠,AC 与DB 相交于点O ,求证:OBC OCB ∠=∠.4.如图,点D 在AB 上,点E 在AC 上,AB =AC ,∠B =∠C ,求证:BD =CE5.如图,在四边形ABCD 中,,,AD BC AC BD AC ==与BD 相交于点E .求证:DAC CBD ∠=∠.6.如图,在△ABC 中,∠ACB =90°,点E 在AC 的延长线上,ED ⊥AB 于点D ,若BC =ED ,求证:CE =DB .7.如图,点C在线段BD上,且AB⊥BD,DE⊥BD,AC⊥CE,BC=DE.求证:AB=CD.8.如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C,求证:BD=CE.9.如图,∠B=∠E,BF=EC,AC∥DF.求证:△ABC≌△DEF.10.如图,AC平分∠BAD,AB=AD.求证:BC=DC.11.如图,已知AB∥CD,AB=CD,BE=CF.求证:(1)△ABF≌△DCE;(2)AF∥DE.12.如图,点C、E、F、B在同一直线上,点A、D在BC异侧,AB∥CD,AE=DF,∠A=∠D.(1)求证:AB=CD;(2)若AB=CF,∠B=40°,求∠D的度数.13.已知:如图,点B,D在线段AE上,AD=BE,AC∥EF,∠C=∠F.求证:BC=DF.14.如图,AB =AD ,BC =DC ,点E 在AC 上.(1)求证:AC 平分∠BAD ;(2)求证:BE =DE .15.如图,在△ABC 中,AD 是BC 边上的中线,E 是AB 边上一点,过点C 作CF ∥AB 交ED 的延长线于点F .(1)求证:△BDE ≌△CDF ;(2)当AD ⊥BC ,AE =1,CF =2时,求AC 的长.16.如图,BE 是ABC 的角平分线,在AB 上取点D ,使DB DE .(1)求证://DE BC .(2)若65A ∠=︒,45AED ∠=︒,求EBC ∠的度数.17.如图,在ABC 中,40A ∠=︒,点D ,E 分別在边AB ,AC 上,BD BC CE ==,连结CD ,BE .(1)若80ABC ∠=︒,求BDC ∠ABE ∠的度数.(2)写出BEC ∠与BDC ∠之间的关系,并说明理由.18.如图,已知AB DC =,A D ∠=∠,AC 与DB 相交于点O ,求证:OBC OCB ∠=∠.。

相似图形全等三角形反比例函数和四边形测试题(0财富值)

相似图形全等三角形反比例函数和四边形测试题(0财富值)

相似图形、全等三角形、反比例函数和四边形测试题(考试内容:相似图形、相似三角形、全等三角形、反比例函数、平行四边形、矩形、菱形、正方形、梯形;考试安排:共16道题目,总分100分,考试时间120分钟)1、(6分)将两个全等的等腰直角三角形摆成如图所示的样子(图中所示的所有点在同一平面内),找出两对相似三角形2、(2分)线段AB=10cm ,点C 是AB 的黄金分割点,且AC 大于BC ,则AC 与BC 的长分别是多少?(用根号表示即可)3、(2分)已知O 点是正方形ABCD 的两条对角线的交点,则AO ∶AB ∶AC =________.4、(3分)已知实数a ,b ,c 满足c b a b a c a c b +=+=+,求a c b +的值.5、(8分)以长为2的线段AB 为边作正方形ABCD ,取AB 的中点P ,连结PD ,在BA 的延长线上取点F ,使PF =PD ,以AF 为边作正方形AMEF ,点M 在AD 上,如图(1)求AM 、DM 的长.(2)求证:AM 2=AD ·DM .(3)根据(2)的结论你能找出图中的黄金分割点吗?6、(4分)已知743c b a ==,且0≠⋅⋅c b a ,求cb ac b a 432234-+-+的值。

7、(12分)写出位似图形、反比例函数、平行四边形、矩形、菱形、正方形以及梯形的定义,并用图形将其中四边形的相互关系表达出来8、(10分)(1)如图所示,作山四边形ABCD 的位似图形A 'B 'C 'D ',使四边形ABCD 与四边形A 'B 'C 'D '的相似比为2∶1;(2)若已知AB=2cm ,BC=3cm ,∠A=60°,AB ⊥BC ,CD ⊥DA ,求四边形A 'B 'C 'D '的面积.9、(4分)如图,在ABCD 中,E 是BC 的中点,F 是BE 的中点,AE 与DF 相交于点H,则S △EFH 与S △ADH 的比值是多少?10、(5分)将一副三角板按图叠放,求△AOB 与△DOC 的面积之比11、(12分)ABCD 中,E 是AB 的中点,F 在AC 上,且AF ∶AD=1:3,EF 交AC 于G,若AC=20,求AG .FG E DB AC12、(6分)一矩形的面积为24cm 2,则该矩形的长x cm 与宽y cm 之间的关系是什么?请写出函数表达式,若要求矩形的各边长均为整数,请画出所有可能的的矩形13、(8分)如图,E 是菱形ABCD 边AD 的中点,EF ⊥AC 于点H ,交CB 延长线于点F ,交AB 于点G ,求证:AB 与EF 互相平分14、(12分)如图,在直角梯形ABCD 中,AD ∥BC ,BC ⊥CD ,∠B=60°,BC=2AD ,E 、F 分别为AB 、BC 的中点.(1)求证:四边形AFCD 是矩形;(2)求证:DE ⊥EF .HG F E D C BA15、(5分)平行四边形ABCD,E是CD的中点,△ABE是等边三角形,求证:四边形ABCD是矩形16、(14分)如图,边长为a的菱形ABCD中,∠DAB=60°,E是异于A、D两点的动点,F是CD 上的动点,满足AE+CF=a。

九年级中考数学考点提升训练——专题:《三角形综合:全等与相似》(四)(Word版,带答案)

九年级中考数学考点提升训练——专题:《三角形综合:全等与相似》(四)(Word版,带答案)

九年级中考数学考点提升训练——专题:《三角形综合:全等与相似》(四)1.如图1,在平面直角坐标系中,直线AB分别交y轴、x轴于点A(0,a),点B(b,0),且a、b满足a2﹣4a+4+=0.(1)求a,b的值;(2)以AB为边作Rt△ABC,点C在直线AB的右侧且∠ACB=45°,求点C的坐标;(3)若(2)的点C在第四象限(如图2),AC与x交于点D,BC与y轴交于点E,连接DE,过点C作CF⊥BC交x轴于点F.①求证CF=BC;②直接写出点C到DE的距离.2.已知:如图,点P是等边△ABC内一点,连接PC,以PC为边作等边三角形△PDC,连接PA,PB,BD.(1)求证:∠APC=∠BDC;(2)当∠APC=150°时,试猜想△DPB的形状,并说明理由;(3)当∠APB=100°且DB=PB,求∠APC的度数.3.如图,在△ABC中,AB=AC,AD⊥BC于点D.点E为AD上一点,点F为BE延长线上一点,且AF=AC.(1)如图1,若∠FBC=∠BAC=30°.①判断△BAF的形状,并证明;②若AE=(+1)BE,则=.(直接写出结果)(2)如图2,若∠FBC=45°,作AG⊥BF于G,求证:EF=BE+2AG.4.如图1,Rt△ABC中,点D,E分别为直角边AC,BC上的点,若满足AD2+BE2=DE2,则称DE为Rt△ABC的“完美分割线”.显然,当DE为△ABC的中位线时,DE是△ABC的一条完美分割线.(1)如图1,AB=10,cos A=,AD=3,若DE为完美分割线,则BE的长是.(2)如图2,对AC边上的点D,在Rt△ABC中的斜边AB上取点P,使得DP=DA,过点P画PE⊥PD交BC于点E,连结DE,求证:DE是直角△ABC的完美分割线.(3)如图3,在Rt△ABC中,AC=10,BC=5,DE是其完美分割线,点P是斜边AB的中点,连结PD、PE,求cos∠PDE的值.5.如图1,张老师在黑板上画出了一个△ABC,其中AB=AC.让同学们进行探究.(1)探究一:如图2,小明以BC为边在△ABC内部作等边△BDC,连接AD.请直接写出∠ADB的度数;(2)探究二:如图3,小彬在(1)的条件下,又以AB为边作等边△ABE,连接CE.判断CE与AD的数量关系,并说明理由;(3)探究三:如图3,小聪在(2)的条件下,连接DE.若∠DEC=60°,DE=2,求AE的长.6.如图1,在Rt△ABC中,∠ACB=90°,AB=20,AC=16,CD是斜边AB上的中线,P是边AC上一点,连接DP,以DP为直角边作等腰直角三角形DPE(点E始终在直线AB右侧).(1)求点D到边AC的距离;(2)当△PEC是以PE为腰的等腰三角形时,求所有满足要求的AP长.(3)如图2,当斜边DE与AC有交点时,记交点为Q,若AP=CQ,则S△DPE =.(直接写出答案)7.如图,在Rt△ABC中,∠ACB=90°,AC=BC,E为BC上一点,连接AE,作AF ⊥AE且AF=AE,BF交AC于D.(1)如图1,求证:D为BF中点;(2)如图1,求证:BE=2CD;(3)如图2,若=,直接写出的值.8.在△ABC中,AC=BC=4,∠ACB=90°,E为BC上一个动点,CF⊥AE于G,交AB于F.(1)如图1,当AE平分∠CAB时,求BE的长.(2)如图2,当E为BC中点时.①求CG的长.②连接EF,求GF+EF的值.(3)如图3,在E运动过程中,连接BG,则BG的最小值为.9.已知在四边形ABCD中,∠ABC+∠ADC=180°,AB=BC.(1)连接BD,如图1,若∠BAD=90°,AD=3,求DC的长;(2)点E,F分别在射线DC,DA上.①如图2,若点E,F分别在线段CD,AD上,且满足∠EBF=90°﹣∠ADC,求证:EF=AF+CE;②如图3,若点E,F分别在线段DC延长线与DA延长线上,且满足EF=AF+CE,请直接写出∠EBF与∠ADC之间的数量关系.10.(1)已知△ABC中,AB=AC,∠BAC=120°.①如图1,点M、N在底边BC上,且∠ANB=45°,∠MAN=60°.请在图中作出∠NAD=60°,且AD=AM,连接ND、CD;并直接写出BM与CN的数量关系.②如图2,点M在BC上,点N在BC的上方,且∠MBN=∠MAN=60°,求证:MC=BN+MN;(2)如图3,在四边形ABCD中,∠CAB=50°,BD平分∠ABC,若∠ADC与∠ABD互余,则∠DAC的大小为(直接写出结果).参考答案1.解:(1)∵,∴,∵(a﹣2)2≥0,,∴a﹣2=0,2b+2=0,∴a=2,b=﹣1;(2)由(1)知a=2,b=﹣1,∴A(0,2),B(﹣1,0),∴OA=2,OB=1,∵△ABC是直角三角形,且∠ACB=45°,∴只有∠BAC=90°或∠ABC=90°,Ⅰ、当∠BAC=90°时,如图1,∵∠ACB=∠ABC=45°,∴AB=CB,过点C作CG⊥OA于G,∴∠CAG+∠ACG=90°,∵∠BAO+∠CAG=90°,∴∠BAO=∠ACG,在△AOB和△BCP中,,∴△AOB≌△CGA(AAS),∴CG=OA=2,AG=OB=1,∴OG=OA﹣AG=1,∴C(2,1),Ⅱ、当∠ABC=90°时,如图2,同Ⅰ的方法得,C(1,﹣1);即:满足条件的点C(2,1)或(1,﹣1)(3)①如图3,由(2)知点C(1,﹣1),过点C作CL⊥y轴于点L,则CL=1=BO,在△BOE和△CLE中,,∴△BOE≌△CLE(AAS),∴BE=CE,∵∠ABC=90°,∴∠BAO+∠BEA=90°,∵∠BOE=90°,∴∠CBF+∠BEA=90°,∴∠BAE=∠CBF,在△ABE和△BCF中,,∴△ABE≌△BCF(ASA),∴BE=CF,∴;②点C到DE的距离为1.如图4,过点C作CK⊥ED于点K,过点C作CH⊥DF于点H,由①知BE=CF,∵BE=BC,∴CE=CF,∵∠ACB=45°,∠BCF=90°,∴∠ECD=∠DCF,∵DC=DC,∴△CDE≌△CDF(SAS),∴∠BAE=∠CBF,∴CK=CH=1.2.解:(1)如图,∵△ABC,△PDC是等边三角形,∴AC=BC,PC=PD=CD,∠ACB=∠PCD=60°,∴∠ACP=∠BCD,且AC=BC,PC=CD,∴△ACP≌△BCD(SAS)∴∠APC=∠BDC;(2)△DPB是直角三角形.理由:∵∠BDC=∠APC=150°,∠PDC=60°∴∠BDP=∠BDC﹣∠PDC=90°,∴△DPB是直角三角形;(3)设∠APC=x,则∠BPD=200°﹣x,∠BDP=x﹣60°∵PB=DB,∴∠BPD=∠BDP,∴200°﹣x=x﹣60°,∴x=130°,∴∠APC=130°3.解:(1)①△BAF为等腰直角三角形.证明:∵AB=AC,AD⊥BC,∠FBC=∠BAC=30°,∴∠ABC=∠C=75°,∠BAD=∠CAD=15°,∵AF=AC,∴AB=AF,∴∠ABF=45°,∴△BAF为等腰直角三角形;②如图1,过点A作AM⊥BF于点M,设BE=x,则AE=(+1)x,∵∠FBC=30°,∴DE=BE=x,∠BED=∠AEF=60°,∴∠EAM=30°,∴EM=AE(+1)x,∵△ABF为等腰直角三角形,AM⊥BF,∴AM=MF=BM,∴BM=EB+EM=x+x=x,∴EF=EM+MF=x=(2+)x,∴=4+2.故答案为:4+2.(2)证明:如图2,过点A作AH⊥AE,交BC于点H,∵∠FBC=45°,AD⊥BC,∴∠BED=∠AEH=45°,∴∠AHE=∠AEH=45°,AE=AH,∴∠AEB=∠AHF=135°,∵AF=AC,∴AB=AF,∠ABF=∠F,在△ABE和△AFH中,,∴△ABE≌△AFH(AAS),∴BE=FH,∴AG=EG=GH,∴EH=2AG,∴EF=FH+EH=BE+2AG.4.解:(1)∵AB=10,cos A=,∴cos A=,∴AC=8,CD=5,∴==6,设BE=x,则CE=6﹣x,在Rt△CDE中,DE2=CD2+CE2=52+(6﹣x)2,∵DE为完美分割线,∴AD2+BE2=DE2,∴32+x2=52+(6﹣x)2,解得:x=.∴BE=.故答案为:.(2)证明:如图2,∵DA=DP,∴∠DAP=∠DPA,∵PE⊥PD,∴∠DPA+∠EPB=90°,又∠A=∠B,∴∠EPB=∠B,∴EP=EB,∴AD2+BE2=DP2+EP2=DE2,∴DE是直角△ABC的完美分割线.(3)解:延长DP至F,使PF=PD,连接BF,EF,∵AP=BP,∠APD=∠BPF,∴△APD≌△BPF(SAS),∴AD=BF,∠A=∠FBP,∴∠EBF=∠CBA+∠FBP=∠CBA+∠A=90°,∵DE是完美分割线,∴DE2=AD2+BE2=BF2+BE2=EF2,即ED=EF.又PD=PF,∴∠EPD=90°,过点P作PM⊥AC,PN⊥BC,则∠MPD=∠NPE=90°﹣∠MPE,∴△MPD∽△NPE,∴,设PD=a,则PE=2a,则DE==a,∴cos∠PDE==.5.解:(1)探究一:∵△BDC是等边三角形,∴BD=DC,∠BDC=60°,在△ADB和△ADC中,,∴△ADB≌△ADC(SSS),∴∠ADB=∠ADC,∵∠ADB+∠ADC=360°﹣60°,∴∠ADB=150°,故答案为:150°.(2)探究二:结论:CE=AD.理由:∵△BDC、△ABE都是等边三角形∴∠ABE=∠DBC=60°,AB=BE,BD=DC.∴∠ABE﹣∠DBE=∠DBC﹣∠DBE∴∠ABD=∠EBC,在△ABD和△EBC中,∴△ABD≌△EBC(SAS).∴AD=CE.(3)探究三:∵△ABD≌△EBC,∴∠BDA=∠ECB=150°,∵∠BCD=60°,∴∠DCE=90°,∵∠DEC=60°,∴∠CDE=30°,∵DE=2,∴CE=1,由勾股定理得,DC=BC=,∵∠BDE=60°+30°=90°,DE=2,BD=.由勾股定理得,BE==.∵△ABE是等边三角形∴AE=BE=.6.解:(1)过D用DF⊥AC于点H,如图1,则DF∥BC,∵D是AB的中点,∴AF=CF,∴DF=,∵BC=,∴DF=6,故点D到边AC的距离为6;(2)当PE=CE时,如图1,过点E作EG⊥PC于点G,∴PG=CG,∵∠DPE=90°,∴∠DPF+∠EPG=∠DPF+∠PDF=90°,∴∠PDF=∠EPG,∵PD=EP,∠DFP=∠PGE=90°,∴△DPF≌△PEG(AAS),∴DF=PG=CG=6,∴AP=AC﹣PC=16﹣6﹣6=4;当PE=PC时,如备用图1,过D作DF⊥AC于点F,过点E作EG⊥AC于点G,则DF∥BC,AF=CF=8,DF=BC=6,∵∠DPE=90°,∴∠DPF+∠EPG=∠DPF+∠PDF=90°,∴∠PDF=∠EPG,∵∠DFP=∠PGE=90°,DP=EP,∴△PDF≌△EPG(AAS),∴DPG=6,PF=EG,设PE=PC=x,则EG=FP=8﹣x,由勾股定理得,PE2﹣EG2=PG2,∴x2﹣(8﹣x)2=62,解得,x=,即PC=,∴AP=AC﹣PC=16﹣,综上,AP=4或;(3)过点D作DF⊥AC于点F,过点E作EG⊥AC于G,则DF∥EG∥BC,∵D是AB的中点,∴AF=CF=8,DF=,∵AP=CQ,∴PF=QF,设AP=CQ=x,则PF=QF=,∵∠DPE=90°,∠DFP=90°,∴∠DPF+∠EPG=∠DPF+∠PDF=90°,∴∠PDF=∠EPF,∵∠DFP=∠PGE=90°,DP=PE,∴△DPF≌△PEG(AAS),∴DF=PG=6,PF=EG=8﹣x,∴QG=PG﹣PQ=6﹣2(8﹣x)=2x﹣10,∵DF∥EG,∴△DFQ∽△EGQ,∴,即,解得,x=14+6>16(舍),或x=14﹣6,∴PF=QF=EG=8﹣x=6﹣6,∴=.另一解法:过D作DF⊥AC于点F,延长DF至M,使得DF=FM,过M作MN⊥DE,与DE的延长线交于点N,如图2,则DF∥BC,∴QD=QM,∴∠QDM=∠QMD,∵D是AB的中点,DF∥BC,∴AF=CF=8,DF=,∴DM=12,∵AP=CQ,∴PF=QF,∴DP=DQ,∴∠PDF=∠QDF,∴∠PDF=∠QMF,∴DP∥QM,∴∠MQN=∠PDE=45°,∴∠NMQ=45°=∠MQN,∴MN=QN,不妨设MN=QN=x,则DP=QD=QM=,∵DN2+MN2=DM2,∴,解得,,∴,∴,∴.故答案为:72﹣36.7.证明:(1)如图1,过F点作FG⊥AC于点G,∵∠FAG+∠CAE=90°,∠FAG+∠AFG=90°,∴∠CAE=∠AFG,在△AGF和△ECA中,,∴△AGF≌△ECA(AAS),∴AG=EC,FG=AC,∵AC=BC,∴BC=FG,又∵∠FGD=∠DCB=90°,∠FDG=∠CDB,∴△FGD≌△BCD(AAS),∴DF=BD,即D为BF的中点;(2)证明:∵△FGD≌△BCD,∴DC=GD,∴CG=2CD,∵AG=CE,AC=BC,∴CG=BE,∴BE=2CD;(3)解:如图2,过F点作FG⊥AC于点G,∵,∴,∵AC=CB,∴,由(1),(2)可知△AGF≌△ECA,△FGD≌△BCD,∴CE=AG,CD=DG,∴,∴,∴,∴.∴.8.解:(1)∵AE平分∠CAB,∴点E到AC,AB的距离相等,∴,∵AC=BC=4,∠ACB=90°,∴AB=AC=4,∴,∴,∴BE=×4=4(2﹣)=8,即BE=8﹣4;(2)①∵点E是BC的中点,∴CE=BE=BC=2,∴AE==2,∵CF⊥AE,∴S△ACE=AE•CG=AC•CE,∴CG=.②过点B作BM⊥BC交CF延长线于点M,∵BM⊥BC,∴∠CBM=90°,∴∠CBM=∠ACE=90°,∵∠ACG+∠BCM=90°,∠ACG+∠CAE=90°,∴∠BCM=∠CAE,在△CBM和△ACE中,,∴△CBM≌△ACE(ASA),∴AE=CM=2,CE=BM,∵CE=BE,∴BM=BE,∵∠CAB=∠CBA=45°,∴∠EBF=∠MBF=45°,在△EBF和△MBF中,,∴△EBF≌△MBF(SAS),∴EF=MF,∴GF+EF=GF+MF=GM=CM﹣CG=2﹣.∴GF+EF=.(3)取AC的中点N,连接NG,BN,∵点N是AC的中点,∴AN=CN=AC=2,∴BN==2,∵CF⊥AE,∴∠AGC=90°,∴NE=AC=2,∴BG≥BN﹣NG,当且仅当B,G,N三点共线时,BG取得最小值,∴BG的最小值为2﹣2.故答案为:2﹣2.9.(1)解:∵∠ABC+∠ADC=180°,∴∠A+∠C=180°,又∵∠A=90°,∴∠C=90°=∠A,在Rt△ABD和Rt△CBD中,,∴Rt△ABD≌Rt△CBD(HL),∴DC=DA=3;(2)证明:如图2,延长DC到G,使得CG=AF,连接BG,∵∠ABC+∠BCD+∠ADC+∠A=360°,∠ABC+∠ADC=180°,∴∠A+∠BCD=180°,且∠BCD+∠BCG=180°,∴∠A=∠BCG,∵AB=BC,CG=AF,∴△ABF≌△CBG(SAS),∴BF=BG,∠ABF=∠CBG,又∵∠ABC+∠ADC=180°,∴∠EBF=90°﹣∠ADC=∠ABC=∠ABF+∠EBC=∠CBG+∠EBC=∠EBG,∵BE=BE,∴△EBF≌△EBG(SAS),∴EF=EG=EC+CG=CE+AF;(3)解:∠EBF与∠ADC之间的数量关系为:∠EBF=90°+∠ADC.在CD的延长线上截取CH=AE,连接BH,∵∠ABC+∠BCD+∠ADC+∠DAB=360°,∠ABC+∠ADC=180°,∴∠DAB+∠BCD=180°,且∠DAB+∠EAB=180°,∴∠BCD=∠EAB,且AB=BC,AE=CH,∴△AEB≌△CHB(SAS),∴BE=BH,∠EBA=∠HBC,∵EF=AE+CF,∴EF=CH+CF=HF,且BF=BF,BE=BH,∴△EBF≌△HBF(SSS),∴∠EBF=∠HBF,∵∠EBF+∠HBF+∠EBA+∠ABH=360°,∴2∠EBF+∠HBC+∠ABH=360°,∴2∠EBF+∠ABC=360°,∴2∠EBF+180﹣∠ADC=360°,∴∠EBF=90°+∠ADC.10.解:(1)①BM=2CN.如图1,作出∠NAD=60°,且AD=AM,连接ND、CD;∵∠MAN=60°,∠BAC=120°,∴∠BAM+∠CAN=60°,∵∠CAD+∠CAN=60°,又∵AD=AM,AB=AC,∴△ABM≌△ACD(SAS),∴BM=CD,∠B=∠ACD=30°,∵AM=AD,∠MAN=∠DAN,AN=AN,∴△AMN≌△ADN(SAS),∴∠ANM=∠AND=45°,∴∠MND=90°,又∵∠DCN=∠ACB+∠ACD=60°,∴∠CDN=30°,∴CD=2CN,∴BM=2CN.故答案为:BM=2CN.②如图2,在CB上截取CG=BN,连接AG,∵AB=AC,∠BAC=120°,∴∠C=∠ABC=30°,∵∠NBM=60°,∴∠ABN=30°,在△ABN和△ACG中,,∴△ABN≌△ACG(SAS),∴∠BAN=∠CAG,AN=AG,∴∠BAN+∠BAM=∠BAM+∠CAG=∠MAN=60°,∴∠MAG=∠BAC﹣∠BAM﹣∠CAG=60°,在△AMN和△AMG中,,∴△AMN≌△AMG(SAS),∴MN=MG,∴MC=MG+GC=MN+BN.(2)如图3,过点D作DM⊥BA于点M,DN⊥BC于点N,在AM上截取MK=CN,连接DK,∵BD平分∠ABC,∴∠ABC=2∠ABD,DM=DN,∵∠ADC=90°﹣∠ABD,∠MDN=180°﹣2∠ABD,∴∠MDN=2∠ADC,在△DMK和△DNC中,,∴△DMK≌△DNC(SAS),∴DC=DK,∠MDK=∠CDN,∴∠NDC+∠ADM=∠MDK+∠ADM=∠ADC,∴∠ADC=∠ADK,∵AD=AD∴△ADC≌△ADK(SAS),∴∠DAC=∠DAM=.故答案为:65°.。

初三数学相似试题及答案

初三数学相似试题及答案

初三数学相似试题及答案
一、选择题
1. 两个三角形相似的条件是()
A. 面积相等
B. 周长相等
C. 边长成比例
D. 角度相等
答案:C
2. 如果两个三角形的对应角相等,那么这两个三角形()
A. 全等
B. 相似
C. 不一定相似
D. 无法判断
答案:B
二、填空题
1. 若△ABC与△DEF相似,且AB:DE = 2:3,那么AC:DF = _______。

答案:2:3
2. 三角形的相似比为3:5,若三角形的一边长为9cm,则另一边长为_______ cm。

答案:15cm
三、解答题
1. 如图所示,△ABC与△DEF相似,已知AB = 6cm,AC = 8cm,DE = 9cm,求BC和EF的长度。

解:由于△ABC与△DEF相似,根据相似三角形的性质,我们有: AB:DE = AC:DF = BC:EF
将已知数值代入比例中,得到:
6:9 = 8:DF = BC:EF
解得DF = 12cm,BC = 10cm。

2. 已知两个相似多边形的面积之比为9:16,求它们的周长之比。

解:设两个相似多边形的周长分别为P和Q,面积分别为A和B。

根据相似多边形的性质,我们知道:
A/B = (P/Q)^2
已知A/B = 9/16,代入公式得:
(9/16) = (P/Q)^2
解得P/Q = 3/4。

结束语
通过本试题的练习,同学们可以加深对相似三角形和相似多边形的理解,掌握它们的性质和计算方法。

希望同学们能够认真练习,提高自己的数学能力。

2020中考数学 几何专项突破:全等和相似三角形(含详解版)

2020中考数学 几何专项突破:全等和相似三角形(含详解版)

2020中考数学几何专项突破全等与相似三角形(含答案)典例探究例1.△ABC中,∠CAB=70°,在同一平面内,将△ABC绕点A旋转到△ADE的位置,使得DC ∥AB,求∠EAB的度数。

例2. 如图①,OP是∠MON的平分线,请你利用该图形画一对以OP所在直线为对称轴的全等三角形。

请你参考这个作全等三角形的方法,解答下列问题:(1)如图②,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F。

请你判断并写出FE与FD之间的数量关系;(2)如图③,在△ABC中,如果∠ACB不是直角,而(1)中的其它条件不变,请问,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由。

D例 3.如图1,在中,,于点,点是边上一点,连接交于,交边于点. (1)求证:; (2)当为边中点,时,如图2,求的值; (3)当为边中点,时,请直接写出的值.例4.如图,已知抛物线与交于A(-1,0)、E(3,0)两点,与轴交于点B(0,3)。

(1)求抛物线的解析式;(2)设抛物线顶点为D ,求四边形AEDB 的面积;(3)△AOB 与△DBE 是否相似?如果相似,请给以证明;如果不相似,请说明理由。

Rt ABC △90BAC ∠=°AD BC ⊥D O AC BO AD F OE OB ⊥BC E ABF COE △∽△O AC 2AC AB =OFOE O AC AC n AB =OFOEx y BBAACO E D D EC OF图1图2F巩固练习-全等三角形1.如图,给出下列四组条件:①; ②; ③; ④.其中,能使的条件共有( ) A .1组 B .2组 C .3组 D .4组2、如图,AD 是△ABC 的中线,AB AC =。

1∠与2∠相等吗?请说明理由。

3.已知:如图 , 点A 、D 、C 、F 在同一条直线上 , AB=DE , BC ∥EF,∠B=∠E. 求证:ΔABC ≌ΔDEF.4.如图,△OAB 和△COD 均为等腰直角三角形,90AOB COD ∠=∠=︒, 连接AC 、BD .求证: AC BD =.AB DE BC EF AC DF ===,,AB DE B E BC EF =∠=∠=,,B E BC EF C F ∠=∠=∠=∠,,AB DE AC DF B E ==∠=∠,,ABC DEF △≌△21DCBA5、如图,在△ABC 中,AB =AC ,D 是BC 边上的一点,DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F ,添加一个条件,使DE = DF ,并说明理由.6、如图,AB 是⊙O 的直径,AC =AD ,试说明△ABC 和△ABD 全等.7、已知,如图,点B 、F 、C 、E 在同一直线上,AC 、DF 相交于点G ,AB ⊥BE ,垂足为B ,DE ⊥BE ,垂足为E ,且AB =DE ,BF =CE 。

2024年中考数学复习(全国版)第四讲 全等、相似三角形(原卷版)

2024年中考数学复习(全国版)第四讲 全等、相似三角形(原卷版)

→➌题型突破←→➍专题训练←题型一全等三角形1.如图,等腰△ABC 中,点D,E 分别在腰AB,AC 上,添加下列条件,不能判定△ABE≌△ACD 的是()A.AD=AE B.BE=CD C.∠ADC=∠AEB D.∠DCB=∠EBC2.如图,在△AOB 和△COD 中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=36°.连接AC,BD 交于点M,连接OM.下列结论:①∠AMB=36°,②AC=BD,③OM 平分∠AOD,④MO 平分∠AMD.其中正确的结论个数有()个.A.4B.3C.2D.13.如图所示,,ABC ECD 均为等边三角形,边长分别为5cm,3cm ,B、C、D 三点在同一条直线上,则下列结论正确的________________.(填序号)①AD BE ②7cm BE ③CFG △为等边三角形④13cm 7CM ⑤CM 平分BMD4.如图,在矩形ABCD 中,AD=4,将∠A 向内翻析,点A 落在BC 上,记为A 1,折痕为DE.若将∠B 沿EA 1向内翻折,点B 恰好落在DE 上,记为B 1,则AB=_____.5.如图,在平面直角坐标系中,点C 的坐标为 1,0 ,点A 的坐标为 3,3 ,将点A 绕点C 顺时针旋转90 得到点B ,则点B 的坐标为_____________.6.已知,如图1,若AD 是ABC 中BAC 的内角平分线,通过证明可得=AB BD AC CD,同理,若AE 是ABC 中BAC 的外角平分线,通过探究也有类似的性质.请你根据上述信息,求解如下问题:如图2,在ABC 中,2,3,BD CD AD 是ABC 的内角平分线,则ABC 的BC边上的中线长l 的取值范围是________7.如图,在Rt△ABC 中,∠ACB=90°,且AC=AD.(1)作∠BAC 的平分线,交BC 于点E;(要求尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,连接DE,证明AB DE .8.如图,ABC 中,AB AC ,点,D E 在边BC 上,BD CE .求证ADE AED .9.如图,点D、E 分别是AB、AC 的中点,BE、CD 相交于点O,∠B=∠C,BD=CE.求证:(1)OD=OE;(2)△ABE≌△ACD.10.如图,点E、F 在线段BC 上,//AB CD ,A D ,BE CF ,证明:AE DF .11.如图,矩形ABCD 中为边BC 上一点,将ABE △沿AE 翻折后,点B 恰好落在对角线AC 的中点F 上.(1)证明:AEF CEF ≌;(2)若3AB AE 的长度12.如图,点A,D,B,E 在一条直线上AD BE ,AC DF ,//AC DF .求证:BC EF .13.如图,在矩形ABCD 中,点M 在DC 上,AM AB ,且BN AM ,垂足为N .(1)求证:ABN MAD ≌;(2)若2,4AD AN ,求四边形BCMN 的面积.14.如图,在ABC 中,点D 在AB 边上,CB CD ,将边CA 绕点C 旋转到CE 的位置,使得ECA DCB ,连接DE 与AC 交于点F ,且70B ,10A .(1)求证:AB ED ;(2)求AFE的度数.15.在四边形ABCD中,对角线AC平分∠BAD.(探究发现)(1)如图①,若∠BAD=120 ,∠ABC=∠ADC=90 .求证:AD+AB=AC;(拓展迁移)(2)如图②,若∠BAD=120 ,∠ABC+∠ADC=180 .①猜想AB、AD、AC三条线段的数量关系,并说明理由;②若AC=10,求四边形ABCD的面积.16.已知等边三角形ABC,过A点作AC的垂线l,点P为l上一动点(不与点A重合),连接CP,把线段CP绕点C逆时针方向旋转60 得到CQ,连QB.(1)如图1,直接写出线段AP 与BQ 的数量关系;(2)如图2,当点P、B 在AC 同侧且AP AC 时,求证:直线PB 垂直平分线段CQ ;(3)如图3,若等边三角形ABC 的边长为4,点P、B 分别位于直线AC 异侧,且APQ 的34AP 的长度.17.如图①,E F 、是等腰Rt ABC 的斜边BC 上的两动点,45,EAF CD BC 且CD BE .(1)求证:ABE ACD △≌△;(2)求证:222EF BE CF ;(3)如图②,作AH BC ,垂足为H,设,EAH FAH ,不妨设2AB 利用(2)的结论证明:当45 时,tan tan tan()1tan tan成立.题型二相似三角形18.如图,ABC 与111A B C △位似,位似中心是点O,若1:1:2OA OA ,则ABC 与111A B C △的周长比是()A.1:2B.1:3C.1:4D.219.如图, ABC 中,点D、E 分别在AB、AC 上,且12AD AE DB EC ==,下列结论正确的是()A.DE:BC=1:2B. ADE 与 ABC 的面积比为1:3C. ADE 与 ABC 的周长比为1:2D.DE //BC20.如图,在ACD △中,6AD ,5BC , 2AC AB AB BC ,且DAB DCA ,若3AD AP ,点Q 是线段AB 上的动点,则PQ 的最小值是()A.72B.6252D.8521.如图,△ABC 中,AB=AC,∠B=72°,∠ACB 的平分线CD 交AB 于点D,则点D 是线段AB 的黄金分割点.若AC=2,则BD=______.22.如图,矩形ABCD 中,6AB ,8BC ,对角线BD 的垂直平分线EF 交AD 于点E 、交BC 于点F ,则线段EF 的长为__.23.如图,在菱形ABCD 中,点M,N 分别是边BC ,DC 上的点,34BM BC ,34DN DC .连接AM ,AN ,延长AN 交线段BC 延长线于点E.(1)求证:ABM AND △≌△;(2)若4 AD ,则ME 的长是__________.24.已知AB BD ,AE EF , ABD AEF .(1)找出与DBF 相等的角并证明;(2)求证:BFD AFB ;(3)AF kDF ,180EDF MDF ,求AE MF .25.已知在 ABC 中,O 为BC 边的中点,连接AO,将 AOC 绕点O 顺时针方向旋转(旋转角为钝角),得到 EOF,连接AE,CF.(1)如图1,当∠BAC=90°且AB=AC 时,则AE 与CF 满足的数量关系是;(2)如图2,当∠BAC=90°且AB≠AC 时,(1)中的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)如图3,延长AO 到点D,使OD=OA,连接DE,当AO=CF=5,BC=6时,求DE 的长.26.在△ABC 中,AC=AB,∠BAC= ,D 为线段AB 上的动点,连接DC,将DC 绕点D 顺时针旋转 得到DE,连接CE,BE.(1)如图1,当 =60°时,求证:△CAD≌△CBE;(2)如图2,当tanα=34时,①探究AD和BE之间的数量关系,并说明理由;②若AC=5,H是BC上一点,在点D移动过程中,CE+EH是否存在最小值?若存在,请直接写出CE+EH的最小值;若不存在,请说明理由.。

三角形的相似与全等综合练习题

三角形的相似与全等综合练习题

三角形的相似与全等综合练习题1. 题目描述:给定两个三角形ABC和DEF,已知AB/DE = 3/2,AC/DF = 4/3,∠BAC = ∠EDF,判断这两个三角形是否相似。

如果相似,请找出它们的对应相似比和对应的全等角。

解题过程:首先,根据比例知识我们可以得知BC/EF = AB/DE = 3/2,AC/DF = 4/3。

但我们还需要判断∠BAC和∠EDF是否相等,如果相等,则说明两个三角形相似。

2. 题目描述:在△ABC中,AD是BC边上的高,E是边BC上一点,且AC = 2AE,BD = 3DE,若∠BAD = ∠AED,请判断△ABC与△ADE之间的关系。

解题过程:由于已知∠BAD = ∠AED,我们可以推断出△ABC与△ADE之间存在相似关系。

然后我们需要找到它们之间的相似比,根据题干我们可以得知BD/DE = 3/1,所以△ABC与△ADE的相似比是3:1。

3. 题目描述:已知在△ABC和△DEF中,AB/DE = 3/5,BC/EF =4/7,∠ABC = ∠DEF,请判断这两个三角形是否相似。

如果相似,请找出它们的对应相似比和对应的全等角。

解题过程:根据比例知识我们可以得出AC/DF = AB/DE = 3/5,但我们还需要判断∠ABC和∠DEF是否相等,如果相等,则说明两个三角形相似。

根据题干条件我们可得到BC/EF = 4/7,根据全等角的定义可知∠ABC = ∠DEF。

综上所述,根据已知条件,我们可以得出△ABC与△DEF是相似的,并且它们的相似比为3:5,对应的全等角是∠ABC与∠DEF。

4. 题目描述:在△ABC和△DEF中,AB = DE,AC = DF,∠ABC = ∠DEF,请判断这两个三角形是否全等。

解题过程:由于已知AB = DE,AC = DF,∠ABC = ∠DEF,我们可以得出△ABC与△DEF是全等的。

总结:通过以上四个综合练习题的解题过程,我们可以发现,判断三角形的相似与全等一般都需要考察两个方面的条件:一是边的比例关系,二是角的对应关系。

初三数学综合题:圆解三角形相似全等,中考重点,解法精妙,收藏

初三数学综合题:圆解三角形相似全等,中考重点,解法精妙,收藏

初三数学综合题:圆解三角形相似全等,中考重点,解法精妙,收藏考进这里也好经典例题及附图如图,平面直角坐标系中,点M,N的坐标分别为(0,-4)和(8,0),圆心为(3,0)的⊙P与x轴交于O,Q两点,MP的延长线交⊙P于点A,NA的延长线交y轴于点E,点B为x轴下方弧OQ的中点,连接AB交x轴于点C,连接EP交⊙P于点F,QF交y轴于点G。

(1)判断NA是否为⊙P的切线并证明(要求用两种方法);(2)求线段AC和AB的比值和乘积(要求至少用两种方法);(3)经测量,EF=OG,请证明(要求尽量用两种方法)。

经典例题附图第一问的分析和求解请注意两点:第一,紧抓证切线的精髓:切线垂直于经过切点的半径。

第二,做第一问时,必须画出第一问的图!其它花里胡哨的都别画!否则引起思路混乱!证法一:证全等。

∵点O和A都在⊙P上,∴PA=PO=3,Rt△POM中由勾股定理PM=5,而PN=ON-OP=8-3=5,∴PN=PM,在△PAN和△POM中,PA=PO,∠1=∠2,PN=PM,∴△PAN≌△POM(SAS)∴∠PAN=∠POM=90°,∴NA⊥半径PA,即NA是⊙P的切线。

第一问证切线附图证法二:连接MN,通过SAS证△MAN≌△NOM即可。

第二问的分析和求解问得刁钻,要求又高,使人情迷意乱、不知从何下手。

新中考精准辅导解法一:死板板地求出AC和AB。

连接BP,过点A作AD⊥x轴于D,先求AD:求法一是根据Rt△APN面积转换,AP×AN÷2=PN×AD÷2,即3×4=5×AD,AD=12/5。

求法二是根据三角函数转换,Sin∠1=sin∠2,AD:AP=OM:MP,AD:3=4:5。

求法三是根据平行,AD∥OM,AD:OM=AP:MP,AD:4=3:5。

第二问解法一附图求出AD之后,根据勾股定理或三角函数PD=9/5,即CD+PC=9/5------①欲求出PC和CD的具体值,还需要再找一个PC和CD的关系式,∵点B为x轴下方弧OQ的中点,∴BP⊥x轴,则AD∥BP,∴CD:PC=AD:BP=(12/5):3=4:5---②由①②知,CD=4/5,PC=1,第二问的解法一结束解法二:利用相似,如下图。

押成都卷第12-13题(全等三角形的判定、相似三角形与位似、尺规作图与几何综合)(原卷版)-中考数学

押成都卷第12-13题(全等三角形的判定、相似三角形与位似、尺规作图与几何综合)(原卷版)-中考数学

押成都卷第12-13题押题方向一:全等三角形的性质与判定3年成都真题考点命题趋势2023年成都卷第11题全等三角形的性质从近年成都中考来看,全等三角形的性质与判定考查以基本性质和判定为主,试题以选填题形式呈现,整体难度不高;预计2024年成都卷还将继续重视全等三角形的性质与判定的考查。

2022年成都卷第4题全等三角形的判定1.(2023·四川成都·中考真题)如图,已知ABC DEF ≌△△,点B ,E ,C ,F 依次在同一条直线上.若85BC CE ==,,则CF 的长为.2.(2022·四川成都·中考真题)如图,在ABC 和DEF 中,点A ,E ,B ,D 在同一直线上,AC DF ∥,AC DF =,只添加一个条件,能判定ABC DEF ≌△△的是()A .BC DE =B .AE DB =C .A DEF ∠=∠D .ABC D∠=∠1.全等三角形的性质:对应边相等,对应角相等。

推论:全等三角形的周长和面积相等,对应的“三线”分别相等。

2.证明三角形全等时要注意以下2点:1)判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。

2)要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。

1.如图,点D ,E 在ABC 的边BC 上,AB AC =,只需添加一个条件即可证明ABD △≌ACE △,则这个条件可以是.(写一个即可)2.如图,小明家仿古家具的一块三角形形状的玻璃坏了,需要重新配一块.小明通过电话给玻璃店老板提供相关数据,为了方便表述,将该三角形记为ABC ∆,提供了下列各组元素的数据,配出来的玻璃不一定符合要求的是()A .,,AB BC CA B .,,AB BC B ∠C .,,AB AC B ∠D .,,∠∠A B BC2.如图,已知 ABC BAD ∠=∠,要使 ABC BAD ≌,只需添加的一个条件是(答案不唯一,写出1个即可).3.如图,点E 在AB 上,AC AD =,请你添加一个条件,使图中存在全等三角形.我所添加条件为.4.如图,AD BE ,是ABC 的两条高线,只需添加一个条件即可证明AEB BDA ≌△△(不添加其它字母及辅助线),这个条件可以是.(写出一个即可)5.为测量一池塘两端A ,B 间的距离.甲、乙两位同学分别设计了两种不同的方案.甲:如图1,先过点B 作AB 的垂线BF ,再在射线BF 上取C ,D 两点,使BC CD =,接着过点D 作BD 的垂线DE ,交AC 的延长线于点E .则测出DE 的长即为A ,B 间的距离;乙:如图2,先确定直线AB ,过点B 作射线BE ,在射线BE 上找可直接到达点A 的点D ,连接DA ,作DC DA =,交直线AB 于点C ,则测出BC 的长即为AB 间的距离,则下列判断正确的是()A .只有甲同学的方案可行B .只有乙同学的方案可行C .甲、乙同学的方案均可行D .甲、乙同学的方案均不可行6.已知ABC 中,AH 为边BC 上的高,在添加下列条件中的一个后,仍不能判断ABC 是等腰三角形是()A .BH HC =B .BAH CAH ∠=∠C .B HAC ∠=∠D .ABH AHCS S =△△7.问题情境:如图1,在四边形ABCD 中AB AD =,120BAD ∠=︒,90B ADC ∠=∠=︒,E 、F 分别是BC ,CD 上的点,且60EAF ∠=︒,探究图中线段BE ,EF ,FD 之间的数量关系.小王同学探究此问题的方法是,延长FD 到点G ,使DG =BE ,连接AG ,先证明ABE ADG ≌,再证明AEF AGF ≌,可得出BE ,EF ,FD 之间的数量关系.实际应用:如图2,在新修的小区中,有块四边形绿化ABCD ,四周修有步行小径,且AB AD =,180B D ∠+∠=︒,在小径BC ,CD 上各修一凉亭E ,F ,在凉亭E 与F 之间有一池塘,不能直接到达,经测量得12EAF BAD ∠=∠,10BE =米,15DF =米,试在小王同学研究的基础上,求两凉亭之间的距离EF =.押题方向二:相似三角形与位似3年成都真题考点命题趋势2022年成都卷第11题位似的性质从近年成都中考来看,相似(位似)的性质考查以基本性质和实际应用为主,试题以填空题形式呈现,整体难度中等;预计2024年成都卷还将继续重视相似(位似)的性质及相关应用的考查。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三数学试题全等与相似三角形
一、教材内容
七年级第二学期:第十四章第2节全等三角形(8课时)
九年级第一学期:第二十四章相似三角形
24.1-24.5(18课时)
二、“课标”要求
1.理解全等形的概念,并能以此解释两个三角形全等;懂得两个全等三角形的对应顶点、对应边、对应角的含意,懂得使用符号表示两个三角形全等,掌握全等三角形的性质
2.通过画三角形的操作活动和对实物模型的分析,归纳并掌握判定两个三角形全等的方法(判定两个三角形全
等的方法指:(1)“边边边”;(2)“边角边”(3)“角边角”。

)
3.通过典型例题的研究,学习和掌握演绎推理的规则;会用三角形全等的判定定理和性质定理证明有关线段相等、角相等以及平行、垂直的简单的问题,
4.通过实例认识图形的放大和缩小;理解相似形的概念,能在方格纸上进行关于图形的放大和缩小的画图操作。

理解相似比的意义,能根据相似比想像图形的放大和缩小,
并对放缩情况进行估计
5.掌握平行线分线段成比例定理,在证明过程中体会运动观点与分类讨论方法。

掌握三角形一边的平行线的判定方法(说明1)[来源:学_科_网Z_X_X_K]
6.理解相似三角形的概念,总结相似三角形的对应角相等、对应边成比例等性质,掌握它们的基本运用
7.经历三角形相似与全等的类比过程,进一步体验类比思想、特殊与一般的辩证思想。

掌握判定两个三角形相似的基本方法;掌握两个相似三角形的周长比、面积比以及对应的角平分线比、对应的中线比、对应的高的比的性质;知道三角形的重心。

会用相似三角形的判定与性质解决简单的几何问题和实际问题。

说明:证明和计算中,运用三角形全等或相似不超过两次,或同时运用三角形全等、等腰三角形的性质与判定,分别以一次为限。

可通过例题了解射影定理及比例中项概念。

三、“考纲”要求
考点要求
16、全等形、全等三角形的概念 II
17、全等三角形的性质和判定 III
32、相似形的概念,相似比的意义,画图形的放大和缩小 II
33、平行线分线段成比例定理、三角形一边的平行线的有关定理 III
34、相似三角形的概念 II
35、相似三角形的判定和性质及其应用 III
36、三角形的重心 I
图形与几何(4)
(三角形全等、相似)
一、选择题:(本大题共6题,每题4分,满分24分)
1.下列命题中是真命题的是,,,,,,,( )
(A)直角三角形都相似; (B)等腰三角形都相似;
(C)锐角三角形都相似; (D)等腰直角三角形都相似.
2.如果∽ ,,那么的周长和的周长之比是,,,,,,,( )
(A) ; (B) ; (C) ; (D) .
3.如图,在△ 中,∥ ,分别与、相交于点、,若则︰的值为( ).
(A) ; (B) ; (C) ; (D) .
4. 已知≌ ,若的各边长分别3、4、5,的最大角的度数是,,,,,,, ( ).
(A) 30deg;; (B) 60 deg; ; (C) 90deg; ; (D)
120deg;.
5.在△ABC中,D、E分别是AB、AC上的点,下列命
题中不正确的是( ).[来源:学科网]
(A)若DEBC,则 ; (B)若,则 DEBC;
(C)若DEBC,则 ; (D)若,则DEBC .
6.在△ABC中,D、E分别是AB、AC上的点,DE∥BC,且DE平分△ABC的面积,则DE∶BC等于,,,,,,,,,,,( )
(A) ; (B) ; (C) ; (D) .
二、填空题:(本大题共12题,每4分,满分48分)
7. 在中,点D、E分别在AB、AC边上,DEBC,且DE=2,BC=5,CE=2,则AC = .
8.若△ABC∽△DEF,ang;A=64deg;、ang;B=36deg;则△DEF别中最小角的度数是___________.
9. 如果线段AB=4cm,点P是线段AB的黄金分割点,那么较短线段BP= cm
10. 若两个相似三角形的周长比是4:9,则对应中线的比是 .
11.如图,在等边△ABC中,,点O在AC上,且,点P是AB上一动点,联接OP,以O为圆心,OP长为半径画弧交BC于点D,联接PD,如果,那么AP的长是 .
12. 如图,将沿直线平移到,使点和重合,连结交于点,若的面积是36,则的面积是 .
13.如图,在中,是上一点,联结,要使,还需要补充一个条件.这个条件可以是 .
14. 在平面直角坐标系内,将绕点逆时针旋转,得到 .若点的坐标为(2,1)点B的坐标为(2,0),则点的坐标为 .
15.如果两个相似三角形的对应角平分线的比是2︰3,其中较大的一个三角形的面积是36cm2,那么另一个三角形的面积是_____________cm2
16.如图,点D是Rt 的斜边AB上的点, , 垂足为点E, , 垂足为点F,若AF=15,BE=10, 则四边形DECF的面积
是 .
17.在△ABC中,D、E分别在AB、AC上,AD=3,BD=2 ,AC=10,EC=4,则 .
18. 如图,梯形中,∥ ,,点在边上,,若△ABF与△FCD相似,则的长为 .
三、简答题(本大题共4题,每小题10分,满分40分)
19. 如图,在中,是的中点,是线段延长线上一点,过点作∥ 交的延长线于点,联结 .
求证:(1)四边形是平行四边形;
(2) .
20.如图,已知在中,点、分别在、上,且,与相交于点 .
(1)求证:∽ ;
(2)求证: .
21.如图,已知点是矩形的边延长线上一点,且,联结,过点作,垂足为点,连结、 .
(1)求证:≌ ;
(2)连结,若,且,求的值.
22.已知:如图,是△ 的中线,ang; =ang; ,∥ .
求证: = + .
四、解答题(本大题共3题,23-24每题12分,25题14分,满分38分)
23. 如图,在中,,,垂足为点,、分别是、边上的点,且, .
(1)求证: ;(2)求的度数.
24.如图,直线 ( gt; )与分别交于点 , ,抛物线经过点,顶点在直线上.
(1)求的值;
(2)求抛物线的解析式;
(3)如果抛物线的对称轴与轴交于点,那么在对称轴上找一点,使得
和相似,求点的坐标.
25. 已知在等腰三角形中,,是的中点,是上的动点(不与、重合),联结,过点作射线,使,射线交射线于点,交射线于点 .
(1)求证:∽ ;
(2)设 .
①用含的代数式表示 ;
②求关于的函数解析式,并写出的定义域.
参考答案
一、1.D, 2.B, 3.A,4. C, 5. D, 6. C
二、7. ;8.36deg;;9. ; 10. 4∶9; 11. 6; 12. 18;
13.答案不惟一, (或或或 ); 14.(-1,2); 15.16;
16. 150;
17. 9∶25; 18.2或8;。

相关文档
最新文档