2019-2020学年01月14日南师附中高一上数学期末试卷+解析 (1)

合集下载

江苏省南京市大学附属中学高一数学理上学期期末试卷含解析

江苏省南京市大学附属中学高一数学理上学期期末试卷含解析

江苏省南京市大学附属中学高一数学理上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 下列幂函数中过点,的偶函数是( )A.B.C.D.参考答案:B略2. 求值:=()A. B. C. D.参考答案:C略3. 若样本x1+1,x2+1,…,x n+1的平均数是7,方差为2,则对于样本2x1+1,2x2+1,…,2x n+1,下列结论中正确的是()A.平均数是7,方差是2 B.平均数是14,方差是2C.平均数是14,方差是8 D.平均数是13,方差是8参考答案:D4. 已知圆O1:x2+y2=1与圆O2:x2+y2﹣6x+8y+9=0,则两圆的位置关系为()A.相交B.内切C.外切D.相离参考答案:C【考点】圆与圆的位置关系及其判定.【专题】直线与圆.【分析】求出两个圆的圆心与半径,通过弦心距与半径和与差的关系,判断两个圆的位置关系.【解答】解:圆O1:x2+y2=1的圆心(0,0),半径为:1;圆O2:x2+y2﹣6x+8y+9=0,圆心(3,﹣4),半径为:4.两个圆的圆心距为: =5,恰好是两个圆的半径和,所以两个圆外切.故选:C.【点评】本题考查两个圆的位置关系的判断,求出圆心距与半径和与差的关系是解题的关键.5. 若,满足约束条件,则的最大值是( )A. B. C. D.参考答案:C6. 如右下图,是一个空间几何体的三视图,则这个几何体的外接球的表面积是()(A)(B)(C)(D)参考答案:B略7. 已知点A(2,0),点B(﹣2,0),直线l:(λ+3)x+(λ﹣1)y﹣4λ=0(其中λ∈R),若直线l与线段AB有公共点,则λ的取值范围是()A.[﹣1,3) B.(﹣1,1)∪(1,3)C.[﹣1,1)∪(1,3] D.[﹣1,3]参考答案:D【考点】直线的斜率.【分析】求出直线l恒过定点,求出A,B与定点的斜率,即可得到λ的取值范围;【解答】解:由题意,(λ+3)x+(λ﹣1)y﹣4λ=0(其中λ∈R),则λ(x+y﹣4)+(3x﹣y)=0,∵λ∈R,∴,解得:,∴直线l所过定点(1,3);∵点A(2,0),点B(﹣2,0),设直线l所过定点为:p,则P的坐标(1,3);∴k PA==﹣3,k PB==1,∵直线l与线段AB有公共点,当λ=1时,直线x=1,与线段AB有公共点,当λ≠1时,直线l的斜率k=,∴≥1或≤﹣3,解的﹣1≤λ<1,或1<λ≤3,综上所述:λ的取值范围为[﹣1,3],故选:D.【点评】本题考查直线恒过定点,直线的斜率的范围是解得本题的关键,属于中档题.8. 设S n为等比数列{a n}的前n项和,若a1=1,公比q=2,S k+2﹣S k=48,则k等于()A.7 B.6 C.5 D.4参考答案:D【考点】等比数列的通项公式.【分析】由已知S k+2﹣S k,可得a k+1+a k+2=48,代入等比数列的通项公式求得k值.【解答】解:由题意,S k+2﹣S k=,即3×2k=48,2k=16,∴k=4.故选:D.【点评】本题考查等比数列的通项公式,考查了等比数列的前n项和,是基础题.9. 下表是某厂1~4月份用水量(单位:百吨)的一组数据:,则a=()A.5.25 B .5.15 C .5.2 D.10.5参考答案:A由题意得.∴样本中心为.∵回归直线过样本中心,∴,解得.10. 对于函数,下列命题:ks*5u①函数图象关于直线对称; ②函数图象关于点(,0)对称;③函数图象可看作是把的图象向左平移个单位而得到;④函数图象可看作是把的图象上所有点的横坐标缩短到原来的倍 (纵坐标不变)而得到;其中正确的命题的个数是( )A. 0B. 1C. 2D. 3参考答案: C 略二、 填空题:本大题共7小题,每小题4分,共28分11. 已知,则f (x )的值域为 .参考答案:[,]【考点】三角函数的最值.【专题】计算题;函数思想;转化法;三角函数的求值.【分析】化简函数f (x ),利用二次函数与三角函数的图象和性质,求出函数f (x )的值域即可.【解答】解:∵f(x )=sin 2x+cosx=1﹣cos 2x+cosx=﹣+,且x∈[﹣,],∴cosx∈[﹣,], ∴﹣1≤cosx﹣≤0,∴﹣1≤﹣≤0,∴≤﹣≤,即函数f (x )的值域为[,]. 故答案为:[,].【点评】本题考查了三角函数的化简与求值的应用问题,也考查了求函数最值的应用问题,是基础题目. 12. 直线与直线的距离是________.参考答案:由直线,可化为,则直线和直线之间的距离.13. 已知,,且,若,,则实数的取值范围是 . 参考答案:略14. 设扇形的周长为,面积为,则扇形的圆心角的弧度数是 .参考答案:215. 已知= .参考答案:略16. 函数的定义域为__________.参考答案:17. 若函数的图象关于原点对称,则 .参考答案: -15三、解答题:本大题共5小题,共72分。

2023届江苏省南京师大附中高一数学第一学期期末统考试题含解析

2023届江苏省南京师大附中高一数学第一学期期末统考试题含解析
解得r=2
扇形的周长:2+2+8=12
故选:A
8、A
【解析】根据并集 定义求解即可.
【详解】∵A={1,2,3},B={2,3,4},根据并集的定义可知:
A∪B={1,2,3,4},选项A正确,选项BCD错误.
故选:A.
9、A
【解析】利用平行线间的距离公式计算即可
【详解】由平行线间的距离公式得
故选:A
A. B.
C. D.
7.已知扇形 的圆心角为 ,面积为8,则该扇形的周长为()
A.12B.10
C. D.
8.设集合A={1,2,3},B={2,3,4},则A∪B=()
A.{1,2,3,4}B.{1,2,3}
C.{2,3,4}D.{1,3,4}
9.已知直线 和直线 ,则 与 之间的距离是()
A. B.
(1)写出该特许专营店一年内销售这种纪念章所获得的利润 (元)与每枚纪念章的销售价格 的函数关系式;
(2)当每枚纪念章销售价格 为多少元时,该特许专营店一年内利润 (元)最大,并求出这个最大值;
18.函数 是定义在 上的奇函数,且 .
(1)确定函数 的解析式;
(2)用定义证明 在 上是增函数.
19.设函数 (ω>0),且 图象的一个对称中心到最近的对称轴的距离为
(2) 或
【解析】(1)先求集合B的补集,再与集合A取交集;
(2)把“ ”是“ ”的充分条件转化为集合A与B之间的关系再求解 的取值范围
【小问1详解】
时, ,


【小问2详解】
由题意知:“ ”是“ ”的充分条件,即
当 时, , ,满足题意;
当 时, ,欲满足
则必须 解之得

2019-2020学年江苏省南京市高一上学期期末考试数学试题与答案

2019-2020学年江苏省南京市高一上学期期末考试数学试题与答案
17. (本小题满分 10 分)
已知向量 a = (2, m) ,=b (m −1,6) .
⑴ 若 a / / b ,求实数 m 的值; ⑵ 若 a + b = a − b ,求实数 m 的值. 【答案】⑴ 4 或 −3 ;⑵ 1 ;
4
【解析】⑴ 因为 a / / b , a = (2, m) ,=b (m −1,6) ,所以 2 ×=6 m(m −1) ,
余的细沙量为 y = 101+at (单位: cm3 ),其中 a 为常数.经过 4 min 后发现容器内还剩余 5cm3 的沙
子,再经过 x min 后,容器中的沙子剩余量为1.25cm3 ,则 x = ( ).
A. 4
B. 6
C. 8
D.12
2
高一数学
【答案】C;
2019-2020 学年第一学期 · 期末统考试卷
4, x > 4.
h ( x) ≤ 4 恒成立,故 C,D 正确.
12. 已知向量 a,b 是同一平面α 内的两个向量,则下列结论正确的是( ). A.若存在实数 λ ,使得 b = λa ,则 a 与 b 共线 B.若 a 与 b 共线,则存在实数 λ ,使得 b = λa C.若 a 与 b 不共线,对平面内任意向量 c ,均存在实数 λ , µ ,使得=c λa + µb D.若对平面α 内任意向量 c ,均存在实数 λ , µ ,使得=c λa + µb ,则 a 与 b 不共线

2x
+
π 4

的定义域为(
).
A.
x
|
x


+
π 2
,
k

江苏省南京市南京师大附中2023-2024学年高一上学期期末数学试题

江苏省南京市南京师大附中2023-2024学年高一上学期期末数学试题

江苏省南京市南京师大附中2023-2024学年高一上学期期末数学试题学校:___________姓名:___________班级:___________考号:___________18.已知函数()sin()f x A x w j =+(0A >,0w >,||πj <)的部分图象如图所示.若将函数()f x 的图象上所有点的纵坐标不变,横坐标变为原来的2倍,则所得图象为函数()g x 的图象.(1)求()f x 的解析式;(2)当[0,2]x Î时,求()g x 的单调递减区间.19.已知函数()||f x x x =,函数2()2g x x x m =--.(1)求不等式()321f x ->-的解集;(2)如果对于任意2[1,2]x Î-,都存在1[2,1]x Î-,使得()()21g x f x =,求实数m 的取值范围.21.已知函数()2()log 41x f x ax =++是偶函数.(1)求实数a 的值;(2)若函数22()()222x x f x g x m -=++×的最小值为4-,求实数m 的值.22.设a 为常数,函数2()2cos sin 1f x x a x =--.(1)当1a =时,求()f x 的值域;(2)讨论()f x 在区间()0,π上的零点的个数;(3)设n 为正整数,()f x 在区间()0,πn上恰有2024个零点,求所有可能的正整数n 的值.)x因为202421012=´,所以2024n =或2025;当11a -<<时,则110t -<<,201t <<,()f x 在()0,πk (k 为正整数)内零点个数均为2k ,所以1012n k ==;当1a >,则11t <-,201t <<,()f x 在()0,2πk 和()()0,21πk -(k 为正整数)内零点个数均为2k ,所以2023n =或2024;综上n 的所有可能值为1012,1349,2023,2024,2025.【点睛】方法点睛:(2),(3)利用换元法后得()221f t t at =--+且280a D =+>得存在两个零点,通过对a 的分类讨论确定每种情况下两零点的取值,然后由[]sin 1,1t x =Î-来确定在()0,πn 上的n 可能的值.。

江苏省南京市2019-2020学年高一上学期期末数学试题

江苏省南京市2019-2020学年高一上学期期末数学试题
4.函数 的定义域为()
A. B.
C. D.
5.已知扇形OAB的面积为4,圆心角为2弧度,则 的长为()
A.2B.4C.2πD.4π
6.若向量 满足: ,则 ()
A.1B.2C.5D.
7.函数 图象的大致为()
A. B.
C. D.
8.安装了某种特殊装置的容器内有细沙10cm3,容器倒置后,细沙从容器内流出,tmin后容器内剩余的细沙量为y=101+at(单位:cm3),其中a为常数.经过4min后发现容器内还剩余5cm3的沙子,再经过xmin后,容器中的沙子剩余量为1.25cm3,则x=()
12.已知向量 是同一平面 内的两个向量,则下列结论正确的是()
A.若存在实数 ,使得 ,则 与 共线
B.若 与 共线,则存在实数 ,使得
C.若 与 不共线,则对平面 内的任一向量 ,均存在实数 ,使得
D.若对平面 内的任一向量 ,均存在实数 ,使得 ,则 与 不共线
第II卷(非选择题)
请点击修改第II卷的文字说明
3.B
【解析】
【分析】
利用 分段法,判断出 的大小关系.
【详பைடு நூலகம்】
, ,由于 ,所以 ,所以 .
故选:B
【点睛】
本小题主要考查指数式、对数式和三角函数比较大小,属于基础题.
4.C
【解析】
【分析】
根据正切型三角函数定义域的求法,求得 的定义域.
【详解】
由 ,解得 ,所以 的定义域为 .
故选:C
【点睛】
本小题主要考查正切型三角函数定义域的求法,属于基础题.
评卷人
得分
三、填空题
13.已知 和 都是单位向量,且 ,则向量 与 的夹角的余弦值是____.

江苏省南京市2019-2020学年高一上学期期末统考数学试题Word版含答案

江苏省南京市2019-2020学年高一上学期期末统考数学试题Word版含答案

江苏省南京市2019-2020学年上学期期末考试高一数学试题注意事项:1.本试卷共4页,包括填空题(第1题~第14题)、解答题(第15题~第20题)两部分.本试卷满分为160分,考试时间为120分钟.2.答题前,请务必将自己的姓名、学校、班级、学号写在答题卡的密封线内.试题的答案写在答题卡...上对应题目的答案空格内.考试结束后,交回答题卡.一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置.......上. 1.已知集合M ={x |0≤x <2},N ={-1,0,1,2},则M ∩ N = ▲ . 2.计算:lg4+lg 52的值是 ▲ .3.函数 f (x )=(x -2)12的定义域是 ▲ . 4.已知 tan α=2,则 tan(α+π4) 的值是 ▲ .5.若函数 f (x )=cos x +|2x -a | 为偶函数,则实数a 的值是 ▲ .6.已知向量a =(1,2),b =(-2,1).若向量a -b 与向量k a +b 共线,则实数k 的值是 ▲ . 7.已知角α的终边经过点P (12,5),则sin(π+α)+cos(-α) 的值是 ▲ .8.已知函数 f (x )=⎩⎪⎨⎪⎧log 2(2-x ),x <1,2x ,x ≥1,则 f (-2)+f (log 23) 的值是 ▲ .9.在△ABC 中,若 tan A >1,则角A 的取值范围是 ▲ .10.在平行四边形ABCD 中,AB →=a ,AD →=b .若|a |=2,|b |=3,a 与b 的夹角为 π3,则线段BD 的长度为 ▲ .11.已知α∈(0,π2),且满足 sin 2α_x001F_-3cos 2α_x001F_sin αcos α =2,则tan α 的值是 ▲ .12.已知函数 f (x )=sin(ωx -π3) (ω>0),将函数 y =f (x ) 的图象向左平移 π个单位长度后,所得图象与原函数图象重合,则ω的最小值是 ▲ .13.如图,已知函数f (x )的图象为折线ACB (含端点A ,B ),其中A (-4,0),B (4,0),C (0,4),则不等式 f (x )>log 2(x +2) 的解集是 ▲ .14.若m >0,且关于x 的方程 (mx -1)2-m =x 在区间 [0,1] 上有且只有一个实数解,则实数m 的取值范围是 ▲ .二、解答题:本大题共6小题,共90分.请在答题卡指定区域内........作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)已知向量a =(1,2),b =(-3,4). (1)求向量a +b 与向量a 夹角的大小; (2)若a ⊥(a +λb ),求实数λ的值.16.(本小题满分14分)已知函数 f (x )=A sin(ωx +φ) ( A >0,ω>0,0<φ<π) 的图象如图所示. (1)求A ,ω,φ的值;(2)若x ∈[-π2,π12],求f (x )的值域.(第16题图)已知sin α=-437,α∈(-π2,0).(1)求cos(π4+α)的值;(2)若sin(α+β)=-3314,β∈(0,π2),求β的值.18.(本小题满分16分)如图,已知OPQ 是半径为1,圆心角为 π3的扇形,点A 在弧 ⌒PQ 上(异于点P ,Q ),过点A 作AB ⊥OP ,AC ⊥OQ ,垂足分别为B ,C .记∠AOB =θ,四边形ACOB 的周长为l .(1)求l 关于θ的函数关系式;(2)当θ为何值时,l 有最大值,并求出l 的最大值.19.(本小题满分16分)如图,在矩形ABCD 中,点E 在边AB 上,且AE →=2EB →.M 是线段CE 上一动点. (1)若M 是线段CE 的中点,AM →=m AB →+n AD →,求m +n 的值; (2)若AB =9,CA →·CE →=43,求 (MA →+2MB →)·MC →的最小值.P(第18题图)MEDCBA(第19题图)如果函数f(x)在定义域内存在区间[a,b],使得该函数在区间[a,b]上的值域为[a2,b2],则称函数f(x)是该定义域上的“和谐函数”.(1)求证:函数f(x)=log2(x+1)是“和谐函数”;(2)若函数g(x)=x2-1+t (x≥1)是“和谐函数”,求实数t的取值范围.江苏省南京市2019-2020学年上学期期末考试高一数学试题参考答案说明:1.本解答给出的解法供参考.如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,填空题不给中间分数.一、填空题:本大题共14小题,每小题5分,共70分.1.{0,1} 2.1 3.[2,+∞) 4.-3 5.06.-1 7.713 8.5 9.(π4,π2) 10.711.3 12.2 13.(-2,2) 14.(0,1]∪[3,+∞)注:第1、3、13题的答案必须是集合或区间形式,第9、14题可以用不等式表示;其它题严格按标准执行。

2019-2020学年江苏南京高一上学期期末数学试卷详解版

2019-2020学年江苏南京高一上学期期末数学试卷详解版

2019~2020学年江苏南京高一上学期期末数学试卷(详解)一、单项选择题(本大题共8题,每小题5分,共计40分。

)2.A.B.C.D.【答案】【解析】已知向量,,则向量的坐标为( ).D ∵向量,,∴,选项正确.故选.3.A.B.C.D.【答案】已知,,,则,,的大小关系是( ).B1.A.B.C.D.【答案】【解析】已知集合,集合,则( ).C ∵集合,集合,∴.故选.【解析】,,∵,∴,∴.故选.4.A. B.C.D.【答案】【解析】函数的定义域为( ).C ∵函数,则,,即,,∴函数的定义域为.故选.5.A.B.C.D.【答案】【解析】已知扇形的面积为,圆心角为弧度,则的长为( ).B∵扇形面积为,圆心角又为,∴,则,由,则.即,,解得.故的长为.故选.6.A.B.C.D.【答案】【解析】若向量,满足:,,,则( ).D 依题意,,,∴,,∴,∴,,∴,∴.故选.7.A.B.C. D.【答案】【解析】函数图象的大致为( ).A 的定义域为,故排除选项;,所以函数是偶函数,图象关于轴对称,故排除选项;又当时,,,令,得,当时,,单调递增,当时,,单调递减,故排除选项.故选.8.A.B.C.D.【答案】【解析】安装了某种特殊装置的容器内有细沙,容器倒置后,细沙从容器内流出,后容器内剩余的细沙量为(单位:),其中为常数.经过后发现容器内还剩余的沙子,再经过后,容器中的沙子剩余量为,则( ).C由题意可知,后,剩沙子,则,∴,又∵再过剩沙子,∴,∴,∴.故选.二、多项选择题(本大题共4题,每小题5分,共计20分。

)9.A. B.C.D.【答案】A 选项:【解析】下列各选中,值为的是( ).AC根据换底公式有:,故正确;B 选项:C 选项:D 选项:,故错误;,故正确;原式的平方可得:,∴原式,故错误.故选 A C .10.A.B.C.D.【答案】A 选项:B 选项:C 选项:D 选项:【解析】记函数的图象为,则下列结论正确的是( ).函数的最小正周期为函数在区间上单调递增直线是图象的一条对称轴将函数的图象向右平移个单位长度,得到图象ABC∵函数,∴函数的最小正周期为,故正确;令,,,,则函数在上单调递增,当时,在上单调递增,故正确;令,,则,,函数的对称轴为,,当时,函数的一对称轴为,故正确;将函数的图象向右平移个单位长度,得到,故错误.故选 A B C .11.A.B.C.D.【答案】【解析】已知函数,,则下列结论正确的是( ).若,则函数的最小值为若,则函数的值域为若,则函数有且仅有一个零点若,则恒成立BCD 若,则,故取得的最小值.所以选项错误.若,则当时,,当时,.所以当时,,当时,.故的值域为.所以选项正确.若,当时,,当时,,当时,.故当时,解得,只有一个零点.所以选项正确.当时,单调递增,此时有,所以恒成立.故选项正确.一综上所述,结论正确的有、、.故选、、.12.A.B.C.D.【答案】A 选项:B 选项:C 选项:D 选项:【解析】已知向量,是同一平面内的两个向量,则下列结论正确的是( ).若存在实数,使得,则与共线若与共线,则存在实数,使得若与不共线,则对平面内的任一向量,均存在实数,,使得若对平面内的任一向量,均存在实数,,使得,则与不共线ACD若存在实数,使得,则不可能为零向量,所以与共线,故正确;若与共线,当为零向量时,不为零向量时,不存在实数,使得,故错误;若与不共线,则与可作为平面内一组基底,则存在实数,,使得平面内的任一向量,都可以表示成,故正确;若对平面内的任一向量,均存在实数,,使得,则与为平面内的一组基底,故与不共线,故正确.故选 A C D .三、填空题(本大题共4题,每小题5分,共计20分。

【解析】江苏省南京师大附中2019-2020学年高一上学期期中考试数学试题

【解析】江苏省南京师大附中2019-2020学年高一上学期期中考试数学试题

南京师大附中2019-2020学年度第1学期高一年级期中考试数学试卷一、单选题:本大题共10小题,每小题2分,共计20分.每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{2,4,6,8,10}A =,{4,8}B =,则A C B =( ). A. {4,8} B. {2,6} C. {2,6,10}D.{2,4,6,8,10}【答案】C 【分析】A CB 表示A 中不包含B 的集合,容易选出答案。

【详解】A C B 表示A 中不包含B 的集合,即A C B ={2,6,10}.故选:C【点睛】此题考查集合的补集,熟知补集概念容易做出题目,属于简单题目. 2.若21{0,,}x x ∈,则x =( ). A. 1 B. 1-C. 0或1D. 0或1-【答案】B 【分析】根据集合中元素的确定性得出1肯定是x 或者2x 的一个,又由互异性可知1只能为2x ,较易解出答案.【详解】根据集合中元素的确定性和互异性可知,只能21x =,且1x ≠; 所以1x =-。

故选:B【点睛】此题考查集合元素三特性中的确定性和互异性,重点是互异性的理解,即同一个集合里不能出现两个相同的元素,属于简单题目.3.函数ln(1)y x =+-的定义域为( ).A. (1,2)B. (1,2]C. (2,1)-D. [2,1)-【答案】C 【分析】根号里面大于等于零,分母不等于零,对数函数真数大于零,列出不等式即可求出定义域的取值范围.【详解】由题意可得:24010x x ⎧->⎨->⎩,即21x -<<故选:C【点睛】此题考查具体函数求定义域,根据根号里面大于等于零,分母不等于零,对数函数真数大于零,列出不等式求交集较易求的定义域,属于简单题目. 4.下列各组的函数,()f x 与()g x 是同一个函数的是( ).A.(),()f x x g x ==B. 0()1,()f x g x x == C. 2(),()f x x g x == D. ()1,()xf xg x x==【答案】A【分析】同一函数指定义域和对应法则都相同,根据这一标准即可进行判断. 【详解】A 选项:()f x x=和()g x 的定义域都是R ,且()g x x ==即()f x 和()g x 的对应法则也一样,所以是同一函数,所以A 正确.B 选项:()1f x =的定义域是R ,而0()g x x =的定义域是0x ≠,所以B 不正确.C 选项:()f x x =的定义域是R ,而2()g x =的定义域是0x >,所以C 不正确.D 选项:()1f x =的定义域是R ,而()xg x x=的定义域是0x ≠,所以D 不正确. 故选:A【点睛】此题考查同一函数概念,只有定义域和对应法则都相同时才是同一函数,属于简单5.已知函数2,10(),01x x f x x x --≤≤⎧=⎨<≤⎩,则下列图像错误的是( ).A. (1)=-y f x 的图像B. ()y f x =的图像C. ()y f x =-的图像D. ()y f x =的图像【答案】B 【分析】先画出()f x 的图像,再分析每个选项的函数对应()f x 是怎样变化了即可较易选出答案。

江苏省南京高一上学期期末数学试题(解析版)

江苏省南京高一上学期期末数学试题(解析版)

一、单选题1.已知,则( ){}R,{13},2U A x x B x x ==-<<=≤∣∣()U A B ⋃=ðA . B . (](),12,-∞-+∞ ()[),12,-∞-⋃+∞C . D .[)3,+∞()3,+∞【答案】C【分析】由并集和补集的概念即可得出结果.【详解】∵ {}R,{13},2U A xx B x x ==-<<=≤∣∣∴,则, ),3(A B ⋃=-∞,()[)3U A B ⋃=+∞ð故选:C.2.已知,则( ) 22log 3,log 5a b ==18log 15=A .B .21a ba +-12a ba++C . D .1a b -+-1a b +-【答案】B【分析】利用对数的换底公式和对数的运算性质进行运算求解即可. 【详解】,2221822log 15log 3log 5log 15log 1812log 312a ba++===++故选:B .3.设为实数,且,则“”是“的( ) a b c d ,,,c d <a b <”a c b d -<-A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B【分析】根据充分条件、必要条件的定义判断即可.【详解】解:由不能推出,如,,,, a b <a c b d -<-2a =3b =0c =1d =满足,但是,故充分性不成立;a b <a c b d -=-当时,又,可得,即,故必要性成立; a c b d -<-c d <a c c b d d -+<-+a b <所以“”是“的必要不充分条件. a b <”a c b d -<-故选:B.4.函数的零点所在的大致区间为( )()3ln f x x x=-A . B . C . D .()0,1()1,2()2,e ()e,3【答案】D【分析】由题意可知在递增,且,由零点存在性定理即可得出答案. ()f x ()0,∞+()()e 0,30f f 【详解】易判断在递增,. ()f x ()0,∞+()()3e lne 0,3ln310ef f =-=-由零点存在性定理知,函数的零点所在的大致区间为.()3ln f x x x=-()e,3故选:D.5.已知,则的值是( )π1sin 63x ⎛⎫+= ⎪⎝⎭25πsin()2cos (6π3x x -+-A .B .C .D 59-1959【答案】C 【分析】令,代入所求式子,结合诱导公式化简即可得出结果. π6t x =+【详解】令,则,, π6t x =+π6=-x t 1sin 3t =则. 2225π125sin()2cos ()sin(π)2cos ()sin 2sin 63399ππ2x x t t t t -+-=-+-=+=+=故选:C.6.将函数的图象向右平移个单位长度,在纵坐标不变的情况下,再把平移()π2sin 43⎛⎫=- ⎪⎝⎭f x x π3后的函数图象上每个点的横坐标变为原来的2倍,得到函数的图象,则函数所具有的性()g x ()g x 质是( ) A .图象关于直线对称3x π=B .图象关于点成中心对称π,06⎛⎫⎪⎝⎭C .的一个单调递增区间为()g x 5ππ,44⎡⎤-⎢⎥⎣⎦D .曲线与直线 ()g x y =π6【答案】D【分析】先利用题意得到,然后利用正弦函数的性质对每个选项进行判断即可()π2sin 23⎛⎫=+ ⎪⎝⎭g x x 【详解】函数的图象向右平移个单位长度得到()f x π3,ππ5ππ2sin 42sin 42sin 43333⎛⎫⎛⎫⎛⎫⎛⎫=--=-=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭y x x x 纵坐标不变,横坐标变为原来的2倍得到,()π2sin 23⎛⎫=+ ⎪⎝⎭g x x对于A ,因为ππsin 2sin π01,33⎛⎫⨯+==≠± ⎪⎝⎭所以直线不是的对称轴,故错误;3x π=()g x A对于B , ππ2πsin 2sin0,633⎛⎫⨯+==≠ ⎪⎝⎭所以图象不关于点成中心对称,故错误;π,06⎛⎫⎪⎝⎭B 对于C ,当,则, 5ππ,44⎡⎤∈-⎢⎥⎣⎦x π13π5π2,366⎡⎤+∈-⎢⎥⎣⎦x 因为正弦函数在不单调,故不是的一个单调递增区间,故错sin y x =13π5π,66⎡⎤-⎢⎥⎣⎦5ππ,44⎡⎤-⎢⎥⎣⎦()g x C 误;对于D ,当则或, ()g x =sin 23⎛⎫+=⎪⎝⎭x πππ22π33+=+x k 2π2π,Z 3+∈k k 则或,则相邻交点距离最小值为,故D 正确πx k =Z π6,+∈k k ππ6故选:D. 7.函数的图象大致为( ) ()22cos 1x xf x x =+A . B .C .D .【答案】D【分析】利用函数的奇偶性及在上的函数值正负逐个选项判断即可.()f x π0,2⎛⎫⎪⎝⎭【详解】因为,定义域为R , ()22cos 1x xf x x =+所以, ()222()cos()2cos ()()11x x x xf x f x x x ---==-=--++所以为奇函数,又因为时,所以由图象知D 选项正确,()f x π0,2x ⎛⎫∈ ⎪⎝⎭()0f x >故选D .8.高斯是德国著名的数学家,近代数学奠基者之一,用其名字命名的“高斯函数”为:设,用x ∈R 表示不超过的最大整数,则称为高斯函数.例如:.已知函数[]x x []y x =][3.64,3.63⎡⎤-=-=⎣⎦,则函数的值域是( ) ()1e 21e xxf x =-+()()y f x f x =+⎡⎤⎣-⎡⎤⎦⎣⎦A . B .C .D .{}1,0-{}0{}0,1{}1,0,1-【答案】A【分析】依题意可得,再根据指数函数的性质讨论,和时,函数()1121e x f x =-++0x >0x =0x <的单调性与值域,即可得出答案.【详解】因为,定义域为, ()1e 11e 11111121e 21e 21e 21e x x x x xx f x +-⎛⎫=-=-=--=-+⎪++++⎝⎭R 因为在定义域上单调递增,则在定义域上单调递减, 1e x y =+11e xy =+所以在定义域上单调递减,()1121e xf x =-++R 时,, 0x <()()()111e 0,1,,1,0,,01e 22xx f x f x ⎛⎫⎛⎫⎡⎤∈∈∈= ⎪ ⎪⎣⎦+⎝⎭⎝⎭()00f ⎡⎤=⎣⎦时,; 0x >()()()111e 1,,0,,,0,11e 22xx f x f x ∞⎛⎫⎛⎫⎡⎤∈+∈∈-=- ⎪ ⎪⎣⎦+⎝⎭⎝⎭则时,0x >()()101,f x f x ⎡⎤⎡⎤+-=-+=-⎣⎦⎣⎦时,,0x <()()()011f x f x ⎡⎤⎡⎤+-=+-=-⎣⎦⎣⎦时,.0x =()()000f x f x ⎡⎤⎡⎤+-=+=⎣⎦⎣⎦故选:A.【点睛】关键点睛:本题解题关键在于理解题中高斯函数的定义,才能通过研究的性质来研()f x 究的值域,突破难点. ()()y f x f x =+⎡⎤⎣-⎡⎤⎦⎣⎦二、多选题9.下列说法正确的是( ) A .若为正整数,则 ,a b n >n n a b >B .若,则0,0b a m >>>a m ab m b+>+C .22222a ba b++≥D .若,则0απ<<0sin 1α<<【分析】利用不等式性质、基本不等式及正弦函数的图象性质逐个选项判断即可得到答案. 【详解】对于A ,若,则,故A 错误; 1,1,2a b n ==-=n n a b =对于B ,时,,故B 正确; 0,0b a m >>>a m aab bm ab am b a b m b+>⇔+>+⇔>+对于C ,由,则,当且仅当时取等号,故C 正确;20,20a b >>22222a b a b ++≥=⨯a b =对于D ,当时,,故D 错误; π2α=πsin 12=故选:BC .10.设为实数,已知关于的方程,则下列说法正确的是( )m x ()2310mx m x +-+=A .当时,方程的两个实数根之和为0 3m =B .方程无实数根的一个必要条件是1m >C .方程有两个不相等的正根的充要条件是 01m <<D .方程有一个正根和一个负根的充要条件是 0m <【答案】BCD【分析】逐项分析每个选项方程根的情况对应的参数m 满足的不等式,解出m 的范围,判断正误. 【详解】对于A 选项,时无实根,A 错误;3m =2310x +=对于B 选项,当时方程有实根,当时,方程无实根则,解得0m =0m ≠2(3)40m m --<19m <<,一个必要条件是,B 正确;1m >对于C 选项,方程有两个不等正根,则,,,,解得; 0m ≠0∆>30mm ->10m>01m <<对于D 选项,方程有一个正根和一个负根,则,,解得,D 正确; 0m ≠10m<0m <故选:BCD.11.设,已知 ) 0,0a b >>22,a b M N ab +=A .有最小值 B .没有最大值M MC .D .N N 【答案】ABD【分析】由均值不等式分别求出的最值,即可得出答案. ,M N 【详解】时正确, ,0a b >()[)10,,2,AB b b a t M t a a b t∞∞=∈+=+=+∈+,时错误,D 正确; 0,0a b >>2a b +C ≥12.设为正实数,为实数,已知函数,则下列结论正确的是( ) ωa ()()4sin f x x a ωϕ=++A .若函数的最大值为2,则()f x 2a =-B .若对于任意的,都有成立,则 x ∈R ()()πf x f x +=2ω=C .当时,若在区间上单调递增,则的取值范围是 π3ϕ=()f x ππ,62⎡⎤-⎢⎥⎣⎦ω10,3⎛⎤ ⎥⎝⎦D .当,函数在区间上至少有两个零点,则的取值a =-ϕ∈R ()f x π0,2⎡⎤⎢⎥⎣⎦ω范围是 [)4,+∞【答案】ACD【分析】对A :根据正弦函数的有界性分析判断;对B :利用函数的周期的定义分析判断;对C :以为整体,结合正弦函数的单调性分析判断;对D :以为整体,结合正弦函数的性质x ωϕ+x ωϕ+分析判断.【详解】A 选项,由题意,则,A 正确; 42a +=2a =-B 选项,若,则的周期为, ()()πf x f x +=()f x π设的最小正周期为,则, ()f x T ()*2π=πkT kk ωN =Î解得,B 错误;()*2ωk k N =ÎC 选项,当时, π3ϕ=∵,则,ππ,62x ⎡⎤∈-⎢⎥⎣⎦πππππ,36323x ωωω⎡⎤+∈-++⎢⎥⎣⎦若在区间上单调递增,则,()f x ππ,62⎡⎤-⎢⎥⎣⎦0πππ632πππ232ωωω⎧⎪>⎪⎪-+≥-⎨⎪⎪+≤⎪⎩解得,C 正确;10,3ω⎛⎤∈ ⎥⎝⎦选项,由题意可得,对,在上至少两个零点,D ()sin x ωϕ+=ϕ∀∈R π0,2⎡⎤⎢⎥⎣⎦∵,则,π0,2x ⎡⎤∈⎢⎥⎣⎦π,2x ωϕϕωϕ⎡⎤+∈+⎢⎥⎣⎦若对,在上至少两个零点,则,解得,D 正确;ϕ∀∈R π0,2⎡⎤⎢⎥⎣⎦π2π2ωϕϕ⎛⎫+-≥ ⎪⎝⎭4ω≥【点睛】方法点睛:求解函数y =A sin(ωx +φ)的性质问题的三种意识(1)转化意识:利用三角恒等变换将所求函数转化为f (x )=A sin(ωx +φ)的形式.(2)整体意识:类比y =sin x 的性质,只需将y =A sin(ωx +φ)中的“ωx +φ”看成y =sin x 中的“x ”,采用整体代入求解. ①令ωx +φ=k π+(k ∈Z ),可求得对称轴方程. π2②令ωx +φ=k π(k ∈Z ),可求得对称中心的横坐标.③将ωx +φ看作整体,可求得y =A sin(ωx +φ)的单调区间,注意ω的符号. (3)讨论意识:当A 为参数时,求最值应分情况讨论A >0,A <0.三、填空题13.命题“”的否定是__________. 21,20x x ∃≥-<【答案】21,20x x ∀≥-≥【分析】根据特称命题的否定,可得答案. 【详解】由题意,则其否定为. 21,20x x ∀≥-≥故答案为:. 21,20x x ∀≥-≥14.已知,则__________.2212sin cos 2sin cos θθθθ+=-tan θ=【答案】3【分析】将已知式中分子,再分子分母同时除以,解方程即可得出答案.221sin cos θθ=+2cos θ【详解】由题意,222222sin 2sin cos cos tan 2tan 12sin cos tan 1θθθθθθθθθ++++==--即,则. tan 12tan 1θθ+=-tan 3θ=故答案为:3.15.设函数,则满足的的取值范围是__________.21,0()3,0x x x f x x +≤⎧=⎨>⎩3()()32f x f x +->x 【答案】()1,+∞【分析】结合函数解析式,对分三种情况讨论,分别计算可得.x 【详解】当时,,则在0x ≤()33212141122f x f x x x x ⎛⎫⎛⎫+-=++-+=-≤- ⎪ ⎪⎝⎭⎝⎭()332f x f x ⎛⎫+-> ⎪⎝⎭当时,,在单调递增,时302x <≤()3332132222x x f x f x x x ⎛⎫⎛⎫+-=+-+=+- ⎪ ⎪⎝⎭⎝⎭R 1x =,则的解集为;132123+⨯-=()332f x f x ⎛⎫+-> ⎪⎝⎭31,2⎛⎤⎥⎝⎦当时,,则在时恒成立;32x >()33022*******x x f x f x -⎛⎫+-=+>+> ⎪⎝⎭()332f x f x ⎛⎫+-> ⎪⎝⎭32x >综上,的解集为.()332f x f x ⎛⎫+-> ⎪⎝⎭()1,+∞故答案为:.()1,+∞16.已知函数是定义在上不恒为零的偶函数,且对于任意实数都有()f x R x ()1()(1)x f x xf x -=-成立,则__________.7(())2f f =【答案】0【分析】根据解析式求出,进而得到若,则,从而求出.102f ⎛⎫= ⎪⎝⎭()10f x -=()0f x =7(())02f f =【详解】由,令可得,今可得,()1()(1)x f x xf x -=-0x =()00f =12x =11112222f f ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭由是偶函数可得,则, ()f x 1122f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭102f ⎛⎫= ⎪⎝⎭时,若,则,0,1x ≠()10f x -=()0f x =则,135702222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭则.7(((0)02f f f ==故答案为:0.四、解答题17.设,已知集合. m ∈R (){}2321,2201x A xB x x m x m x +⎧⎫=<=+--<⎨⎬-⎩⎭∣∣(1)当时,求;1m =A B ⋃(2)若“”是“”的必要条件,求的取值范围.x B ∈x A ∈m 【答案】(1)3,12⎛⎫- ⎪⎝⎭(2) [)3,+∞【分析】(1)求出集合,由并集的定义即可得出答案.,A B(2)由“”是“”的必要条件可得,则,解不等式即可得出答案. x B ∈x A ∈A B ⊆322m -≤-【详解】(1)由可得,即,则, 3211x x +<-2301x x +<-()()1230x x -+<3,12A ⎛⎫=- ⎪⎝⎭时,.()(){210},1B x x m x m =+-<=∣13,1,,122B A B ⎛⎫⎛⎫=-⋃=- ⎪ ⎪⎝⎭⎝⎭(2)由“”是“”的必要条件可得, x B ∈x A ∈A B ⊆则,则,实数的取值范围是. 322m -≤-3m ≥m [)3,+∞18.设,计算下列各式的值: tan 2α=(1);2sin cos 3sin cos αααα+-(2).22sin sin cos ααα-【答案】(1)1 (2)5【分析】(1)所求表达式分子分母同时除以,代入求解即可;cos α(2)将分子看成,所求表达式分子分母同时除以,代入求解即可;2()222sin cos αα+2cos α【详解】(1)原式;2tan 122113tan 1321αα+⨯+===-⨯-(2)原式. ()22222222sin cos 2tan 22225sin sin cos tan tan 22αααααααα++⨯+====---19.设函数和的定义域为,若是偶函数,是奇函数,且()f x ()g x ()1,1-()f x ()g x .()()2lg(1)f x g x x -=-(1)求函数和的解析式;()f x ()g x (2)判断在上的单调性,并给出证明.()f x ()0,1【答案】(1), ()lg(1)lg(1)f x x x =-++()()()lg 1lg 1g x x x =+--(2)单调递减,证明见解析【分析】(1)根据函数奇偶性构造关于和得方程组,进而求出它们的解析式; ()f x ()g x (2)根据函数单调性定义进行证明.【详解】(1)由,可得,()()2lg(1)f x g x x -=-()()2lg(1)f x g x x ---=+由为偶函数,为奇函数,可得, ()f x ()g x ()()2lg(1)f x g x x +=+则,;()lg(1)lg(1)f x x x =-++()()()lg 1lg 1g x x x =+--(2)由(1)得()2lg(1)f x x =-在单调递减,证明如下: ()f x ()0,1取任意,1212,(0,1),x x x x Î< ()()22211212221lg(1)lg(1)lg 1x f x f x x x x --=---=-由,可得,则, 1201x x <<<2212110x x ->->2122111x x ->-则, ()()2112221lg 01x f x f x x --=>-则,则在单调递减.()()12fx f x >()f x ()0,120.如图所示,有一条“L ”,河道均足够长.现过点修建一条长为的栈道,开辟出直角三角形区域(图中)养殖观赏鱼,且D m l ABOAB A .点在线段上,且.线段将养殖区域分为两部分,其中上方养殖金OAB θ∠=H AB OH AB ⊥OH OH 鱼,下方养殖锦鲤.OH(1)当养殖观赏鱼的面积最小时,求的长度;l (2)若游客可以在河岸与栈道上投喂金鱼,在栈道上投喂锦鲤,且希望投喂锦鲤的道路OA AH HB ,求的取值范围. 1θ【答案】(1)(2). ππ,42⎡⎫⎪⎢⎣⎭【分析】(1)过作垂直于,求得,从而得出养殖观赏D ,DM DN ,OAOB AM BN θ=鱼的面积,利用基本不等式可求得最小时的值,进而113tan 2tan OAB S OA OB θθ=⋅=+A OAB S A θ求得的长度;l (2)由,可得,则,由题意π2AOB OHA ∠=∠=BOH θ∠=,,tan sin tan OH OH OA AH BH OH θθθ===,则,化切为弦可得即可求得1BH OA AH -+tan 111sin tan θθθ≥+1cos θ≥π0,2θ⎛⎫∈ ⎪⎝⎭结果.【详解】(1)过作垂直于,垂足分别为,D,DM DN ,OA OB ,M N则DM ON DN OM ====,tan tan DM AMBN DN θθθ====养殖观赏鱼的面积, )1113tan 22tan OAB S OA OB θθθ=⋅==+A 由可得,则,当且仅当时取等号, π0,2θ⎛⎫∈ ⎪⎝⎭tan 0θ>13tan tanθθ+≥tanθ=π6θ=则最小时,,此时l 的长度为; OAB S A π6θ=sin cos DM DN l θθ=+==(2)由,可得,π2AOB OHA ∠=∠=BOH θ∠=则,,,tan sin tan OH OH OA AH BH OH θθθ===由题意,则, 1BH OA AH ≥+tan 111sin tan θθθ≥-+而, ()()22sin tan sin 1cos 1cos 1111cos cos 1cos cos 1cos cos sin tan sin θθθθθθθθθθθθθθ-====-++++则可得,则. 1cos θ≥π0,2θ⎛⎫∈ ⎪⎝⎭cos 0θ>cos θ≤ππ,42θ⎡⎫∈⎪⎢⎣⎭21.设为实数,已知函数,. a ()122x x f x =-()()ln ln 2g x x x a =⋅-+(1)若函数和的定义域为,记的最小值为,的最小值为.当()f x ()g x [)1,+∞()f x 1M ()g x 2M 时,求的取值范围;21M M ≤a (2)设为正实数,当恒成立时,关于的方程是否存在实数解?若存在,x ()0g x >x ()()0f g x a +=求出此方程的解;若不存在,请说明理由.【答案】(1) 5,2⎛⎤-∞ ⎥⎝⎦(2)不存在,理由见解析【分析】(1)利用指数函数的单调性及二次函数的性质,分别求出和的最小值,()f x ()g x 12,M M 然后解不等式即可;(2)利用二次函数的性质,求得的最小值为,由题意可得,当时,()g x 1a -1a >()0g x >()21g x >,,可得,即可得出结论. ()112g x <()()0f g x a +>【详解】(1)当时,函数和均单调递增,所以函数单调递增,故1x ≥2x y =12x y =-()122x x f x =-当时,取最小值,则; 1x =()f x 32132M =当时,,,1x ≥ln 0x ≥()()2ln 11g x x a =-+-则当,即时,取最小值,即,ln 10x -=e x =()g x 1a -21M a =-由题意得,则,即的取值范围是; 312a -≤52a ≤a 5,2⎛⎤-∞ ⎥⎝⎦(2)当时,,,0x >ln R x ∈()()2ln 11g x x a =-+-则当,即时,取最小值为,ln 10x -=e x =()g x 1a -则恒成立时,有,即,()0g x >10a ->1a >当时,,, ()0g x >()21g x >()112g x <则,则,()()()()1202g x g x f g x =->()()0f g x a +>故关于的方程不存在实数解.x ()()0f g x a +=22.设,函数. a ∈R ()2πsin cos ,,π2f x x x a x ⎛⎫=-+∈ ⎪⎝⎭(1)讨论函数的零点个数;()f x (2)若函数有两个零点,求证:. ()f x 12,x x 123π2x x +<【答案】(1)答案见解析(2)证明见解析【分析】(1)利用分离参数法分类讨论函数的零点个数;()f x (2)利用根与系数关系和三角函数单调性证明. 123π2x x +<【详解】(1), ()2cos cos 1f x x x a =--++令,即,()0f x =2cos cos 1x x a +=+时,即, π,π2x ⎛⎫∈ ⎪⎝⎭()()21cos 1,0,,0,04t x t t f x ⎡⎫=∈-+∈-=⎪⎢⎣⎭21t t a +=+或即时,无解; 10a +≥114a +<-[)5,1,4a ∞∞⎛⎫∈--⋃-+ ⎪⎝⎭21t t a +=+即时,仅有一解,此时仅有一解; 114a +=-54a =-21t t a +=+12t =-x 2π3即时,有两解, 1104a -<+<514a -<<-21t t a +=+12t =-有两个零点; 1cos 2x =-()f x 综上,时,无零点, [)5,1,4a ∞∞⎛⎫∈--⋃-+ ⎪⎝⎭()f x 时,有一个零点, 54a =-()f x 时,有两个零点; 5,14a ⎛⎫∈-- ⎪⎝⎭()f x (2)有两个零点时,令,则为两解,()f x 1122cos ,cos t x t x ==12,t t 21t t a +=+则,则,121t t +=-12cos cos 1x x +=-则,221122cos 2cos cos cos 1x x x x ++=由可得, 12π,,π2x x ⎛⎫∈ ⎪⎝⎭12cos 0,cos 0x x <<则,则,122cos cos 0x x >2212cos cos 1x x +<则, 2221223πcos sin cos 2x x x ⎛⎫<=- ⎪⎝⎭由可得, 2π,π2x ⎛⎫∈ ⎪⎝⎭223ππ3π,π,cos 0222x x ⎛⎫⎛⎫-∈-< ⎪ ⎪⎝⎭⎝⎭则,由在递减, 123πcos cos 2x x ⎛⎫>- ⎪⎝⎭cos y x =π,π2⎛⎫ ⎪⎝⎭可得,则. 123π2x x <-123π2x x +<【点睛】函数零点的求解与判断方法:(1)直接求零点:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.。

江苏省南京师范大学附属中学2019-2020学年度高一第一学期期末考试数学试卷(PDF版,含解析) (1)

江苏省南京师范大学附属中学2019-2020学年度高一第一学期期末考试数学试卷(PDF版,含解析) (1)
C. 2ln 2 − e
D. sin 5π 6
1
【解析】 log2 3 ⋅ log3 2 = 1; lg 2 + lg 5 = 1 ; 2ln 2 − e=
ln e
2ln 2 − e=
2log2 e − e=
0 ; sin 5π = 1 , 62
故选 ABCD.
10. 对于定义在 R 上的函数 f ( x) ,下列判断错误的有( ).
B. b > a > c
C. c > b > a
【答案】D;
【解析】 a < 0,b > 1, 0 < c < 1,所以 b > c > a .
D. b > c > a
3. 如图,已知点 C 为 △OAB 边 AB 上一点,且 AC = 2CB ,若存在实数 m, n ,使得= OC mOA + nOB ,则
1 3
2
x
−1≥ 0,
解得 −1 < x < 1 且 x ≤ 0 ,所以定义域为 (−1,0] .
6. 设 a,b 是实数,已知角 θ 的顶点为坐标原点,始边与 x 轴的非负半轴重合,终边上有两点 A(a,1) ,
B (−2,b) ,且 sinθ = 1 ,则 a 的值为( ).
3b
A. −4
B. −2
南京师大附中 2019-2020 学年度第 1 学期
高一年级期末考试数学试卷
一、单项选择题:本小题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,只有一项是符 合题目要求的.
{ } 1. 已知集合U = R ,集合=A x | x2 − 3x + 2 > 0 ,则 U A = ( ).

江苏省南京市高一上学期期末数学试题(解析版)

江苏省南京市高一上学期期末数学试题(解析版)

一、单选题1.函数的定义域为( ) ()ln 1y x =+A . B . ()1,+∞()1,-+∞C . D .[)1,-+∞(),1-∞-【答案】B【分析】根据对数的真数大于零可得出关于x 的不等式,即可解得函数的定义域. ()ln 1y x =+【详解】令,解得, 10x +>1x >-故函数的定义域为. ()ln 1y x =+()1,-+∞故选:B.2.“”是“”的( ) 1x >21x >A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A【分析】根据充分条件与必要条件的定义判断即可.【详解】解:因为,则,但是不一定有,所以“”是“”成立的充分不1x >21x >21x >1x >1x >21x >必要条件. 故选:A .3.在某个物理实验中,测得变量x 和变量y 的几组数据,如下表: x0.500.99 2.01 3.98y 0.99-0.010.982.00则下列选项中对x ,y 最适合的拟合函数是( )A . B . C .2y x =21y x =-22y x =-D .2log y x =【答案】D【分析】根据所给数据,代入各函数,计算验证可得结论. 【详解】解:根据,,代入计算,可以排除; 0.50x =0.99y =-A 根据,,代入计算,可以排除、; 2.01x =0.98y =B C 将各数据代入检验,函数最接近,可知满足题意 2log y x =故选:.D【点睛】本题考查了函数关系式的确定,考查学生的计算能力,属于基础题.4.《九章算术》是一部中国古代的数学专著.全书分为九章,共收有246个问题,内容丰富,而且大多与生活实际密切联系.第一章《方田》收录了38个问题,主要讲各种形状的田亩的面积计算方法,其中将圆环或不足一匝的圆环形天地称为“环田”.书中提到这样一块“环田”:中周九十二步,外周一百二十二步,径五步,如图所示,则其所在扇形的圆心角大小为( )(单位:弧度)(注:匝,意为周,环绕一周叫一匝.)A .4B .5C .6D .7【答案】C【分析】设中周的半径是,外周的半径是,圆心角为,根据中周九十二步,外周一百二十1R 2R α二步,径五步,列关系式即可.【详解】设中周的半径是,外周的半径是,圆心角为,,解得.1R 2R α1221921225R R R R αα=⎧⎪=⎨⎪-=⎩6α=故选:C5.已知函数,则的值为( )()12cos ,0,0x x f x x x <⎧⎪=⎨⎪≥⎩π3f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦ABC .4D .14【答案】B【分析】根据分段函数运算求解.【详解】由题意可得:,故πππ1cos cos 3332f ⎛⎫⎛⎫-=-== ⎪ ⎪⎝⎭⎝⎭12π11322f f f ⎡⎤⎛⎫⎛⎫⎛⎫-==== ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦故选:B.6.函数的图像大致为( )()2sin f x x x =A .B .C .D .【答案】A【分析】根据函数是奇函数,且函数在时函数值的正负,从而得出结论.()2sin f x x x =()0,πx ∈【详解】由函数定义域为,,故()2sin f x x x =R ()()()()22sin sin f x x x x x f x -=--=-=-()2sin f x x x=为奇函数,故它的图像关于原点对称,可以排除C 和D ;又函数在时,函数,可以排除B ,所以只有A 符合.()2sin f x x x =()0,πx ∈()2sin 0f x x x =>故选:A .7.在科学技术中,常常使用以为底的对数,这种对数称为自然对数.若取,e 2.71828...=3e 20≈,则( )7e 1100≈ln 55≈A .B .C .4D .673113【答案】C【分析】根据题意结合指、对数运算求解.【详解】由题意可得:.7431100e ln 55ln ln ln e 420e =≈==故选:C.8.函数的零点为,函数的零点为,若()2log 4f x x x =+-1x ()()()log 151a g x x x a =+-->2x ,则实数的取值范围是( ) 211x x ->aA .B .C .D .(()1,2)+∞()2,+∞【答案】D【分析】根据函数单调性,再由确定范围,即可确定实数的取值范围. 211x x ->a 【详解】已知,, ()2log 4f x x x =+-()()()log 151a g x x x a =+-->函数的零点为,()2log 4f x x x =+-1x函数的零点为, ()()()log 151a g x x x a =+-->2x 则()12122log 4log 150a x x x x +-=+--=()12122log 41log 14a x x x x +-=-+--()12122log 1log 1a x x x x +=-+-121x x <-又因为,这两函数均单调递增, 2log y x x =+()()log 111a y x x a =+-->当时,,解得. 121x x <-()212log >log 1a x x -2a >故选:D.二、多选题9.已知角的终边经过点,则( ) θ()()2,0P a a a >A .B .sin θ=cos θ=C .D .1tan 2θ=tan 2θ=【答案】AC【分析】根据三角函数的定义计算即可.【详解】因为角的终边经过点, θ()()2,0P a a a >所以,故A 正确;sin θ=B 错误;cos θ==,故C 正确,D 错误. 1tan 22a a θ==故选:AC.10.若,则( ) 01m a b <<<<A . B . a b m m <m m a b <C .D .log log m m a b >b aa mb m>++【答案】BCD【分析】对于A :构造函数,利用单调性判断;对于B :构造函数,利用单调()x f x m =()mg x x =性判断;对于C :构造函数,利用单调性判断;对于D :利用作差法比较大小.()log m h x x =【详解】对于A :因为,所以单调递减.01m <<()xf x m =因为,所以.故A 错误;a b <a b m m >对于B :因为,所以单调递增.01m <<()mg x x =因为,所以.故B 正确;a b <m m a b <对于C :因为,所以单调递减. 01m <<()log m h x x =因为,所以.故C 正确;a b <log log m m a b >对于D :因为,所以.故D 正()()()()()()220b a b a m b a b bm a am a m b m a m b m a m b m -+-+---==>++++++b aa mb m>++确. 故选:BCD11.已知函数,则( ) ()1tan tan f x x x=+A .的最小正周期为B .的图象关于轴对称()f x π()f x y C .的最小值为2 D .在上为增函数()f x ()f x ππ,42⎛⎫⎪⎝⎭【答案】AD【分析】先利用三角函数基本关系式化简得,再利用周期函数的定义与诱导公式即可()2sin 2f x x=判断A 正确;举反例即可排除B ;取特殊值计算即可判断C 错误;利用三角函数的单调性与复合函数的单调性即可判断D 正确.【详解】对于A ,因为, ()221sin cos sin cos 2tan tan cos sin sin cos sin 2x x x x f x x x x x x x x+=+=+==设的正周期为,则,即, ()f x T ()()f x T f x +=()22sin 2sin 2T x x =+所以,()sin 22sin 2T x x +=由诱导公式可得,即, 22π,Z T k k =∈π,Z T k k =∈又,故,即,则,故, 0T >π0k >0k >1k ≥ππT k =≥所以的最小值为,即的最小正周期为,故A 正确;T π()f x π对于B ,因为, ππ1ππ1tan 2,tan 2ππ4444tan tan 44f f ⎛⎫⎛⎫⎛⎫-=-+=-=+= ⎪ ⎪ ⎪⎛⎫⎝⎭⎝⎭⎝⎭- ⎪⎝⎭又与不关于轴对称, π,24⎛⎫-- ⎪⎝⎭π,24⎛⎫⎪⎝⎭y 所以的图象关于轴对称,故B 错误;()f x y 对于C ,因为,所以2不是的最小值,故C 错误;π24f ⎛⎫-=- ⎪⎝⎭()f x 对于D ,因为,所以,故在上单调递减,且,ππ42x <<π2π2x <<sin 2y x =ππ,42⎛⎫⎪⎝⎭sin 20x >又在上单调递减, 2y x=()0,∞+所以在单调递增,故D 正确. ()2sin 2f x x =ππ,42⎛⎫⎪⎝⎭故选:AD.12.已知函数,对于任意,,则( ) ()y f x =,R x y ∈()()()f x f x y f y =-A . B .()01f =()()22f x f x =C . D .()0f x >()()22f x f y x y f ++⎛⎫⎪⎝⎭≥【答案】ACD【分析】通过赋值法,取具体函数,基本不等式等结合已知条件分选项逐个判断即可. 【详解】令,故A 正确; ()()()()001f x x y f f f x =⇒=⇒=由已知,① ()()()()()()()()()f x f x y f x f y f x y f x y f x f y f y =-⇒=-⇒+=令满足题干要求,则,故B 错()()(),0,11,x f x a a =∈+∞ ()()2222,,x xf x a f x a ==()()22f x f x ≠误;由①可知,令,则,2x x y ==()2222x x x f x f f f ⎡⎤⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦又因为,则,所以,故C 正确; ()()()f x f x y f y =-02x f ⎛⎫≠ ⎪⎝⎭()202x f x f ⎡⎤⎛⎫=> ⎪⎢⎥⎝⎭⎣⎦因为,所以,()0f x>()()f x f y +≥=又由①,令,则, 2x y x y +==()2222x y x y x y f x y f f f ⎡⎤+++⎛⎫⎛⎫⎛⎫+== ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦所以,故D 正确.()()22f x f y x y f ++⎛⎫⎪⎝⎭≥故选:ACD.三、填空题13.函数的图象关于点_________中心对称.(写出一个正确的点坐标即可) 2cos y x =【答案】(答案不唯一)π,02⎛⎫⎪⎝⎭【分析】对称中心的横坐标满足,取得到2cos y x =ππ,Z 2x k k =+Î0k =【详解】对称中心的横坐标满足:,取得到对称中心为.2cos y x =ππ,Z 2x k k =+Î0k =π,02⎛⎫⎪⎝⎭故答案为:π,02⎛⎫⎪⎝⎭14.已知关于的不等式的解集为,则关于的不等式的解集为x 0ax b +>()3,-+∞x 20ax bx +<_________. 【答案】()3,0-【分析】先根据不等式的解集可得的关系及的符号,再根据一元二次不等式的解法即可得解. ,a b a 【详解】由的解集为, 0ax b +>()3,-+∞可得,且方程的解为, 0a >0ax b +=3-所以,则, 3ba-=-3b a =所以,()222303030ax bx a x x x x x +=+<⇒+<⇒-<<即关于的不等式的解集为. x 20ax bx +<()3,0-故答案为:.()3,0-15.已知定义在上的函数满足,且当时,,若R ()f x ()()4f x f x +=[)0,4x ∈()2xf x m =+,则___________.()()202331f f =m =【答案】1【分析】由题意可得函数的周期为4,根据题意结合周期性可得答案.【详解】由可得的函数周期为4,则, ()()4f x f x +=()f x ()()()20235054338f f f m =⨯+==+由,则,解得.()()202331f f =()832m m +=+1m =故答案为:1.四、双空题16.对于非空集合,定义,若,是两个非空集合,且,则M ()0,Φ1,x Mx x M ∉⎧=⎨∈⎩A B A B ⊆___________;若,,且存在,()()1A B x x Φ-Φ=⎡⎤⎣⎦1sin 2A x x ⎧⎫=≥⎨⎬⎩⎭(),2B a a =x R ∈,则实数的取值范围是_______________.()()2A B x x Φ+Φ=a 【答案】 0513,,12612πππ⎛⎫⎛⎫⋃+∞ ⎪ ⎪⎝⎭⎝⎭【分析】第一空分,和且三种情况来研究,第二空根据已知分析出a 的大致x A ∈x B ∉x A ∉x B ∈范围,最后列出不等式求解即可.【详解】即则一定有,所以分三段研究:A B ⊆x A ∈x B ∈时,,,即; x A ∈()1A x Φ=()1B x Φ=()()10A B x x Φ-Φ=⎡⎤⎣⎦时,,,即; x B ∉()0A x Φ=()0B x Φ=()()10A B x x Φ-Φ=⎡⎤⎣⎦且时,,,即.x A ∉x B ∈()0A x Φ=()1B x Φ=()()10A B x x Φ-Φ=⎡⎤⎣⎦综上所述,;()()10A B x x Φ-Φ=⎡⎤⎣⎦由已知()()()()21A B A B x x x x Φ+Φ=⇒Φ=Φ=且, 522,66A x k x k k Z ππππ⎧⎫=+≤≤+∈⎨⎬⎩⎭(),20B a a a =⇒>要满足题意则,此时区间长度时一定满足,故下研究时,(其中A B ⋂≠∅43a π≥403a π<<,即为集合的补集中一段的区间长) 452366ππππ=+-A 此时,因此满足题意的反面情况有或,8023a a π<<<026a a π<<≤513266a a ππ<≤≤解得或,因此满足题意的范围为. 012a π<≤513612a ππ≤≤a 513,,12612πππ⎛⎫⎛⎫⋃+∞ ⎪⎪⎝⎭⎝⎭五、解答题17.求下列各式的值:(1); 6213222⎛⎫⋅ ⎪⎝⎭(2).ln3213log 8log 9e -+【答案】(1)128 (2)8【分析】(1)根据指数幂的运算求解; (2)根据对数和指数的运算性质求解.【详解】(1).612216723322222128⎛⎫+ ⎪⎝⎭⎛⎫⋅=== ⎪⎝⎭(2). ln3213log 8log 9e 3238-+=++=18.若.()π5sin 4sin cos π12ααα⎛⎫++=++ ⎪⎝⎭(1)求的值; sin cos αα⋅(2)若,求的值. ()0,πα∈tan α【答案】(1) 12sin cos 25αα=-(2)43-【分析】(1)化简得到,平方得到,得到答案. 1sin cos 5αα+=112sin cos 25αα+=(2)根据得到,解得,得到答案.12sin cos 025αα=-<7sin cos 5αα-=4sin 53cos 5αα⎧=⎪⎪⎨⎪=-⎪⎩【详解】(1),则,()π5sin 4sin cos π12ααα⎛⎫++=++ ⎪⎝⎭5sin 4cos cos 1ααα+=-+,,,则;1sin cos 5αα+=()21sin cos 25αα+=112sin cos 25αα+=12sin cos 25αα=-(2),所以,即,, 12sin cos 025αα=-<2απ<<πsin 0α>cos 0α<. 7sin cos 5αα-===,解得, 7sin cos 51sin cos 5αααα⎧-=⎪⎪⎨⎪+=⎪⎩4sin 53cos 5αα⎧=⎪⎪⎨⎪=-⎪⎩sin tan s 43co ααα==-19.已知集合,. 14x A xx ⎧⎫=>⎨⎬+⎩⎭()(){}230B x x m x m =---<(1)若,求;3m =-A B ⋃(2)在①,②这两个条件中任选一个,补充在下面问题中,并解答该问题.若A B B = A B ⋂=∅_________,求实数的取值范围.m 注:如果选择多个条件分别解答,按第一个解答计分. 【答案】(1);(),0A B ⋃=-∞(2)选①;若选②. (]{},73-∞-⋃[)2,-+∞【分析】(1)代入的值,求出集合B ,用并集的运算性质计算即可.m (2)若选①,即,则对的值进行分类讨论,根据集合包含关系即可得到的取值A B B = B A ⊆m m 范围.若选②,对的值进行分类讨论,依次根据,求实数的取值范围. m A B ⋂=∅m 【详解】(1),即, ()36060m x x x =-⇒+<⇒-<<()6,0B =-而,即,所以; 441004444x x x x x x x -->⇒>⇒<⇒<-+++(),4A =-∞-(),0A B ⋃=-∞(2)若选①即A B B = B A ⊆时,,即,要满足题意则,与前提矛盾,舍; 3m >23m m >+()3,2B m m =+24m ≤-时,,即,符合题意;3m =23m m =+B =∅时,,即,要满足题意则,即.3m <23m m <+()2,3B m m =+34m +≤-7m ≤-综上所述,实数的取值范围是. m (]{},73-∞-⋃若选②,若,A B ⋂=∅时,,即,要满足题意则,则满足,解得3m >23m m >+()3,2B m m =+A B ⋂=∅34m +≥-,则;7m ≥-3m >若时,,即,满足;3m =23m m =+B =∅A B ⋂=∅时,,即,要满足题意则解得,即;3m <23m m <+()2,3B m m =+24,m ≥-2m ≥-23m -≤<综上,实数的取值范围是.m [)2,-+∞20.函数(,)在一个周期内的图象如图所示.()()sin f x A x =+ωϕ0,0A ω>>0πϕ<<(1)求的解析式; ()f x (2)将的图象向右平移个单位长度后得到函数的图象,设,证明:()f x 2π3()g x ()()()h x f x g x =-为偶函数.()h x 【答案】(1)()2π2sin 23f x x ⎛⎫=+ ⎪⎝⎭(2)证明见解析【分析】(1)由图得到,求得,代入点,求得,2,πA T ==2ω=π,212⎛⎫- ⎪⎝⎭()ππ2π62k k ϕ-+=+∈Z 结合题意得到,即可求得函数的解析式;23ϕπ=(2)由三角函数的图象变换求得,根据偶函数的定义证明即可.()2π2sin 23g x x ⎛⎫=- ⎪⎝⎭【详解】(1)由最值得, 2A =由相邻两条对称轴距离得,则,即,5πππ212122T ⎛⎫=--= ⎪⎝⎭2ππT ω==2ω=此时,()()2sin 2f x x ϕ=+代入点得:,π,212⎛⎫- ⎪⎝⎭πsin 16ϕ⎛⎫-+= ⎪⎝⎭则,即, ()ππ2π62k k ϕ-+=+∈Z ()2π2π3k k ϕ=+∈Z 又因为,所以, 0πϕ<<230,k πϕ==故.()2π2sin 23f x x ⎛⎫=+ ⎪⎝⎭(2)由题意得, ()2π2π2π2sin 22sin 2333g x x x ⎛⎫⎛⎫⎛⎫=-+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭则, ()2π2π2sin 22sin 233h x x x ⎛⎫⎛⎫=+-- ⎪ ⎪⎝⎭⎝⎭因为, ()()2π2π2π2π2sin 22sin 22sin 22sin 23333h x x x x x h x ⎛⎫⎛⎫⎛⎫⎛⎫-=-+---=--++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭所以为偶函数.()h x 21.某企业为响应国家节水号召,决定对污水进行净化再利用,以降低自来水的使用量.经测算,企业拟安装一种使用寿命为4年的污水净化设备.这种净水设备的购置费(单位:万元)与设备的占地面积(单位:平方米)成正比,比例系数为0.2.预计安装后该企业每年需缴纳的水费(单x C 位:万元)与设备占地面积之间的函数关系为.将该企业的净水设备购置费与x ()()2005C x x x =>+安装后4年需缴水费之和合计为(单位:万元). y (1)要使不超过7.2万元,求设备占地面积的取值范围; y x (2)设备占地面积为多少时,的值最小? x y 【答案】(1)[]11,20(2)设备占地面积为时,的值最小. 215m y【分析】(1)由题意解不等式,即可求得; 800.27.25x x ++≤(2)利用基本不等式即可求解. 【详解】(1)由题意得. ()800.205y x x x =+>+要满足题意,则, 7.2y ≤即,解得:. 800.27.25x x ++≤1120x ≤≤即设备占地面积的取值范围为.x []11,20(2), 805800.21117555x y x x x +=+=+--=++≥=当且仅当时等号成立. 5801555x x x +=⇒=+所以设备占地面积为时,的值最小. 215m y 22.已知函数,. ()()1222x x f x -=+()()1222x x g x -=-(1)利用函数单调性的定义,证明:在区间上是增函数; ()f x [)0,∞(2)已知,其中是大于1的实数,当时,,求实()()()2449F x fx mf x =-+m []20,log x m ∈()0F x ≥数的取值范围; m (3)当,判断与的大小,并注明你的结论. 0a ≥()()g x f x ()()1af x a +-【答案】(1)证明见解析 (2)(]1,3(3) ()()()()1g x af x a f x <+-【分析】按照函数单调性的定义的证明步骤:设值,作差,变形,定号,下结论,即可证明;(2)先换元,再分离常数,最后再利用基本不等式即可求出实数的取值范围; m (3)采用作差法,结合基本不等式和指数函数的值域即可比较出大小. 【详解】(1)解:, 120x x ∀>≥()()()()11221211222222x x x x f x f x ---=+-+ 2112121212121222222222221212222x x x x x x x x x x x x x x --++--+-+--⎛⎫===- ⎪⎝⎭因为,所以,,所以, 120x x >≥12220x x ->1221x x +>()()120f x f x ->即在上是增函数.()f x [)0,∞+(2)解:由已知 ()2222244922x x x xF x m --⎛⎫⎛⎫++=⋅-⋅+ ⎪⎪⎝⎭⎝⎭设,由(1)得在上单调递增,即,222xxt -+=()f x []20,log m 11,2m m t ⎡⎤+⎢⎥∈⎢⎥⎢⎥⎣⎦所以, ()229044904494F x t mt mt t m t t⇔-+⇔+⇔+≥≥≤≤①时,,即,当且仅当时取等, m 1322m m +≥934t t+=≥32t =此时要满足恒成立,即;94m t t +≤min 934m t t ⎛⎫+= ⎪⎝⎭≤3m ≤②,此时在上单调递减, 1m <<1322m m +<94y t t =+11,2m m ⎡⎤+⎢⎥⎢⎥⎢⎥⎣⎦即, min119,1222m m m m t ym m ++==+⎛⎫+ ⎪⎝⎭此时要满足恒成立,即,化简得, 94m t t+≤min 1991422m m m t t m m +⎛⎫+=+⎪⎛⎫⎝⎭+ ⎪⎝⎭≤42910m m --≤此时因为,此时恒成立211m m <<⇒<<42910m m --≤综上所述,实数的取值范围是.m (]1,3(3)解:()()()()112222111222x xx x xxg x af x a a a f x -+---=-⋅-++ 2112222222111222222x xxxxx xxxx a a a ⎛⎫++ ⎪=--⋅=--⎪⎪++⎝⎭因为(当且仅当时取等),所以,即, 1222xx +≥0x =12212x x +≥122102x x+-≤由已知,所以, 0a ≥122102xx a ⎛⎫+ ⎪- ⎪⎪⎝⎭≤又因为,所以,即,20x >220122xxx>+220122xxx-<+因此,所以. ()()()()122221101222xx x x x g x af x a a f x ⎛⎫+ ⎪---=--< ⎪⎪+⎝⎭()()()()1g x af x a f x <+-。

江苏省南京市2019-2020学年高一上学期期末考试数学试题 Word版含解析

江苏省南京市2019-2020学年高一上学期期末考试数学试题 Word版含解析

南京市2019-2020学年度第一学期期末调研测试高一数学注意事项:1.本试卷包括单项选择题(第1题~第8题)、多项选择题(第9题~第12题)、填空题(第13题~第16题)、解答题(第17题~第22题)四部分.本试卷满分为150分,考试时间为120分钟.2.答卷前,考生务必将自己的学校、姓名、考生号填涂在答题卡上指定的位置.3.作答选择题时,选出每小题的答案后,用2B 铅笔在答题卡上将对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.4.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,再写上新答案;不准使用铅笔和涂改液.不按以上要求作答无效.5.考生必须保证答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把答案填写在答题卡相应位置上.1.已知集合A ={1,2,3},集合B ={x |x 2≤4,x ∈R },则A ∩B =( ) A. ∅ B. {1}C. {1,2}D. {1,2,3}【答案】C 【解析】 【分析】解一元二次不等式求得集合B ,由此求得AB .【详解】由24x ≤,解得22x -≤≤,故{}2B x x =|-2≤≤,所以{}1,2A B =.故选:C【点睛】本小题主要考查集合交集,考查一元二次不等式的解法,属于基础题. 2.已知向量(1,2)OA =-,(1,1)OB =-,则向量AB 的坐标为( ) A. (-2,3) B. (0,1)C. (-1,2)D. (2,-3)【答案】D 【解析】 【分析】利用向量减法运算,求得AB .【详解】依题意()()()1,11,22,3AB OB OA =-=---=-. 故选:D【点睛】本小题主要考查平面向量减法的坐标运算,属于基础题.3.已知a =log 0.81.2,b =1.20.8,c =sin 1.2,则a ,b ,c 的大小关系是( ) A. a <b <c B. a <c <bC. c <a <bD. c <b <a【答案】B 【解析】 【分析】利用0,1分段法,判断出,,a b c 的大小关系.【详解】0.80.8log 1.2log 10a =<=,0.801.2 1.21b =>=,由于ππ1.232<<,所以0sin1.21c <=<,所以a c b <<.故选:B【点睛】本小题主要考查指数式、对数式和三角函数比较大小,属于基础题. 4.函数()tan 24f x x π⎛⎫=+⎪⎝⎭的定义域为( ) A. ,2x x k k ππ⎧⎫≠+∈⎨⎬⎩⎭Z B. 2,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭C. ,28k x x k Z ππ⎧⎫≠+∈⎨⎬⎩⎭D. ,8x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭【答案】C 【解析】 分析】根据正切型三角函数定义域的求法,求得()f x 的定义域. 【详解】由ππ2π42x k +≠+,解得ππ28k x ≠+,所以()f x 的定义域为,28k x x k Z ππ⎧⎫≠+∈⎨⎬⎩⎭.故选:C【点睛】本小题主要考查正切型三角函数定义域的求法,属于基础题. 5.已知扇形OAB 的面积为4,圆心角为2弧度,则AB 的长为( ) A. 2 B. 4 C. 2π D. 4π【答案】B 【解析】 【分析】利用扇形面积公式求得扇形的半径,进而求得AB 的长. 【详解】设扇形的半径为r ,依题意2124,22r r ⋅⋅==.所以AB 224r α=⋅=⋅=. 故选:B【点睛】本小题主要考查扇形面积公式,考查扇形弧长计算,属于基础题. 6.若向量,a b 满足:()()1,,2a a b a a b b =+⊥+⊥,则a b -=( ) A. 1 B. 2 C. 5【答案】D 【解析】 【分析】利用已知条件求得2,a b b ⋅,由此求得a b -的值.【详解】由()()1,,2a a b a a b b =+⊥+⊥得()()222102220a b a a a b a b a b b a b b a b b ⎧+⋅=+⋅=+⋅=⎪⎨+⋅=⋅+=⋅+=⎪⎩,化简得212a b b ⎧⋅=-⎨=⎩.所以()22221225a b a b a a b b -=-=-⋅+=++=故选:D【点睛】本小题主要考查平面向量数量积运算,考查两个向量垂直的表示,考查向量模的运算,考查运算求解能力,属于基础题. 7.函数212ln ||()x f x x ⋅=图象的大致为( )A. B.C. D.【答案】A 【解析】 【分析】根据函数的奇偶性和单调性,选出正确选项.【详解】由于函数()f x 的定义域为{}|0x x ≠,且()()f x f x -=,所以函数()f x 为偶函数,由此排除B,C 选项.由于()()222221212212,f e f e e e e e ==⋅<,所以当0x >时,()f x 存在减区间,由此排除D 选项. 故选:A【点睛】本小题主要考查函数图像的识别,考查函数的奇偶性和单调性,属于基础题. 8.安装了某种特殊装置的容器内有细沙10cm 3,容器倒置后,细沙从容器内流出,tmin 后容器内剩余的细沙量为y =101+at (单位:cm 3),其中a 为常数.经过4min 后发现容器内还剩余5cm 3的沙子,再经过xmin 后,容器中的沙子剩余量为1.25cm 3,则x =( ) A. 4 B. 6C. 8D. 12【答案】C 【解析】 【分析】根据已知条件求得a 的值,由此列方程,求得x 的值.【详解】当4t =时5y =,所以14510a +=,即11114lg5,4lg51lg,lg 242a a a +==-==⋅.设经过min y 后,剩余沙子为111lg 425104y +⋅=,即1411lg 1011241lg 421510101024y y y ⎡⎤⎛⎫⎢⎥⋅ ⎪⎢⎥⎝⎭+⋅⎢⎥⎣⎦⎛⎫==⋅=⎪⎝⎭,即1341122y ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,13,124y y ==.所以再经过的时间1248x =-=. 故选:C【点睛】本小题主要考查待定系数法求函数解析式,考查对数运算,考查运算求解能力,属于中档题.二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,请把答案填写在答题卡相应位置上.全部选对得5分,部分选对得3分,不选或有选错的得0分.9.下列各选项中,值为1的是( ) A. log 26·log 62 B. log 62+log 64C. ()()112222+⋅D. ()()112222+-【答案】AC 【解析】 【分析】对选项逐一化简,由此确定符合题意的选项.【详解】对于A 选项,根据log log 1a b b a ⋅=可知,A 选项符合题意. 对于B 选项,原式()66log 24log 81=⨯=≠,B 选项不符合题意. 对于C选项,原式((11222211⎡⎤==⎣⎦⋅-=,C 选项符合题意.对于D选项,由于(()(()1111222222222222+--+⎡⎤=⎣⋅⎢⎥⎦4221=-=≠,D 选项不符合题意. 故选:AC【点睛】本小题主要考查对数、根式运算,属于基础题. 10.记函数()sin 23f x x π⎛⎫=-⎪⎝⎭的图象为G ,则下列结论正确的是( ) A. 函数f (x )的最小正周期为π B. 函数f (x )在区间5,1212ππ⎡⎤-⎢⎥⎣⎦上单调递增 C. 直线12x π=-是图象G 的一条对称轴D. 将函数y =sin 2x 的图象向右平移3π个单位长度,得到图象G 【答案】ABC 【解析】 【分析】根据三角函数的图像与性质,对选项逐一分析,由此得出正确选项. 【详解】函数()f x 的最小正周期为2ππ2=,故A 选项正确. 由πππ2232x -≤-≤,解得π5π1212x -≤≤,所以函数f (x )在区间5,1212ππ⎡⎤-⎢⎥⎣⎦上单调递增,故B 选项正确. 由于ππππsin 2sin 1121232f ⎡⎤⎛⎫⎛⎫⎛⎫-=--=-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,所以直线12x π=-是图象G 的一条对称轴,故C 选项正确.sin 2y x =向右平移π3得到π2πsin 2sin 233y x x ⎡⎤⎛⎫⎛⎫=-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故D 选项错误.故选:ABC【点睛】本小题主要考查三角函数图像与性质,包括周期性、单调性、对称性和图像变换等知识,属于基础题.11.已知函数f (x )=x ,g (x )=x -4,则下列结论正确的是( ) A. 若h (x )=f (x )g (x ),则函数h (x )的最小值为4 B. 若h (x )=f (x )|g (x )|,则函数h (x )的值域为RC. 若h (x )=|f (x )|-|g (x )|,则函数h (x )有且仅有一个零点D. 若h (x )=|f (x )|-|g (x )|,则|h (x )|≤4恒成立【答案】BCD 【解析】 【分析】对选项逐一分析,由此确定结论正确的选项.【详解】对于A 选项,()()()224424h x x x x x x =-=-=--,当2x =时,函数()h x 的最小值为4-,所以A 选项错误.对于B 选项,()224,444,4x x x h x x x x x x ⎧-≥=-=⎨-+<⎩,画出()h x 图像如下图所示,由图可知,()h x 的值域为R ,故B 选项正确.对于C 选项,()4,0424,044,4x h x x x x x x -<⎧⎪=--=-≤≤⎨⎪>⎩,画出()h x 图像如下图所示,由图可知,()h x 有唯一零点2,故C 选项正确.对于D 选项,由C 选项的分析,结合()h x 图像可知()4h x ≤恒成立,故D 选项正确. 故选:BCD【点睛】本小题主要考查函数的最值、值域和零点,考查分段函数,考查数形结合的思想方法,属于基础题.12.已知向量,a b 是同一平面α内的两个向量,则下列结论正确的是( ) A. 若存在实数λ,使得b a λ=,则a 与b 共线 B. 若a 与b 共线,则存在实数λ,使得b a λ=C. 若a 与b 不共线,则对平面α内的任一向量c ,均存在实数,λμ,使得c a b λμ=+D. 若对平面α内的任一向量c ,均存在实数,λμ,使得c a b λμ=+,则a 与b 不共线 【答案】ACD 【解析】 【分析】根据平面向量共线、平面向量的基本定理判断出正确选项. 【详解】根据平面向量共线的知识可知A 选项正确.对于B 选项,若a 与b 共线,可能0a =,当b 为非零向量时,不存在实数λ,使得b a λ=,所以B 选项错误.根据平面向量的基本定理可知C 、D 选项正确. 故选:ACD【点睛】本小题主要考查平面向量共线、平面向量的基本定理,属于基础题.三、填空题:本大题共4小题,每小题5分,共20分.请把答案填写在答题卡相应位置上. 13.已知a 和b 都是单位向量,且0,2a b c a b ⋅==+,则向量b 与c 的夹角的余弦值是____.【解析】 【分析】 利用cos ,b c b c b c⋅=⋅求得向量b 与c 的夹角的余弦值.【详解】依题意cos ,b c b c b c⋅=⋅()222254442b a ba ab bb a b ⋅+====++⋅+⋅+. 【点睛】本小题主要考查平面向量数量积、模的运算,考查向量夹角的计算,考查化归与转化的数学思想方法,属于基础题. 14.在△ABC 中,已知7sin cos 13A A +=,则sinAcosA 的值为____,tanA 的值为____. 【答案】 (1). 60169- (2). 125- 【解析】 【分析】利用同角三角函数的基本关系式,求得sin cos ,tan A a A 的值.【详解】由7sin cos =13A A +两边平方得496012sin cos ,sin cos 169169A A A A +==-.由于A是三角形的内角,故A 为钝角,所以sin cos 0A A ->,而()2289sin cos 12sin cos 169A A A A -=-=,所以17sin cos 13A A -=.由17sin cos 137sin cos 13A A A A ⎧-=⎪⎪⎨⎪⎪⎩+=解得125sin ,cos 1313A A ==-,所以sin 12tan cos 5A A A ==-. 故答案为:(1)60169-(2)125- 【点睛】本小题主要考查利用同角三角函数的基本关系式进行化简求值,考查化归与转化的数学思想方法,属于中档题.15.已知函数f (x )(x ∈R )是周期为4的奇函数,且当0≤x ≤2时,(1),01()sin ,12x x x f x x x π-⎧=⎨<⎩则376f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭______.【答案】14【解析】 【分析】根据函数()f x 的周期性、奇偶性和分段函数解析式,求得所求表达式的值. 【详解】依题意3711111111π42sin 66666f f f f⎛⎫⎛⎫⎛⎫⎛⎫=⨯-=-=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ππ1sin 2πsin 662⎛⎫=--== ⎪⎝⎭.371111162224f f f ⎛⎫⎛⎫⎛⎫⎛⎫==-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 故答案为:14【点睛】本小题主要考查分段函数求函数值,考查函数的奇偶性和周期性,属于基础题. 16.已知A ,B 是函数()sin2xf x π=的图象与函数()cos2xg x π=的图象的两个不同的交点,则线段AB 长度的最小值是______.【解析】【分析】求得()(),f x g x 在一个周期内的两个交点坐标,由此求得AB 长度的最小值.【详解】()f x 和()g x 的周期为2π4π2T ==,由()()f x g x =得ππsin cos 22x x =,在[]0,4x ∈时,有ππ24x =或π5π24x =,记得12x =或52x =,不妨设15,,22A B ⎛⎛ ⎝⎭⎝⎭,所以AB 长度的最小值为AB ==.【点睛】本小题主要考查正弦函数与余弦函数,考查两点间的距离公式.四、解答题:本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出必要的文字说明,证明过程或演算步骤. 17.已知向量()()2,,1,6a m b m ==-. (1)若//a b ,求实数m 的值; (2)若a b a b +=-,求实数m 的值. 【答案】(1)3-或4;(2)14【解析】 【分析】(1)利用两个向量平行的条件列方程,解方程求得m 的值;(2)将a b a b +=-两边平方,求得0a b ⋅=,根据向量数量积的坐标运算列方程,解方程求得m 的值.【详解】(1)由于//a b ,所以()2610m m ⋅--=,解得3m =-或4m =.(2)将a b a b +=-两边平方得222222a a b b a a b b +⋅+=-⋅+,所以0a b ⋅=,即()2160m m -+=,解得14m =.【点睛】本小题主要考查两个向量平行的坐标表示,考查向量模的运算、数量积的运算,考查方程的思想,属于基础题.18.在平面直角坐标系xOy 中,角α的顶点为O ,始边为x 轴的正半轴,终边经过点P (-3,m ),且4sin 5α. (1)求实数m 的值;(2)求sin(2)cos()3sin cos 22παππααπα-++⎛⎫⎛⎫++- ⎪ ⎪⎝⎭⎝⎭的值.【答案】(1)4;(2)17【解析】 【分析】(1)根据三角函数的定义列方程,解方程求得m 的值.(2)由(1)求得cos α的值,利用诱导公式化简求得表达式的值. 【详解】(1)由于角α的终边经过点()3,P m -,且4sin 05α=>,所以0m >,且4sin 5α==,从而()2225169m m =+,即216m =,解得4m =. (2)由(1)知()4,3,4m P =-,所以3cos 5α==-,所以sin(2)cos()sin cos 13cos sin 7sin cos 22ππααππαααααα-++--==-⎛⎫⎛⎫++- ⎪ ⎪⎝⎭⎝⎭. 【点睛】本小题主要考查三角函数的定义,考查诱导公式和同角三角函数的基本关系式,属于基础题.19.已知函数()2x x e ae f x --=是奇函数,其中e 是自然对数的底数.(1)求实数a 的值;(2)若f (lgx )+f (-1)<0,求x 的取值范围. 【答案】(1)1;(2)()0,10 【解析】 【分析】(1)根据奇函数的性质,利用()00f =列方程,解方程求得a 的值. (2)利用函数的奇偶性和单调性化简不等式,并由此求得不等式的解集.【详解】(1)函数()f x 的定义域为R ,且为奇函数,所以()1002af -==,解得1a =. (2)由(1)得()122x x e f x e =-,由于1,2xx e e -都在R 上递增,所以函数()122x xe f x e=-在R 上递增,根据()f x 为奇函数得()()()lg 11f x f f <--=,所以lg 1x <,解得010x <<.即不等式的解集为()0,10.【点睛】本小题主要考查函数的奇偶性,考查函数的单调性,考查化归与转化的数学思想方法,属于基础题.20.如图,摩天轮的半径为50m ,圆心O 距地面的高度为65m .已知摩天轮按逆时针方向匀速转动,每30min 转动一圈.游客在摩天轮的舱位转到距离地面最近的位置进舱.(1)游客进入摩天轮的舱位,开始转动tmin 后,他距离地面的高度为h ,求h 关于t 的函数解析式;(2)已知在距离地面超过40m 的高度,游客可以观看到游乐场全景,那么在摩天轮转动一圈的过程中,游客可以观看到游乐场全景的时间是多少? 【答案】(1)π6550cos ,015t h t ⎛⎫=-≥ ⎪⎝⎭;(2)20min 【解析】 【分析】(1)建立平面直角坐标系,根据摩天轮的转动速度,结合三角函数的知识,求得h 关于t 的解析式.(2)由40h >列不等式,解不等式求得距离地面超过40m 的时间范围,由此求得游客可以观看到游乐场全景的时间.【详解】(1)如图以摩天轮的圆心为坐标原点,水平方向为x 周,建立平面直角坐标系.设游客的位置为点P .因为摩天轮按逆时针方向匀速转动,且每30min 转动一圈,所以OP 在min t 内所转过的角为2πt πt3015=.因为游客是从摩天轮的最低点进入摩天轮的舱位,所以,以x 轴正半轴为始边,以OP 为终边的角为πt π152-,因此P 点的纵坐标为ππ50sin 152t ⎛⎫- ⎪⎝⎭.从而游客距离地面的高度πππ50sin 656550cos 15215t t h ⎛⎫⎛⎫=-+=-⎪ ⎪⎝⎭⎝⎭,0t ≥. (2)令π6550cos 4015t h ⎛⎫=-> ⎪⎝⎭,得π1cos 152t ⎛⎫< ⎪⎝⎭,所以ππt 5π2π2π3153k k +<<+,即3053025k t k +<<+,k ∈N ,令0k =,则525t <<.由于在距离地面超过40m 的高度,游客可以观看到游乐场全景,因此,在转动一圈的过程中,游客可以观看到游乐场全景的时间为25520min -=.【点睛】本小题主要考查三角函数在实际生活中的应用,考查三角不等式的解法,属于中档题.21.在△ABC 中,AB =6,AC =3,D 为BC 中点,2AE EB =,12AF FC =.(1)若3A π∠=,求AD EF ⋅的值;(2)若0DE DF ⋅=,求AB AC ⋅的值.【答案】(1)12-;(2)818【解析】 【分析】(1)利用向量加法、减法和数量积运算,化简求得AD EF ⋅的值.(2)利用向量加法、减法和数量积运算,结合0DE DF ⋅=,化简求得AB AC ⋅的值. 【详解】(1)由于D 是BC 的中点,所以()12AD AB AC =+,由于2AE EB =,12AF FC =,所以21,33AE AB AF AC ==.所以AD EF ⋅()112233AB AC AC AB ⎛⎫=+⋅- ⎪⎝⎭2212112333AB AB AC AC ⎛⎫=--⋅+ ⎪⎝⎭22111366AB AB AC AC =--⋅+22111166333626-⨯-⨯⨯⨯+⨯33121222=--+=-.(2)()21113262DE AE AD AB AB AC AB AC =-=-+=-, ()11113226DF AF AD AC AB AC AB AC =-=-+=--,所以11116226DE DF AB AC AB AC ⎛⎫⎛⎫⋅=-⋅-- ⎪ ⎪⎝⎭⎝⎭2211212129AB AC AB AC=-++⋅323049AB AC =-++⋅=,解得818AB AC ⋅=.【点睛】本小题主要考查向量加法、减法和数量积的运算,考查化归与转化的数学思想方法,属于中档题.22.已知函数f (x )=sinx ,g (x )=lnx .(1)求方程()2f x f x π⎛⎫=- ⎪⎝⎭在[0,2π]上的解;(2)求证:对任意的a ∈R ,方程f (x )=ag (x )都有解;(3)设M 为实数,对区间[0,2π]内的满足x 1<x 2<x 3<x 4的任意实数x i (1≤i ≤4),不等式()()()()()()122334Mf x f x f x f x f x f x -+-+-成立,求M 的最小值.【答案】(1)π4或5π4;(2)详见解析;(2)4【解析】 【分析】(1)利用诱导公式化简()2f x f x π⎛⎫=- ⎪⎝⎭,结合同角三角函数的基本关系式求得tan x 的值,由此求得方程的解.(2)将a 分成0a =和0a ≠两种情况,结合零点存在性证得结论成立.(3)先证得4M ≥,再证得()()()()()()1223344f x f x f x f x f x f x ≥-+-+-,由此求得M 的最小值为4.【详解】(1)因为,()()πsin ,2f x x f x f x ⎛⎫==- ⎪⎝⎭,所以πsin sin 2x x ⎛⎫=- ⎪⎝⎭,即sin cos x x =,且[]0,2πx ∈.若cos 0x =,则sin 0x =,与22sin cos 1x +=矛盾.所以cos 0x ≠,从而tan 1x =.又[]0,2πx ∈,所以π4x =或5π4x =. (2)当0a =时,由()()f x ag x =得sin 0x =,即πx =是该方程的一个解;当0a ≠时,令()1ln sin h x x x a =-.因为()h x 的图像在区间22,a ae e -⎡⎤⎢⎥⎢⎥⎣⎦上连续不断,且2221211sin 0a a h e e a a a a a --⎛⎫⎛⎫=--≤-+=-< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,2221211sin 0a a h e e a a a a a -⎛⎫⎛⎫=-≥-=> ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,根据零点存在性定理可知,存在220,aax e e-⎛⎫∈⎪ ⎪⎝⎭,使得()00h x =.因此,当0a ≠时,方程()()f x ag x =有解0x x =. 综上所述,对任意a R ∈,方程()()f x ag x =都有解. (3)先证:4M ≥. 取1234π3π0,,,2π22x x x x ====,122334sin sin sin sin sin sin 1214M x x x x x x ≥-+-+-=++=.再证:当123402πx x x x ≤<<<≤时,都有()()()()()()1223344f x f x f x f x f x f x ≥-+-+-,即1223344sin sin sin sin sin sin x x x x x x --≥+-+.①若2πx ≤,因为234π2πx x x ≤<<≤,于是2341sin ,sin ,sin 0x x x -≤≤,所以2334sin sin 1,sin sin 1x x x x -≤-≤,而12sin sin 2x x -≤,所以122334sin sin sin sin sin sin 4x x x x x x --+-+≤.②若3πx ≤,1223sin sin 1,sin sin 1x x x x -≤-≤,34sin sin 2x x -≤,所以122334sin sin sin sin sin sin 4x x x x x x --+-+≤;③若23πx x <<,1223sin sin 1,sin sin 2x x x x -≤-≤,34sin sin 1x x -≤,所以122334sin sin sin sin sin sin 4x x x x x x --+-+≤,于是对任意满足条件的1234x x x x <<<,都有1223344sin sin sin sin sin sin x x x x x x --≥+-+.综上所述,M 的最小值为4.【点睛】本小题主要考查诱导公式、同角三角函数的基本关系式,考查零点存在性定理,考查分类讨论的数学思想方法,考查化归与转化的数学思想方法,考查分析、思考与解决问题的能力,属于难题.。

2019-2020学年江苏南京鼓楼区南京师范大学附属中学高一上学期期末数学试卷详解版

2019-2020学年江苏南京鼓楼区南京师范大学附属中学高一上学期期末数学试卷详解版

2019~2020学年江苏南京鼓楼区南京师范大学附属中学高一上学期期末数学试卷(详解)(本大题共8小题,每小题5分,共40分)1.A.B.C.D.【答案】【解析】已知集合,集合,则( ).B 因为,,所以.2.A.B.C.D.【答案】【解析】设,,,则,,的大小关系为( ).D ,,,所以.故选.3.A.B. C. D.【答案】【解析】如图,已知点为边上一点,且.若存在实数,,使得,则的值为( ).A ∵,∴,再由,可得,,一、单项选择题∴.故选.4.A.B. C. D.【答案】【解析】已知函数 的图象如图所示,则的值为( ).xyOD由图可知,,所以,所以,又因为,所以 ,解得,因为,所以.故选.5.A.B.C.D.【答案】【解析】函数的定义域是( ).C由对数的真数大于,及二次根式内非负,得且,解得且,所以定义域为.故选.6.A.B.C.D.设,是实数,已知角的顶点为坐标原点,始边与轴的非负半轴重合,终边上有两点,,且,则的值为( ).【答案】【解析】A由三角函数的定义,,且,解得,,所以.故选.7.A.B.C. D.【答案】【解析】函数的图象大致为( ).D由该函数为奇函数,排除选项,,由时,函数值为,可排除选项.故选.8.A. B.C.D.不确定【答案】【解析】若函数,则对于任意的,,与的大小关系是( ).B观察图象,可得函数“凹凸性”如图.故选.二、多项选择题(本大题共4小题,每小题5分,共20分)9.A.B.C.D.【答案】【解析】下列计算结果为有理数的有( ).ABCD ;;;.故选 ABCD .10.A.B.C.D.【答案】A 选项:B 选项:C 选项:D 选项:【解析】对于定义在上的函数,下列判断的有( ).若,则函数是上的单调增函数若,则函数不是偶函数若,则函数是奇函数函数在区间上是单调增函数,在区间上也是单调增函数,则是上的单调增函数ACD 由,则在上必定不是增函数;故错误;正确;故正确;,满足,但不是奇函数;故错误;该函数为分段函数,在处,有可能会出现右侧比左侧低的情况,故错误.故选 A C D .错.误.11.A.B.C.D.设为实数,则直线和函数的图象的公共点个数可以是( ).【答案】【解析】ABC 由消去整理得:,即,∴当时,,此时方程有两个不相等的实根,故两个函数的图象有个公共点,当时,,此时方程有一个实根,故两个函数的图象只有个交点,当时,,此时方程无实根,故两个函数没有交点.综上所述,故选.12.A. B.C.D.【答案】【解析】设函数的定义域为,若对于任意,存在使(为常数)成立,则称函数在上的“半差值”为.下列四个函数中,满足所在定义域上“半差值”为的函数是( ).AC即对任意定义域中的,存在,使得;.值域为,满足,故正确;.当时,函数值为,此时不存在自变量,使得函数值为,不满足,故错误;.当时,函数值为,此时不存在自变量,使得函数值为,不满足,故错误.故选.三、填空题(本大题共4小题,每小题5分,共20分)13.【答案】【解析】【踩分点】设为实数,若函数在区间上是单调减函数,则的取值范围是 .为开口向上的二次函数,对称轴为直线,要使得函数在上递减,则,解得.14.把函数图象上每一点的横坐标变为原来的倍(纵坐标不变),得到图象为;在把【答案】【解析】【踩分点】上每一点的纵坐标变为原来的倍(横坐标不变),得到图象为.则对应的解析式为 .令,则由已知可得对应的解析式为,对应的解析式为.即对应的解析式为.15.【答案】【解析】【踩分点】若,,其中,则的最大值为 .,所以,因为,令,所以,所以当时,取最大值,所以的最大值为.16.【答案】【解析】已知函数,那么 ,若存在实数,使得,则的个数是 . ; ,令,即满足,,即时,经检验,均满足题意,【踩分点】,即或时,,由,解得或(舍去),再由,解得或,,即时,,由,解得 (舍去),综上所述:共有个.四、解答题(本大题共6小题,共70分)17.(1)(2)(1)(2)【答案】(1)(2)【解析】设为实数,已知向量,.若,求和的值.若向量与所成角为,求的值.,..当时,,,,所以,.,,,平方化简得:,解得,,经检验,当时,夹角为舍去,故.【踩分点】18.(1)(2)(1)(2)【答案】(1)(2)【解析】【踩分点】设实数满足,其中为常数.当时,求的数值.求值:(用含的式子表示)...,平方得:,所以;.,由,所以平方得:,,所以原式.19.(1)(2)(1)(2)【答案】设为正实数.如图,一个水轮的半径为,水轮圆心距离水面,已知水轮每分钟逆时针转动圈.当水轮上的点从水中浮现时(即图中点)开始计算时间.水面将点距离水面的高度表示为时间的函数.点第一次到达最高点需要多少时间?,..(1)(2)【解析】【踩分点】如图,以水轮圆心为原点,与水面平行的直线为轴建立直角坐标系,水面当时,点的坐标为,角度为;根据水轮每分钟逆时针转动圈,可知水轮转动的角速度为,所以时刻,角度为;根据三角函数定义,可得,.当时,,所以,解得,所以当时,,即第一次达到最高点时需要.20.(1)(2)(1)(2)【答案】(1)(2)【解析】设向量,向量,其中.若,求证:.若,求证:.证明见解析.证明见解析.,,因为,所以,不全为,不妨设,如果,则存在实数,使得,即,所以,则,即.,,因为,所以,不全为,不妨设,反之,如果,因为,【踩分点】所以,,令,则,所以.21.(1)(2)(1)(2)【答案】(1)(2)【解析】【踩分点】回答问题.运用函数单调性定义,证明:函数在区间上是单调减函数.设为实数,.若,试比较和的大小,并说明理由.证明见解析.;证明见解析.对任意的,,且,,因为,,,所以,即,所以函数在区间上是单调减函数.因为,所以在上是单调减函数.因为,所以,,所以,且,所以.22.(1)(2)完成下列各题.已知函数,试判断函数的单调性,并说明理由.已知函数12(3)(1)12(2)(3)【答案】(1)12(2)【解析】的奇偶性,并说明理由.求证:对于任意的,,且,,,都有.①由可以知道满足①式的函数是存在的,如.问:满足①的函数是否存在无穷多个?说明理由.函数在区间上是单调递增,在区间上是单调递增.证明见解析.为奇函数,证明见解析.证明见解析.是,证明见解析.对任意的,,且,则,因为,,所以,即,所以函数在区间上是单调递增,同理可得在区间上是单调递增.的定义域为,对任意的,有,且,所以为奇函数,又,所以不是偶函数.对于任意的,,且,,,都有,(3)【踩分点】所以.设,则对于任意的,,且,,,都有,即满足①,因为有无穷多个,所以这样的也有无穷多个.。

2019-2020学年江苏省南京市高一上学期期末数学试题(解析版)

2019-2020学年江苏省南京市高一上学期期末数学试题(解析版)

2019-2020学年江苏省南京市高一上学期期末数学试题一、单选题1.已知集合A ={1,2,3},集合B ={x |x 2≤4,x ∈R },则A ∩B =( ) A .∅ B .{1}C .{1,2}D .{1,2,3}【答案】C【解析】解一元二次不等式求得集合B ,由此求得A B .【详解】由24x ≤,解得22x -≤≤,故{}2B x x =|-2≤≤,所以{}1,2A B =.故选:C 【点睛】本小题主要考查集合交集,考查一元二次不等式的解法,属于基础题. 2.已知向量(1,2)OA =-,(1,1)OB =-,则向量AB 的坐标为( ) A .(-2,3) B .(0,1)C .(-1,2)D .(2,-3)【答案】D【解析】利用向量减法运算,求得AB . 【详解】依题意()()()1,11,22,3AB OB OA =-=---=-. 故选:D 【点睛】本小题主要考查平面向量减法的坐标运算,属于基础题.3.已知a =log 0.81.2,b =1.20.8,c =sin 1.2,则a ,b ,c 的大小关系是( ) A .a <b <c B .a <c <bC .c <a <bD .c <b <a【答案】B【解析】利用0,1分段法,判断出,,a b c 的大小关系. 【详解】0.80.8log 1.2log 10a =<=,0.801.2 1.21b =>=,由于ππ1.232<<,所以0sin1.21c <=<,所以a c b <<.故选:B 【点睛】本小题主要考查指数式、对数式和三角函数比较大小,属于基础题. 4.函数()tan 24f x x π⎛⎫=+⎪⎝⎭的定义域为( ) A .,2x x k k ππ⎧⎫≠+∈⎨⎬⎩⎭Z B .2,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭C .,28k x x k Z ππ⎧⎫≠+∈⎨⎬⎩⎭D .,8x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭【答案】C【解析】根据正切型三角函数定义域的求法,求得()f x 的定义域. 【详解】 由ππ2π42x k +≠+,解得ππ28k x ≠+,所以()f x 的定义域为,28k x x k Z ππ⎧⎫≠+∈⎨⎬⎩⎭.故选:C 【点睛】本小题主要考查正切型三角函数定义域的求法,属于基础题.5.已知扇形OAB 的面积为4,圆心角为2弧度,则AB 的长为( ) A .2 B .4C .2πD .4π【答案】B【解析】利用扇形面积公式求得扇形的半径,进而求得AB 的长. 【详解】设扇形的半径为r ,依题意2124,22r r ⋅⋅==.所以AB 224r α=⋅=⋅=. 故选:B 【点睛】本小题主要考查扇形面积公式,考查扇形弧长计算,属于基础题.6.若向量,a b 满足:()()1,,2a a b a a b b =+⊥+⊥,则a b -=( )A .1B .2C .5D 【答案】D【解析】利用已知条件求得2,a b b ⋅,由此求得a b -r r的值.【详解】由()()1,,2a a b a a b b =+⊥+⊥得()()222102220a b a a a b a b a b b a b b a b b ⎧+⋅=+⋅=+⋅=⎪⎨+⋅=⋅+=⋅+=⎪⎩,化简得212a b b ⎧⋅=-⎨=⎩.所以()22221225a b a ba ab b -=-=-⋅+=++=.故选:D 【点睛】本小题主要考查平面向量数量积运算,考查两个向量垂直的表示,考查向量模的运算,考查运算求解能力,属于基础题. 7.函数212ln ||()x f x x ⋅=图象的大致为( ) A . B .C .D .【答案】A【解析】根据函数的奇偶性和单调性,选出正确选项. 【详解】由于函数()f x 的定义域为{}|0x x ≠,且()()f x f x -=,所以函数()f x 为偶函数,由此排除B,C 选项.由于()()222221212212,f e f e e e e e ==⋅<,所以当0x >时,()f x 存在减区间,由此排除D 选项. 故选:A 【点睛】本小题主要考查函数图像的识别,考查函数的奇偶性和单调性,属于基础题.8.安装了某种特殊装置的容器内有细沙10cm 3,容器倒置后,细沙从容器内流出,tmin 后容器内剩余的细沙量为y =101+at(单位:cm 3),其中a 为常数.经过4min 后发现容器内还剩余5cm 3的沙子,再经过xmin 后,容器中的沙子剩余量为1.25cm 3,则x =( ) A .4 B .6C .8D .12【答案】C【解析】根据已知条件求得a 的值,由此列方程,求得x 的值. 【详解】当4t =时5y =,所以14510a +=,即11114lg5,4lg51lg,lg 242a a a +==-==⋅.设经过min y 后,剩余沙子为111lg 425104y +⋅=,即1411l g 1011241lg 421510101024yy y ⎡⎤⎛⎫⎢⎥⋅ ⎪⎢⎥⎝⎭+⋅⎢⎥⎣⎦⎛⎫==⋅=⎪⎝⎭,即1341122y ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,13,124y y ==.所以再经过的时间1248x =-=. 故选:C 【点睛】本小题主要考查待定系数法求函数解析式,考查对数运算,考查运算求解能力,属于中档题.二、多选题9.下列各选项中,值为1的是( ) A .log 26·log 62 B .log 62+log 64C .()()112222⋅D.((112222+-【答案】AC【解析】对选项逐一化简,由此确定符合题意的选项. 【详解】对于A 选项,根据log log 1a b b a ⋅=可知,A 选项符合题意. 对于B 选项,原式()66log 24log 81=⨯=≠,B 选项不符合题意. 对于C选项,原式((11222211⎡⎤==⎣⎦⋅=+,C 选项符合题意.对于D选项,由于(()((1111222222222222-+⎡⎤=⎣⋅⎢⎥⎦4221=-=≠,D 选项不符合题意. 故选:AC 【点睛】本小题主要考查对数、根式运算,属于基础题.10.记函数()sin 23f x x π⎛⎫=- ⎪⎝⎭的图象为G ,则下列结论正确的是( )A .函数f (x )的最小正周期为πB .函数f (x )在区间5,1212ππ⎡⎤-⎢⎥⎣⎦上单调递增 C .直线12x π=-是图象G 的一条对称轴D .将函数y =sin 2x 的图象向右平移3π个单位长度,得到图象G 【答案】ABC【解析】根据三角函数的图像与性质,对选项逐一分析,由此得出正确选项. 【详解】函数()f x 的最小正周期为2ππ2=,故A 选项正确. 由πππ2232x -≤-≤,解得π5π1212x -≤≤,所以函数f (x )在区间5,1212ππ⎡⎤-⎢⎥⎣⎦上单调递增,故B 选项正确. 由于ππππsin 2sin 1121232f ⎡⎤⎛⎫⎛⎫⎛⎫-=--=-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,所以直线12x π=-是图象G 的一条对称轴,故C 选项正确.sin 2y x =向右平移π3得到π2πsin 2sin 233y x x ⎡⎤⎛⎫⎛⎫=-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故D 选项错误. 故选:ABC 【点睛】本小题主要考查三角函数图像与性质,包括周期性、单调性、对称性和图像变换等知识,属于基础题.11.已知函数f (x )=x ,g (x )=x -4,则下列结论正确的是( ) A .若h (x )=f (x )g (x ),则函数h (x )的最小值为4 B .若h (x )=f (x )|g (x )|,则函数h (x )的值域为RC .若h (x )=|f (x )|-|g (x )|,则函数h (x )有且仅有一个零点D .若h (x )=|f (x )|-|g (x )|,则|h (x )|≤4恒成立 【答案】BCD【解析】对选项逐一分析,由此确定结论正确的选项. 【详解】对于A 选项,()()()224424h x x x x x x =-=-=--,当2x =时,函数()h x 的最小值为4-,所以A 选项错误.对于B 选项,()224,444,4x x x h x x x x x x ⎧-≥=-=⎨-+<⎩,画出()h x 图像如下图所示,由图可知,()h x 的值域为R ,故B 选项正确.对于C 选项,()4,0424,044,4x h x x x x x x -<⎧⎪=--=-≤≤⎨⎪>⎩,画出()h x 图像如下图所示,由图可知,()h x 有唯一零点2,故C 选项正确.对于D 选项,由C 选项的分析,结合()h x 图像可知()4h x ≤恒成立,故D 选项正确.故选:BCD 【点睛】本小题主要考查函数的最值、值域和零点,考查分段函数,考查数形结合的思想方法,属于基础题.12.已知向量,a b 是同一平面α内的两个向量,则下列结论正确的是( ) A .若存在实数λ,使得b a λ=,则a 与b 共线 B .若a 与b 共线,则存在实数λ,使得b a λ=C .若a 与b 不共线,则对平面α内的任一向量c ,均存在实数,λμ,使得c a b λμ=+r r rD .若对平面α内的任一向量c ,均存在实数,λμ,使得c a b λμ=+r r r,则a 与b 不共线【答案】ACD【解析】根据平面向量共线、平面向量的基本定理判断出正确选项. 【详解】根据平面向量共线的知识可知A 选项正确.对于B 选项,若a 与b 共线,可能0a =,当b 为非零向量时,不存在实数λ,使得b a λ=,所以B 选项错误.根据平面向量的基本定理可知C 、D 选项正确. 故选:ACD 【点睛】本小题主要考查平面向量共线、平面向量的基本定理,属于基础题.三、填空题13.已知a 和b 都是单位向量,且0,2a b c a b ⋅==+,则向量b 与c 的夹角的余弦值是____.【解析】利用cos ,b c b c b c⋅=⋅求得向量b 与c 的夹角的余弦值.【详解】依题意cos ,b c b c b c⋅=⋅()2222442b a ba b a b ⋅+====+⋅+. 【点睛】本小题主要考查平面向量数量积、模的运算,考查向量夹角的计算,考查化归与转化的数学思想方法,属于基础题.14.在△ABC 中,已知7sin cos 13A A +=,则sinAcosA 的值为____,tanA 的值为____. 【答案】60169-125- 【解析】利用同角三角函数的基本关系式,求得sin cos ,tan A a A 的值. 【详解】 由7sin cos =13A A +两边平方得496012sin cos ,sin cos 169169A A A A +==-.由于A 是三角形的内角,故A 为钝角,所以sin cos 0A A ->,而()2289sin cos 12sin cos 169A A A A -=-=,所以17sin cos 13A A -=.由17sin cos 137sin cos 13A A A A ⎧-=⎪⎪⎨⎪⎪⎩+=解得125sin ,cos 1313A A ==-,所以sin 12tan cos 5A A A ==-. 故答案为:(1)60169-(2)125-【点睛】本小题主要考查利用同角三角函数的基本关系式进行化简求值,考查化归与转化的数学思想方法,属于中档题.15.已知函数f (x )(x ∈R )是周期为4的奇函数,且当0≤x ≤2时,(1),01()sin ,12x x x f x x x π-⎧=⎨<⎩剟…则376f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭______. 【答案】14【解析】根据函数()f x 的周期性、奇偶性和分段函数解析式,求得所求表达式的值. 【详解】依题意3711111111π42sin66666f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=⨯-=-=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ππ1sin 2πsin 662⎛⎫=--== ⎪⎝⎭.371111162224f f f ⎛⎫⎛⎫⎛⎫⎛⎫==-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 故答案为:14【点睛】本小题主要考查分段函数求函数值,考查函数的奇偶性和周期性,属于基础题. 16.已知A ,B 是函数()sin2xf x π=的图象与函数()cos2xg x π=的图象的两个不同的交点,则线段AB 长度的最小值是______.【解析】求得()(),f x g x 在一个周期内的两个交点坐标,由此求得AB 长度的最小值. 【详解】()f x 和()g x 的周期为2π4π2T ==,由()()f x g x =得ππsin cos 22x x =,在[]0,4x ∈时,有ππ24x =或π5π24x =,记得12x =或52x =,不妨设15,,22A B ⎛⎛ ⎝⎭⎝⎭,所以AB 长度的最小值为AB ==.【点睛】本小题主要考查正弦函数与余弦函数,考查两点间的距离公式.四、解答题17.已知向量()()2,,1,6a m b m ==-. (1)若//a b ,求实数m 的值; (2)若a b a b +=-,求实数m 的值.【答案】(1)3-或4;(2)14【解析】(1)利用两个向量平行的条件列方程,解方程求得m 的值;(2)将a b a b +=-两边平方,求得0a b ⋅=,根据向量数量积的坐标运算列方程,解方程求得m 的值. 【详解】(1)由于//a b ,所以()2610m m ⋅--=,解得3m =-或4m =.(2)将a b a b +=-两边平方得222222a a b b a a b b +⋅+=-⋅+r r r r r r r r ,所以0a b ⋅=,即()2160m m -+=,解得14m =.【点睛】本小题主要考查两个向量平行的坐标表示,考查向量模的运算、数量积的运算,考查方程的思想,属于基础题.18.在平面直角坐标系xOy 中,角α的顶点为O ,始边为x 轴的正半轴,终边经过点P (-3,m ),且4sin 5α=. (1)求实数m 的值;(2)求sin(2)cos()3sin cos 22παππααπα-++⎛⎫⎛⎫++- ⎪ ⎪⎝⎭⎝⎭的值.【答案】(1)4;(2)17【解析】(1)根据三角函数的定义列方程,解方程求得m 的值. (2)由(1)求得cos α的值,利用诱导公式化简求得表达式的值. 【详解】(1)由于角α的终边经过点()3,P m -,且4sin 05α=>,所以0m >,且4sin 5α==,从而()2225169m m =+,即216m =,解得4m =. (2)由(1)知()4,3,4m P =-,所以3cos 5α==-,所以sin(2)cos()sin cos 13cos sin 7sin cos 22ππααππαααααα-++--==-⎛⎫⎛⎫++- ⎪ ⎪⎝⎭⎝⎭. 【点睛】本小题主要考查三角函数的定义,考查诱导公式和同角三角函数的基本关系式,属于基础题.19.已知函数()2x xe aef x --=是奇函数,其中e 是自然对数的底数.(1)求实数a 的值;(2)若f (lgx )+f (-1)<0,求x 的取值范围. 【答案】(1)1;(2)()0,10【解析】(1)根据奇函数的性质,利用()00f =列方程,解方程求得a 的值. (2)利用函数的奇偶性和单调性化简不等式,并由此求得不等式的解集. 【详解】(1)函数()f x 的定义域为R ,且为奇函数,所以()1002af -==,解得1a =. (2)由(1)得()122x x e f x e=-,由于1,2xx e e -都在R 上递增,所以函数()122x x e f x e=-在R 上递增,根据()f x 为奇函数得()()()lg 11f x f f <--=,所以lg 1x <,解得010x <<.即不等式的解集为()0,10. 【点睛】本小题主要考查函数的奇偶性,考查函数的单调性,考查化归与转化的数学思想方法,属于基础题.20.如图,摩天轮的半径为50m ,圆心O 距地面的高度为65m .已知摩天轮按逆时针方向匀速转动,每30min 转动一圈.游客在摩天轮的舱位转到距离地面最近的位置进舱.(1)游客进入摩天轮的舱位,开始转动tmin 后,他距离地面的高度为h ,求h 关于t 的函数解析式;(2)已知在距离地面超过40m 的高度,游客可以观看到游乐场全景,那么在摩天轮转动一圈的过程中,游客可以观看到游乐场全景的时间是多少? 【答案】(1)π6550cos ,015t h t ⎛⎫=-≥⎪⎝⎭;(2)20min 【解析】(1)建立平面直角坐标系,根据摩天轮的转动速度,结合三角函数的知识,求得h 关于t 的解析式.(2)由40h >列不等式,解不等式求得距离地面超过40m 的时间范围,由此求得游客可以观看到游乐场全景的时间. 【详解】(1)如图以摩天轮的圆心为坐标原点,水平方向为x 周,建立平面直角坐标系.设游客的位置为点P .因为摩天轮按逆时针方向匀速转动,且每30min 转动一圈,所以OP 在min t 内所转过的角为2πt πt3015=.因为游客是从摩天轮的最低点进入摩天轮的舱位,所以,以x 轴正半轴为始边,以OP 为终边的角为πt π152-,因此P 点的纵坐标为ππ50sin 152t ⎛⎫- ⎪⎝⎭.从而游客距离地面的高度πππ50sin 656550cos 15215t t h ⎛⎫⎛⎫=-+=- ⎪ ⎪⎝⎭⎝⎭,0t ≥.(2)令π6550c o s 4015t h ⎛⎫=-> ⎪⎝⎭,得π1co s 152t ⎛⎫< ⎪⎝⎭,所以ππt 5π2π2π3153k k +<<+,即3053025k t k +<<+,k ∈N ,令0k =,则525t <<.由于在距离地面超过40m 的高度,游客可以观看到游乐场全景,因此,在转动一圈的过程中,游客可以观看到游乐场全景的时间为25520min -=.【点睛】本小题主要考查三角函数在实际生活中的应用,考查三角不等式的解法,属于中档题.21.在△ABC 中,AB =6,AC =3,D 为BC 中点,2AE EB =,12AF FC =.(1)若3A π∠=,求AD EF ⋅的值;(2)若0DE DF ⋅=,求AB AC ⋅uu u r uuu r的值. 【答案】(1)12-;(2)818【解析】(1)利用向量加法、减法和数量积运算,化简求得AD EF ⋅的值.(2)利用向量加法、减法和数量积运算,结合0DE DF ⋅=,化简求得AB AC ⋅uu u r uuu r的值.【详解】(1)由于D 是BC 的中点,所以()12AD AB AC =+,由于2AE EB =,12AF FC =,所以21,33AE AB AF AC ==.所以AD EF ⋅()112233AB AC AC AB ⎛⎫=+⋅- ⎪⎝⎭2212112333AB AB AC AC ⎛⎫=--⋅+ ⎪⎝⎭22111366AB AB AC AC =--⋅+22111166333626-⨯-⨯⨯⨯+⨯33121222=--+=-.(2)()21113262DE AE AD AB AB AC AB AC =-=-+=-, ()11113226DF AF AD AC AB AC AB AC =-=-+=--,所以11116226DE DF AB AC AB AC ⎛⎫⎛⎫⋅=-⋅-- ⎪ ⎪⎝⎭⎝⎭2211212129AB AC AB AC=-++⋅323049AB AC =-++⋅=,解得818AB AC ⋅=.【点睛】本小题主要考查向量加法、减法和数量积的运算,考查化归与转化的数学思想方法,属于中档题.22.已知函数f (x )=sinx ,g (x )=lnx . (1)求方程()2f x f x π⎛⎫=-⎪⎝⎭在[0,2π]上的解; (2)求证:对任意的a ∈R ,方程f (x )=ag (x )都有解;(3)设M 为实数,对区间[0,2π]内的满足x 1<x 2<x 3<x 4的任意实数x i (1≤i ≤4),不等式()()()()()()122334M f x f x f x f x f x f x -+-+-…成立,求M 的最小值. 【答案】(1)π4或5π4;(2)详见解析;(2)4【解析】(1)利用诱导公式化简()2f x f x π⎛⎫=- ⎪⎝⎭,结合同角三角函数的基本关系式求得tan x 的值,由此求得方程的解.(2)将a 分成0a =和0a ≠两种情况,结合零点存在性证得结论成立.(3)先证得4M ≥,再证得()()()()()()1223344f x f x f x f x f x f x ≥-+-+-,由此求得M 的最小值为4. 【详解】(1)因为,()()πsin ,2f x x f x f x ⎛⎫==-⎪⎝⎭,所以πsin sin 2x x ⎛⎫=- ⎪⎝⎭,即sin cos x x =,且[]0,2πx ∈.若cos 0x =,则sin 0x =,与22sin cos 1x +=矛盾.所以cos 0x ≠,从而tan 1x =.又[]0,2πx ∈,所以π4x =或5π4x =. (2)当0a =时,由()()f x ag x =得sin 0x =,即πx =是该方程的一个解;当0a ≠时,令()1ln sin h x x x a =-.因为()h x 的图像在区间22,a ae e -⎡⎤⎢⎥⎢⎥⎣⎦上连续不断,且2221211sin 0a a h ee a a a a a --⎛⎫⎛⎫=--≤-+=-< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,2221211sin 0a a h e e a a a a a -⎛⎫⎛⎫=-≥-=> ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,根据零点存在性定理可知,存在220,aax e e-⎛⎫∈⎪ ⎪⎝⎭,使得()00h x =.因此,当0a ≠时,方程()()f x ag x =有解0x x =. 综上所述,对任意a R ∈,方程()()f x ag x =都有解. (3)先证:4M ≥.取1234π3π0,,,2π22x x x x ====,122334sin sin sin sin sin sin 1214M x x x x x x ≥-+-+-=++=.再证:当123402πx x x x ≤<<<≤时,都有()()()()()()1223344f x f x f x f x f x f x ≥-+-+-,即1223344sin sin sin sin sin sin x x x x x x --≥+-+.①若2πx ≤,因为234π2πx x x ≤<<≤,于是2341sin ,sin ,sin 0x x x -≤≤,所以2334sin sin 1,sin sin 1x x x x -≤-≤,而12sin sin 2x x -≤,所以122334sin sin sin sin sin sin 4x x x x x x --+-+≤.②若3πx ≤,1223sin sin 1,sin sin 1x x x x -≤-≤,34sin sin 2x x -≤,所以122334sin sin sin sin sin sin 4x x x x x x --+-+≤;③若23πx x <<,1223sin sin 1,sin sin 2x x x x -≤-≤,34sin sin 1x x -≤,所以122334sin sin sin sin sin sin 4x x x x x x --+-+≤,于是对任意满足条件的1234x x x x <<<,都有1223344sin sin sin sin sin sin x x x x x x --≥+-+.综上所述,M 的最小值为4. 【点睛】本小题主要考查诱导公式、同角三角函数的基本关系式,考查零点存在性定理,考查分类讨论的数学思想方法,考查化归与转化的数学思想方法,考查分析、思考与解决问题的能力,属于难题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档