车架有限元分析
基于ANSYS的自行车车架结构有限元分析
![基于ANSYS的自行车车架结构有限元分析](https://img.taocdn.com/s3/m/7fb6c164bdd126fff705cc1755270722192e592e.png)
基于ANSYS的自行车车架结构有限元分析自行车车架是自行车的核心组成部分,它承载着骑手的重量和外界的力量,直接影响着自行车的性能和稳定性。
为了确保自行车车架的可靠性和安全性,有限元分析被广泛应用于自行车车架结构设计。
有限元分析是一种应用于工程领域的数值计算方法,通过将实际结构离散为若干个小单元,近似计算每个小单元的力学特性和应力分布,从而得到整体结构的力学性能。
在进行自行车车架的有限元分析时,需要先对车架进行几何建模。
通常可使用计算机辅助设计软件或三维建模软件进行建模,将车架几何形状、尺寸和连接方式等细节进行精确描述。
接下来,将车架模型导入ANSYS软件中进行分析。
在分析过程中,需要先对车架进行网格划分,将其离散为数个小单元,以便进行后续的力学计算。
划分网格时需要考虑车架各处应力分布的均匀性和准确性。
进行有限元分析时,需要对车架施加相应的边界条件和载荷。
边界条件包括固定支撑或约束,以模拟车架与其他部分的连接方式。
载荷可以是骑手的重力、外界风阻、不平坦路面等因素,通过合理选择载荷类型和大小来模拟实际使用条件。
在进行有限元分析时,需要定义适当的材料参数,包括车架的弹性模量、泊松比、材料屈服强度等。
这些参数直接影响着车架的刚度和性能。
通过对车架进行有限元分析,可以得到车架各处的应力、应变分布情况。
基于分析结果,可以对车架进行优化设计,以满足强度和刚度的要求。
例如,在高应力处添加加强结构或材料,以提高车架的强度和稳定性。
此外,有限元分析还可以在车架结构设计阶段进行疲劳寿命预测。
通过加载一定的循环载荷,可以计算出车架在特定循环次数下的疲劳损伤情况,从而评估车架结构的可靠性和耐久性。
总之,基于ANSYS的有限元分析在自行车车架结构设计中扮演着至关重要的角色。
它可以帮助设计师评估车架的强度、刚度和耐久性,并优化设计以提高车架的性能和稳定性。
通过有限元分析,可以减少设计过程中的试错成本,提高设计效率,为自行车车架的可靠性和安全性提供保障。
摩托车车架有限元分析数据参数模板
![摩托车车架有限元分析数据参数模板](https://img.taocdn.com/s3/m/5055b3faf8c75fbfc77db25b.png)
参数编号参数数据备注1
G摩托车整备质量/Kg 112包含油液2
d1前减震完全压缩时前轮轴中心距车头管下轴承中心竖直距离/mm 2403d2前减震完全压缩时地面车头管下轴承中心竖直距离/mm 4554e
前减震完全压缩时前轮轴中心距车头管下轴承中心水平距离/mm
2155(前减震完全压缩时)前轮轴中心沿车头管
角度方向至车头管上轴承中心距离(图中
长红线表示)/mm
5756(前减震完全压缩时)前轮轴中心沿车头管
角度垂直方向至车头管上轴承中心距离
(图中短红线表示)/mm
07前减震直径/mm
328
方向柱直径/mm 30注:9描述本款车的具体情况(新设计或在哪款基
础上改进的),发动机型号,最高车速等10后减震完全压缩后,后轮中心与减震点距
离L1、与吊架点距离L211指出车架上坐垫大致位置L3(即副乘员中
心位置与前轮轴水平距离L3),见下图2踏板车车架分析所需参数表
新设计,发动机153-7长轴,最高车速89
L1=330,L2=260
1200
见右图1包含内外径(一般取最小直径)
图1图2
前轮
后轮。
车架有限元分析
![车架有限元分析](https://img.taocdn.com/s3/m/237363c66137ee06eff91879.png)
以ANSYS软件为分析工具对从国外引进的某重型车的车架进行了有限元分析、模态分析和以路面谱为输入的随机振动分析,通过用壳单元离散车架及MPC单元模拟铆打传力建立计算模型,研究该车架静、动态性能,了解该车架的优缺点。
车架是汽车的重要组成部分,在汽车整车设计中占据着重要位置,车架结构设计历来为广大汽车厂商所重视。
本文以某汽车公司从欧洲引进的某重型车车架为研究对象,对该车架结构的动、静态特性进行分析计算,消化、吸收欧洲的先进技术并在此基础上进行自主创新设计。
分析手段主要是通过建立正确的有限元分析模型,对车架进行典型工况的静态分析、模态分析和路面不平度引起的随机振动分析,以此了解车架的静态和动态特性,了解该车架的优越性能及其不足之处,为新车架的改型设计提供依据。
1 有限元分析模型的建立该车架为边梁式,由两根位于两边的纵梁和若干根横梁组成,用铆接或焊接方式将纵梁和横梁联接成坚固的刚性结构,纵梁上有鞍座,其结构如图1所示。
由于车架是由一系列薄壁件组成,有限元模型采用壳单元离散能详细分析车架应力集中问题,可以真实反映车架纵、横梁联接情况,是目前常采用的一种模型。
该车架是多层结构,纵梁断面为槽形,各层间用螺栓或铆钉联接,这种结构与具有连续横截面的车架不同,其力的传递是不连续的。
该车架长7m,宽约0.9 m,包括双层纵梁、横梁、外包梁、背靠梁、鞍座、飞机板、铸铁加强板、发动机安装板、三角支撑板和后轴等部分。
考虑到车架几何模型的复杂性,可在三维CAD软件UG里建立车架的面模型,导人到Hypermesh 软件中进行网格划分等前置处理,然后提交到ANSYS解算。
车架各层之间的铆钉联接,可以用Hypermesh-connectors中的bar单元来模拟铆钉联接,对应的是ANSYS的MPC单元,因车架各层间既有拉压应力,又有剪应力,故MPC的类型应选择Rigid Beam方式。
由于该车是多轴车,为超静定结构,为了得到车架结构的真实应力分布,必须考虑悬挂系统的变形情况。
基于有限元法的车架轻量化设计和仿真分析
![基于有限元法的车架轻量化设计和仿真分析](https://img.taocdn.com/s3/m/ffc26bf60408763231126edb6f1aff00bed570fc.png)
基于有限元法的车架轻量化设计和仿真分析有限元法在车架轻量化设计和仿真分析中是一种常用的工具。
该方法基于数学模型,将结构划分成一系列小的单元,通过计算每个单元的应力、变形等物理量,反推得到整个结构的力学性能。
在车架轻量化方面,有限元法可以帮助我们快速地找到轻量化的设计方案,并通过仿真分析验证其性能,从而提高车架的安全性和可靠性。
首先,在轻量化设计中,我们需要寻找轻量化的潜在方案。
有限元法可以帮助我们划分车架结构,并计算不同部件的受力情况。
通过对受力情况的分析,我们可以找到那些不必要的部件或重量过剩的区域,从而进行删减。
例如,我们可以尝试使用高强度材料或降低材料使用量等方式来达到轻量化的目的。
其次,在设计轻量化方案后,需要通过仿真分析来验证其性能。
在有限元法中,我们可以将车架结构的物理特性输入到数学模型中,并通过计算得出其应力分布、变形情况等。
通过这种方式,我们可以在实际试验之前,快速地评估轻量化方案的性能,并进行修改和优化。
最后,有限元法还可以帮助我们改进设计方案,以进一步提高车架的性能。
例如,在仿真分析中,我们可以调整材料的类型和厚度,以达到更好的性能。
我们还可以通过优化部件的形状和尺寸,来减少结构的应力集中和变形等问题。
总之,有限元法在车架轻量化设计和仿真分析中是一种非常有效的工具。
通过使用该方法,我们可以快速地找到轻量化方案,并通过性能仿真进行验证和优化,最终提高车架的安全性和可靠性。
为了能更清楚地了解车架轻量化设计和仿真分析的数据,我们可以以一辆小型轿车为例,尝试列出相关数据并进行分析。
首先,我们需要了解该汽车原始的车架结构的总重量、尺寸和材料类型及数量等情况。
假设该汽车的车架总重量为1000千克,尺寸为4000毫米长、1500毫米宽和1500毫米高,使用的材料为钢材和铝材,其中钢材使用量为80%。
我们可以看到,该车架的重量相对较高,需要进行轻量化设计。
接下来,我们可以通过有限元法对该车架进行轻量化设计。
车架的有限元分析及优化
![车架的有限元分析及优化](https://img.taocdn.com/s3/m/7cd49243f7ec4afe04a1df25.png)
车架的有限元分析及优化作者:马迅盛…文章来源:湖北汽车工业学院点击数:1687 更新时间:2008-8-5有限元法将设计人员丰富的实践经验与计算机高速精确的计算完美地结合在一起,大大提高了设计计算精度,缩短了产品开发时间。
概念设计阶段车架的结构方案参考某一同类型车架,考虑到车身安装和其他总成的布置,将概念设计阶段的车架大致结构拟定如下:选用框架式平行梯形车架结构,由2根左右分开的纵梁和8根横梁组成,全长6.3m,宽0.8m,轴距3.65m。
各梁的大致形状尺寸及板材厚度如表1所示。
除第3、4根横梁外,其他各横梁的尺寸与参考的同类型车架几乎相同。
由于参考车架的第3、4根横梁为上下两片形状复杂的钢板组合而成,无法用梁单元模拟,在概念车架中将之改用两根方型截面的等直梁代替。
第1、6横梁为非等截面梁,其宽和高分别由两个尺寸表示。
参考车架纵梁的前后两段和中间段的连接采用的是线性渐变的截面,在概念车架中用一等直梁来代替,等直梁的高度等于渐变梁的中间高度。
纵横梁上所有的孔及连接板都不予以考虑。
车架的有限元模型为了后续的优化设计,必须对车架进行参数化建模。
选择表1中车架纵横梁的截面尺寸为模型参数,先建立左半个车架的几何模型,选用ANSYS中的二节点12自由度梁单元BEAM188号单元采用不同的梁单元截面形式对其进行网格剖分;再将左边的几何模型和网格模型进行映射得到右边车架模型,最终合并对称面上的节点使左右车架模型“牢固的”“粘结起来”。
在ANSYS中用BEAM188单元实施网格剖分时,为了保证单元的正确方向,应事先定义该单元的方向点并检查所要剖分的线的法向。
单元截面形状和偏置量需用命令SECTYPE、SECOFFSET和SECDATA设定。
单元总数为312,节点总数为626。
网格剖分并映射后车架模型如图1所示。
图中显示出了梁单元的截面形状。
图1 车架的有限元模型边界条件车架刚度有多种,其中最重要的是车架的弯曲刚度和扭转刚度。
车架有限元分析
![车架有限元分析](https://img.taocdn.com/s3/m/268e799480eb6294dd886ce6.png)
目录一结构简介 (1)二计算载荷工况 (2)三有限元模型 (5)四静强度分析结果 (10)一、结构简介本次作业以某转向架构架为几何模型,进行静强度分析,下图为本次计算针对的某型转向架几何模型,结构上由侧架、摇枕、转臂座、齿轮箱吊挂、轴箱吊挂、一系减震器座等组成。
整个计算主要分为网格划分和静强度计算两个过程。
图1 某型转向架几何模型(a)图2 某型转向架几何模型(b)二、计算载荷工况根据要求,对转向架采取如下的加载方式: 1、约束图3 约束要求如下的局部视图中圈出处即为所加的约束之一;图4 模型中所加约束之一2、载荷在此点出建立Z 方向的位移约束在此点出建立X 、Z 方向的位移约束在此点出建立X 、Y 、Z 方向的位移约束在此点出建立Y 、Z 方向的位移约束图5 受力要求模型中加载作用力的局部视图如下(注:图中坐标系中红色为X 轴,绿色为Y 轴,蓝色为Z 轴);图6 Z 轴正向26.2kN 的力在此处加26.2KN 的力,力的方向为Z 轴负方向在此处加26.2KN 的力,力的方向为Z 轴正方向在此处加45.6KN 的力,力的方向为X 轴正方向中心销半圆内部分(Z 方向距上盖板80mm,距下盖板131mm ,X 方向距离圆心7mm )图7 Z轴负向26.2kN的力图8 中心处加载X轴正向45.6kN的力计算工况如下表1所示表1 工况工况横向(X向)纵向(Y 向)垂向(Z向)1 -- --+三.有限元模型整个模型由两类网格组成:构架采用壳网格单元建立模型,转臂座构件采用六面体网格建立模型;其中壳网格单元以四边形网格为主。
有限元模型重量为1422.015kg,结点总数为81382,单元总数为74991。
有限元模型如图9~12所示。
图9 壳单元模型(1/4模型)图10 转臂座实体网格模型图11 整体网格(a)图12 整体网格(b)需考虑对各个连接处的连接方式,根据工厂要求,具体连接处及连接方式可参考如下要求。
汽车底盘车架设计中的有限元分析技术应用
![汽车底盘车架设计中的有限元分析技术应用](https://img.taocdn.com/s3/m/540068bebb0d4a7302768e9951e79b8969026869.png)
汽车底盘车架设计中的有限元分析技术应用对于汽车制造商和设计师来说,设计一款坚固、耐用且安全的底盘车架是至关重要的。
在现代汽车设计过程中,有限元分析技术(Finite Element Analysis, FEA)被广泛应用于底盘车架设计中,以保证其结构的可靠性和性能。
本文将探讨有限元分析技术在汽车底盘车架设计中的应用,并介绍其在结构优化、材料选择和碰撞安全等方面的重要作用。
有限元分析技术是一种计算求解结构力学问题的数值分析方法,通过将底盘车架分割成有限个小单元(有限元),借助计算机进行离散化求解,从而得到车架在外力作用下的应力、应变、位移等力学响应。
这一计算模型可以准确描述车架的力学特性,并预测其结构行为。
首先,有限元分析技术在汽车底盘车架设计中的应用之一是结构优化。
通过对车架的有限元模型进行各种负载条件和约束条件的分析,设计师可以确定哪些局部区域受到最大的应力,从而确定哪些地方需要加强或重新设计。
例如,在汽车底盘车架的连接点和受力集中的区域,可以使用有限元分析来评估应力分布情况,以确保其强度和刚度满足设计要求。
此外,有限元分析还可以帮助设计师优化车架的减重设计,在保证结构安全性和刚度的前提下最大限度地降低车重,提高燃油经济性。
其次,有限元分析技术在材料选择方面也发挥着重要作用。
通过在有限元模型中引入不同材料的特性参数,设计师可以比较不同材料组合的效果,选取最佳材料以满足设计要求。
例如,比较不同材料的强度、刚度、耐腐蚀性等特性,以在保证结构安全性的前提下选择最轻最强的材料。
这种材料选择的优化可以有效地提高整个车架的性能,并且在节约成本的同时提高车辆的可靠性和可维护性。
最后,有限元分析技术在碰撞安全方面也具有重要意义。
通过对车架在碰撞事故时的有限元分析,设计师可以模拟和预测车辆受到冲击后的结构变形、应力分布和吸能能力等。
这对于汽车碰撞安全的设计和评估非常重要。
通过有限元分析的结果,设计师可以根据不同碰撞力的作用方式,合理设计车架吸能结构,以保护车辆内部乘客的安全。
某车型车架的有限元分析。开通一报告
![某车型车架的有限元分析。开通一报告](https://img.taocdn.com/s3/m/72a64583e53a580216fcfebb.png)
开题报告某车型车架的有限元仿真分析一、选题的目的及研究意义车架也称大梁,车架是汽车各总成的安装基体,它将发动机、底盘和车身等总成连成一个整体,即将各总成组成为一辆完整的汽车。
同时,车架还承受汽车各总成的质量和有效载荷,并承受汽车行驶时所产生的各种力和力矩,即车架要承受各种静载荷和动载荷。
一般由两根纵梁和几根横梁组成,经由悬挂装置﹑前桥﹑后桥支承在车轮上。
具有足够的强度和刚度以承受汽车的载荷和从车轮传来的冲击。
车架在实际环境下要面对4种压力即:负载弯曲、非水平扭动、横向弯曲、水平棱形扭动。
要评价车架设计和结构的好坏,首先应该清楚了解的是车辆在行驶时车架所要承受的各种不同的力。
如果车架在某方面的韧性(stiffness)不佳,就算有再好的悬挂系统,也无法达到良好的操控表现。
汽车车架静力学分析主要包括弯曲和扭转两种工况,这是评价车架质量最重要的指标。
采用牵性力学理论及有限元原理,利用大型通用有限元分析软件ANSYS 对某车型车架在弯曲、扭转两种工况下进行力学分析,得出了在弯曲和扭转工况下某轿车车架的刚度变化。
并对不同荷载情况下的车架不同部位的应力、位移进行较为全面的数值模拟,为对车架的强度分析提供参考和依据。
由此可见车架对汽车的重要性,采用ANSYS对汽车车架进行结构优化设计,可以对结构的动态特性作出评价。
同时对车架的模态分析结果进行验证,使车架结构在原有基础上得以分析并优化,以保证车架的安全性精简性等。
二、综述与本课题相关领域的研究现状、发展趋势及研究方法等.1.研究现状:目前,国内对汽车车架的设汁与研究已经从主要依靠传统的经验分析设汁方法逐渐发展到有限元等现代设计方法,但是尚未像汽车整车和主要零部件的参数确定那样广泛应用优化设计方法。
所以汽车车架结构参数化设计与优化仍是近些年的重要研究领域。
2.发展趋势:有限元分析技术能够满足用户对车架的应力分布的需要,结构优化技术能够为车架的设计提供更合理的设计尺寸。
基于ANSYS的车架有限元分析报告
![基于ANSYS的车架有限元分析报告](https://img.taocdn.com/s3/m/e4e7aaac0875f46527d3240c844769eae009a3e2.png)
基于ANSYS的车架有限元分析报告一、引言车架是汽车的重要组成部分之一,它承载着车身、引擎等重要部件,并且需要具备良好的强度和刚度特性。
为了确保车架设计的合理性和安全性,有限元分析方法被广泛应用于车架的设计和优化过程中。
本报告通过使用ANSYS软件对车型的车架进行有限元分析,旨在揭示其结构的力学性能,并提出相应的优化建议。
二、建模与网格划分首先,根据实际情况对车架进行几何建模,包括车架材料的选择、主要结构的划分等。
然后,采用ANSYS软件对车架进行网格划分,以保证有限元分析的准确性和计算效率。
在划分网格时,应根据不同结构部位的重要程度和应力集中程度进行细致划分,以获得较为准确的应力分布。
三、材料属性设置车架材料的力学性能参数对有限元分析结果具有重要影响。
在本次分析中,我们选取了一种常用的高强度钢材料作为车架的材料,并设置相应的材料属性。
这些属性包括弹性模量、泊松比、密度等参数。
要注意的是,这些参数需要结合实际情况和材料测试数据进行设置,以确保分析结果的准确性。
四、约束条件设置在有限元分析中,约束条件的设置对于分析结果的准确性至关重要。
在车架分析中,我们通常可以假设一些约束条件,比如悬挂点的约束、底盘支撑点的固定等。
这些约束条件可以对车架进行限制,并模拟实际使用中的约束情况。
五、载荷设置在有限元分析中,合理地设置载荷条件对于车架分析的准确性和可靠性也非常重要。
可以根据实际情况对不同工况下的载荷进行设置,比如车辆加速、制动、转弯等。
这些载荷会对车架产生不同的应力和变形,从而可以评估车架在不同工况下的强度和刚度特性。
六、分析结果与讨论通过ANSYS的有限元分析,我们可以获得车架在不同工况下的应力分布、变形情况等。
根据实际情况,可以评估车架结构的强度和刚度,并分析其受力情况和问题所在。
在本次分析中,我们得出了车架各个关键部位的最大应力和变形情况,并进一步进行了分析和讨论。
根据分析结果,我们可以找出车架结构中的问题,并提出相应的优化建议,比如增加固定支撑处的材料厚度、调整关键连接点的设计等。
XXX车架有限元分析
![XXX车架有限元分析](https://img.taocdn.com/s3/m/a03e74b9aff8941ea76e58fafab069dc50224729.png)
XXX车架有限元分析近年来,汽车行业的发展可谓突飞猛进。
为了提高汽车的安全性能和稳定性,车架的设计变得尤为重要。
在汽车设计中,车架的主要任务是提供强度和刚性支撑,以保护车辆乘员和其他部件免受碰撞产生的冲击。
而有限元分析(FEA)是一种有效的工具,可以帮助工程师们评估车架在不同条件下的强度和稳定性。
有限元分析是一种数值计算方法,将复杂的结构划分成无数小的有限元素,通过在每个元素上施加约束和载荷,来模拟结构的行为。
在车架的有限元分析中,主要考虑的是车架的静态刚度和动态响应。
首先,在车架的有限元分析中,需要确定车架的材料性质。
车架通常是由钢材制成,因为钢材具有较高的强度和刚度。
然后,根据车架的几何形状和设计要求,将车架划分成许多小的有限元素。
每个元素都有其特定的物理属性,如材料类型、密度、弹性模量等。
在分析过程中,需要先施加各个节点上的载荷,并确定约束条件。
载荷可以是车辆自身的重量和负载,也可以是外部施加的碰撞力。
约束条件可以是车轮的固定位置或其他支撑点。
然后,利用有限元分析软件求解得到车架在不同应力下的变形情况。
通过有限元分析,可以评估车架在各种工况下的强度和刚度。
在静态刚度方面,可以评估车架在静止状态下的刚性支撑效果。
而动态响应方面,则可以模拟不同道路条件下车架的变形和振动情况。
有限元分析还可以用来进行优化设计。
工程师可以根据分析结果对车架的材料选择、结构形式和连接方式等进行调整,以提高车架的性能。
例如,在车架设计中可以采用钢材和其他高强度材料的复合结构,以提高刚度和强度。
此外,在连接部位采用焊接、螺栓等方式,可以提高连接的牢固度和稳定性。
总之,有限元分析是现代汽车设计中必不可少的工具之一、通过对车架的有限元分析,可以评估车架的强度和稳定性,为车架的设计和优化提供科学依据,从而提高汽车的安全性能和稳定性。
火车箱车架有限元分析
![火车箱车架有限元分析](https://img.taocdn.com/s3/m/09adc33b43323968011c9260.png)
向, 约束对称面中点 x方 向位移。 两端约束底部 Y
方 向位移 。
4 第 四种模 型 : ) 载荷 10 N 对称面约束 z方 4k ,
向 ,约 束对 称 面 中点 x方 向位 移 。两 端 约束 全 部
1 结 构特性 分 析 :
从结构上看 , 车箱底架横截面基本上为箱型结 构。 由于结构完全对称 , 我们在 以下分析中只选 1 / 2 结构作为研究对象 , 车架三维仿真示意图见图 1 。
图1 1 / 架三维仿真效果 图 2车
2 建 立力学模 型 : 21节 点与单 元 . 根 据 结 构 特 征 ,选 用 Q AD4四边 形 单 元 、 U /
H X8 E / 六面体单元和少量 T I 三角形单元 。 R/ 3 该模 型共计 25 节点 ,33 42 25 单元。自由度 75 。车架 36 有限元单元网格划分见图 2a 。 ()
图2 车 架有限 元单元网 格划分及载荷作用示意图ab 、
22载荷 : .
参 见 图 2 b , 架 承 受 着 车箱 等 附 加 载荷 共 ( )车
维普资讯
重 工科 技
2 0 N . 0 7 o2
=
—3 5—
2 t 荷均 匀地 分 布在 车架 中部 。对 于 1 8。载 / 2结构 , 分 析 时 ,载荷 P 1t = 4 以节 点 力 方 式均 匀 作 用 于 相
应 节 点上 。 3 边界 条件 的 处理 :
维普资讯
.
.
3 . 4.
重 工科技
20 N . 07 o 2
火车箱车架有 限元分析
车架有限元分析
![车架有限元分析](https://img.taocdn.com/s3/m/a402b76faf45b307e87197bc.png)
摘要现代汽车绝大多数都有作为整车骨架的车架,车架是整个汽车的基体。
汽车绝大多数部件和总成(如发动机、传动系统、悬架、转向、驾驶室、货箱及有关操纵机构)都是通过车架来固定其位置的。
车架的功用是支撑连接汽车的各零部件,并承受来自车内外的各种载荷。
因此,车架的静、动态特性是其结构设计、改进和优化的依据,是确保整车性能优良的关键因素之一。
本文以6470型SUV车架作为研究对象,分析论证了CAD/CAE技术在汽车车架设计中的应用,主要内容如下:(1)选取一个SUV车型,通过查找和测量得到其主要的车型参数。
(2)运用CAD软件Unigraphics(简称UG)建立车架的三维模型。
(3)通过UG软件和ANSYS件的无缝连接将车架的三维模型导入ANSYS软件中。
(4)运用ANSYS软件的强大的有限元分析功能对该车架进行网格划分,施加适当的约束和载荷,对车架进行有限元静态分析,从而校核了该车架的强度和刚度,分析结果,校核该车架的强度和刚度能否满足要求。
在建模和有限元分析过程中,就CAD三维实体的建模方法、有限元理论的数学基础、有限元软件ANSYS、CAD软件与有限元接口技术、有限元分析方法的前期后期处理等方面做了研究工作,为后续工作做了较好的技术准备。
关键词:车架;CAD/CAE;ANSYS;有限元分析;静力分析AbstractMost modern cars are used as vehicle skeleton frame, which is through the matrix. Most parts and assemblies of a vehicle(such as engine, transmission, suspension, steering, cab, containers and related control mechanism and so on)are all over the frame to a fixed location. The function of a vehicle frame is to support the connection parts, and to take from inside and outside the vehicle loads. So, the static and dynamic analysis characteristics of frame is not only the base of its structure design, improvement and optimization, but also one of the key factors to ensure that vehicle performance.Finite element analysis has become an essential technology in the design of vehicle structure. As for compute-intensive and the analysis step,intuitive linear analysis of frame is very difficult. And ANSYS Finite element analysis software program can discrete elements into countless units to facilitate analysis, calculation and optimized results.On this article, 6,470 SUV frame is the objects to be researched to analyze and demonstrate CAD/CAE technique and its application in the design of automobile frame. Mainly as follows:(1) Select a SUV models,Find and measure its main parameters;(2)Establish the three dimensional model of the frame by UG;(3) Import the three dimensional frame model in UG into ANSYS through the seamless connection between UG and ANSYS;(4) Use the powerful finite element analysis for the frame element mesh, impose the appropriate constraints and loads and make the finite element static analysis of frame to check the strength and rigidity of the frame,During the modeling and finite element analysis,a lot of research work about the three-dimension solid modeling method, mathematical basis of finite element theory, interface technology of finite element, late and early processing of finite element analysis method is done, preparing for the follow-up work to be done better.Keywords: Frame, CAD/CAE; ANSYS; Finite Element Analysis; Static Analysis目录摘要 (I)Abstract (II)第1章前言 (5)1.1汽车车架介绍 (5)1.2国内外研究现状 (6)1.3研究意义及目的 (7)第2章软件介绍 (9)2.1 UG简介 (9)2.1.1 UG发展综述 (9)2.1.2 UG软件的优势 (9)2.2 ANSYS简介 (10)2.2.1有限元软件ANSYS发展综述 (10)2.2.2 ANSYS的技术特点 (10)2.2.3 ANSYS的功能 (11)第3章车架的建模 (13)3.1车架结构的简化 (13)3.2实体车架模型的建立 (13)第4章车架的有限元分析 (17)4.1 静力分析基础 (17)4.2车架静力学分析模型的建立 (18)4.3 悬架的模拟 (22)4.4 载荷的处理 (23)4.5车架静力分析工况及约束处理 (24)4.5.1 满载弯曲工况分析 (25)4.5.2 满载扭转工况分析 (30)4.5.3 满载制动工况分析 (33)4.5.4满载转弯工况分析 (34)第5章传统车架计算方法与有限元法比较 (37)第6章论文总结 (41)致谢........................................................ 错误!未定义书签。
车架有限元分析
![车架有限元分析](https://img.taocdn.com/s3/m/d11eb7e9f705cc17552709e0.png)
车架有限元分析摘要车架是车辆的重要组成部分之一,是整个汽车的基体,承受着车辆所传递的包括来自路面与发动机的振动激励等车辆总成部件的多种复杂载荷。
因此,车架的优劣直接会影响到整个汽车性能的好坏,对其进行必要的研究和数据分析也就显得分外重要了。
而随着科学技术的进步,数据时代的到来,为车架的分析也带来了新的技术变化。
本文主要以有限元分析为主体,运用ANSYS软件对某车型的车架进行数据分析,施加适当的约束和载荷,校核该车架的强度和刚度,查看该车架的强、刚度能否满足要求。
在建模与数据分析阶段,分别运用两种不同的软件进行。
首先运用PRO/E[1]软件进行三维几何实体建模,然后运用ANSYS软件进行数据分析。
主要内容有:(1)选用某车型的小型汽车的车架,寻找和测量其主要的车型参数。
(2)运用PRO/E软件绘制该车架的三维模型。
(3)将PRO/E软件中的三维模型数据导入到需要进行数据分析的ANSYS软件中。
(4)运用ANSYS软件的有限元分析对该车架进行几何清理、网格划分、静态分析。
(5)分析得出结论,查看是否满足要求。
准备工作:因为要运用PRO/E软件建模和ANSYS软件进行有限元数据分析,所以PRO/E的建模方法、有限元理论及分析方法、ANSYS使用方法、PRO/E与ANSYS软件的无缝连接等都需要进行必要的技术掌握。
关键词:车架;PRO/E;有限元分析;ANSYS;静态分析Frame finite element analysisAbstractFrame is one of the important part of vehicle, is the base of the car, under the vehicle passing by including vibration excitation from road and engine components such as vehicle assembly of a variety of complex load. As a result, the merits of the frame will directly affect the entire car performance is good or bad, the necessary research and data analysis also appears particularly important. But with the progress of science and technology, the arrival of the age of the data, the analysis for the frame also brings new technology changes.In this paper, finite element analysis for the main, using ANSYS software for a certain kechuang frame for data analysis in project, applying the appropriate constraints and load, check the strength and stiffness of the frame, see the strong, the stiffness of the frame can meet the requirements.In modeling and data analysis phase, respectively using two different types of software. First using PRO/E software for 3 d geometry entity model, and then using ANSYS software for data analysis. The main contents are:(1) choose a kechuang small car frame of the project, to find and measuring of the models of its main parameters.(2) using PRO/E software rendering 3 d model of the frame.(3) the PRO/E software in the 3 d model data is imported into the need for data analysis in the ANSYS software.(4) using ANSYS software of finite element analysis of the frame geometry cleanup, meshing, static analysis.(5) the analysis conclusion, see whether meet the requirements.Preparation: because of using PRO/E software modeling and ANSYS software for finite element analysis of data, so the modeling method, the finite element theory and analysis method of PRO/E, ANSYS using method, using PRO/E seamless connection with ANSYS software and so on all need to master the necessary technology.Key words: frame; PRO/E; The finite element analysis; ANSYS; Static analysis目录第一章引言...............................................................................................................................................- 1 -1.1车架介绍......................................................................................................................................- 1 -1.2有限元分析法在车架中的研究应用以及研究现状 ..................................................................- 3 -1.3课题研究的意义和目的..............................................................................................................- 3 -1.4主要研究内容..............................................................................................................................- 4 - 第二章有限元分析软件介绍...................................................................................................................- 4 -2.1PRO/E简介....................................................................................................................................- 4 -2.1.1PRO/E主要特性................................................................................................................- 4 -2.2ANSYS简介....................................................................................................................................- 5 -2.2.1ANSYS技术种类................................................................................................................- 6 -2.2.2软件优势..........................................................................................................................- 6 -2.2.3ANSYS功能........................................................................................................................- 7 - 第三章车架有限元建模...........................................................................................................................- 8 -3.1 车架简化形式的建模................................................................................................................- 8 -3.2建立有限元车架模型..................................................................................................................- 9 - 第四章有限元分析.................................................................................................................................- 10 -4.1静力分析....................................................................................................................................- 10 -4.1.1静力分析基础................................................................................................................ - 11 -4.1.2建立车架静力学分析模型............................................................................................- 12 -4.1.3对导入到ANSYS后的车架模型进行网格划分 ............................................................- 12 -4.2载荷的处理................................................................................................................................- 15 -4.3悬架与部件连接的模拟............................................................................................................- 16 -4.3.1悬架的处理....................................................................................................................- 16 -4.3.2部件连接及相互作用的模拟 ........................................................................................- 17 -4.4静力分析工况及约束处理........................................................................................................- 17 -4.4.1满载弯曲工况加载........................................................................................................- 17 -4.4.2满载制动工况分析........................................................................................................- 23 -4.4.3满载转弯工况分析........................................................................................................- 25 - 第五章结束语.........................................................................................................................................- 27 - 附录.........................................................................................................................................................- 29 - 参考文献...................................................................................................................................................- 46 - 致谢.........................................................................................................................................................- 47 -引言- 1 -第一章 引言1.1车架介绍车架也称大梁,是汽车的基体,一般由两根纵梁和几根横梁组成,经由悬挂装置﹑前桥﹑后桥支承在车轮上。
轻型载货汽车车架有限元静力学分析-开题报告
![轻型载货汽车车架有限元静力学分析-开题报告](https://img.taocdn.com/s3/m/9cc2e805763231126edb111f.png)
毕业设计(论文)开题报告学生姓名系部汽车与交通工程学院专业、班级指导教师姓名职称教授从事专业车辆工程是否外聘□是√否题目名称轻型载货汽车车架有限元静力学分析一、课题研究现状、选题目的和意义1.研究现状:(1)从车架的设计方法来讲,早期车架设计采用设计和试验交叉进行。
在车架结构定型之前往往经过多轮设计,设计面对的对象是实物,需要经过样品制造一试验一修改一再设计的往复,这种方式不可避免地导致整个设计过程周期长,以及人力、物力和财力资源的严重浪费。
随着设计验的积累,人们将计算技术应用于汽车车架结构性能的分析及设计中。
初期的车架结构性能计算是通过将车架简化成单根纵梁,进行弯曲强度校核。
这种计算方法至今还在沿用,但它显然满足不了汽车车架结构性能的设计要求。
后来提出的车架结构扭转强度计算方法,只能计算纯扭转工况,不能考虑车架的实际工况,并且,计算比较复杂,工作量大,在实际运用中存在着很大的困难。
再后来,人们将比较设计的思想应用于车架设计中。
这种设计方法是以同一类型的成熟样车为参考来进行车架的设计,目前依然是车架结构初步设计的主要方法。
但是,这种方法可能造成车架各处强度不均匀,某些局部强度富裕较大,产生材料浪费等现象。
20世纪60年代以来,由于电子计算机的迅速发展,有限元法在工程上获得了广泛应用。
有限元法不需要对所分析的结构进行严格的简化,既可以考虑各种计算要求和条件,也可以计算各种工况,而且计算精度高。
有限元法将具有无限个自由度的连续体离散为有限个自由度的单元集合体,使问题简化为适合于数值解法的问题。
只要确定了单元的力学特性,就可以按照结构分析的方法求解,使分析过程大为简化,配以计算机就可以解决许多解析法无法解决的复杂工程问题。
目前,有限元法已经成为求解数学、物理、力学以及工程问题的一种有效的数值方法。
(2)在国外,从60年代起就开始运用有限元法进行汽车车架结构强度和刚度的计算。
1970年美国宇航员将NASTRAN有限元分析程序引入汽车结构分析中,对车架结构进行了静强度有限元分析,减轻了车架的自重,是最早进行车架轻量化的分析。
车架有限元分析范文
![车架有限元分析范文](https://img.taocdn.com/s3/m/85e78ae4f424ccbff121dd36a32d7375a517c613.png)
车架有限元分析范文车架有限元分析是一种用于计算机辅助设计和优化车架结构的工程分析方法。
通过对车架结构进行适当的离散化处理,将复杂的连续体结构转化为由有限个节点和单元组成的离散系统,然后利用数学和力学原理对这个离散系统进行数值计算和分析。
有限元分析方法首先需要将车架结构进行三维建模。
建模时需要考虑到车架的外形尺寸、材料性质、连接方式等。
然后,将车架模型分割成有限个小的单元,如三角形或四边形单元。
每个单元有一组节点,它们的位置决定了单元的形状和尺寸。
在建立了有限元模型后,需要给单元节点分配适当的约束条件和加载条件,以模拟实际工况下的力学行为。
约束条件可以是固定边界条件或限制位移条件,加载条件可以是施加在车架上的荷载、压力或温度差等。
接下来,有限元分析方法将根据车架模型和加载条件构建一个刚度矩阵。
这个刚度矩阵描述了车架模型在各个节点上的刚度和幅度。
然后,通过计算刚度矩阵和加载条件的乘积,得到车架结构在受到施加的荷载下的应变和应力分布。
通过有限元分析方法,可以获得车架模型在不同工况下的应力、应变、位移等信息。
这些信息可以用来评估车架结构的强度、刚度和稳定性,并指导优化设计过程。
例如,可以在一些应力集中的区域增加材料或调整结构形状,以提高车架的承载能力和刚度。
另外,有限元分析方法还可以用于模拟车架在不同工况下的动态响应。
通过对车架结构进行动态分析,可以评估车架在行驶过程中的振动和冲击响应,并优化车架结构以提高乘坐舒适性和行驶稳定性。
总之,车架有限元分析是一种有效的工程分析方法,能够帮助设计人员评估车架结构的强度、刚度、稳定性和动态响应,从而指导优化设计过程,提高车架的性能和可靠性。
有限元分析强度分析(自行车车架力学实验关键承力结构)
![有限元分析强度分析(自行车车架力学实验关键承力结构)](https://img.taocdn.com/s3/m/c2d5bffee009581b6bd9eba2.png)
有限元分析强度分析(自行车车架力学实验关键承力结构)机械1202 马也 3120301052引言:自行车的车身主要有前车架和后车车架组成,为了对已经制造出来的自行车进行承受能力实验,设计师专门针对这个分析设计了一套夹具(工装),以便于自行车车架受力试验的进行。
试验中关键的部位是两个轴(图1中A和C两个位置),这两根曲轴是车架的受压试验直接着力点,设计要求前后支架载荷比例满足:1:1.43,并且要求前后轴受力在1000N以上。
设计师在设计时根据设计经验设计了一套架子(图1),但是不能确保两根轴的强度是否满足要求,因此采用有限元ANSYS对车架进行了力学分析和强度计算,对这个设计方案的可靠性验证具有重要参考意义。
图1 自行车受力架三维图分析思路:整个支架主要有前支架和后支架构成,分析对象为支架上的两根不同跨距的支杆,而支杆的强度只与杆上的载荷和接触有关,从图上也可以看出杆才是整个结构强度最弱的部位。
两根支杆和整个支架均采用普通不锈钢材料。
影响计算精度的最大影响因素为材料、网格、接触和约束。
在网格达到一定数量后,由于有限元的网格无关系,这时可以不用考虑网格的影响了,同种材料下的强度计算时,杆的接触设置是关键,这里采用No separation进行接触设置。
载荷以坐标分量的形式在Y轴(重力方向)分别施加不同的载荷,直至达到材料的屈服强度位置(材料一旦进入屈服,就会发生永久性的变形,此处为杆的弯曲)。
为了计算出结构的最大安全载荷,也就结果从弹性变形过渡到塑性变形的临界载荷,下面对两杆和支架分别进行了载荷计算,因为试算的次数比较多,因此工作量非常大。
在分别求出各杆的最大临界载荷后在整个支架模型上分别添加最大临界载荷,最后考察总体受力情况。
具体实现步骤如下“1双击ANSYS workbench启动按钮,启动ANSYS workbench如下图所示:2.ANSYS WORKBENCH启动后弹出工具栏如下图,双击Static Structural3. 双击Engineering Data设定材料属性,从通用材料库中选择不锈钢(Stainless Steel),材料参数结果如下图所示。
车辆结构有限元疲劳分析
![车辆结构有限元疲劳分析](https://img.taocdn.com/s3/m/034e6f79dc36a32d7375a417866fb84ae55cc31b.png)
Mean Stress
Curves
定义有限寿命数值 疲劳强度系数 载荷缩放系数
恒幅,比例载荷 恒幅,非比例载荷 非恒幅,比例载荷 非恒幅,非比例载荷
X方向应力/Y/Z XY平面应力 YZ平面应力 XZ平面应力
Von Mises应力 带符号的Von Mises应力
最大剪应力 最大主应力 最大主应力最大值
Fully Reversed
Ratio
History
非恒定幅值比例 载荷
R=-1
指定应力比 R=X
指定载荷时 间历程
二、应力疲劳分析
6.平均应力对疲劳寿命的影响
平均应力对疲劳寿命的影响就是考虑应力 比R的变化对疲劳寿命会产生影响,从而需要 对S-N曲线进行修正。ANSYS WB提供了平均应 力修正的五个选项:
第九章 车辆结构有限元疲劳分析
结构疲劳分析基础 应力疲劳分析 典型材料试件应力疲劳分析 发动机连杆的应力疲劳分析
一、结构疲劳分析基础
车辆是运动并承载的机械,其结构承受 的载荷大部分都是交变载荷。零部件失效中, 由疲劳裂纹引起的结构失效断裂事故占总断 裂事故的70%--80%以上,约有50%--90%的 机械结构的破坏属于疲劳破坏。
实例2:连杆受载荷幅值为4500N,为恒幅载 荷,平均载荷为0(R=-1)。材料默认为 Structure Steel。求发动机连杆的安全系数。
四、发动机连杆的应力疲劳分析
直接打开Conrod-fatigue.wbpj文件,导 入ConRod.x_t,并对Geometry进行编辑。
四、发动机连杆的应力疲劳分析
得到的是多轴应力。但在试验过程中得到的 一般是单轴应力。在ANSYS WB应力疲劳分析 中可以选择X、Y、Z三个方向的应力分量, Von Mises应力,带符号Von Mises应力等。 在考虑压缩平均应力对疲劳寿命的影响中, 带符号Von Mises应力是非常有用的,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1前言车架是汽车的主要部件。
深人解车架的承载特性是车架结构设计改进和优化的基础。
过去汽车设计多用样车作参考,这种方法不仅费用大,试制周于精确解。
因此,正确建立结构的力学模型,是分析期长,而且也不可能对多种方案进行评价。
现代车架设计已发展到包括有限元法、优化、动态设计等在内的计算机分析、预测和模拟阶段。
计算机技术与现代电子测试技术相结合已成为汽车车架研究中十分行之有效的方法。
实践证明,有限元法是一种有效的数值计算方法,利用有限元法计算得到的结构位移场、应力场和低阶振动频率可作为结构设计的原始判据或作为结构改进设计的基础。
2车架的静态分析力学模型的选择有限元分析的基本思想,是用一组离散化的单元组集,来代替连续体机构进行分析,这种单元组集体称之为结构的力学模型;如果已知各个单元体的力和位移(单元的刚度特性),只需根据节点的变形连续条件与节点的平衡条件,来推导集成结构的特性并研究其性能。
有限元的特点是始终以矩阵形式来作为数学表达式,便于程序设计,大量工作是由电子计算机来完成,只要计算机容量足够,单元的剖分可以是任意的,对于任何复杂的几何形状,多样化的载荷和任意的边界条件都能适应。
然而,由于有限元是一种数值分析方法,计算结果是近似解,其精度主要取决于离散化误差。
如果结构离散化恰当,单元位移函数选取合理,随着单元逐步缩小,近似解将收敛于精确解。
因此,正确建立结构的力学模型,是分析工作的第一步目前采用有限元分析模型一般有如下两种:梁单元模型和组合模型等。
梁单元模型是将车架结构简化为由一组两节点的梁单元组成的框架结构,以梁单元的截面特性来反映车架的实际结构特性。
其优点是:划分的单元数目和节点数目少,计算速度快而且模型前处理工作量不大,适合初选方案。
其缺点是:无法仔细分析车架应力集中问题,因而不能为车架纵、横梁连接方案提供实用的帮助。
组合单元模型则是既采用梁单元也采用板壳单元进行离散。
在实际工程运用中,由于车架是由一系列薄壁件组成的结构,且形状复杂,宜离散为许多板壳单元的组集,其缺点是前处理工作量大,计算时间长,然而随着计算机技术的不断发展,这个问题已得到了较好的解决,而且由于有大型有限元软件支撑,巨大的前处理工作量绝大部分可由计算机完成,也不是制约板壳元模型实际运用的困难了。
这种模型使得对车架的分析计算更为精确,能为车架设计提供更为有利的帮助。
车架的计算方法汽车车架的主要结构形式为边梁式车架,货车车架纵梁截面多为槽形,横梁截面可为槽形、闭口矩形或圆管。
纵梁和横梁的连结方式有焊接、铆接和螺栓联结等。
其连结接头几何形状各异,应力分布复杂根据是否考虑接头的真实形状,边梁式车架的结构计算方法可分为两大类不考虑接头形状有:最小变形能法、Erz法、传递矩阵法和空间梁有限元法。
其不足之处,一是忽略了接头的柔度,而它对车架变形和杆端力矩的计算却很有影响。
二是无法确切计算接头区域的应力分布,而这对于车架的设计和优化却很重要。
三是只用梁单元,不能反映设计的修改,如接头形状和连接形式的改变考虑接头形状有:完全法和混合法。
完全法用板壳单元来离散整个车架,可用于纵梁并不均匀平直的刚架,缺点是用的单元和自由度数目庞大,且计算的前后处理工作量大;混合法是交替使用了有限元和矩阵立法。
为比较完全法和混合法的计算精度,德国学者做了一个基础试验:对一段仅有一格两根横梁的车架模型,分别用两种算法进行扭转工况的对比计算,将结果与试验相比,混合法的误差仅为3%,而完全法则大得多|在进行车架有限元分析时必须考虑接头形状。
例如对于一个长5”smm,含5根横梁的货车车架,用一般梁单元计算的扭转刚度仅为测值的1/3,车架水平弯曲时,该法求出的与考虑接头形状的相比,纵梁上最大弯矩误差达50%,第三和第四根横梁弯矩误差甚至高达100肠[2j。
内力误差大,就很难设想会求得准确的应力,不考虑接头形状的传统算法将接头看作刚性的特点,而各种车架接头的柔度相差几十甚至JL百倍等效载荷的简化计算结果的真实值和可信度与模型的建立和载荷的简化有直接的关系。
早期的车架强度计算是将车架简化为简支梁,只做弯曲强度的校核,随着有限元的发展和推广,国内汽车行业已将有限元法应用于车架的强度计算,但货箱与车架相连的部分,应力的计算值与货箱和车架之间等效载荷以及相互刚度关系简化模型有关,直接影响计算结果。
通过分析可得出以下几点结论a·货车货箱和车架之间的作用力是以集中力的形式传递的。
b.货箱和车架共同承受弯曲载荷,货箱承受能力与货箱刚度有关。
因此在车架应力的有限元计算中考虑货箱的刚度贡献。
“·货箱的结构形式对车架的受力影响显著[5j。
3车架的动态分析对车架进行强度分析的同时还要考虑其合理的动态特性以达到控制振动与噪声的目的。
国外从70年代开始,对汽车结构的动态特性研究迅速开展并卓有成效。
《SAEPapor》近年来刊登了大量的文章,并由SAE在1974年和1977年召开了两次车辆结构力学的国际会议,出版了文集,车架的动力学分析也是在1971年刚刚开始的,计算频率与试验误差达20%。
国外一般采用等大型计算程序并研制专用程序,自由度数少则几百多则上万。
车架结构一般采用梁单元,车身采用板单元或只承受剪力的板单元和梁单元的组合。
对于整车结构的动力学分析由于自由度过高,计算很不经济,因此近年来发展了子结构的方法,分析各子结构而后进行模态综合。
国内已应用有限元法对汽车车架进行了静力计算。
在文献【6〕中应用大型结构软件对货车车架进行了动态分析和试验模态分析。
在进行模态分析时,因结构阻尼较小,对固有频率和振形影响甚微,故忽略不计。
而汽车车架一般只需要计算较低的几阶频率(高阶振形对结构的动力特性影响很小),并可直接对结构设计进行评价,其评价指标为:a.车架低阶频率(即一阶扭转和弯曲频率的值)应高于悬架下结构的固有频率,而又低于发动机怠速运转频率,以避免发生整体共振现象。
b.车架弹性模态频率应尽量避开发动机经常工作的频率范围。
c.车架振形应尽量光滑,避免有突变。
通过分析提供的信息,对该车在使用中发生的故障进行了诊断,提出了相应的改进措施,从而使该车具有更好的动态特性。
4车架结构优化车架结构元件参数的优化通过对汽车车架性能特点的分析,提出边梁式车架结构参数的优化数学模型,讨论车架在一定的约束条件下,采用复合形法、混合罚函数法寻求各梁截面参数的最佳值,达到合理利用材料、减轻车架自重的目的。
在保证车架强度的同时还要保证具有一定的扭转刚度。
过大的扭转刚度将增大扭转应力,并使平顺性变差(武田信之:《载货汽车设计》)。
从早期通过试验所得出的一些结论可以看出,若加大横梁的扭转刚度,可以提高整个车架的扭转刚度,但与该横梁连接处的纵梁的扭转应力会加大;如果不加大横梁,而是在两根横梁间再增加横梁,其结果是增强了车架的扭转刚度,同时还降低了与横梁连接处的纵梁扭转应力。
据此,国外所采用的轻而密的横梁,显然对于车架的应力状态十分有利。
有限元计算也表明了这一结论的正确性[7j。
在对车架进行强度分析过程中,车架与横梁之间的连接对其分析结果有很大的影响。
采用较柔软的接头一般使对强度起决定作用的扇形正应力降低,但同时也降低了扭转刚度。
当扭转刚度一定时,提高接头柔度和增加横梁数目有利于改善强度,但使车架质量增加。
车架质量一定时,使用数目较少的、截面尺寸较大的横梁对强度有利。
当然,车架优化还要考虑接头区域的应力分布,观察车架的横向弯曲等考虑车架整体布局进行优化|以往较为成熟的研究工作几乎都集中在结构截面尺寸及形状优化方面,这是在结构布局已经决定的情况下进行的。
优化设计能产生的效果也限定在布局之内。
现在,许多专家认为,应该在结构设计的初步设计阶段引人结构优化,即在应力约束下车架的结构拓扑优化设计。
它是在给定外力及支撑的条件下,确定连续体的布局,同时满足各种设计要求,在确定拓扑的同时确定了结构的形状。
该种方法是根据汽车车架的结构和受力特点,用薄板结构尺寸优化方法的数学模型来描述,建立了汽车车架结构拓扑优化模型,利用满应力法对汽车车架进行拓扑优化设计。
它是属于静力优化问题,而动态状态下的结构最优布局仅靠经验是无法解决的。
从实用角度看,结构拓扑优化设计只是一种概念性设计,实际设计时需进行一些修改,因此,实际工作中的车架和优化结果不一定完全一致,那么修改后会有什么影响这就要求对优化结果进行研究,寻求稳定性好的结果。
5结论通过对车架有限元分析技术的全面概括,可得出以下结论:采用板壳单元离散车架、加载方式以集中力的形式、计算方法为混合法的有限元分析模型能克服其他模型的弊病,使车架分析系统的可信度和可操作性加强。
通过对车架的动态分析,找出其低阶振动频率,避开发动机经常工作的频率范围,达到控制振动和噪声的目的。
在纵梁之间增加横梁,即增加了车架的扭转刚度,同时还降低了与横梁连接处的纵梁扭转应力参考文献1..庄继德.汽车车架计算方法和结构优化变量综述.汽车工程,1996(6)2.,历辉.货车车架的等效载荷简化.汽车工程,194(5)3..郑兆晶.汽车车架的固有频率和振型计算.汽车技术,1982(2)4.肖专文.有限元应力计算结果改善处理的一种实用方法.计算力学学报.19995.曲昌荣,郝玉莲,戚洪涛.汽车车架有限元分析[J].轻型汽车技术,2007,6.石常青,丁厚明,杨胜梅.货车车架的有限元分析及车厢对其性能的影响[J].汽车技术,20047.—8.郭立群,潘淑华.中重型汽车车架结构强度有限元建模与分析方法研究[J].汽车技术,2008,9.尹辉俊,韦志林,黄昶春等.面向设计的微型车车架强度分析[M].机械设计,2008,10.吴立峰.优化设计模型及方法的综述[J].石油规划设计,1992,3(2):23-26.11.杨朝丽.计算机辅助工程(cae)发展现状及其应用综述[J].昆明大学学报,2003(2):50-54.12.方世杰,綦耀光.机械优化设计[M].北京:机械工业出版社,2003:28-161.13.王秋珍.机械优化设计的几种方法及评判指标[J].重庆工学院学报,2006,20(8):52-56.。