高二上学期期中考试数学(文科)试卷及参考答案

合集下载

高二上学期期中考试数学(文)试题 Word版含答案

高二上学期期中考试数学(文)试题 Word版含答案

秘密★启用前云天化中学2020~2021学年秋季学期半期测试题高二文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷第1页至第2页,第Ⅱ卷第3页至第4页.考试结束后,请将本试卷和答题卡一并交回.满分150分,考试用时120分钟.第Ⅰ卷(选择题,共60分)注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.一、选择题(本大题共12小题,每小题5分,共60分.在每小题所给的四个选项中,只有一项是符合题目要求的)1.已知集合{|22}A x x =-,{|1}B x x =∈N ,则A B ⋂=( ) A .{2,1}-- B .{2,1,0}-- C .{0,1} D .{1}2.平面向量a 与b 的夹角为60°,(2,0)a =,||1b =,则|2|a b +等于( )A .B .C .12D 3.下列有关命题的说法正确的是( )A .若命题p :0x ∃∈R ,01xe <,则命题p ⌝:x ∀∈R ,1xeB .“sin x =3x π=” C .若||||||a b a b +=-,则a b ⊥D .α,β是两个平面,m ,n 是两条直线,如果m n ⊥,m α⊥,//n β,那么αβ⊥ 4.设{}n a 是等差数列,若23a =,713a =,则数列{}n a 前8项的和为( ) A .128 B .80 C .64 D .565.已知某几何体的三视图如图所示,则该几何体的体积为( )A .12πB .18πC .24πD .36π6.设双曲线22221(0)x y a b a b-=>>的虚轴长为2,焦距为 )A .y =B .2y x =±C .2y x =±D .12y x =±7.已知()f x 是定义在R 上的偶函数,且在区间(,0)-∞上单调递增,若实数a 满足()|1|2(a f f ->,则a 的取值范围是( )A .(,2)-∞B .(0,2)C .(1,2)D .(2,)+∞ 8.已知1sin 35πθ⎛⎫-= ⎪⎝⎭,则sin 26πθ⎛⎫-= ⎪⎝⎭( ) A .225-B .2325-C .225D .23259.已知直线:(21)(1)10()l k x k y k ++++=∈R 与圆22(1)(2)25x y -+-=交于A ,B 两点,则弦长||AB 的取值范围是( )A .[4,10]B .[3,5]C .[8,10]D .[6,10] 10.函数()2sin()0,||2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的最小正周期为π,若其图象向右平移6π个单位后得到函数为奇函数,则函数()f x 的图象( )A .关于点,03π⎛⎫⎪⎝⎭对称 B .在,22ππ⎛⎫- ⎪⎝⎭上单调递增C .关于直线3x π=对称 D .在6x π=处取最大值11.在如图所示的三棱锥V ABC -中,已知AB BC =,90VAB VAC ABC ∠=∠=∠=,P 为线段VC 的中点,则( )A .PB 与AC 不垂直 B .PB 与VA 平行C .点P 到点A ,B ,C ,V 的距离相等D .PB 与平面ABC 所成的角大于VBA ∠ 12.已知函数3log ,03,()|4|,3,x x f x x x <⎧=⎨->⎩若函数()()2h x f x mx =-+有三个不同的零点,则实数m 的取值范围是( )A .1,12⎛⎫⎪⎝⎭B .1,(1,)2⎛⎫-∞⋃+∞ ⎪⎝⎭C .1,[1,)2⎛⎫-∞⋃+∞ ⎪⎝⎭ D .1,12⎛⎤⎥⎝⎦第Ⅱ卷(非选择题,共90分)注意事项:第Ⅱ卷用黑色碳素笔在答题卡上各题的答题区城内作答,在试题卷上作答无效. 二、填空题(本大题共4小题,每小题5分,共20分)13.设x ,y 满足约束条件220,10,240,x y x y x y +-⎧⎪--⎨⎪+-≤⎩则目标函数2z x y =-的最大值是_________.14.在ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,sin cos 3B b A π⎛⎫=- ⎪⎝⎭,2bc =,则ABC 的面积是_________.15.已知三棱锥S ABC -的所有顶点都在球O 的球面上,ABC 是边长为1的正三角形,SC 为球O 的直径,且2SC =,则此棱锥的体积为________.16.设1F ,2F 是双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点,O 是坐标原点.过2F 作C的一条渐近线的垂线,垂足为P.若1|PF OP =,则C 的离心率为_________.三、解答题(共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分) 求下列椭圆的标准方程: (Ⅰ)焦点在x 轴上,离心率35e =,且经过点A ; (Ⅱ)以坐标轴为对称轴,且长轴长是短轴长的3倍,并且与双曲线22135y x -=有相同的焦点. 18.(本小题满分12分)ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知2cos (cos cos )C a B b A c +=.(Ⅰ)求角C ;(Ⅱ)若c =ABCS=,求ABC 的周长. 19.(本小题满分12分)如图所示,在梯形ABCD 中,//,,1,AD BC AB BC AB BC PA ⊥==⊥平面ABCD ,CD PC ⊥.(Ⅰ)设M 为PC 的中点,证明:CD AM ⊥; (Ⅱ)若2PA AD ==,求点A 到平面PCD 的距离. 20.(本小题满分12分)在数列{}n a 中,112a =,()1122nn n a a n *+⎛⎫=-∈ ⎪⎝⎭N ,数列{}n b 满足()2n n n b a n *=⋅∈N .(Ⅰ)求证:数列{}n b 是等差数列,并求数列{}n a 的通项公式; (Ⅱ)设2log n nnc a =,求数列12n n c c +⎧⎫⎨⎬⎩⎭的前n 项和n T . 21.(本小题满分12分)如图,在四棱锥P ABCD -中,底面ABCD 为菱形,PAD 为正三角形,平面PAD ⊥平面ABCD ,E ,F 分别是,AD CD 的中点.(Ⅰ)证明:BD ⊥平面PEF ;(Ⅱ)若M 是PB 棱上一点,且3MB PM =,求三棱锥M PAD -与三棱锥P DEF -的体积之比. 22.(本小题满分12分)设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于A ,B 两点,点M 的坐标为()2,0. (Ⅰ)当l 与x 轴垂直时,求直线AM 的方程; (Ⅱ)设O 为坐标原点,证明:OMA OMB ∠=∠.云天化中学2020~2021学年秋季学期半期测试题高二文科数学参考答案第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分)第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)三、解答题(共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)解:(Ⅰ)因为焦点在x 轴上,即设椭圆的标准方程为22221(0)x y a b a b+=>>,∵椭圆经过点A ,∴2256415a b +=, ① 由已知35e =,∴35c a =,∴35c a =,∴2222235b a c a a ⎛⎫=-=- ⎪⎝⎭,即221625b a =, ② 把②代入①,得225201a a+=,解得225a =,∴216b =, ∴椭圆的标准方程为2212516x y +=. (5分) (Ⅱ)依题意知椭圆的焦点在y 轴上,设方程为22221(0)y x a b a b+=>>,且2222232,9,81,a b a a b b ⎧=⨯⎧=⎪⇒⎨⎨-==⎪⎩⎩∴椭圆的标准方程为2219y x +=. (10分) 18.(本小题满分12分)解:(Ⅰ)由已知及正弦定理可得2cos (sin cos sin cos )sin C A B B A C +=, ∴2cos sin()sin C A B C +=,∵A B C π++=,∴sin()sin A B C +=,∴2cos sin sin C C C =,又∵(0,)C π∈,∴sin 0C >,∴12cos 1cos 2C C =⇒=,∵(0,)C π∈,∴3C π=. (6分)(Ⅱ)11sin 6222ABCSab C ab ab =⇒=⋅⇒=, 又∵2222cos a b ab C c +-=,∴2213a b +=,∴2()255a b a b +=⇒+=,∴ABC 的周长为5+ (12分) 19.(本小题满分12分)(Ⅰ)证明:∵PA ⊥平面ABCD ,CD ⊂平面ABCD ,∴PA CD ⊥.又PC CD ⊥,PA PC P ⋂=,PA ⊂平面PAC ,PC ⊂平面PAC , ∴CD ⊥平面PAC .又M 为PC 的中点,所以AM ⊂平面PAC ,所以CD AM ⊥. (5分) (Ⅱ)解:如图,取AD 的中点K ,连接CK .∵,2,1AD BC AD AB BC ===∥,∴1AK KD ==,AK BC ∥, 故四边形ABCK 为平行四边形, 又AB BC ⊥,∴ABCK 为矩形,则1AC CK AB ===.所以CD =,在Rt PAC 中,∵2PA AD ==,∴PC =设A 到平面PCD 的距离为h ,由P ACD A PCD V V --=, 所以1133ACDPCDPA Sh S ⨯⨯=⨯⨯,所以11112213232h ⨯⨯⨯⨯=⨯⨯h =,所以A 与平面PCD . (12分) 20.(本小题满分12分)(Ⅰ)证明:由1122nn n a a +⎛⎫=- ⎪⎝⎭,即11221n n n n a a ++=-,而2n n n b a =,∴11n n b b +=-,即11n n b b +-=, 又1121b a ==,∴数列{}n b 是首项和公差均为1的等差数列. 于是1(1)12nn n b n n a =+-⨯==,∴2n n na =. (6分) (Ⅱ)解:∵22log log 2n n n n c n a ===,∴122112(1)1n n c c n n n n +⎛⎫==- ⎪++⎝⎭.∴111111111212233411n T n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-+- ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦122111n n n ⎛⎫=-=⎪++⎝⎭. (12分) 21.(本小题满分12分)(Ⅰ)证明:如图,连接AC ,∵PA PD =且E 是AD 的中点,∴PE AD ⊥.又平面PAD ⊥平面ABCD ,平面PAD ⋂平面ABCD AD =,PE ⊂平面PAD , ∴PE ⊥平面ABCD .又BD ⊂平面ABCD ,∴BD PE ⊥.又ABCD 为菱形,且E ,F 分别为棱AD ,CD 的中点,∴//EF AC , ∵BD AC ⊥,∴BD EF ⊥,又BD PE ⊥,PE EF E ⋂=,∴BD ⊥平面PEF . (6分) (Ⅱ)解:如图,连接MA ,MD ,∵3MB PM =,∴14PM PB =,∴1144M PAD B PAD P ABD V V V ---==,又底面ABCD 为菱形,E ,F 分别是AD ,CD 的中点. ∴11112444PDEF F PED C PED C PAD P ADC P ABD V V V V V V ------=====,故1M PAD P DEF V V --=.∴三棱锥M PAD -与三棱锥P DEF -的体积之比为1∶1. (12分)22.(本小题满分12分)(Ⅰ)解:由已知得(1,0)F ,l 的方程为1x =.由己知可得,点A的坐标为⎛ ⎝⎭或1,2⎛- ⎝⎭. 所以AM的方程为2y x =-+2y x =- (4分) (Ⅱ)证明:当l 与x 轴重合时,0OMA OMB ∠=∠=.当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以OMA OMB ∠=∠.当l 与x 轴不重合也不垂直时,设l 的方程为(1)(0)y k x k =-≠,()11,A x y ,()22,B x y ,则12x x <<MA ,MB 的斜率之和为121222MA MB y y k k x x +=+--. 由11y kx k =-,22y kx k =-,得()()()12121223422MA MBkx x k x x k k k x x -+++=--.将(1)y k x =-代入2212x y +=,得()2222214220k x k x k +-+-=. 所以,22121222422,2121k k x x x x k k -+==++. 则()33312122441284234021k k k k kkx x k x x k k --++-++==+, 从而0MA MB k k +=,故MA ,MB 的倾斜角互补,所以OMA OMB ∠=∠. 综上,OMA OMB ∠=∠. (12分)。

高二上学期期中考试数学文科试题(解析版)

高二上学期期中考试数学文科试题(解析版)
A.1B.2C.3D.4
【答案】C
【解析】
【分析】
根据回归方程的意义判断①;先推出方程的一根大于1 , 一根大于0小于1,结合椭圆与双曲线离心率定义可判断②;利用参数法求出动点 的轨迹可判断③;由题意画出图形,得到满足直线 的斜率大于 的 所在的位置,求出直线 的斜率的取值范围可判断④.
【详解】①根据回归方程的意义,结合回归方程为 ,可得该大学某女生身高增加 ,则其体重约增加 ,正确;
【详解】解:因为 ,
所以
所以 ,解得
故双曲线的渐近线方程为
故答案为:
【点睛】本题考查双曲线的简单性质,利用方程右边为0得渐近线方程是解题的关键,属于基础题.
15.已知命题 , ,若 是 的必要非充分条件,则实数 的取值范围是________.
【答案】
【解析】
【分析】
先化简命p,再根据 是 的必要非充分条件,利用集合法求解.
【详解】(1)命题 的否定 为: , .
(2)∵若“ ”及“ ”均为真命题∴ 为假命题, 为真命题
∵ ,∴ .
∵ , ,可得 ,
∴ 或 .故命题 为真命题时, 或 .
又命题 : , 为真,∴ 或 ,
从而命题 为假命题时, .
所以命题 为真命题, 为假命题时, 的取值范围为 .
【点睛】本题考查的是一元二次不等式的解法和复合命题的真假性,考查了学生对基础知识的掌握情况,较简单.
【点睛】本题主要考查命题真假的判断,考查折线图、柱形图等基础知识,意在考查阅读能力、数据处理能力,考查数形结合思想的应用,属于中档题.
7.已知点 在双曲线 的渐近线上,则 的离心率等于
A. B. C. D. 或
【答案】B
【解析】
由题意得:点 在直线 上,

高二上学期期中考试文科数学试卷含答案(1)

高二上学期期中考试文科数学试卷含答案(1)

上学期期中考试 高二文科数学试卷、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有 一项是符合题目要求的•* 21 .设集合 U ^ { x | x ::: 5 , N }, M = { x | x —5x 6 = 0},则?U M =(A . {1 , 4}B . {1, 5}C . {2, 3}D . {3, 4}12•函数f (x )=log 2X的一个零点落在下列哪个区间 x4x - y TO _0,7.设实数x, y 满足条件x-2y ,8_0,,若目标函数z=ax ,by(a 0,b 0)的最大值x - 0, y - 0A. (0, 1)3 .已知三条不重合的直线 3)D. (3,m,n,l 和两个不重合的平面 〉,:,有下列命题:B. (1 , 2)C. (2, ① m //n, n 二二,则m II 】; ②若 I _ : •, m _ :且 I _ m 则:• _ 1:' ③若I _ n, m .丨n,则I IIm④若:•—:,〉门:二 m, n :, n _ m,则 n _ 其中正确命题的个数为().A. 4 B . 3 C . 2 D . 14. 一个几何体的三视图如图所示,那么此几何体的侧面积 (单位:cm )为( A . 48 B . 64 俯视图C. 80 D . 1205•如果函数f (x ) JT=C0S (wx )(w 0)的相邻两个零点之 间的距离为 ,则,6的值为( C. 12D. 24 6•阅读如图所示的程序框图,输出的 A . 0 B . 1+ .2 C . 1 +于S 值为( ).D/.2- 155——K ——正视图* ----- 8 ----- *侧视图数的正整数的个数是f (x )在 R 是单调函数;②函数 f (x )的最小值是-2 ;③方程f (x ) = b 恒有两个不等实根;④对任意x <:0,x 2 :0且为=x 2,恒有f (' 立)f (x^)成立.其中正确结论 2 2的个数为( ).A . 1B . 2C. 3D . 4[来源:]二、填空题'(本大题共4小题,每小题5分。

第一学期期中考试高二数学试题及答案(文科)-精选教育文档

第一学期期中考试高二数学试题及答案(文科)-精选教育文档

第一学期期中考试高二数学试题及答案(文科)高中是人生中的关键阶段,大家一定要好好把握高中,编辑老师为大家整理了第一学期期中考试高二数学,希望大家喜欢。

一、填空题:本大题共14小题,每小题5分,共70分。

请把答案填写在答题卡相应的位置上.1.已知命题,则 : .2.已知函数的导函数为,且满足,则 = .3.已知,,,为实数,且 .则是 - - 的条件.( 充分而不必要、必要而不充分、充要、既不充分也不必要)4. 有下列四个命题:(1)若,则的逆命题;(2)全等三角形的面积相等的否命题;(3)若,则有实根的逆命题;(4)若,则的逆否命题。

其中真命题的个数是_______.5.若是纯虚数,则的值是。

6.已知数列{an}的前n项和,则数列{an}成等比数列的充要条件是r= .7.计算8.函数,的单调递增区间是 .9.已知复数满足 =2,则的最大值为 .10.已知函数在处有极大值,则 = 。

11. 右图是函数的导函数的图象,给出下列命题:① 是函数的极值点;② 是函数的极小值点;③ 在处切线的斜率小于零;④ 在区间上单调递增.则正确命题的序号是 .12.观察下列等式: ,,根据上述规律,第五个等式为____________.13.已知扇形的圆心角为 (定值),半径为 (定值),分别按图一、二作扇形的内接矩形,若按图一作出的矩形面积的最大值为,则按图二作出的矩形面积的最大值为 .14.若存在过点的直线与曲线和都相切,则等于 .二、解答题15.(本小题满分14分)已知为复数,和均为实数,其中是虚数单位.(Ⅰ)求复数 ;(Ⅱ)若复数在复平面上对应的点在第一象限,求实数的取值范围.16.(本小题满分14分)已知 p:,q: .⑴ 若p是q充分不必要条件,求实数的取值范围;⑵ 若非p是非q的充分不必要条件,求实数的取值范围.17.(本题满分15分) 已知二次函数在处取得极值,且在点处的切线与直线平行.(1)求的解析式;(2)求函数的单调递增区间.18. (本题满分15分) 已知a、b(0,+),且a+b=1,求证:(1) ab (2) + (3) + . (5分+5分+5分)19.(本小题满分16分)两县城A和B相距20km,现计划在两县城外以AB为直径的半圆弧上选择一点C建造垃圾处理厂,其对城市的影响度与所选地点到城市的的距离有关,对城A和城B的总影响度为城A与城B的影响度之和,记C点到城A的距离为x km,建在C处的垃圾处理厂对城A和城B的总影响度为y,统计调查表明:垃圾处理厂对城A的影响度与所选地点到城A的距离的平方成反比,比例系数为4;对城B的影响度与所选地点到城B的距离的平方成反比,比例系数为k ,当垃圾处理厂建在的中点时,对城A和城B的总影响度为0.065.(1)按下列要求建立函数关系式:(i)设 (rad),将表示成的函数;并写出函数的定义域. (5分)(ii)设 (km),将表示成的函数;并写出函数的定义域. (5分)(2)请你选用(1)中的一个函数关系确定垃圾处理厂的位置,使建在此处的垃圾处理厂对城A和城B的总影响度最小? (6分)20.(本小题满分16分)已知函数的图象过点,且在点处的切线与直线垂直.(1) 求实数的值;(6分)(2) 求在 ( 为自然对数的底数)上的最大值;(10分) 2019~2019学年度第一学期期中考试高二数学试题(文科)参考答案一、填空题:本大题共14小题,每小题5分,共70分。

高二数学上学期期中试题文含解析_2 3(共24页)

高二数学上学期期中试题文含解析_2 3(共24页)

第二中学2021-2021学年(xuénián)上学期高二中段考试题文科数学一、选择题:本大题一一共12小题,每一小题5分,满分是60分.在每一小题给出的四个选项里面,只有一个是符合题目要求的.,,那么A. B. C. D.【答案】C【解析】【分析】根据集合的并集运算进展计算即可.【详解】由B={x|x﹣3<0},得B={x|x<3},那么A∪B={x|x≤3}=〔﹣∞,3],应选:C.【点睛】此题主要考察集合的并集运算,比拟根底.中,,公比,假设,那么A. B. C. D.【答案】B【解析】【分析】运用等比数列的通项公式,解方程即可得到所求k的值.【详解】在等比数列{a n}中,a1=1,公比q≠±1,假设a k=a2a5,那么a1q k﹣1=a12q5,可得k﹣1=5,即k=6,应选(yīnɡ xuǎn):B.【点睛】此题考察等比数列的通项公式及应用,考察方程思想和运算才能,属于根底题.3.以下函数中,在区间上单调递增的是A. B. C. D.【答案】D【解析】【分析】根据常见函数的单调性分别判断即可.【详解】对于A,函数在区间[0,+∞〕上单调递减,不合题意;对于B,函数在区间〔0,+∞〕上单调递增,不合题意;对于C,在〔0,1〕递减,不合题意;对于D,函数在[0,+∞〕递增,符合题意;应选:D.【点睛】此题考察了常见函数的单调性问题,纯熟掌握常见函数的性质是解题的关键.4.一个人打靶时连续射击两次,事件“至多有一次中靶〞的互斥事件是A. 两次都中靶B. 至少有一次中靶C. 两次都不中靶D. 只有一次中靶【答案】A【解析】【分析】利用(lìyòng)对立事件、互斥事件的定义直接求解.【详解】一个人打靶时连续射击两次,事件“至多有一次中靶〞的互斥事件是两次都中靶.应选:A.【点睛】此题考察互事件的判断,是中档题,解题时要认真审题,注意对立事件、互斥事件的定义的合理运用.5.执行如下图的程序框图,假设输入,那么输出的值是A. B. C. D.【答案(dá àn)】C【解析】【分析】由中的程序语句可知:该程序的功能是利用循环构造计算并输出变量k的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【详解】模拟程序的运行,可得x=1,k=10执行循环体,x=3,k=11不满足条件x>2k,执行循环体,x=7,k=12不满足条件x>2k,执行循环体,x=15,k=13不满足条件x>2k,执行循环体,x=31,k=14此时,满足条件x>2k,退出循环,输出k的值是14.应选:C.【点睛】此题主要考察程序框图的循环构造流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支构造还是循环构造;(3) 注意区分当型循环构造和直到型循环构造;(4) 处理循环构造的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,〔6〕在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到到达输出条件即可.,那么A. B. C. D.【答案(dá àn)】A【解析】【分析】利用同角三角函数的根本关系,二倍角公式,求得sin2θ的值.【详解】∵tanθ=2,那么sin2θ====.应选:A.【点睛】此题主要考察同角三角函数的根本关系,二倍角公式的应用,属于根底题.中,“〞是“是直角三角形〞的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 非充分非必要条件【答案】A【解析】【分析】结合两角和的正弦公式,利用充分条件和必要条件的定义进展判断.【详解】由sin〔A﹣B〕cosB+cos〔A﹣B〕sinB≥1得sin〔A﹣B+B〕≥1,即sinA≥1,∴sinA=1,即A=,此时“△ABC是直角三角形,当B=时,满足△ABC是直角三角形,但sinA≥1不成立,∴“sin〔A﹣B〕cosB+cos〔A﹣B〕sinB≥1〞是“△ABC是直角三角形〞的成立的充分不必要条件,应选(yīnɡ xuǎn):A.【点睛】此题主要考察充分条件和必要条件的判断,利用两角和的正弦公式是解决此题的关键.,满足约束条件那么的最小值为A. B. C. D.【答案】B【解析】【分析】作出不等式组对应的平面区域,利用目的函数的几何意义,进展求最值即可.【详解】由z=x﹣2y得y=x﹣z,作出不等式组对应的平面区域如图〔阴影局部ABC〕:平移直线y=y=x﹣z,由图象可知当直线y=x﹣z,过点A时,直线y=x﹣z的截距最大,此时z最小,由,解得,即A〔﹣1,2〕.代入目的函数z=x﹣2y,得z=﹣1﹣2×2=﹣5.∴目的函数z=x﹣2y的最小值是﹣5.应选:B.【点睛(diǎn jīnɡ)】线性规划的本质是把代数问题几何化,即数形结合的思想.需要注意的是:一、准确无误地作出可行域;二、画HY函数所对应的直线时,要注意与约束条件中的直线的斜率进展比拟,防止出错;三、一般情况下,目的函数的最大或者最小会在可行域的端点或者边界上获得.,是两条不同的直线,,是两个不同的平面,那么以下命题中正确的选项是A. 假设,∥,∥, 那么B. 假设,,,那么C. 假设∥,,,那么D. 假设∥,,,那么【答案】D【解析】【分析】在A中,α与β相交或者平行;在B中,α与β相交或者平行;在C中,由面面平行的断定定理得α∥β;在D中,由面面垂直的断定定理得α⊥β.【详解】由m,n是两条不同的直线,α,β是两个不同的平面,知:在A中,假设m⊥n,m∥α,n∥β,那么α与β相交或者平行,故A错误;在B中,假设m⊥n,α∩β=m,n⊄α,那么α与β相交或者平行,故B错误;在C中,假设(jiǎshè)m∥n,m⊥α,n⊥β,那么由面面平行的断定定理得α∥β,故C错误;在D中,假设m∥n,n⊥β,m⊂α,那么由面面垂直的断定定理得α⊥β,故D正确.应选:D.【点睛】此题考察命题真假的判断,考察空间中线线、线面、面面间的位置关系等根底知识,考察推理论证才能、运算求解才能、空间想象才能,考察化归与转化思想、数形结合思想、函数与方程思想,是中档题.,假设,,,那么,,的大小关系为A. B.C. D.【答案】C【解析】【分析】根据函数解析式先判断函数的单调性和奇偶性,然后根据指数和对数的运算法那么进展化简即可.【详解】∵f〔x〕=x3,∴函数f〔x〕是奇函数,且函数为增函数,a=﹣f〔log3〕=﹣f〔﹣log310〕=f〔log310〕,那么2<log39.1<log310,2<2,即2<log39.1<log310,那么f〔2〕<f〔log39.1〕<f〔log310〕,即c<b<a,应选:C.【点睛】此题主要考察函数值的大小的比拟,根据函数解析式判断函数的单调性和奇偶性是解决此题的关键.的图象(tú xiànɡ)向右平移个单位后,与函数的图象重合,那么的值是A. B. C. D.【答案】C【解析】【分析】由题意结合函数y=Asin〔ωx+φ〕的图象变换规律,得出结论.【详解】把函数y=sin〔2x+φ〕〔﹣π<φ<π〕的图象向右平移个单位后,得到y=sin 〔2x﹣+φ〕的图象,根据所得图象与函数y=sin〔2x﹣〕的图象重合,可得﹣+φ=2kπ﹣,k∈Z.令k=0,可得φ=,应选:C.【点睛】由的图象变换出的图象一般有两个途径,只有区别开这两个途径,才能灵敏进展图象变换,利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现无论哪种变形,请切记每一个变换总是对字母而言,即图象变换要看“变量〞起多大变化,而不是“角变化〞多少.,,设为实数,假设存在实数,使得成立,那么的取值范围为A. B.C. D.【答案(dá àn)】D【解析】【分析】利用二次函数的性质和对数函数的单调性,求出函数f〔x〕值域,进而根据存在a∈R使得f〔a〕+g〔b〕=1,得到g〔b〕=b2﹣2b﹣4≤,解不等式可得实数b的取值范围.【详解】当x<﹣1,f〔x〕=+〔〕2=〔+〕2﹣,∵x<﹣1,﹣1<<0,那么﹣≤f〔x〕<0,当x≥﹣1时,x+2≥1,那么ln〔x+2〕∈[0,+∞〕,综上f〔x〕≥﹣,假设存在a∈R使得f〔a〕+g〔b〕=1,∴g〔b〕=1﹣f〔a〕≤1+=那么g〔b〕=b2﹣2b﹣4≤,即4b2﹣8b﹣21≤0,解得﹣≤b≤故b的范围为[﹣,],应选:D.【点睛】此题考察的知识点是分段函数,函数的值域,根本不等式,对数函数的性质,存在性问题,二次不等式,是函数和不等式较为综合的应用,难度中档.二、填空题:本大题一一共4小题,每一小题5分,满分是20分.,,且,那么___________.【答案】【解析(jiě xī)】【分析】根据题意,由向量垂直与向量数量积的关系分析可得•=2m+〔﹣3〕×〔﹣2〕=0,解得m 的值,即可得答案.【详解】根据题意,向量=〔2,﹣3〕,=〔m,﹣2〕,假设⊥,那么有•=2m+〔﹣3〕×〔﹣2〕=0,解可得m=﹣3;故答案为:﹣3【点睛】此题考察向量数量积的坐标计算公式,关键是掌握向量垂直与向量数量积的关系.方程有两个不等的实根;命题方程无实根,假设“〞为真,“〞为假,那么实数的取值范围为___________.〔写成区间的形式〕【答案】【解析】【分析】分别求出命题p、q为真命题时,a的取值范围,根据复合命题真值表判断假设“〞为真,“〞为假时,命题p、q一真一假,可求a的取值范围.【详解】∵方程x2+ax+1=0有两个不等的实根,∴△=a2﹣4>0⇒a>2或者a<﹣2,命题p为真时,a>2或者a<﹣2;∵方程4x2+2〔a﹣4〕x+1=0无实根,∴△=4〔a﹣4〕2﹣16<0⇒2<a<6,命题q为真时,2<a<6;由复合命题(mìng tí)真值表知:假设“〞为真,“〞为假时,命题p、q一真一假当p真q假时,⇒a≥6或者a<﹣2,当p假q真时,⇒a∈∅,综上a的范围是a≥6或者a<﹣2.【点睛】此题考察命题的真假判断和应用,解题时要认真审题,注意解不等式公式的合理运用.的△内任意投一点,那么△的面积不小于的概率为_____.【答案】【解析】【分析】根据题意知是在面积为S的△ABC内部任取一点P,使△PBC的面积小于的概率,可考虑画图求解的方法,根据图形求出面积比即可.【详解】记事件A={△PBC的面积不小于},根本领件空间是三角形ABC的面积,如下图;事件A的几何度量为图中去掉阴影局部的面积,其中DE是三角形的中位线;因为阴影局部的面积是整个三角形面积的,所以P〔A〕=1﹣=1﹣=.故答案为:.【点睛】几何概型问题时,首先分析根本领件的总体,再找所研究事件的区域,选择适宜(shìyí)的度量方式,概率就是度量比,一般是长度、面积、体积。

【试卷】高二上期中考试数学(文科)试题及答案

【试卷】高二上期中考试数学(文科)试题及答案

高二上期中考试数学(文科)试题(考试时间:120分钟;满分150分)第Ⅰ卷(选择题 共60分)一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在等比数列}{n a 中,已知11=a ,5=9a ,则3=a BA .-3B .3C .±3D .52.椭圆x 216+y 28=1的离心率为A .13B .12C .33D .223.0>x 若,则14++x x 的最小值为 D A .2 B .3 C .4D .5 5.对于实数a ,b ,c ,“a >b ”是“ac 2>bc 2”的 ( B )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件1.数列11×3,13×5,15×7,…,1(2n -1)(2n +1)…的前n 项和为 B A .n 2n -1 B .n 2n +1 C .2n 2n +1 D .2n 2n -14.椭圆x 2m +y 24=1的焦距为2,则m 的值为 A .5 B .3 C .5或3 D .811.已知F 1,F 2是椭圆 x 216+y 29=1的两焦点,过点F 2的直线交椭圆于A ,B 两点.在△AF 1B 中,若有两边之和是10,则第三边的长度为A .6B .5C .4D .39.命题“对任意的32,10x R x x ∈-+≤”的否定是A .不存在32,10x R x x ∈-+≤B .存在32,10x R x x ∈-+≤C .存在32,10x R x x ∈-+>D .对任意的32,10x R x x ∈-+>5.已知命题p :a 2≥0(a ∈R ),命题q :函数f (x )=x 2-x 在区间[0,+∞)上单调递增,则下列命题为真命题的是 ( A )A .p ∨qB .p ∧qC .(⌝p )∧(⌝q )D .(⌝p )∨q3.设F 1,F 2是双曲线x 2-y 224=1的两个焦点,P 是双曲线上的一点,且3|PF 1|=4|PF 2|,则△PF 1F 2的面积等于 ( C )A .4 2B .8 3C .24D .48第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡相应位置.10.已知数列}{n a 满足a n =(-1)n(2n -1),其前n 项和为S n ,则S n =_______⎩⎨⎧-为偶数,为奇数n n n n ,. 14.等比数列}{n a 的前n 项和为S n ,已知S 1,2S 2,3S 3成等差数列,则}{n a 的公比为= ▲13. 16.若不等式022>++bx ax 的解集是⎪⎭⎫ ⎝⎛-31,21,则b a +的值为 ▲ . 20.若点P 在区域⎪⎩⎪⎨⎧≥+-≤-+≥-02202012y x y x y 内,求点P 到直线3x -4y -12=0距离的最大值为 ▲ .15.命题:“若a b ⋅不为零,则,a b 都不为零”的逆否命题是 ▲ .15.若“23x <<”是“x m <”的充分不必要条件,则m 的取值范围为 ▲ 3m ≥ .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)求实轴长为12,离心率为32,焦点在x 轴上的椭圆的标准方程. 解:设椭圆的标准方程为)0(12222>>=+b a by a x ……………………2分 由已知,122=a ,32==a c e ……………………………………………6分 ,6=∴a 4=c20222=-=c a b …………………………………………………………8分 所以椭圆的标准方程为1203622=+y x .……………………………………10分 18.(本小题满分12分)已知c >0,设命题p :函数y =c x 为减函数.命题q :当x ∈⎣⎡⎦⎤12,2是,函数f (x )=x +1x >1c恒成立.如果p 或q 为真命题,p 且q 为假命题.求c 的取值范围.解:由命题p 知:0<c <1.由命题q 知:2≤x +1x ≤52要使此式恒成立,则2>1c ,即c >12. 又由p 或q 为真,p 且q 为假知,p 、q 必有一真一假,当p 为真,q 为假时,c 的取值范围为0<c ≤12. 当p 为假,q 为真时,c ≥1.综上,c 的取值范围为{c |0<c ≤12或c ≥1}.19.(本小题满分12分)解关于x 的不等式ax 2-2 ≥ 2x -ax (0<a ).解:原不等式可化为:ax 2+(a -2)x -2≥0.……………………………………………………………2分即⎝⎛⎭⎫x -2a (x +1)≤0,…………………………………………………………4分 (1)当 2a<-1,即-2<a <0时,, 其解集为⎩⎨⎧⎭⎬⎫x |2a ≤x ≤-1; ………………………………………………6分 (2)当a =-2时,不等式即为(x +1)2≤0,其解集为{-1};…………………………………………………8分(3)当-1<2a,即a <-2时, 其解集为⎩⎨⎧⎭⎬⎫x |-1≤x ≤2a . ………………………………………………10分 综上:当-2<a <0时,解集为⎩⎨⎧⎭⎬⎫x |2a ≤x ≤-1; 当a =-2时,解集为{-1};当a <-2时,解集为{x |-1≤x ≤2a}. …………………………………………12分 17.(本小题满分12分)已知等比数列{}n a 中,113a =,公比13q =. (I )n S 为{}n a 的前n 项和,证明:12n n a S -= (II )设31323log log log n nb a a a =+++,求数列{}n b 的通项公式. 解: (Ⅰ)因为.31)31(311n n n a =⨯=- ,2311311)311(31n n n S -=--= 所以,21n n a S --(Ⅱ)n n a a a b 32313log log log +++=)21(n +++-= 2)1(+-=n n 所以}{n b 的通项公式为.2)1(+-=n n b n22.(本小题满分12分)已知椭圆G : )0(12222>>=+b a b y a x 的离心率为36, 右焦点为(22, 0).斜率为1的直线l 与椭圆G 交于A , B 两点, 以AB 为底边作等腰三角形, 顶点为P ( - 3, 2).(I )求椭圆G 的方程;(II )求PAB ∆的面积.解: (I )由已知得 c =22,36=a c解得a =32 …………………………………………………2分又b 2 = a 2 - c 2 = 4,………………………………………………4分所以椭圆G 的方程为141222=+y x .………………………………6分(II )设直线l 的方程为y = x + m .由⎪⎩⎪⎨⎧=++=141222y x mx y得4x 2 + 6mx + 3m 2- 12 = 0.(*)……………………8分设A (x 1, y 1), B (x 2, y 2) (x 1 < x 2),AB 中点为E (x 0, y 0), 则x 0 = = -43m, y 0 = x 0 + m =4m .………………………………9分因为AB 是等腰△P AB 的底边, 所以PE ⊥AB .所以PE 的斜率k = = - 1.解得m = 2.此时方程(*)为4x 2 + 12x = 0.解得x 1 = - 3, x 2 = 0.所以y 1 = - 1, y 2 = 2.所以|AB | = 3.………………………………………10分此时, 点P ( - 3, 2)到直线AB :x - y + 2 = 0的距离d = , …………………………………………………11分所以△P AB 的面积S = |AB |·d = .…………………………………………12分10.在平面直角坐标系xOy 中,点P 到两点(0,-3)、(0,3)的距离之和等于4,设点P 的轨迹为C . (1)写出C 的方程;(2)设直线y=kx+1与C 交于A 、B 两点,k 为何值时OA →⊥OB →?此时AB →的值是多少?解:(1)设P (x ,y ),由椭圆的定义可知,点P 的轨迹C 是以(0,-3)、(0,3)为焦点,长半轴长为2的椭圆,它的短半轴长b =22-(3)2=1,故曲线C 的方程为x 2+y 24=1. (2)设A (x 1,y 1)、B (x 2,y 2),其坐标满足⎩⎪⎨⎪⎧x 2+y 24=1,y =kx +1,消去y 并整理得(k 2+4)x 2+2kx -3=0,故x 1+x 2=-2k k 2+4,x 1x 2=-3k 2+4. 若OA →⊥OB →,则x 1x 2+y 1y 2=0.而y 1y 2=k 2x 1x 2+k (x 1+x 2)+1,于是x 1x 2+y 1y 2=-3k 2+4-3k 2k 2+4-2k 2k 2+4+1=0, 化简得-4k 2+1=0,所以k =±12. 当k =±12时,x 1+x 2=±417,x 1·x 2=-1217,。

高二第一学期期中测试数学试题(文科)及答案doc

高二第一学期期中测试数学试题(文科)及答案doc

高二第一学期期中测试数学试题(文科)参考公式:回归直线方程a x by ˆˆ+=∧,其中∑∑==∧--=n i i ni ii xn x yx n yx b 1221,x b y aˆˆ-= 一、选择题(本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合要求的) 1.设,a b 为非零实数,若a b <,0c ≠ 则下列不等式成立的是A. ac bc <B. 22a b < C. 22ac bc < D. a c b c -<+ 2.要完成下列两项调查:宜采用的抽样方法依次为①从某社区125户高收入家庭、280户中等收入家庭、95户低收入家庭中选出100户调查社会购买力的某项指标;②从某中学的15名艺术特长生中选出3人调查学习负担情况.A .①随机抽样法,②系统抽样法B .①分层抽样法,②随机抽样法C .①系统抽样法,②分层抽样法D .①②都用分层抽样法3.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立......的两个事件是 A .至少有1个白球,都是白球 B .至少有1个白球,至少有1个红球C .恰有1个白球,恰有2个白球D .至少有1个白球,都是红球4.一组数据的平均数是2 .8 ,方差是3 .6,若将这组数据中的每一个数据都加上60,得到一组新数据,则所得新数据的平均数和方差分别是A .57.2 ,3.6B .57.2 ,56.4C .62.8 ,63.6D .62.8 ,3.65.当1x >时,关于函数 下列叙述正确的是A.函数()f x 有最小值2B.函数()f x 有最大值2C.函数()f x 有最小值3D.函数()f x 有最大值3 6.甲、乙两人下棋,甲获胜的概率是40%,甲不输的概率为90% , 则甲、乙二人下成和棋的概率为A. 50%B. 30%C. 10%D. 60% 7.如右图所示的程序框图输出的结果是S =120 ,则判断框内应填写的条件是A. i ≤5?B. i>5?C. i ≤6?D. i>6?,11)(-+=x x x f354555658.已知回归直线斜率的估计值是1.23,样本点的中心为(4,5),则回归直线的回归方程是 A. 1.230.08y x ∧=+ B. 1.235y x ∧=+ C. 1.234y x ∧=+ D.0.08 1.23y x ∧=+9.△ABC 的三内角A 、B 、C 的对边边长分别为a 、b 、c ,若 A=2B ,则cosB 等于A. B. C. D.10.ABCD 为长方形,AB=2 ,BC=1,O 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到点O 的距离大于1的概率为 A .4π B . 14π- C . 8π D .18π- 二、填空题(本大题共4小题,每小题5分,共20分)11.把5进制数4301(5)化为十进制数:4301(5)= 。

高二上学期期中考试数学(文)试卷-有答案-通用版

高二上学期期中考试数学(文)试卷-有答案-通用版

第一学期期中考试高二数学(文科)试卷考试时间:120分钟 试卷总分: 150分 命题人:一、选择题(每小题5分,计50分)1.已知,a b 为实数,“100=ab ”是“2lg lg =+b a ”的 ( ) A 、充分而不必要条件 B 、必要而不充分条件 C 、充要条件D 、既不充分也不必要条件2.某人在打靶中,连续射击2次,事件“至少有一次中靶”的互斥事件是 ( ) A .至多有一次中靶 B .两次都中靶 C .两次都不中靶 D .只有一次中靶 3.(程序如右图)程序的输出结果为A. 3,4 B . 7,7 C . 7,8 D . 7,114.在区间[]0,2上随机地取一个数x ,1”发生的概率为( ) A.13B.23C.34D.145.某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分成6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以统计,得到如图所示的频率分布直方图.已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为 ( )A .588B .480C .450D .1206.若圆心在x y 轴左侧,且与直线x +2y =0相切,则圆的方程是( )A .(x 2+y 2=5 B .(x 2+y 2=5 C .(x -5)2+y 2=5 D .(x +5)2+y 2=57. 执行右边的程序框图,如果输入的t ∈[-1,3],则输出的s 属于 ( ) A .[-3,4]B .[-5,2]C .[-4,3]D .[-2,5]8. 有下列四个命题:①“若0x y += , 则,x y 互为相反数”的逆命题; ②“全等三角形的面积相等”的否命题; ③“若1q ≤ ,则220x x q ++= 有实根”的逆否命题;④“不等边三角形的三个内角相等”逆命题. 其中真命题为( ) A .①②B .②③C .①③D .③④9.在一次马拉松比赛中,35名运动员的成绩(单位:分钟)如图I 所示;若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数为( )A 、3B 、4C 、5D 、610.若三条直线l 1:4x +y =4,l 2:mx +y =0,l 3:2x -3my =4不能围成三角形,则实数m的取值最多有( )A .2个B .3个C .4个D .6个11.过平面区域202020x y y x y -+≥⎧⎪+≥⎨⎪++≤⎩内一点P 作圆22:1O x y +=的两条切线,切点分别为,A B ,记APB α∠=,则当α最小时cos α的值为( )AB .1920C .910D .1212. 已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为F .短轴的一个端点为M ,直线:340l x y -=交椭圆E 于,A B 两点.若4AF BF +=,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( ) A .B .3(0,]4 C. D .3[,1)4二、填空题(每小题5分,计20分)13.用“秦九韶算法”计算多项式322434)(2345+--+-=x x x x x x f 的值,当x=3时,V 3=14.某种产品的广告费支出x 与销售额y 之间有如下对应数据(单位:百万元).根据上表提供的数据,求出y 关于x 的线性回归方程为y ^=6.5x +17.5,则表中t 的值为 .15.某校早上8:00开始上课,假设该校学生小张与小王在早上7:30~7:50之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为________.16.椭圆若椭圆的对称轴在坐标轴上,两焦点与两短轴端点正好是正方形的四个顶点,又焦1-,求椭圆的方程_______.三、解答题(共6大题,计70分,要求写出详细解答过程)17.(10分)一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a ,b ,c.(1)求“抽取的卡片上的数字满足a+b=c”的概率;(2)求“抽取的卡片上的数字a ,b ,c 不完全相同”的概率.18.(12分)已知圆22:1O x y +=和点(1,4)M .(1)过点M 向圆O 引切线,求切线的方程;(2)求以点M 为圆心,且被直线28y x =-截得的弦长为8的圆M 的方程;19.(12分)命题P:关于x 的不等式x 2+2ax+4>0,对一切实数x 恒成立, Q:函数f(x)=(3-2a)x是增函数,若P ∨Q 为真,P ∧Q 为假,求a 的取值范围。

高二文科上学期期中考试数学含参考答案

高二文科上学期期中考试数学含参考答案

高二数学(文科)上学期期中考试—、选择题(每小题5分,共60分)1、在半径为R 的圆内随机撒一粒黄豆,它落在圆内接正三角形内的概率是:() A 、B 、C 、D 、2、已知一组正数x 1,x 2,x 3,x 4的方差S 2=(x 12+x 22+x 32+x 42-16),则数据x 1+2,x 2+2,x 3+2,x 4+2的平均数为:() A 、2B 、3C 、4D 、63、有3个兴趣小组,甲乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一兴趣小组的概率为:() A 、B 、C 、D 、4、一只蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终与正方体6个面的距离大于1称其为“安全飞行”,则蜜蜂安全飞行的概率为:() A 、B 、C 、D 、 5、已知m ,n 是两条不同的直线,α,β是两个不同的平面,下列命题正确的是()A 、若m ∥α,n ∥α,则m ∥nB 、若α⊥β,m ⊥β,m ⊄α,则m ∥αC 、若α⊥β,m //α,则m ⊥βD 、若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β43π433ππ43π433414332213181161271836、直线l 经过l 1:x +y -2=0与l 2:x -y -4=0的交点P ,且过线段AB 的中点Q ,其中A (-1,3),B (5,1),则直线l 的方程是()A 、3x -y -8=0B 、3x +y +8=0C 、3x +y -8=0D 、3x -y +8=07、如图,在正方体ABCD -A 1B 1C 1D 1中,下列结论正确 的是()A 、A 1C 1∥ADB 、C 1D 1⊥ABC 、AC 1与CD 成45︒角D 、A 1C 1与B 1C 成60︒角8、用与球心O 距离为1的截面去截球,所得截面的面积为9π,则球的表面积为() A 、4πB 、10πC 、20πD 、40π 9、若直线l 1:y =kx -与l 2:2x +3y -6=0的交点M 在第一象限,则l 1的倾斜角的取值范围是()A 、(30︒,60︒)B 、(30︒,90︒)C 、(45︒,75︒)D 、(60︒,90︒)10、已知正方体的棱长为1,则它的内切球与外接球半径的比值为() A 、B 、C 、D 、11、已知圆锥的母线长为2cm ,底面直径为3cm ,则过该圆锥两条母线的截面面积的最大值为()A 、4cm 2B 、cm 2C 、2cm 2D 、cm 212、若直线a ∥平面α,直线b ⊥直线a ,则直线b 与平面α的333323332273473ABCD A 1B 1C 1D 1(第7题)位置关系是()A 、b ∥αB 、b ⊂αC 、b 与α相交D 、以上均有可能 二.填空题:(本题共4小题,每小题5分,共20分)13.椭圆的焦距为,则=。

山东省济南市高二上学期期中考试文科数学试题 有答案

山东省济南市高二上学期期中考试文科数学试题 有答案

山东省济南市历城区(51级)高二上学期期中考试数学(文)试题本卷满分150分,考试时间120分钟第I 卷(选择题,共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知p :225;:32,q +=> 则下列判断错误的是 ( )A . p q q ∨⌝“”为真,“”为假B . p q p ∧⌝“”为假,“”为真C . p q p ∧⌝“”为假,“”为假D .p q p q ∧∨“”为假,“”为真2.在ABC ∆中,已知,2,45a x b B ===,如果三角形有两解,则x 的取值范围是( ) A .2x <<x <.2x << D.02x << 3.已知1,,,,4a b c --成等比数列,则实数b 为( )A .4B .2-C .2±D .2 4.若实数x ,y 满足04y x =-+,则22y x +的最小值是( )A .12B .4C .8D .7 5.两个等差数列{}n a 和{}n b ,其前n 项和分别为n S ,n T ,且,则220715a ab b +=+()A .B .C .D .6.如果实数x 、y 满足条件,那么2x ﹣y 的最大值为( )A .2B .1C .﹣2D .﹣3 7.设nS 是等差数列{}n a 的前n 项和,公差d ≠0,若11132S =,324ka a +=,则正整数k的值( )A .9B .10C .11D .128.如图,为测得河对岸塔AB 的高,先在河岸上选一点C ,使在C 塔底B 的正东方向上,测得点A 的仰角为60°,再由点C 沿北偏东15°方向走10米到位置D ,测得∠BDC=45°,则塔AB 的高度为( )A .10米 B.C. D. 9.定义为n 个正数12,,......n p p p 的“均倒数”.若已知数列{}n a 的前n 项的“均倒数”为,又14n n a b +=,则=( )A .B .C .D .10.不等式2220x axy y -+≥对任意x ∈[1,2]及任意y ∈[1,3]恒成立,则实数a 取值范围是( ) A.a ≤ B.a ≥C.a ≥D.a ≥第I I 卷(非选择题,共100分)二、填空题:本大题共5小题,每小题5分,共25分.11. 命题“x R ∃∈, 使得211x +>”的否定为______________. 12.在△ABC 中,01,45,2ABC a B S ∆===,则b =_______________.13.已知关于x 的不等式0ax b -<的解集是(3,+∞),则关于x 的不等式02ax bx +≥-的解集是_____. 14.已知数列{}n a 满足*+1=()nn n a a n N ∈(-1),11a =,n S 是数列{}n a 的前n 项和,则2015S =_____.15.下列命题:①设,a b 是非零实数,若a b <,则22ab a b <;②若0a b <<,则11a b>;③函数y=的最小值是2;④若x 、y 是正数,且+=1,则xy 有最小值16;⑤已知两个正实数x ,y 满足+=1,则x+y的最小值是其中正确命题的序号是________________.三、解答题:本大题共6小题,共75分,请写在答题卡指定区域内.16.给定两个命题,p :对任意实数x 都有210ax ax ++>恒成立;q :28200a a +-<.如果p q ∨为真命题,p q ∧为假命题,求实数a 的取值范围.17.锐角ABC ∆的内角,,A B C 所对的边分别为,,a b c ,向量()m a =与(cos ,sin )n A B =平行.(1)求角A ; (2)若a =,求ABC ∆周长的取值范围.18.等比数列{}n a 的前n 项和为n S ,已知132,,S S S 成等差数列,且133a a -=.(1)求{}n a 的公比q 及通项公式n a ;(2)n nn b a =,求数列{}n b 的前n 项和n T . 19.已知函数()f x =(sin 2x ﹣cos 2x+)﹣sin 2(x ﹣),x ∈R(1)求函数()f x 的单调递增区间;(2)在△ABC 中,角A ,B ,C 的对边分别为,,a b c ,且()1f B =,2b =,求△ABC 的面积的最大值.20.徐州、苏州两地相距500千米,一辆货车从徐州匀速行驶到苏州,规定速度不得超过100千米/小时.已知货车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(千米/时)的平方成正比,比例系数为0.01;固定部分为a 元(a >0). (1)把全程运输成本y(元)表示为速度v(千米/时)的函数,并指出这个函数的定义域; (2)为了使全程运输成本最小,汽车应以多大速度行驶?21.设数列{}n a 的前n 项和为n S .已知11a =,2121233nn S a n n n +=---,*n ∈N .(1)求2a 的值;(2) 求数列{}n a 的通项公式;(3)在数列{}n b 中,142nn n n ba a ++=,求{}n b 的前n 项和n T .高二上学期数学期中考试卷答案1-5 CABCD 6-10 BADCB11. x R ∀∈, 都有211x +≤ 12. 5 13.[)3,2- 14. -1 15. ②④16.解:命题p :ax 2+ax+1>0恒成立当a=0时,不等式恒成立,满足题意) 当a ≠0时,,解得0<a <4∴0≤a <4命题q :a 2+8a ﹣20<0解得﹣10<a <2∵p q ∨为真命题,p q ∧为假命题∴,p q 有且只有一个为真, 当p 真q 假时04102a a a ≤<⎧⎨≤-≥⎩或得24a ≤<当p 假q 真时04102a a a <≥⎧⎨-<<⎩或得100a -<<所以﹣10<a <0或2≤a <417.解:(I)因为//m n,所以sin cos 0a B A -=由正弦定理,得sin sin cos 0A B B A -=, 又sin 0B ≠,从而tan A =0A π<<,所以3A π=(II)由正弦定理知sin sin sin 3b c aB C A====)sin sin l a b c B C =++=+又23C B π=-,所以2sin sin sin sin())36B C B B B ππ+=+-=+因为ABC ∆为锐角三角形,所以62B ππ<<,2633B πππ⎛⎫+∈ ⎪⎝⎭,,3sin sin 2B C ⎛+∈ ⎝,所以l ∈.18.解:(1)依题意有,∵a 1≠0,∴2q 2+q=0,∵q ≠0,∴q=﹣,∴,解得a 1=4.∴.(2)b n ==,+…+n ×(﹣2)n ﹣1],﹣2T n =[1×(﹣2)+2×(﹣2)2+3×(﹣2)3+…+n ×(﹣2)n],两式相减,得:3T n =[1+(﹣2)+(﹣2)2+…+(﹣2)n ﹣1﹣n ×(﹣2)n ]=[],∴=.19.解:(1)f(x)=(﹣cos2x)﹣[1﹣cos(2x ﹣)]=sin2x ﹣cos2x=sin(2x ﹣),令﹣+2k π≤2x ﹣≤+2k π,k ∈Z ,得到k π﹣≤x ≤k π+,k ∈Z ,则函数f(x)的单调递增区间[k π﹣,k π+],k ∈Z ;(2)由f(B)=1,得到sin(2B ﹣)=1,∴2B ﹣=,即B=,由余弦定理得:b 2=a 2+c 2﹣2accosB ,即4=a 2+c 2﹣ac ≥2ac ﹣ac=ac ,即ac ≤4,∴S △ABC =acsinB=ac ≤,则△ABC 的面积的最大值为.20.解:(1)依题意知汽车从甲地匀速行驶到乙地所用时间为,全程运输成本为y=a ×+0.01v 2×= ….(4分)故所求函数及其定义域为,v ∈(0,100]….(6分)(2)依题意知a ,v 都为正数,故有,当且仅当,即v=10时,等号成立…(8分) ①若≤100,即0<a ≤100时,则当v=时,全程运输成本y 最小.(10分)②若>100,即a >100时,则当v ∈(0,100]时,由对号函数的单调性知函数在v ∈(0,100]上单调递减,也即当v=100时,全程运输成本y 最小.….(12分) 综上知,为使全程运输成本y 最小,当0<a ≤100时行驶速度应为v=千米/时;当a >100时行驶速度应为v=100千米/时.…(13分) 21.解:(1) 解:2121233nn Sa n n n +=---,n N *∈.∴ 当1n =时,112212221233a S a a ==---=- 又11a =,24a ∴= (2)解:2121233nn Sa n n n +=---,n N *∈.∴()()321112122333n n n n n n S na n n n na ++++=---=-① ∴当2n ≥时,()()()111213n n n n n S n a --+=--②由① — ②,得()()112211n n n n S S na n a n n -+-=---+1222n n n a S S -=-()()1211n n n a na n a n n +∴=---+111n n a a n n +∴-=+(2n ≥)又21121a a -= ∴数列n a n ⎧⎫⎨⎬⎩⎭是以首项为111a=,公差为1的等差数列. ()()2*111,n n a n n a n n N n∴=+⨯-=∴=∈(3)证明:由(2)知,2*,n a n n N =∈ 则222214242112()(1)(1)n n n n n b a a n n n n +++===-++;222222211111112()2(1)1223(1)(1)n T n n n ∴=-+-++-=-++。

湖北省部分普通高中2024-2025学年高二上学期期中考试数学试卷含答案

湖北省部分普通高中2024-2025学年高二上学期期中考试数学试卷含答案

2024-2025学年度上学期湖北省部分普通高中高二期中考试数学试卷(答案在最后)(时间:120分钟满分:150分考试时间:2024年11月22日)注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线tan45y =的倾斜角是()A.0B.90C.135D.45【答案】A 【解析】【分析】根据直线与x 平行,即可求解.【详解】1tan45y == ,直线与x 平行,故倾斜角为0 ,故选:A2.第33届夏季奥林匹克运动会于2024年7月26日至8月11日在法国巴黎举行,金牌榜前10名的国家的金牌数依次为40,40,20,18,16,15,14,13,12,12,则这10个数的60%分位数是()A.14.5B.15C.16D.17【答案】D 【解析】【分析】将这10个数据从小到大排列,根据1060%6⨯=,结合百分位数的计算方法,即可求解.【详解】将这10个数据从小到大排列得:12,12,13,14,15,16,18,20,40,40,因为1060%6⨯=,所以这10个数的60%分位数是1618172+=.故选:D.3.如图,在四面体OABC 中,,,OA a OB b OC c ===,点M 在线段OA 上,且2,OM MA N =为BC 中点,则MN等于()A.111322a b c ++ B.111322a b c -+C.111222a b c +-D.111322a b c-++【答案】D 【解析】【分析】根据给定的几何体,利用空间向量的线性运算求解即得.【详解】依题意,1111()3232MN MO OB BN OA OB OA OB OC OB =++=-++=-++-111111322322OA OB OC a b c =-++=-++.故选:D4.如图所示,下列频率分布直方图显示了三种不同的形态.图(1)形成对称形态,图(2)形成“右拖尾”形态,图(3)形成“左拖尾”形态,根据所给图作出以下判断,正确的是()A.图(1)的平均数=中位数>众数B.图(2)的众数<中位数<平均数C.图(2)的平均数<众数<中位数D.图(3)的中位数<平均数<众数【答案】B 【解析】【分析】根据平均数,中位数,众数的概念结合图形分析判断.【详解】图(1)的分布直方图是对称的,所以平均数=中位数=众数,故A 错误;图(2)频率直方图可得,单峰不对称且“右拖尾”,最高峰偏左,众数最小,平均数易受极端值的影响,与中位数相比,平均数总是在“拖尾”那边,平均数大于中位数,故B 正确,C错误;同理图(3)“左拖尾”,众数最大,平均数小于中位数,故D 错误.故选:B.5.如图,在长方体1111ABCD A B C D -中,2AB =,11BC CC ==,E 为CD 中点,则1B 到平面1AD E 的距离为()A.1B.C.D.2【答案】C 【解析】【分析】以D 为坐标原点,建立合适的空间直角坐标系,求出平面1D AE 的法向量,利用距离公式即可得到答案.【详解】以D 为坐标原点,分别以1,,DA DC DD 为x 轴,y 轴,z 轴,建立空间直角坐标系,则(0,0,0),(1,0,0),(0,1,0)D A E ,11(0,0,1),(1,2,0),(1,2,1)D B B ,设平面1D AE 的法向量为(,,)m x y z = ,则1(,,)(1,0,1)0(,,)(1,1,0)0m D A x y z x z m EA x y z x y ⎧⋅=⋅-=-=⎪⎨⋅=⋅-=-=⎪⎩,令1x =得:1,1y z ==,所以(1,1,1)m =,()10,2,1AB = 则点1B 到平面1AD E的距离为1||AB m d m ⋅===,故选:C.6.已知定点()5,0M ,若直线1l 过定点M 且方向向量是()15,5n =-,直线2l 过定点M 且方向向量是()25,3n =-,直线1l 在y 轴上的截距是a ,直线2l 在y 轴上的截距是b ,则a b -=()A.2B.2- C.1D.1-【答案】A 【解析】【分析】根据M 的坐标以及方向向量分别求解出12,l l 的方程,由此可求结果.【详解】因为()15:55l y x =--,即1:5l y x =-+,所以5a =,因为()23:55l y x -=-,即23:35l y x =-+,所以3b =,所以532a b -=-=.故选:A.7.已知事件A ,B 满足()0.5,()0.2P A P B ==,则()A.若B ⊆A ,则()0.5P AB = B.若A 与B 互斥,则()0.7P A B +=C.若A 与B 相互独立,则()0.1P AB = D.若()()1P B P C +=,则C 与B 相互对立【答案】B 【解析】【分析】选项A :利用事件的关系结合概率求解即可.选项B :利用概率的加法公式,求解即可,选项C :若A 与B 相互独立,则A 与B 相互独立,利用独立事件的公式求解即可.选项D:利用对立事件求解即可.【详解】选项A :若B ⊆A ,则()()0.2,P AB P B ==选项B :若A 与B 互斥,则()()()0.7P A B P A P B +==+.故选项B 正确.选项C :若A 与B 相互独立,则A 与B 相互独立,()()()0.50.80.4,P AB P A P B =⋅=⨯=故选项C 错误.选项D:若()()1P B P C +=,则由于不确定C 与B 是否互斥,所以无法确定两事件是否对立,故D 错误.故选:B.8.设定点()2,1P --,当P 到直线()():131240l x y λλλ+++--=距离最大时,直线l 与x 轴的交点A ,则此时过点A 且与直线l 垂直的直线方程是()A.32100x y --= B.32100x y +-=C.69100x y +-=D.69100x y --=【答案】D 【解析】【分析】先分析l 所过的定点Q ,然后根据PQ l ⊥时距离最大求出l 的方程,再结合直线位置关系,利用点斜式方程求解即可.【详解】因为()()()():1312403420l x y x y x y λλλλ+++--=⇔+-++-=,令34020x y x y +-=⎧⎨+-=⎩,解得11x y =⎧⎨=⎩,所以l 过定点()1,1Q ,当P 到l 的距离最大时,PQ l ⊥,理由如下:当PQ l ⊥时,此时P 到l 的距离为P ,当PQ 不垂直于l 时,过点P 作1PQ l ⊥,显然在1PQQ 中,1PQ PQ >,所以P 即为P 到l 的最大距离,此时()()112123PQ k --==--,所以32l k =-,所以()3:112l y x -=--,即:3250l x y +-=,令0y =,则53x =,所以5,03A ⎛⎫ ⎪⎝⎭,则过点A 且与直线l 垂直的直线方程为2533y x ⎛⎫=- ⎪⎝⎭,即69100x y --=,故选:D.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.抛掷两枚质地均匀的硬币,设事件A =“第一枚硬币正面向上”,事件B =“第二枚硬币反面向上”,下列结论中正确的是()A.A 与B 互为对立事件B.A 与B 为相互独立事件C.A 与B 相等D.()()P A P B =【答案】BD 【解析】【分析】利用对立事件与相互独立事件的概念可判断A 、B ;求出概率可判断C 、D.【详解】由对立事件是在一次试验中,故A 错误;A ,B 为独立事件,B 正确;事件不是在一次试验中,事件不会相等,由()()12P A P B ==,可得C 错误;D 正确.故选:BD .10.已知直线()1:110l x a y +-+=,直线2:220l ax y ++=,则下列结论正确的是()A.1l 在x 轴上的截距为1-B.2l 过点()0,1-且可能垂直x 轴C.若12l l ∥,则1a =-或2a =D.若12l l ⊥,则23a =【答案】AD 【解析】【详解】对于A :根据直线方程求截距即可;对于B :根据直线方程分析斜率,即可得结果;对于C :举反例说明即可;对于D :根据直线垂直列式求参即可.【解答】直线()1:110l x a y +-+=,直线2:220l ax y ++=,对于选项A :因为直线()1:110l x a y +-+=,令0y =,解得1x =-,所以1l 在x 轴上的截距为1-,故A 正确;对于选项B :因为直线2:220l ax y ++=的斜率2a k =-,即斜率存在,直线2l 不垂直x ,故B 错误,对于选项C :若2a =,则直线1l 、2l 均为10x y ++=,即两直线重合,不平行,故C 错误;对于选项D :若12l l ⊥,则2(1)0a a +-=,解得23a =,故D 正确.11.在空间直角坐标系中,已知向量()1,2,3u = ,点()03,1,4P ,设点(),,P x y z ,下面结论正确的是()A.若直线l 经过点0P ,且以u为方向向量,P 是直线l 上的任意一点,则14323y z x ---==B.若点0P ,P 都不在直线l 上,直线l 的方向向量是u,若直线0PP 与l 异面且垂直,则()()()332140x y z -+-+-=C.若平面α经过点0P ,且u为平面α的法向量,则平面α外存在一点P 使得0P P u∥成立D.若平面α经过点0P ,且以u为法向量,P 是平面α内的任意一点,则()()()321340x y z -+-+-=【答案】ACD 【解析】【分析】根据向量共线即可求解A ,根据垂直即可求解BCD.【详解】对于A ,由于u为l 的方向向量,()03,1,4P P x y z =--- ,故存在实数λ使得0P P u λ=,即可()()3,1,41,2,3x y z λ---=,因此14323y z x ---==,故A 正确,对于B,0PP 与l 垂直,则00P P u ⋅=,即()()()321340x y z -+-+-=,故B 错误,对于C,由于u为平面α的法向量,过0P 作0P P α⊥ ,即可得到0P P u∥,故C 正确,对于D ,由于u 为平面α的法向量,0P P α⊂,故0P P u ⊥ ,即00P P u ⋅= ,则()()()321340x y z -+-+-=,故D 正确,故选:ACD三、填空题:本题共3小题,每小题5分,共15分.12.一组数据12100,,,x x x 的平均数等于21,方差20s =,则这组数据中12x =______.【答案】21【解析】【分析】根据方差的计算公式分析出结果.【详解】因为()()()2221210022121210100x x x s ⎡⎤-+-+⋅⋅⋅+-⎣⎦==,所以()()()222121002121210x x x -+-+⋅⋅⋅+-=,由平方运算的特点可知121002121210x x x -=-=⋅⋅⋅=-=,所以1221x =.13.在正方体1111ABCD A B C D -中,E ,F ,G 分别是AB ,1BB ,11B C 各棱的中点.则1DB 与平面EFG 所成角的余弦值________.【答案】3【解析】【分析】分别取,,H K L 为各边中点,连接,,,,,HK KL LE EF FG GH ,111,,,BD DC C B CB ,且11,C B CB 交于O ,连接DO ,首先证面//EFGHKL 面1BDC ,转化为求1DB 与平面1BDC 所成角余弦值,再利用线面、面面垂直的判定证面1B DO ⊥面1BDC ,由线面角的定义有1DB 与平面1BDC 所成角为1ODB ∠或其补角,最后应用余弦定理求其余弦值.【详解】如下图,分别取,,H K L 为各边中点,连接,,,,,HK KL LE EF FG GH ,111,,,BD DC C B CB ,且11,C B CB 交于O ,连接DO ,由题设,易知1////,//BD EL HG BC FG ,由BD ⊂面1BDC ,HG ⊄面1BDC ,则//HG 面1BDC ,同理可证//FG 面1BDC ,由HG GF G ⋂=,,HG FG ⊂面EFGHKL ,则面//EFGHKL 面1BDC ,所以1DB 与平面EFGHKL 所成角,即为1DB 与平面1BDC 所成角,由11B C BC ⊥,且等边1BDC 中1DO BC ⊥,1B C DO O ⋂=,1,B C DO ⊂面1B DO ,所以1⊥BC 面1B DO ,1B C ⊂面1B DC ,则面1B DO ⊥面1BDC ,面1B DO 面1BDC DO =,故1DB 在面1BDC 的投影在直线DO 上,则1DB 与平面1BDC 所成角为1ODB ∠,若正方体的棱长为1,则1ODB中,11,22DB B O DO ===,所以22111131322cos 023DB DO B OODB DB DO+-+-∠==⋅,故1DB 与平面1BDC 所成角,即1DB 与平面EFGHKL所成角的余弦值为3.故答案为:3.14.在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,()5,0B ,线段AB 的垂直平分线分别交直线AB 和直线l 于C ,D 两点.若0DA DB ⋅=,则点A 的横坐标为________.【答案】3【解析】【分析】根据题意作出图示,分别求解出,BD OD 点的长度,由此可求OA ,根据cos A x OA α=(α为l 的倾斜角)求得结果.【详解】因为0DA DB ⋅= ,所以DA DB ⊥,又:2:20l y x l x y =⇔-=,所以BD ==又因为CD 垂直平分AB,所以BD AD ==,设l 的倾斜角为α,所以tan 2α=,由22sin 2π0,cos 2sin cos 1ααααα⎧=⎛⎫⎪⎛⎫∈⎨ ⎪⎪⎝⎭⎝⎭⎪+=⎩可得5cos 5α=,所以5cos 55OD OB α==⨯=,所以OA AD OD =+=,所以5cos 35A x OA α===,故答案为:3.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.袋中有形状、大小都相同的编号为1,2,3,4的4只小球,从中随机摸出1只小球,设事件A :摸出1或2号小球,B :摸出1或3号小球,C :摸出1或4号小球.(1)求事件A 发生的概率.(2)求()()()()P ABC P A P B P C 的值.【答案】(1)12(2)2【解析】【分析】(1)根据古典概型的概率计算公式直接求得结果;(2)先分析事件ABC 包含的事件,然后可求其概率值,再根据()()(),,P A P B P C 的值求得结果.【小问1详解】样本空间为{}1,2,3,4Ω=,{}1,2A =,所以()2142P A ==.【小问2详解】因为{}{}{}1,2,1,3,1,4A B C ===,所以{}1ABC =,所以()14P ABC =,又因为()()()2142P A P B P C ====,所以()()()18P A P B P C =,所以()()()()14218P ABC P A P B P C ==.16.如图,在棱长为1的正方体1111ABCD A B C D -中,E 、F 分别是棱AB ,BC 上的中点.(1)求直线1A F 与1D E 所成角的余弦值;(2)求平面1B EF 与平面BEF 夹角的正切值.【答案】(1)49(2)22【解析】【分析】(1)建立空间直角坐标系,求得两条直线的方向向量,根据向量的夹角公式即可求解异面直线的夹角,(2)求两个平面的法向量,然后利用法向量即可求得面面角的余弦值.【小问1详解】以D 为原点,以1,,DA DC DD 的方向分别为,,x y z 轴的正方向,建立如图所示的空间直角坐标系D xyz -,则()()11111,0,1,,1,0,0,0,1,1,022A F D E ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭所以1111,1,1,1,122A F D E ⎛⎫⎛⎫=--=- ⎪ ⎪⎝⎭⎝⎭.故1111114cos ,9A F D E A F D E A F D E⋅==设直线1A F 与1D E 所成角为θ,则4cos 9θ=【小问2详解】因为()11,1,1B ,所以11110,,1,,0,122B E B F ⎛⎫⎛⎫=--=-- ⎪ ⎪⎝⎭⎝⎭.设平面1B EF 的法向量为(),,m x y z =,则11102102m B E y z m B F x z ⎧⋅=--=⎪⎪⎨⎪⋅=--=⎪⎩,令2x =,得()2,2,1m =-.取平面BEF 的一个法向量()0,0,1n =.设平面1B EF 与平面BEF 的夹角为α,则1cos cos ,3m n m n n m α⋅===,故22sin 3α=,tan α=即平面1B EF 与平面BEF夹角的正切值为17.江夏区金口“草把龙”是武汉市级非物质文化遗产.“草把龙”是利用金灿灿的稻草包裹而成,制作“草把龙”的稻草要长,颜色要鲜,成色要新.为了提高收割机脱粒和稻草的质量,某企业对现有的一条水稻收割机产品生产线进行技术升级改造,为了分析改造的效果,该企业质检人员从该条生产线所生产的产品中随机抽取了1000台,检测产品的某项质量指标值,根据检测数据得到下表(单位:件)质量指标值[)25,35[)35,45[)45,55[)55,65[)65,75[)75,85[)85,95产品6010016030020010080(1)估计产品的某项质量指标值的70百分位数.(2)经计算这组样本的质量指标值的平均数x 和方差2s 分别是61和241.设[]x 表示不大于x 的最大整数,{}x 表示不小于x 的最小整数,s 精确到个位,55n x ns a -⎧⎫=⋅⎨⎬⎩⎭,*5,5n x ns b n +⎡⎤=⋅∈⎢⎥⎣⎦N ,根据检验标准,技术升级改造后,若质量指标值至少有65%落在[]11,a b 内,则可以判断技术改造后的产品质量初级稳定;若至少有95%落在[]22,a b 内,则可以判断技术改造后的产品质量稳定,可认为生产线技术改造成功,16≈)【答案】(1)69(2)可以判断技术改造后的产品质量初稳定,但不能判定生产线技术改造成功.【解析】【分析】(1)利用百分位数定义、计算公式直接求解.(2)根据定义先求出1a ,1b ,2a ,2b ,再利用频率分布表能求出结果.【小问1详解】设产品的某项质量指标值的70百分位数为x ,则()60100160300200650.71000100010001000100010x ++++-⋅=⨯,解得69x =.【小问2详解】由2241s =,知16s ≈,则161165455a -⎧⎫=⨯=⎨⎬⎩⎭,161165755b +⎡⎤=⨯=⎢⎥⎣⎦,该抽样数据落在[]45,75内的频率约为0.160.30.266%65%++=>,2612165305a -⨯⎧⎫=⨯=⎨⎬⎩⎭,2612165905b +⨯⎡⎤=⨯=⎢⎣⎦,该抽样数据落在[]30,90内的频率约为10.030.040.9393%95%--==<,可以判断技术改造后的产品质量初稳定,但不能判定生产线技术改造成功.18.已知直线1l 过定点()1,1M ,直线2l 的方程是0x y +=.(1)若直线1l 的横截距为纵截距2倍,求直线1l 的方程.(2)若直线1l 与x ,y 轴正半轴分别交于P ,Q 两点,过P ,Q 分别作直线2:0l x y +=垂线,垂足分别是R ,S .求四边形PQSR 面积的最小值.【答案】(1)0x y -=或230x y +-=(2)4【解析】【分析】(1)分类讨论直线1l 是否经过原点,代入1,1求出参数,由此可求结果;(2)设出1l 的方程,分别表示出,,QOS POR POQ 的面积,结合基本不等式求解出四边形PQSR 面积的最小值.【小问1详解】当1l 经过()0,0时,设y kx =,代入1,1,所以1k =,即1:0l x y -=,当1l 不经过()0,0时,设()1:102x y l a a a +=≠,代入1,1,解得32a =,即1:230l x y +-=,所以直线1l 的方程为0x y -=或230x y +-=.【小问2详解】由题意设()()1:110l y k x k -=-<,令0x =,则1y k =-,所以()0,1Q k -,令0y =,则11x k =-,所以11,0P k ⎛⎫- ⎪⎝⎭,所以11k PR -==,QS ==,因为2:0l x y +=的倾斜角为3π4,所以π4QOS POR ∠=∠=,所以,QOS POR 均为等腰直角三角形,所以222212121,2424QOS PORQS PR k k kk S S -+-+==== ,所以()22221111211461214424PQSRk k k k k k k k k k S ⎛⎫⎛⎫--+-++-+ ⎪ ⎪-+⎝⎭⎝⎭=++=四边形2211144244k k k k k k ⎛⎫⎛⎫⎛⎫+-+++- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭==,因为0k <,所以()112k k k k ⎡⎤+=--+≤--⎢⎥-⎣⎦,当且仅当1k k-=-,即1k =-(1k =舍)时取等号,由二次函数性质可知,()221222444k k ⎛⎫+- ⎪--⎝⎭≥=,当且仅当1k=-时取等号,所以四边形PQSR 面积的最小值为4.19.在如图所示的试验装置中,两个正方形框架ABCD ,ABEF 的边长都是1,且它们所在的平面互相垂直.活动弹子M ,N 分别在正方形对角线AC 和BF 上移动,且CM 和FN 的长度保持相等,记(0CMFN a a ==<<.(1)求MN 的长(用a 表示);(2)a 为何值时,MN 的长最小?(3)当平面MNA 与平面MNB 夹角60o 时.求MN 的长.【答案】(1;(2)33;(3)3.【解析】【分析】.(1)以B 为坐标原点,分别以BA 、BE 、BC 所在直线为x 、y 、z 轴建立空间直角坐标系,求得A 、C 、F 、E 、M 、N 的坐标,直接由两点间的距离公式可得||MN ;(2)把(1)中求得||MN 利用配方法求最值;(3)求出两平面的法向量,根据面面夹角列方程求出参数a ,然后代入(1)可得.【小问1详解】因为ABCD ,ABEF 为正方形,所以,AB BC AB BE ⊥⊥,又平面ABCD ⊥平面ABEF ,所以BE BC ⊥,如图建立空间直角坐标系,1,0,0,()0,0,1C ,()1,1,0F ,()0,1,0E ,分别作,MG AB NH BE ⊥⊥,垂足分别为,G H ,易知,AMG ACB BHN BEF ~~ ,因为CM FN a ==,由相似比可得11BG GM BH HN ==-==-所以M ,1N ⎛⎫-- ⎪⎝⎭.MN ∴==【小问2详解】MN ==当223a =时,||MN 最小,最小值为33;【小问3详解】,1,0,1,11BM AM MN ⎛⎛⎫=-=-=-- ⎪⎝⎝⎭,设平面MNB 与平面MNA 的法向量分别为()()11112222,,,,,n x y z n x y z ==,则1111111101110BM n x z MN n x y z ⎧⎛⋅=+-=⎪ ⎪⎝⎨⎛⎛⎛⎫⎪⋅=-+-+= ⎪⎪⎝⎝⎝⎭⎩,22222221101110AM n x z MN n x y z ⎧⎫⎛⋅=+-=⎪⎪ ⎪⎝⎭⎝⎨⎛⎛⎛⎫⎪⋅=-+-+= ⎪⎪⎝⎝⎝⎭⎩,令11x =-111,n ⎛=- ⎝,令21x =,21n ⎛=-- ⎝ ,因为平面MNA 与平面MNB 夹角60o ,所以121212cos ,cos 60n n n n n n ⋅==︒⋅,12=,解得3a =(增根已舍去),所以此时3MN =.。

高二上学期期中考试数学(文)试卷Word版含答案

高二上学期期中考试数学(文)试卷Word版含答案

数学试卷(文科)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知命题p :∀x ∈R ,x >sin x ,则p 的否定形式为( )A .∃x 0∈R ,x 0<sin x 0B .∀x ∈R ,x ≤sin xC .∃x 0∈R ,x 0≤sin x 0D .∀x ∈R ,x <sin x 2.不等式2654x x +<的解集为( ) A .41,,32⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭ B .41,32⎛⎫- ⎪⎝⎭C .14,,23⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭ D .14,23⎛⎫- ⎪⎝⎭3.离心率为32,长轴长为6的椭圆的标准方程是( ) A .22195x y += B .22195x y +=或22159x y += C .2213620x y += D .2213620x y +=或2212036x y += 4.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧y +x -1≤0,y -3x -1≤0,y -x +1≥0,则z =2x +y 的最大值为( )A .4B .2C .1D .-45.在等比数列{}n a 中,若34567243a a a a a =,则279a a 的值为( )A.9B.6C.3D.26.已知两点1(1,0)F -、2(1,0)F ,且12F F 是1PF 与2PF 的等差中项,则动点P 的轨迹方程是( )A .221169x y +=B .2211612x y +=C .22143x y += D .22134x y += 7.已知数列}{n a 中,5,321==a a 且对于大于2的正整数,总有21---=n n n a a a ,则2009a 等于( ).A .-5B .-2C .2D .3.8.下表给出一个“直角三角形数阵”: 14 12, 14 34, 38,316 ……满足每一列成等差数列,从第三行起,每一行的数成等比数列,且每一行的公比相等,记第i 行第j 列的数为a ij (i ≥j ,i ,j ∈N *),则83a 等于( ) A.18 B.14 C.12 D .19.设0,0.ab >>1133a b a b+与的等比中项,则的最小值为( )A . 8B .14C . 1D . 4 {}(),1.1089等于值时,取得最小正有最大值,那么当项和且它的前是等差数列,若数列n S S n a aa n n n -< A .14B .15C .16D .1711.已知命题p :实数m 满足01≤-m ,命题q :函数xm y )49(-=是增函数。

【高二】高二上册数学文科期中试卷(带答案)

【高二】高二上册数学文科期中试卷(带答案)

【高二】高二上册数学文科期中试卷(带答案)昆明三中2021-2021学年度高二年级上学期期中试题数学()(共100分,考试时间120分钟)第一卷一、(每小题3分,共36分.每小题只有一项是符合题目要求)1.如果抛物线y2=4x通过点P(3),则点P到抛物线焦点的距离等于()a.94b.4c.134d.32.如果双曲线x2+y2=1的虚轴长度是实轴长度的两倍,则等于()a.-14 b.-4 c.4 d.143.命题:“如果A2+B2=0(a,B∈ R),那么a=b=0“,反命题是()a.若a≠b≠0(a,b∈r),则a2+b2≠0b、如果a=b≠ 0(a,B)∈ R)然后是A2+B2≠ 0c.若a≠0且b≠0(a,b∈r),则a2+b2≠0d、如果≠ 0或B≠ 0(a,B)∈ R)然后是A2+B2≠ 04.不等式组x≥0,x+3y≥4,3x+y≤4,所表示的平面区域的面积等于( )a、 32b、 23c、 43d、 345.“>n>0”是“方程x2+ny2=1表示焦点在y轴上的椭圆”的( )a、充分和不必要条件B.必要和充分条件c.必要而不充分条件d.既不充分也不必要条件6.已知点P是抛物线y2=4x上的点,点P到直线的距离为D1x+2y+10=0的距离为d2,则d1+d2的最小值是( )a、五,b、四,c、 1155d、 1157.设a∈r,则a>1是1a<1的( )a、充分但不必要的条件B.必要但不充分的条件c.充要条件d.既不充分也不必要条件8.如果命题“非p或非Q”是一个假命题,则以下结论中正确的命题是()①命题“p且q”是真命题② 命题“P和Q”是一个错误命题③命题“p或q”是真命题④ 命题“P或Q”是一个错误命题a.①③b.②④c.②③d.①④9.如果命题a是命题B的充要条件,命题C是命题B的充要条件,命题D是命题C的充要条件,那么命题D是()a.充分不必要条件b.必要不充分条件c、充分必要条件D.既不充分也不必要条件10.设平面区域d是由双曲线y2-x24=1的两条渐近线和椭圆x22+y2=1的右准线所围成的三角形(含边界与内部).若点(x,y)∈d,则目标函数z=x+y的最大值为( )a、一,b、二,c、三,d、六,11.在平面直角坐标系中,若不等式组x+y-1≥0,x-1≤0,ax-y+1≥0,(a为常数)所表示的平面区域的面积等于2,则a的值为( )a、-5b.1c.2d.312.已知抛物线c的方程为x2=12y,过点a(0,-1)和点b(t,3)的直线与抛物线c没有公共点,则实数t的取值范围是( )a、(-∞,-1)∪(1,+∞)b、(-∞,-22)∪(22,+∞)c.(-∞,-22)∪(22,+∞)d.(-∞,-2)∪(2,+∞)昆明市第三中学二年级2022-2022学年第一学期期中考试试题数学()第二卷题号一二三总分十七亿一千八百一十九万二千零二十一得分二、问题:(本主要问题共有4个子问题,每个子问题得3分,共计12分。

2021-2022年高二上学期期中数学试卷(文科) 含解析(VI)

2021-2022年高二上学期期中数学试卷(文科) 含解析(VI)

2021-2022年高二上学期期中数学试卷(文科)含解析(VI)一.选择题(每题5分,共60分)1.直线y=﹣x+的斜率为()A.﹣B.C.D.2.两条异面直线,指的是()A.在空间内不相交的两条直线B.分别位于两个不同平面内的两条直线C.某一平面内的一条直线和这个平面外的一条直线D.不在同一平面内的两条直线3.在平面直角坐标系中,已知点A(﹣1,2),B(3,0),那么线段AB中点的坐标为()A.(2,2)B.(1,1)C.(﹣2,﹣2)D.(﹣1,﹣1)4.如图所示的直观图,其表示的平面图形是()A.正三角形B.直角三角形 C.钝角三角形 D.锐角三角形5.下列几何体中,正视图、侧视图、俯视图都相同的几何体的序号是()A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)6.已知两条直线y=ax﹣2和y=(a+2)x+1互相垂直,则a等于()A.2 B.1 C.0 D.﹣17.如图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是()A.9π B.10πC.11πD.12π8.已知平面α与平面β交于直线l,且直线a⊂α,直线b⊂β,则下列命题错误的是()A.若α⊥β,a⊥b,且b与l不垂直,则a⊥lB.若α⊥β,b⊥l,则a⊥bC.若a⊥b,b⊥l,且a与l不平行,则α⊥βD.若a⊥l,b⊥l,则α⊥β9.已知直线l的斜率,则直线倾斜角的范围为()A.B.C.D.10.一个正三棱锥的底面边长等于一个球的半径,该正三棱锥的高等于这个球的直径,则球的体积与正三棱锥体积的比值为()A.B.C.D.11.如图,四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°.将△ADB 沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A﹣BCD.则在三棱锥A﹣BCD中,下列命题正确的是()A.平面ABD⊥平面ABC B.平面ADC⊥平面BDCC.平面ABC⊥平面BDC D.平面ADC⊥平面ABC12.如图,平面中两条直线l1和l2相交于点O,对于平面上任意一点M,若p、q分别是M到直线l1和l2的距离,则称有序非负实数对(p,q)是点M的“距离坐标”.已知常数p≥0,q≥0,给出下列命题:①若p=q=0,则“距离坐标”为(0,0)的点有且仅有1个;②若pq=0,且p+q≠0,则“距离坐标”为(p,q)的点有且仅有2个;③若pq≠0,则“距离坐标”为(p,q)的点有且仅有4个.上述命题中,正确命题的个数是()A.0 B.1 C.2 D.3二.填空题(每空5分,共20分)13.(文)已知圆锥的母线长l=5cm,高h=4cm,则该圆锥的体积是cm3.14.已知直线l:ax+(1﹣2a)y+1﹣a=0则直线恒过定点.15.已知棱长为1的立方体ABCD﹣A1B1C1D1,则从顶点A经过立方体表面到达正方形CDD1C1中心M的最短路线有条.16.①两条平行直线L1 L2分别过P(﹣1,3),Q(2,﹣1)它们分别绕P、Q旋转,但始终保持平行,则L1与L2之间的距离d的取值范围是(0,4)②x2+y2﹣2x﹣4y+6=0表示一个圆的方程.③过点(﹣2,﹣3)且在两坐标轴上的截距相等的直线l的方程为x+y=5.④直线ax+by+1=0被圆x2+y2﹣2ax+a=0截得的弦长为2,则实数a的值为﹣2.其中错误的命题是.三.解答题(共70分,第17题10分,其他各12分)17.求经过三点A(0,3)、B(4,0),C(0,0)的圆的方程.18.如图,已知三棱柱ABC﹣A1B1C1中,AA1⊥平面ABC,AC=BC,M,N分别是棱CC1,AB的中点.(1)求证:CN⊥平面ABB1A1;(2)求证:CN∥平面AMB1.19.已知如图,四边形ABCD是等腰梯形,AB∥DC,A(﹣1,﹣2),B(6,5),D(0,2).(Ⅰ)求点C的坐标.(Ⅱ)求等腰梯形ABCD对角线交点M的坐标.20.在坐标系中有两点P(2,3),Q(3,4).求(1)在y轴上求出一点M,使得MP+MQ的值最小;(2)在x轴上求出一点N,使得NQ﹣NP的值最大.21.在四棱锥P﹣ABCD 中,△PAD 为等边三角形,底面ABCD为等腰梯形,满足AB∥CD,AD=DC=AB=2,且平面PAD⊥平面ABCD.(Ⅰ)证明:BD⊥平面PAD;(Ⅱ)求点C到平面PBD的距离.22.如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,点M,N分别为线段PB,PC 上的点,MN⊥PB.(Ⅰ)求证:平面PBC⊥平面PAB;(Ⅱ)求证:当点M 不与点P,B 重合时,MN∥平面ABCD;(Ⅲ)当AB=3,PA=4时,求点A到直线MN距离的最小值.参考答案与试题解析一.选择题(每题5分,共60分)1.直线y=﹣x+的斜率为()A.﹣B.C.D.【考点】直线的点斜式方程.【分析】利用直线的斜截式y=kx+b,即可知道直线的斜率为k,进而求出答案.【解答】解:∵直线的方程为y=﹣x+,由直线的斜截式可知:直线的斜率为.故选A.2.两条异面直线,指的是()A.在空间内不相交的两条直线B.分别位于两个不同平面内的两条直线C.某一平面内的一条直线和这个平面外的一条直线D.不在同一平面内的两条直线【考点】异面直线的判定.【分析】直接由异面直线的定义,判断选项的正误即可.【解答】解:A两条直线可能平行,所以不正确.B分别位于两个不同平面内的两条直线,可能还在另一个平面,不正确.C某一平面内的一条直线和这个平面外的一条直线可能在同一个平面,不正确.D是异面直线的定义,正确.3.在平面直角坐标系中,已知点A(﹣1,2),B(3,0),那么线段AB中点的坐标为()A.(2,2)B.(1,1)C.(﹣2,﹣2)D.(﹣1,﹣1)【考点】中点坐标公式.【分析】利用两点的中点坐标公式,直接求解即可.【解答】解:由中点坐标公式可得,点A(﹣1,2),B(3,0),那么线段AB中点的坐标为:(),即(1,1).故选B.4.如图所示的直观图,其表示的平面图形是()A.正三角形B.直角三角形 C.钝角三角形 D.锐角三角形【考点】平面图形的直观图.【分析】因为在做直观图时,平行性不变.BC∥y′轴,故在原图中平行于y轴,而AC平行于x′轴,在原图中平行于x轴,故BC⊥AC,即可判断三角形的形状.【解答】解:因为BC∥y′轴,故在原图中平行于y轴,而AC平行于x′轴,在原图中平行于x轴,故BC⊥AC,即三角形的形状为直角三角形.故选B.5.下列几何体中,正视图、侧视图、俯视图都相同的几何体的序号是()A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)【考点】简单空间图形的三视图.【分析】根据三视图的作法,判断正方体、圆锥、圆柱、球的三视图中,满足题意的几何体即可.【解答】解:(1)的三视图中正视图、左视图、俯视图都是正方形,满足题意;(2)(3)的左视图、正视图是相同的,俯视图与之不同;(4)的三视图都是圆,满足题意;故选D6.已知两条直线y=ax﹣2和y=(a+2)x+1互相垂直,则a等于()A.2 B.1 C.0 D.﹣1【考点】两条直线垂直与倾斜角、斜率的关系.【分析】两直线ax+by+c=0与mx+ny+d=0垂直⇔am+bn=0解之即可.【解答】解:由y=ax﹣2,y=(a+2)x+1得ax﹣y﹣2=0,(a+2)x﹣y+1=0因为直线y=ax﹣2和y=(a+2)x+1互相垂直,所以a(a+2)+1=0,解得a=﹣1.故选D.7.如图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是()A.9π B.10πC.11πD.12π【考点】由三视图求面积、体积.【分析】由题意可知,几何体是由一个球和一个圆柱组合而成的,依次求表面积即可.【解答】解:从三视图可以看出该几何体是由一个球和一个圆柱组合而成的,其表面为S=4π×12+π×12×2+2π×1×3=12π故选D.8.已知平面α与平面β交于直线l,且直线a⊂α,直线b⊂β,则下列命题错误的是()A.若α⊥β,a⊥b,且b与l不垂直,则a⊥lB.若α⊥β,b⊥l,则a⊥bC.若a⊥b,b⊥l,且a与l不平行,则α⊥βD.若a⊥l,b⊥l,则α⊥β【考点】空间中直线与平面之间的位置关系.【分析】根据空间直线和平面平行或垂直以及平面和平面平行或者垂直的性质和判定定理进行判断即可.【解答】解:A.若α⊥β,a⊥b,且b与l不垂直,则a⊥l,正确B.若α⊥β,b⊥l,则b⊥α,∵a⊂α,∴a⊥b,正确C.∵a与l不平行,∴a与l相交,∵a⊥b,b⊥l,∴b⊥α,则α⊥β正确.D.若a⊥l,b⊥l,不能得出α⊥β,因为不满足面面垂直的条件,故D错误,故选:D9.已知直线l的斜率,则直线倾斜角的范围为()A.B.C.D.【考点】直线的倾斜角.【分析】设直线倾斜角为θ,由直线l的斜率,肯定,即可得出.【解答】解:设直线倾斜角为θ,∵直线l的斜率,∴,∴θ∈∪.故选:B.10.一个正三棱锥的底面边长等于一个球的半径,该正三棱锥的高等于这个球的直径,则球的体积与正三棱锥体积的比值为()A.B.C.D.【考点】简单组合体的结构特征.【分析】因为正三棱锥的底面边长等于一个球的半径,该正三棱锥的高等于这个球的直径,可以设出球半径r,求解再做比即可.【解答】解:设球的半径为r;正三棱锥的底面面积,h=2r,.所以故选A.11.如图,四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°.将△ADB 沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A﹣BCD.则在三棱锥A﹣BCD中,下列命题正确的是()A.平面ABD⊥平面ABC B.平面ADC⊥平面BDCC.平面ABC⊥平面BDC D.平面ADC⊥平面ABC【考点】平面与平面垂直的判定.【分析】由题意推出CD⊥AB,AD⊥AB,推出AB⊥平面ADC,可得平面ABC⊥平面ADC.【解答】解:∵在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°∴BD⊥CD又平面ABD⊥平面BCD,且平面ABD∩平面BCD=BD故CD⊥平面ABD,则CD⊥AB,又AD⊥AB故AB⊥平面ADC,所以平面ABC⊥平面ADC.故选D.12.如图,平面中两条直线l1和l2相交于点O,对于平面上任意一点M,若p、q分别是M到直线l1和l2的距离,则称有序非负实数对(p,q)是点M的“距离坐标”.已知常数p≥0,q≥0,给出下列命题:①若p=q=0,则“距离坐标”为(0,0)的点有且仅有1个;②若pq=0,且p+q≠0,则“距离坐标”为(p,q)的点有且仅有2个;③若pq≠0,则“距离坐标”为(p,q)的点有且仅有4个.上述命题中,正确命题的个数是()A.0 B.1 C.2 D.3【考点】点到直线的距离公式.【分析】题目中点到直线的距离,分别为p、q,由于p、q的范围是常数p≥0,q≥0,所以对p、q进行分类讨论,验证①②③是否成立.【解答】解:①正确,此点为点O;②正确,注意到p,q为常数,由p,q中必有一个为零,另一个非零,从而可知有无数个点,从而可知有且仅有2个点,这两点在其中一条直线上,且到另一直线的距离为q(或p);③正确,四个交点为与直线l1相距为p的两条平行线和与直线l2相距为q的两条平行线的交点.故选:D.二.填空题(每空5分,共20分)13.(文)已知圆锥的母线长l=5cm,高h=4cm,则该圆锥的体积是12πcm3.【考点】旋转体(圆柱、圆锥、圆台).【分析】利用勾股定理可得圆锥的底面半径,那么圆锥的体积=×π×底面半径2×高,把相应数值代入即可求解.【解答】解:∵圆锥的高是4cm,母线长是5cm,∴圆锥的底面半径为3cm,∴圆锥的体积=×π×32×4=12πcm3.故答案为:12π.14.已知直线l:ax+(1﹣2a)y+1﹣a=0则直线恒过定点(﹣1,﹣1).【考点】恒过定点的直线.【分析】直线方程即 a(x﹣2y﹣1)+(y+1)=0,一定经过x﹣2y﹣1=0和y+1=0 的交点,联立方程组可求定点的坐标.【解答】解:直线l:ax+(1﹣2a)y+1﹣a=0即 a(x﹣2y﹣1)+(y+1)=0,根据a的任意性可得,解得x=﹣1,y=﹣1,∴当a取不同的实数时,直线l:ax+(1﹣2a)y+1﹣a=0恒过一个定点,这个定点的坐标是(﹣1,﹣1).故答案为(﹣1,﹣1).15.已知棱长为1的立方体ABCD﹣A1B1C1D1,则从顶点A经过立方体表面到达正方形CDD1C1中心M的最短路线有 2 条.【考点】多面体和旋转体表面上的最短距离问题.【分析】由题意,经过边DD1或DC时,路线最短,即可得出结论.【解答】解:由题意,经过边DD1或DC时,路线最短,有2条.故答案为:2.16.①两条平行直线L1 L2分别过P(﹣1,3),Q(2,﹣1)它们分别绕P、Q旋转,但始终保持平行,则L1与L2之间的距离d的取值范围是(0,4)②x2+y2﹣2x﹣4y+6=0表示一个圆的方程.③过点(﹣2,﹣3)且在两坐标轴上的截距相等的直线l的方程为x+y=5.④直线ax+by+1=0被圆x2+y2﹣2ax+a=0截得的弦长为2,则实数a的值为﹣2.其中错误的命题是①②③.【考点】圆的一般方程.【分析】①当PQ⊥l1,PQ⊥l2时,利用平行直线l1,l2的距离取得最大值|PQ|.于是可得:平行直线l1,l2之间的距离d的取值范围是,(0,|PQ|].②由题意验证D2+E2﹣4F的符号可得.③分情况讨论,直线过原点和不过原点两种情况.④由圆的方程,得到圆心与半径,再求得圆心到直线的距离,利用勾股定理解.【解答】解:①当PQ⊥l1,PQ⊥l2时,利用平行直线l1,l2的距离取得最大值|PQ|==5.所以平行直线l1,l2之间的距离d的取值范围是(0,5).故错误;②由题意可得D=﹣2,E=4,F=6,∴D2+E2﹣4F=4+16﹣36=﹣16<0,∴方程x2+y2﹣2x+4y+6=0不表示任何图形,故错误;③直线过原点时,由两点式易得,直线方程为y=x,故错误;④解:圆x2+y2﹣2ax+a=0可化为(x﹣a)2+y2=a2﹣a∴圆心为:(a,0),半径为:圆心到直线的距离为:d==.∵直线ax+y+1=0被圆x2+y2﹣2ax+a=0截得的弦长为2,∴a2+1+1=a2﹣a,∴a=﹣2.故正确.故答案是:①②③.三.解答题(共70分,第17题10分,其他各12分)17.求经过三点A(0,3)、B(4,0),C(0,0)的圆的方程.【考点】圆的一般方程.【分析】由题意,经过三点A(0,3)、B(4,0),C(0,0),是以A(0,3)、B (4,0)连线为直径的圆,求出圆心与半径,即可求出圆的方程.【解答】解:由题意,经过三点A(0,3)、B(4,0),C(0,0),是以A(0,3)、B(4,0)连线为直径的圆,所以圆心坐标为(2,1.5),半径为2.5,所以圆的方程为(x﹣2)2+(y﹣1.5)2=6.25.18.如图,已知三棱柱ABC﹣A1B1C1中,AA1⊥平面ABC,AC=BC,M,N分别是棱CC1,AB的中点.(1)求证:CN⊥平面ABB1A1;(2)求证:CN∥平面AMB1.【考点】直线与平面平行的判定;直线与平面垂直的判定.【分析】(1)证明AA1⊥CN,CN⊥AB,即可证明CN⊥平面ABB1A1;(2)设AB1的中点为P,连接NP、MP,利用三角形中位线的性质,可得线线平行,利用线面平行的判定,可得CN∥平面AMB1.【解答】证明:(1)∵三棱柱ABC﹣A1B1C1中,AA1⊥平面ABC,CN⊂平面ABC,∴AA1⊥CN,∵AC=BC,N是棱AB的中点,∴CN⊥AB,∵AA1∩AB=A,∴CN⊥平面ABB1A1;(2)设AB1的中点为P,连接NP、MP∵M、N分别是棱CC1、AB的中点∴CM∥AA1,且CM=AA1,NP∥AA1,且NP=AA1,∴CM∥NP,CM=NP∴CNPM是平行四边形,∴CN∥MP∵CN⊄平面AMB1,MP⊂平面AMB1,∴CN∥平面AMB1.19.已知如图,四边形ABCD是等腰梯形,AB∥DC,A(﹣1,﹣2),B(6,5),D(0,2).(Ⅰ)求点C的坐标.(Ⅱ)求等腰梯形ABCD对角线交点M的坐标.【考点】平面向量的坐标运算;两条直线的交点坐标.【分析】(I)利用向量共线定理和模的计算公式即可得出;(II)分别求出直线AC与BD的方程即可得出.【解答】解(Ⅰ)设C(x,y).∵A(﹣1,﹣2),B(6,5),D(0,2),∴,,,由已知,AB∥DC,,∴,解得或.当x=7,y=9时,四边形ABCD是平行四边形,舍去.∴x=2,y=4,即C(2,4).(Ⅱ)由(Ⅰ)知,直线AC的方程是,即y=2x,直线BD的方程是.解方程组,得,∴.20.在坐标系中有两点P(2,3),Q(3,4).求(1)在y轴上求出一点M,使得MP+MQ的值最小;(2)在x轴上求出一点N,使得NQ﹣NP的值最大.【考点】两点间距离公式的应用.【分析】(1)作出P点关于y轴的对称点P′,连接P′Q与y轴的交点即为M;(2)连接PQ并延长,与x轴交点就是N.【解答】解:(1)作出P点关于y轴的对称点P′,连接P′Q与y轴的交点即为M;∵P(2,3),Q(3,4).∴P′的坐标为(﹣2,3),故直线P′Q方程为:x﹣5y+17=0,令x=0,则y=,即M点坐标为(0,).(2)连接PQ并延长,与x轴交点就是N.∵P(2,3),Q(3,4).故直线PQ方程为:x﹣y+1=0,令y=0,则x=﹣1,即N点坐标为(﹣1,0)时,NQ﹣NP的值最大.21.在四棱锥P﹣ABCD 中,△PAD 为等边三角形,底面ABCD为等腰梯形,满足AB∥CD,AD=DC=AB=2,且平面PAD⊥平面ABCD.(Ⅰ)证明:BD⊥平面PAD;(Ⅱ)求点C到平面PBD的距离.【考点】点、线、面间的距离计算;直线与平面垂直的判定.【分析】(Ⅰ)在梯形ABCD中,取AB中点E,连结DE,推导出点D在以AB为直径的圆上,由此能证明BD⊥平面PAD.(Ⅱ)取AD中点O,连结PO,则PO⊥AD,设C到平面PBD的距离为h,由VP﹣BCD =VC﹣PBD,能求出点C到平面PBD的距离.【解答】证明:(Ⅰ)在梯形ABCD中,取AB中点E,连结DE,则DE∥BC,且DE=BC,故DE=,即点D在以AB为直径的圆上,∴BD=AD,∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,BD⊂平面ABCD,∴BD⊥平面PAD.解:(Ⅱ)取AD中点O,连结PO,则PO⊥AD,∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,∴PO⊥平面ABCD,由(Ⅰ)知△ABD和△PBD都是直角三角形,∴BD==2,∴=2, =,解得PO=,设C到平面PBD的距离为h,由VP﹣BCD =VC﹣PBD,得=,解得h=,∴点C到平面PBD的距离为.22.如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,点M,N分别为线段PB,PC 上的点,MN⊥PB.(Ⅰ)求证:平面PBC⊥平面PAB;(Ⅱ)求证:当点M 不与点P,B 重合时,MN∥平面ABCD;(Ⅲ)当AB=3,PA=4时,求点A到直线MN距离的最小值.【考点】点、线、面间的距离计算;直线与平面平行的判定;平面与平面垂直的判定.【分析】(Ⅰ)通过证明BC⊥平面PAB,即可证明平面PBC⊥平面PAB;(Ⅱ)在△PBC中,BC⊥PB,MN⊥PB,所以MN∥BC,利用线面平行的判定定理,证明MN∥平面ABCD;(Ⅲ)AM的长就是点A到MN的距离,A到直线MN距离的最小值就是A到线段PB的距离.【解答】证明:(Ⅰ)在正方形ABCD中,AB⊥BC.….因为PA⊥平面ABCD,BC⊂平面ABCD,所以PA⊥BC.….又AB∩PA=A,AB,PA⊂平面PAB,….所以BC⊥平面PAB.….因为BC⊂平面PBC,所以平面PBC⊥平面PAB.….(Ⅱ)由(Ⅰ)知,BC⊥平面PAB,PB⊂平面PAB,所以BC⊥PB.….在△PBC中,BC⊥PB,MN⊥PB,所以MN∥BC,….又BC⊂平面ABCD,MN⊄平面ABCD,….所以MN∥平面ABCD.….解:(Ⅲ)因为MN∥BC,所以MN⊥平面PAB,….而AM⊂平面PAB,所以MN⊥AM,….所以AM的长就是点A到MN的距离,….而点M在线段PB上所以A到直线MN距离的最小值就是A到线段PB的距离,在Rt△PAB中,AB=3,PA=4,所以A到直线MN的最小值为.….xx1月15日29517 734D 獍32111 7D6F 絯38809 9799 鞙21033 5229 利33813 8415 萕37469 925D 鉝w 32558 7F2E 缮 20949 51D5 凕{31303 7A47 穇27284 6A94 檔32920 8098 肘。

高二数学上学期期中考试(文科)

高二数学上学期期中考试(文科)

(4)“若 ac 2 bc 2 ,则a b ”的逆否命题。
三.解答题(共六题,70 分)请把答案写在答题卷相应位置上。 17.(本小题 10 分)
写出“若 x 2 ,则 x 2 5x 6 0 ”的逆命题、否命题、逆否命题,并判断其真假.
18.(本小题 12 分)
求椭圆 x2 4 y2 16 的长轴和短轴的长、离心率、焦点和顶点的坐标
C.50
9.命题:“ x∈R,都有 x2-x+1>0”的否定是
D.162
A. x∈R,都有 x2-x+1≤0
B. x∈R,都有 x2-x+1>0
C. x∈R,都有 x2-x+1≤0.
D.以上选项均不正确
10.已知双曲线 y2-x2=1 的离心率为 e,且抛物线 y2=2px 的焦点坐标为(e2,0),则 P
心率为
()
A. 3
6
B.
2
6
C.
3
3
D.
3
第Ⅱ卷(非选择题 共 90 分)
二、填空题(每题 5 分,共 20 分)
13. 若x 0, y 0, 且 1 4 1 ,则 x y 的最小值是

xy
x2 14.椭圆 16
y2 9
1 上一点 P 到它的一个焦点的距离等于 3,那么点 P 到另一个焦点的
高二数学(共 4 页,第 1 页)
点,则点 M 的轨迹方程是
A. 9x 2 y 2 1 16 4
B. x 2 y 2 1 4
C. x 2 y 2 1 4
D. 9 y 2 x 2 1 16 4
8.设 x 、 y R ,且 x y 4 ,则 5x 5y 的最小值为
A.9
B.25

安徽高二上学期期中考试文科数学试题 Word版含答案

安徽高二上学期期中考试文科数学试题 Word版含答案

安徽师范大学附属中学期中考查高 二 文 科 数 学 试 卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、下列说法正确的是( )A .任意三点可确定一个平面B .四边形一定是平面图形C .梯形一定是平面图形D .一条直线和一个点确定一个平面 2、某几何体的正视图和侧视图均如右图所示,则该几何体 的俯视图不可能是( )第2题图A .B .C .D .3、已知水平放置的ΔABC 是按斜二测画法得到如图所示的直观图,其中''''1,''B O C O A O ===那么原ΔABC 是一个( )A .等边三角形B .直角三角形C .仅有两边相等的等腰三角形D .三边互不相等的三角形4、圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为( )第3题图A .7B .6C . 5D .3 5、在梯形ABCD 中,∠ABC=π2,AD ∥BC ,BC=2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A .2π3B .4π3C .5π3D .2π6、对于任意的直线l 与平面α,在平面α内必有直线m ,使m 与l ( ) A .平行 B .相交 C .垂直 D .互为异面直线7、若有直线m 、n 和平面α、β,下列四个命题中,正确的是( )A .若//m α,//n α,则//m nB .若α⊂m ,α⊂n ,//m β,//n β,则//αβC .若αβ⊥,α⊂m ,则m β⊥D .若αβ⊥,m β⊥,α⊄m ,则//m α8、如图正方体中,o ,1o 为底面中心,以1oo 所在直线为旋转轴,线段1BC 形成的几何体的正视图为( )第8题图 9、给出以下四个命题,①如果平面α,β,γ满足l =⊥⊥βαγβγα ,,,则γ⊥l(A)(B)(C)(D)1②若直线l 上有无数个点不在平面α内,则α//l③已知a,b 是异面直线,βα,为两个平面,若αββα//,,//,b b a a ⊂⊂,则βα//④一个平面内的已知直线必垂直于另一个平面的无数 条直线其中正确命题的个数是( )A .1个B .2个C . 3个D .4个 10、在棱长为2的正方体内有一四面体A -BCD ,其中 B ,C 分别为正方体两条棱的中点,其三视图如图所示, 则四面体A -BCD 的体积为( )A.83 B .2 C.43D .1 11、设四棱锥P-ABCD 的底面不是平行四边形, 用平面α去截此四棱锥(如图), 使得截面四边形是平行四边形, 则这样的平面 α ( )A .不存在B .只有1个C .恰有4个D .有无数多个12.异面直线a ,b 所成的角60°,直线a ⊥c ,则直线b 与c 所成的角的范围为( ).A .]2,6[ππ B .]2,3[ππ C .]3,6[ππ D .]32,6[ππ二、填空题(本大题共4小题,每小题4分,共16分.把答案填在答题卡的相应位置.) 13.已知球内接正方体的表面积为S ,那么球的半径是 . 14、已知一个空间几何体的三视图如图所示,根据图中标出的尺寸,可得这个几何体的全面积为 .15、已知三棱锥P ABC -的三条侧棱两两垂直,且分别长为2、4、4,则顶点P到面ABC 的距离为 .16、棱长为1的正四面体内有一点P ,由点P 向各面引垂线,垂线段长度分别为d 1,d 2,d 3,d 4,则d 1+d 2+d 3+d 4的值为_______________.三、解答题(本大题共5小题,共48分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内.)17、(8分)如图所示的三幅图中,图(1)所示的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图如图(2)(3)所示(单位:cm)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上学期期中考试卷 高二数学(文科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}|10A x x =+>,{}2,1,0,1B =--,则()A B R 等于( ). A .{}2,1-- B .{}2- C .{}1,0,1- D .{}0,1 2.已知命题:p x ∀∈R ,2210x +>,则p ⌝是( ). A .x ∀∈R ,2210x +≤B .x ∃∈R ,2210x +>C .x ∃∈R ,2210x +<D .x ∃∈R ,2210x +≤3.设某大学的女生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据(,)(1,2,,)i i x y i n =,用最小二乘法建立的回归方程为0.8585.71y x =-,则下列结论中不正确的是( ).A .y 与x 有正的线性相关关系B .回归直线过样本点的中心(,)x yC .若该大学某女生身高增加1cm ,则其体重约增加0.85kgD .若该大学某女生身高为170cm ,则可断定其体重必为58.79kg4.设α,β是两个不同的平面,l 是一条直线,下列命题中:①若l α⊥,αβ⊥,则l β∥;②若l α∥,αβ∥,则l β∥;③若l α⊥,αβ∥,则l β⊥;④若l α∥,αβ⊥,则l β⊥.其中正确命题的个数是( ). A .1B .2C .3D .45.已知两条直线2y ax =-和3(2)10x a y -++=互相平行,则a 等于( ). A .1或3-B .1-或3C .1或3D .1-或3-6.已知θ为第一象限角,设(3,sin )a θ=-,(cos ,3)b θ=,且a b ⊥,则θ一定为( ). A .ππ()3k k +∈Z B .π2π()6k k +∈Z C .π2π()3k k +∈Z D .ππ()6k k +∈Z 7.已知数列}{n a 为等比数列,n S 是它的前n 项和,若2312a a a ⋅=,且4a 与72a 的等差中项为54,则5S =( ). A .35B .33C .31D .298.若正三棱锥的正视图与俯视图如右图所示,底面是正三角形,则它的侧视图的面积为( ).A 3B .34C 3D .329.已知a ,b ,c 为集合{}1,2,3,4,5A =中三个不同的数,通过如图所示算法框图给出的一个算法输出一个整数a ,则输出的数5a =的概率是( ).否a=ca=b 是a >b ?开始结束输入a ,b ,c 输出a a >c ?是否A .15B .25 C .35D .4510.已知实数x ,y 满足约束条件10,40,,x y x y y m +-⎧⎪+-⎨⎪⎩≥≤≥,若目标函数2z x y =+的最大值与最小值的差为2,则实数m 的值为( ). A .4B .3C .2D .12-11.函数()sin f x x =在区间(0,10π)上可找到n 个不同数1x ,2x ,,n x ,使得1212()()()n nf x f x f x x x x ===,则n 的最大值等于( ).A .8B .9C .10D .1112.已知奇函数4()f x x t x =++(t 为常数)和函数1()2xg x a ⎛⎫=+ ⎪⎝⎭,若对11,12x ⎡⎤∀∈⎢⎥⎣⎦,2[1,0]x ∃∈-,使得12()()f x g x ≥,则a 实数的取值范围是( ).A .(,4]-∞B .(,3]-∞C .[4,)+∞D .[3,)+∞第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.如果角α的终边过点(4sin30,4cos30)︒-︒,则sin α=__________.14.如图是甲、乙两人在5次综合测评中的成绩的茎叶图,其中一个数字被污损;则甲平均成绩超过乙的平均成绩的概率为__________.甲乙3388991207915.设13log 5a =,5log 9b =,0.315c ⎛⎫= ⎪⎝⎭,a ,b ,c 的大小关系(用“<”连接)是__________.16.已知点(,)P x y 是直线4(0)y kx k =-->上的一个动点,PA ,PB 是圆22:20C x y y +-=的两条切线,A ,B 是切点,若四边形PACB 的面积的最小值为2,则实数k 的值为__________.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知ABC △的内角A ,B ,C 所对的边分别为a ,b ,c ,且222b c a bc +=+. (1)求角A 的大小.(2)若1b =,ABC △,求c . 18. 已知各项为正数的数列}{n a 的前n 项和为n S ,并且满足:n S ,n a ,2成等差数列. (1)求数列}{n a 的通项公式.(2)若n n c n a =⋅,求数列}{n c 的前n 项和n T .19. 某校高二文科分四个班,各班人数恰好成等差数列,高二数学调研测试后,对四个文科班的学生试卷按每班人数进行分层抽样,对测试成绩进行统计,人数最少的班抽取了22人,抽取的所有学生成绩分为6组:[70,80),[80,90),[90,100),[100,110),[110,120),[120,130),得到如图所示的频率分布直方图,其中第六组分数段的人数为5人.(1)求a 的值,并求出各班抽取的学生数各为多少人?(2)在抽取的学生中,任取一名学生,求分数不小于90分的概率(视频率为概率).(3)估计高二文科四个班数学成绩的平均分20.如图,在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥平面ABCD ,PA AB =,点E 是PD 的中点,四面体E ACD -的体积为163. ECBAPD(1)求证:PB ∥平面ACE . (2)若四面体E ACD -的体积为23.求AB 的长. 21.已知⊙M 的半径为1,圆心M 的坐标为(,0)m ,其中24m ≤≤.OA ,OB 为该圆的两条切线,O 为坐标原点,A ,B 为切点,A 在第一象限,B 在第四象限. (1)若2m =时,求切线OA ,OB 的斜率. (2)若4m =时,求AMB △外接圆的标准方程.(3)当M 点在x 轴上运动时,将MA MB ⋅表示成m 的函数()m ϕ,并求函数()m ϕ的最小值. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.已知函数22||,2,()(2), 2.x x f x x x -<⎧=⎨-⎩≥. (1)在给定的平面直角坐标系中,画出函数()f x 的草图,并写出函数()f x 的单调区间(不必写作图过程,单调性不必证明).(2)当2x ≥时,不等式()f x kx ≥恒成立,求实数k 的取值范围.上学期期中考试卷 高二数学(文科)答案一、选择题1-5:ADDAA 6-10:BCBCC 11、12:CB 二、填空题13. 14.45 15. a c b << 16.2三、解答题17.(1)在ABC △中,2222cos b c a bc A +-=, 又222b c a bc +=+, ∴1cos 2A =, ∵0πA <<, ∴π3A =. 综上所述:π3A =.(2)由1sin 2S bc A =,得3bc =, ∵1b =, ∴3c =. 综上所述:3c =.18.(1)∵2,n a ,n S 成等差数列, ∴22n n a S =+,∴1n =,1122a a =+,计算得出12a =. 当2n ≥时,1122n n a S --=+, ∴122n n n a a a --=,化为12n n a a -=,∴数列{}n a 成等比数列,首项为2,公比为2, ∴2n n a =.(2)2n n n c n a n =⋅=⋅, ∴数列{}n c 的前n 项和 22222322n n T n =+⨯+⨯++⋅,2312222(1)22n n n T n n +=+⨯++-⋅+⋅,∴231112(21)222222(1)2221n n n n n n T n n n +++--=++++-⋅=-⋅=-⋅--,∴1(1)22n n T n +=-⋅+.19.(1)由频率分布条形图知,抽取的学生总数为51000.05=人. ∵各班被抽取的学生人数成等差数列,设其公差为d , 由4226100d ⨯+=,解得2d =.∴各班被抽取的学生人数分别是22人,24人,26人,28人.(2)在抽取的学生中,任取一名学生,则分数大小于90分的概率为0.350.250.10.050.75+++=.(3)750.05850.20950.351050.251150.101250.0598⨯+⨯+⨯+⨯+⨯+⨯=,平均成绩为98分.20.(1)证明:连接BD 交AC 于点O ,连接EO , ∵ABCD 是正方形, ∴点O 是BD 的中点, 又∵点E 是PD 的中点, ∴EO 是DPB △的中位线, ∴PB EO ∥,又∵EO ⊂平面ACE ,PB ⊄平面ACE , ∴PB ∥平面ACE .(2)取AD 的中点H ,连接EH , ∵点E 是PD 的中点, ∴EH PA ∥,又∵PA ⊥平面ABCD , ∴EH ⊥平面ABCD .设AB x =,则PA AD CD x ===,且1122EH PA x ==,所以3111111233262123E ACD ACD V S EH AD CD EH x x x x -=⨯=⨯⨯⨯⨯=⋅⋅⋅==△,解得2x =, 故AB 的长为221.(1)2m =时,圆M 为:22(2)1x y -+=.由题意设过O 点,圆M 的切线方程为y kx =,(k 不存在不成立),1=,解得k =. 所以OA,OB(2)由题意AMB △外接圆,圆心在x 轴上,设(,0)xP t , 由题意QM AM AM OM =,得14QM =,AQ =. 所以:222PQ AQ PM +=, 解得2t =.所以AMB △外接圆圆心为(2,0)P , 半径为2PM =.所以圆22:(2)4P x y -+=.(3)由(2)知2AM QM OM =得1QM m =,AQ =,所以1A m m ⎛-⎝⎭,1,B m m ⎛- ⎝⎭,(,0)M m ,所以222111(1),m MA MB m m m m ⎛⎛-⋅=-⋅-=- ⎝⎝⎭221m =-+. 所以22()1(24)m m m ϕ=-+≤≤, 所以当4m =时,()m ϕ取得最小值为78-.22.(1)()f x 在(,0)-∞和(2,)+∞上单调递增, 在(0,2)上单调递减.(2)由题意2(2)x kx -≥,在2x ≥上恒成立, 即kx 图像在2(2)x -下方(2)x ≥, 由题意得0k ≤.(3)∴22|2|,0(2),0x x f x x x --⎧-⎨<⎩≥,∵函数()()y f x g x =-恰好有四个零点, ∴方程()()0f x g x -=有四个解, 即()(2)0f x f x b +--=有四个解,即函数()(2)y f x f x =+-与y b =的图象有四个交点,222,0()(2)2,0258,2x x x y f x f x x x x x ⎧++<⎪=+-=⎨⎪-+>⎩≤≤,作函数()(2)y f x f x =+-与y b =的图象如下:115572222224f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+-=+-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,结合图象可知,724b <<.。

相关文档
最新文档