人教版初中数学中考几何知识点大全

合集下载

人教版初三数学知识点总结

人教版初三数学知识点总结

人教版初三数学知识点总结(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如公文写作、报告体会、演讲致辞、党团资料、合同协议、条据文书、诗词歌赋、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as official document writing, report experience, speeches, party and group materials, contracts and agreements, articles and documents, poems and songs, teaching materials, essay collections, other sample essays, etc. Learn about the different formats and writing styles of sample essays, so stay tuned!人教版初三数学知识点总结人教版初三数学知识点总结(通用15篇)人教版初三数学知识点总结篇1等腰三角形的判定方法1.有两条边相等的三角形是等腰三角形。

人教版初三数学解析几何探索空间奥秘

人教版初三数学解析几何探索空间奥秘

人教版初三数学解析几何探索空间奥秘数学是一门充满奥秘的科学,而解析几何更是其中的重要分支之一。

本文将介绍人教版初三数学解析几何的相关知识,带领读者一同探索空间奥秘。

一、点、线、面的基本概念解析几何研究的对象主要有点、线和面。

点是最简单的几何对象,它没有长度、面积和体积,只有位置坐标。

线是由无数个点按照一定的顺序连接形成的,可以延伸到无穷远。

面是由无数个线无缝连接形成的,是一个无限大的二维平面。

二、空间几何图形的投影投影是解析几何中的重要概念。

当一个空间几何图形投影到一个平面上时,我们可以通过观察投影图形来获取更多信息。

常见的投影有平行投影和中垂线投影。

通过投影,我们可以研究几何图形的性质和变化规律。

三、平行关系和垂直关系平行关系和垂直关系是解析几何中常见的关系。

当两条直线或者两个平面之间的夹角为0时,它们是平行的;当夹角为90度时,它们是垂直的。

通过平行关系和垂直关系,我们可以推导出许多几何性质和定理,例如平行线的性质、垂直平分线的性质等。

四、距离和角度解析几何中的距离和角度是非常重要的概念。

距离是两点之间的长度,可以通过勾股定理求解;角度是由两条射线所夹的空间图形,可以通过三角函数求解。

距离和角度的计算能够帮助我们精确地描述几何图形的位置和形状。

五、立体图形的性质立体图形是解析几何中的重要对象,包括球体、长方体、棱柱等。

每个立体图形都有其特有的性质,例如体积、表面积等。

通过研究立体图形的性质,我们可以更好地理解物体的空间结构和形态。

六、线段的分点与线段的垂直平分线线段的分点是解析几何中的重要概念,它将一条线段划分为两部分,满足一定的比例关系。

线段的垂直平分线是将一条线段垂直平分为两段,并且每一段的长度相等。

线段的分点和垂直平分线的研究有助于我们理解几何图形的对称性和比例关系。

七、四面体和正六面体四面体和正六面体是解析几何中的常见立体图形。

四面体是由四个三角形面组成的,正六面体是由六个正方形面组成的。

数学中考几何知识点总结

数学中考几何知识点总结

数学中考几何知识点总结在数学的学习中,几何是一个非常重要的部分。

它不仅仅是一门学科,更是一种思维方式和解决问题的方法。

在中考中,几何部分往往占据着相当大的分值,因此准备中考的同学们要认真学习和掌握几何知识点。

下面我们就来总结一下数学中考几何知识点的内容。

一、平面几何1.点、线、面几何中的基本概念包括点、线、面。

点是几何中最基本的概念,它没有长度、宽度和高度,只有位置。

线是由无数个点相连而成的,它没有宽度,只有长度。

面是由无数条线相互交叉而成的,它有宽度和长度,但没有高度。

2.线段、射线、角线段是线的一部分,它有固定的长度。

射线是从一个端点出发,延伸到无穷远的一部分线段。

角是由两条射线的公共端点和它们的部分平面组成,是平面的一部分。

角的度量是角的大小,通常有度、弧度和百分度等单位。

3.相交线及其性质相交线是指两条以上的线相交在一点上。

在几何学中,通过研究相交线的性质,可以推导出很多定理和公式。

4.平行线及其性质平行线是指在同一平面内没有相交点的两条直线。

平行线的性质有很多,通过对平行线的研究,可以推导出许多几何定理和公式。

5.三角形及其性质三角形是最基本的几何图形之一,它由三条边和三个角组成。

通过研究三角形的性质,可以得出很多有趣的结论,例如三角形内角和为180度等。

6.四边形及其性质四边形是由四条边和四个角组成的几何图形。

常见的四边形有矩形、正方形、菱形和平行四边形等。

7.圆及其性质圆是一个由同一平面上到一个固定点距离相等的所有点组成的集合。

圆是几何中最简单的图形之一,它有很多独特的性质和定理。

二、空间几何1.平行四边形平行四边形是指有一个对角线的四边形,并且对角线上的两条边分别平行。

平行四边形有很多有趣的性质和定理,例如对角线相互等长等。

2.棱锥、棱台、棱柱棱锥是一个底部为多边形的三维图形,棱台是一个底部为多边形的三维图形,并且它的底面和顶面平行,棱柱也是一个底部为多边形的三维图形,棱锥、棱台和棱柱都有各自的体积和表面积公式。

新人教版初中数学——图形的轴对称、平移与旋转-知识点归纳及中考典型题解析

新人教版初中数学——图形的轴对称、平移与旋转-知识点归纳及中考典型题解析

新人教版初中数学——图形的轴对称、平移与旋转知识点归纳及中考典型题解析一、轴对称图形与轴对称轴对称图形轴对称图形定义如果一个图形沿着某条直线对折后,直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形,这条直线叫做对称轴如果两个图形对折后,这两个图形能够完全重合,那么我们就说这两个图形成轴对称,这条直线叫做对称轴性质对应线段相等AB=ACAB=A′B′,BC=B′C′,AC=A′C′对应角相等∠B=∠C∠A=∠A′,∠B=∠B′,∠C=∠C′对应点所连的线段被对称轴垂直平分区别(1)轴对称图形是一个具有特殊形状的图形,只对一个图形而言;(2)对称轴不一定只有一条(1)轴对称是指两个图形的位置关系,必须涉及两个图形;(2)只有一条对称轴关系(1)沿对称轴对折,两部分重合;(2)如果把轴对称图形沿对称轴分成“两个图形”,那么这“两个图形”就关于这条直线成轴对称(1)沿对称轴翻折,两个图形重合;(2)如果把两个成轴对称的图形拼在一起,看成一个整体,那么它就是一个轴对称图形1等腰三角形、矩形、菱形、正方形、圆.2.折叠的性质折叠的实质是轴对称,折叠前后的两图形全等,对应边和对应角相等.【注意】凡是在几何图形中出现“折叠”这个字眼时,第一反应即存在一组全等图形,其次找出与要求几何量相关的条件量.解决折叠问题时,首先清楚折叠和轴对称能够提供我们隐含的且可利用的条件,分析角之间、线段之间的关系,借助勾股定理建立关系式求出答案,所求问题具有不确定性时,常常采用分类讨论的数学思想方法.3.作某点关于某直线的对称点的一般步骤(1)过已知点作已知直线(对称轴)的垂线,标出垂足;(2)在这条直线另一侧从垂足除法截取与已知点到垂足的距离相等的线段,那么截点就是这点关于该直线的对称点.4.作已知图形关于某直线的对称图形的一般步骤(1)作出图形的关键点关于这条直线的对称点;(2)把这些对称点顺次连接起来,就形成了一个符合条件的对称图形.二、图形的平移1.定义在平面内,一个图形由一个位置沿某个方向移动到另一个位置,这样的图形运动叫做平移.平移不改变图形的形状和大小.2.三大要素一是平移的起点,二是平移的方向,三是平移的距离.3.性质(1)平移前后,对应线段平行且相等、对应角相等;(2)各对应点所连接的线段平行(或在同一条直线上)且相等;(3)平移前后的图形全等.4.作图步骤(1)根据题意,确定平移的方向和平移的距离;(2)找出原图形的关键点;(3)按平移方向和平移距离平移各个关键点,得到各关键点的对应点;(4)按原图形依次连接对应点,得到平移后的图形.三、图形的旋转1.定义在平面内,一个图形绕一个定点沿某个方向(顺时针或逆时针)转过一个角度,这样的图形运动叫旋转.这个定点叫做旋转中心,转过的这个角叫做旋转角.2.三大要素旋转中心、旋转方向和旋转角度.3.性质(1)对应点到旋转中心的距离相等;(2)每对对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前后的图形全等.4.作图步骤(1)根据题意,确定旋转中心、旋转方向及旋转角;(2)找出原图形的关键点;(3)连接关键点与旋转中心,按旋转方向与旋转角将它们旋转,得到各关键点的对应点;(4)按原图形依次连接对应点,得到旋转后的图形.【注意】旋转是一种全等变换,旋转改变的是图形的位置,图形的大小关系不发生改变,所以在解答有关旋转的问题时,要注意挖掘相等线段、角,因此特殊三角形性质的运用、锐角三角函数建立的边角关系起着关键的作用.四、中心对称图形与中心对称中心对称图形中心对称图形定义如果一个图形绕某一点旋转180°后能与它自身重合,我们就把这个图形叫做中心对称图形,这个点叫做它的对称中心如果一个图形绕某点旋转180°后与另一个图形重合,我们就把这两个图形叫做成中心对称性质对应点点A与点C,点B与点D点A与点A′,点B与点B′,点C与点C′对应线段AB=CD,AD=BCAB=A′B′,BC=B′C′,AC=A′C′对应角∠A=∠C∠B=∠D∠A=∠A′,∠B=∠B′,∠C=∠C′区别中心对称图形是指具有某种特性的一个图形中心对称是指两个图形的关系联系把中心对称图形的两个部分看成“两个图形”,则这“两个图形”成中心对称把成中心对称的两个图形看成一个“整体”,则“整体”成为中心对称图形平行四边形、矩形、菱形、正方形、正六边形、圆等.考向一轴对称轴对称图形与轴对称的区别与联系区别:轴对称图形是针对一个图形而言,它是指一个图形所具有的对称性质,而轴对称则是针对两个图形而言的,它描述的是两个图形的一种位置关系,轴对称图形沿对称轴对折后,其自身的一部分与另一部分重合,而成轴对称的两个图形沿对称轴对折后,一个图形与另一个图形重合.联系:把成轴对称的两个图形看成一个整体时,它就成了一个轴对称图形.典例1第24届冬季奥林匹克运动会,将于2022年02月04日~2022年02月20日在中华人民共和国北京市和张家口市联合举行,全国上下掀起喜迎冬奥热潮,下列四个汉字中是轴对称图形的是A.B.C.D.【答案】A【解析】A、是轴对称图形,故此选项正确;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误.故选A.1.下列图形中不是轴对称图形的是A.B.C.D.考向二平移1.平移后,对应线段相等且平行,对应点所连的线段平行(或共线)且相等.2.平移后,对应角相等且对应角的两边分别平行或一条边共线,方向相同.3.平移不改变图形的形状和大小,只改变图形的位置,平移后新旧两图形全等.典例2下列运动中:①荡秋千;②钟摆的摆动;③拉抽屉时的抽屉;④工厂里的输送带上的物品,不属于平移的有A.4个B.3个C.2个D.1个【答案】C【解析】①荡秋千,是旋转,不是平移;②钟摆的摆动,是旋转,不是平移;③拉抽屉时抽屉的运动,是平移;④工厂里的输送带上的物品运动,是平移;故选C.2.下列四组图形都含有两个可以重合的三角形,其中可以通过平移其中一个三角形得到另一个三角形的是A.B.C.D.3.如图,两只蚂蚁以相同的速度沿两条不同的路径,同时从A出发爬到B,则A.乙比甲先到B.甲比乙先到C.甲和乙同时到D.无法确定考向三旋转通过旋转,图形中的每一点都绕着旋转中心沿相同的方向旋转了同样大小的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等,对应线段相等,对应角相等.在旋转过程中,图形的形状与大小都没有发生变化.典例3 如图,在ABC △中,65BAC ∠=︒,以点A 为旋转中心,将ABC △绕点A 逆时针旋转,得AB C ''△,连接BB ',若BB'AC ∥,则BAC '∠的大小是A .15︒B .25︒C .35︒D .45︒【答案】A【解析】∵△ABC 绕点A 逆时针旋转到△AB ′C ′的位置, ∴AB ′=AB ,∠B ′AC ′=∠BAC =65︒, ∴∠AB ′B =∠ABB ′, ∵BB ′∥AC ,∴∠ABB ′=∠CAB =65°, ∴∠AB ′B =∠ABB ′=65°, ∴∠BAB ′=180°–2×65°=50°,∴∠BAC ′=∠B ′AC ′–∠BAB ′=65°–50°=15°, 故选A .4.五角星可以看成由一个四边形旋转若干次而生成的,则每次旋转的度数可以是A .36°B .60°C .72°D .90°5.如图将△ABC 绕点A 顺时针旋转90°得到△AED ,若点B 、D 、E 在同一条直线上,∠BAC =20°,则∠ADB的度数为A.55°B.60°C.65°D.70°考向四中心对称识别轴对称图形与中心对称图形:①识别轴对称图形:轴对称图形是一类具有特殊形状的图形,若把一个图形沿某条直线对称,直线两旁的部分能完全重合,则称该图形为轴对称图形.这条直线为它的一条对称轴.轴对称图形有一条或几条对称轴.②中心对称图形识别:看是否存在一点,把图形绕该点旋转180°后能与原图形重合.典例4下列图形中,既是中心对称图形,又是轴对称图形的是A.B.C.D.【答案】B【解析】A、不是中心对称图形,也不是轴对称图形,故此选项错误;B、是中心对称图形,又是轴对称图形,故此选项正确;C、不是中心对称图形,也不是轴对称图形,故此选项错误;D、不是中心对称图形,也不是轴对称图形,故此选项错误,故选B.6.下列图形中,△A′B′C′与△ABC成中心对称的是A.B.C.D.1.下列四个图形中,不是轴对称图形的是A.B.C.D.2.已知点A的坐标为(3,–2),则点A向右平移3个单位后的坐标为A.(0,–2)B.(6,–2)C.(3,1)D.(3,–5)3.下列说法中正确的有①旋转中心到对应点的距离相等;②对称中心是对称点所连线段的中点;③旋转后的两个图形的对应边所在直线的夹角等于旋转角;④任意一个等边三角形都是中心对称图形.A.1个B.2个C.3个D.4个4.如图,在方格纸中的△ABC经过变换得到△DEF,正确的变换是A.把△ABC向右平移6格B.把△ABC向右平移4格,再向上平移1格C.把△ABC绕着点A顺时针旋转90°,再向右平移6格D.把△ABC绕着点A逆时针旋转90°,再向右平移6格5.如图,已知菱形OABC的顶点O(0,0),B(–2,–2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为A.(1,–1)B.(–1,–1)C.(1,1)D.(–1,1)6.在菱形ABCD中,AB=2,∠BAD=120°,点E,F分别是边AB,BC边上的动点,沿EF折叠△BEF,使点B的对应点B’始终落在边CD上,则A、E两点之间的最大距离为__________.7.将一张长方形纸条折成如图所示的形状,若∠1=110°,则∠2=__________°.8.如图所示,直线EF过平行四边形ABCD对角线的交点O,且分别交AD、BC于E、F,那么阴影部分的面积是平行四边形ABCD面积的____.9.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α=__________°.10.△ABC 在平面直角坐标系xOy 中的位置如图所示.(1)若△A 1B 1C 1与△ABC 关于原点O 成中心对称,则点A 1的坐标为__________; (2)将△ABC 向右平移4个单位长度得到△A 2B 2C 2,则点B 2的坐标为__________; (3)画出△ABC 绕O 点顺时针方向旋转90°得到的△A 3B 3C 3,并求点C 走过的路径长.11.如图,在ABC △中,D 为BC 上任一点,DE AC ∥交AB 于点E DF AB ,∥交AC 于点F ,求证:点E F ,关于AD 的中点对称.12.在如图所示的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在正方形网格的格点(网格线的交点)上.(1)请在如图所示的网格平面内作出平面直角坐标系,使点A坐标为(1,3),点B坐标为(2,1);(2)请作出△ABC关于y轴对称的△A'B'C',并写出点C'的坐标;(3)判断△ABC的形状.并说明理由.13.如图,已知∠BAC=40°,把△ABC绕着点A顺时针旋转,使得点B与CA的延长线上的点D重合,连接CE.(1)△ABC旋转了多少度?(2)连接CE,试判断△AEC的形状.(3)若∠ACE=20°,求∠AEC的度数.1.下列四个图形中,可以由下图通过平移得到的是A.B.C.D.2.在平面直角坐标系中,将点(2,1)向右平移3个单位长度,则所得的点的坐标是A.(0,5)B.(5,1)C.(2,4)D.(4,2)3.如图,在平面直角坐标系中,已知点A(2,1),点B(3,–1),平移线段AB,使点A落在点A1(–2,2)处,则点B的对应点B1的坐标为A.(–1,–1)B.(1,0)C.(–1,0)D.(3,0)4.把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为A.30°B.90°C.120°D.180°5.如图,在ABCD中,将△ADC沿AC折叠后,点D恰好落在DC的延长线上的点E处.若∠B=60°,AB=3,则△ADE的周长为A.12 B.15 C.18 D.216.如图,将△ABC沿BC边上的中线AD平移到△A′B′C′的位置.已知△ABC的面积为16,阴影部分三角形的面积9.若AA′=1,则A′D等于A.2 B.3 C.4 D.3 27.如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置.若四边形AECF的面积为20,DE=2,则AE的长为A.4 B.25C.6 D.268.如图,将等边△AOB放在平面直角坐标系中,点A的坐标为(4,0),点B在第一象限,将等边△AOB 绕点O顺时针旋转180°得到△A′OB′,则点B′的坐标是__________.9.如图,在△ABC中,∠BAC=90°,AB=AC=10 cm,点D为△ABC内一点,∠BAD=15°,AD=6 cm,连接BD,将△ABD绕点A按逆时针方向旋转,使AB与AC重合,点D的对应点为点E,连接DE,DE交AC于点F,则CF的长为__________cm.10.如图,在△ABC中,AB=AC=4,将△ABC绕点A顺时针旋转30°,得到△ACD,延长AD交BC的延长线于点E,则DE的长为__________.11.如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△OAB的三个顶点O(0,0)、A(4,1)、B(4,4)均在格点上.(1)画出△OAB关于y轴对称的△OA1B1,并写出点A1的坐标;(2)画出△OAB绕原点O顺时针旋转90°后得到的△OA2B2,并写出点A2的坐标;(3)在(2)的条件下,求线段OA在旋转过程中扫过的面积(结果保留π).12.如图,在矩形ABCD中,对角线AC的中点为O,点G,H在对角线AC上,AG=CH,直线GH绕点O 逆时针旋转α角,与边AB、CD分别相交于点E、F(点E不与点A、B重合).(1)求证:四边形EHFG是平行四边形;(2)若∠α=90°,AB=9,AD=3,求AE的长.13.在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点A顺时针旋转一定的角度α得到△DEC,点A、B的对应点分别是D、E.(1)当点E恰好在AC上时,如图1,求∠ADE的大小;(2)若α=60°时,点F是边AC中点,如图2,求证:四边形BEDF是平行四边形.变式拓展1.【答案】A【解析】A.不是轴对称图形,故本选项符合题意;B.是轴对称图形,故本选项不符合题意;C.是轴对称图形,故本选项不符合题意;D.是轴对称图形,故本选项不符合题意.故选A.2.【答案】D【解析】A、可以通过轴对称得到,故此选项错误;B、可以通过旋转得到,故此选项错误;C、可以通过轴对称得到,故此选项错误;D、可通过平移得到,故此选项正确;故选D.3.【答案】C【解析】由平移的性质可知,甲、乙两只蚂蚁的行走的路程相同,且两只蚂蚁的速度相同,所以两只蚂蚁同时到达,故选C.4.【答案】C【解析】根据旋转的性质可知,每次旋转的度数可以是360°÷5=72°或72°的倍数.故选C.5.【答案】C【解析】∵将△ABC绕点A顺时针旋转90°得到△AED,∴∠BAC=∠DAE=20°,AB=AE,∠BAE=90°,∴∠BEA=45°,∵∠BDA=∠BEA+∠DAE=45°+20°,∴∠BDA=65°.故选C.6.【答案】A【解析】A、是中心对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是旋转变换图形,故本选项错误;D、是旋转变换图形,故本选项错误.1.【答案】C【解析】A、是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项不符合题意;C、不是轴对称图形,故本选项符合题意;D、是轴对称图形,故本选项不符合题意;故选C.2.【答案】B【解析】∵将点A(3,–2)向右平移3个单位所得点的坐标为(6,–2),∴正确答案是B选项.故选B.3.【答案】C【解析】①旋转中心到对应点的距离相等,正确;②对称中心是对称点所连线段的中点,正确;③旋转后的两个图形的对应边所在直线的夹角等于旋转角,正确;④任意一个等边三角形都是中心对称图形,错误.说法正确的有3个,故选C.4.【答案】D【解析】根据图象,△ABC 绕着点A 逆时针方向90°旋转与△DEF 形状相同,向右平移6格就可以与△DEF 重合.故选D . 5.【答案】C【解析】菱形OABC 的顶点O (0,0),B (–2,–2), 得D 点坐标为(022-,022-),即(–1,–1). 每秒旋转45°,则第60秒时,得45°×60=2700°,2700°÷360°=7.5周, OD 旋转了7周半,菱形的对角线交点D 的坐标为(1,1); 故选C . 6.【答案】23-【解析】如图,作AH ⊥CD 于H .∵四边形ABCD 是菱形,∠BAD =120°, ∴AB ∥CD ,∴∠D +∠BAD =180°, ∴∠D =60°, ∵AD =AB =2,∴AH =AD ·sin60°3= ∵B ,B ′关于EF 对称, ∴BE =EB ′,当BE 的值最小时,AE 的值最大,根据垂线段最短可知,当EB ′3AH ==时,BE 的值最小, ∴AE 的最大值=23, 故答案为:23. 7.【答案】55【解析】∵1110∠=︒,纸条的两边互相平行,∴3180118011070.∠=︒-∠=︒-︒=︒根据翻折的性质,()()1121803180705522∠=⨯︒-∠=⨯︒-︒=︒.故答案为:55. 8.【答案】14【解析】根据中心对称图形的性质,得AOE COF △≌△,则阴影部分的面积等于BOC △的面积,为平行四边形ABCD 面积的14.故答案为:14. 9.【答案】22【解析】如图,∵21112∠=∠=︒(对顶角相等),∴336090211268.∠=-⨯︒-=︒︒︒ ∴'906822BAB ∠=-=︒︒︒,∴旋转角'22.BAB α∠=∠=︒故答案为:22.10.【解析】(1)若△A 1B 1C 1与△ABC 关于原点O 成中心对称,则点A 1的坐标为(2,–3).(2)将△ABC 向右平移4个单位长度得到△A 2B 2C 2,则点B 2的坐标为(3,1). (3)将△ABC 绕O 点顺时针方向旋转90°,则点C 走过的路径长=90π2180=π.11.【解析】如图,连接EF 交AD 于点O .DE AC ∥交AB 于E DF AB ,∥交AC 于F ,∴四边形AEDF 是平行四边形, ∴点E F ,关于AD 的中点对称.12.【解析】(1)如图所示:(2)如图所示:'''A B C △即为所求:C '的坐标为()55-,; (3)2221454162091625AB AC BC =+==+==+=,,,∴222AB AC BC +=, ∴ABC △是直角三角形.13.【解析】(1)∵∠BAC =40°,∴∠BAD =140°,∴△ABC 旋转了140°.(2)由旋转的性质可知AC =AE ,∴△AEC 是等腰三角形. (3)由旋转的性质可知,∠CAE =∠BAD =140°,又AC =AE , ∴∠AEC =(180°–140°)÷2=20°.1.【答案】D【解析】∵只有D 的图形的形状和大小没有变化,符合平移的性质,属于平移得到; 故选D . 2.【答案】B【解析】将点(2,1)向右平移3个单位长度,则所得的点的坐标横坐标增加3,即(5,1).故选B . 3.【答案】【解析】由点A (2,1)平移后所得的点A 1的坐标为(–2,2),可得坐标的变化规律是:左移4个单位,上移1个单位,∴点B 的对应点B 1的坐标为(–1,0).故选C . 4.【答案】C【解析】∵360°÷3=120°,∴旋转的角度是120°的整数倍,∴旋转的角度至少是120°.故选C . 5.【答案】C【解析】由折叠可得,∠ACD =∠ACE =90°,∴∠BAC =90°, 又∵∠B =60°,∴∠ACB =30°,∴BC =2AB =6,∴AD =6,直通中考由折叠可得,∠E =∠D =∠B =60°,∴∠DAE =60°,∴△ADE 是等边三角形,∴△ADE 的周长为6×3=18,故选C . 6.【答案】B【解析】∵S △ABC =16.S △A ′EF =9,且AD 为BC 边的中线,∴S △A ′DE =12S △A ′EF =92,S △ABD =12S △ABC =8, ∵将△ABC 沿BC 边上的中线AD 平移得到△A 'B 'C ',∴A ′E ∥AB ,∴△DA ′E ∽△DAB , 则2()A'DE ABD S A'D AD S =△△,即299()1816A'D A'D ==+,解得A ′D =3或A ′D =﹣37(舍),故选B . 7.【答案】D【解析】∵△ADE 绕点A 顺时针旋转90°到△ABF 的位置.∴四边形AECF 的面积等于正方形ABCD 的面积等于20,∴AD =DC =2,∵DE =2,∴Rt △ADE 中,AE =22AD DE +=26,故选D .8.【答案】(﹣2,﹣23) 【解析】作BH ⊥y 轴于H ,如图,∵△OAB 为等边三角形,∴OH =AH =2,∠BOA =60°,∴BH =3OH =23,∴B 点坐标为(2,23), ∵等边△AOB 绕点O 顺时针旋转180°得到△A ′OB ′, ∴点B ′的坐标是(﹣2,﹣23). 故答案为:(﹣2,﹣23). 9.【答案】10–26【解析】如图,过点A 作AG ⊥DE 于点G ,由旋转知:AD =AE ,∠DAE =90°,∠CAE =∠BAD =15°,∴∠AED =∠ADG =45°,在△AEF 中,∠AFD =∠AED +∠CAE =60°,在Rt △ADG 中,AG =DG =2AD =32, 在Rt △AFG 中,GF =3AG =6,AF =2FG =26,∴CF =AC –AF =10–26, 故答案为:10–26.10.【答案】23–2【解析】根据旋转过程可知:∠CAD =30°=∠CAB ,AC =AD =4.∴∠BCA =∠ACD =∠ADC =75°.∴∠ECD =180°–2×75°=30°.∴∠E =75°–30°=45°.过点C 作CH ⊥AE 于H 点,在Rt △ACH 中,CH =12AC =2,AH =23. ∴HD =AD –AH =4–23.在Rt △CHE 中,∵∠E =45°,∴EH =CH =2.∴DE =EH –HD =2–(4–23)=23–2.故答案为3–2.11.【解析】(1)如下图所示,点A 1的坐标是(–4,1);(2)如下图所示,点A 2的坐标是(1,–4);(3)∵点A (4,1),∴OA 221417+=∴线段OA 290(17)⨯π⨯=174π.12.【解析】(1)∵对角线AC的中点为O,∴AO=CO,且AG=CH,∴GO=HO,∵四边形ABCD是矩形,∴AD=BC,CD=AB,CD∥AB,∴∠DCA=∠CAB,且CO=AO,∠FOC=∠EOA,∴△COF≌△AOE(ASA),∴FO=EO,且GO=HO,∴四边形EHFG是平行四边形;(2)如图,连接CE,∵∠α=90°,∴EF⊥AC,且AO=CO,∴EF是AC的垂直平分线,∴AE=CE,在Rt△BCE中,CE2=BC2+BE2,∴AE2=(9–AE)2+9,∴AE=5.13.【解析】(1)如图1,∵△ABC绕点A顺时针旋转α得到△DEC,点E恰好在AC上,∴CA=CD,∠ECD=∠BCA=30°,∠DEC=∠ABC=90°,∵CA=CD,∴∠CAD=∠CDA=12(180°–30°)=75°,∴∠ADE=90°–75°=15°;(2)如图2,∵点F是边AC中点,∴BF=12 AC,∵∠ACB=30°,∴AB=12AC,∴BF=AB,∵△ABC绕点A顺时针旋转60得到△DEC,∴∠BCE=∠ACD=60°,CB=CE,DE=AB,∴DE=BF,△ACD和△BCE为等边三角形,∴BE=CB,∵点F为△ACD的边AC的中点,∴DF⊥AC,易证得△CFD≌△ABC,∴DF=BC,∴DF=BE,而BF=DE,∴四边形BEDF是平行四边形.。

初中几何知识点(全)

初中几何知识点(全)

初中几何知识点1过两点有且只有一条直线2两点之间线段最短3同角或等角的补角相等4同角或等角的余角相等5过一点有且只有一条直线和已知直线垂直6直线外一点与直线上各点连接的所有线段中,垂线段最短7平行公理经过直线外一点,有且只有一条直线与这条直线平行8如果两条直线都和第三条直线平行,这两条直线也互相平行9同位角相等,两直线平行10内错角相等,两直线平行11同旁内角互补,两直线平行12两直线平行,同位角相等13两直线平行,内错角相等14两直线平行,同旁内角互补15定理三角形两边的和大于第三边16推论三角形两边的差小于第三边17三角形内角和定理三角形三个内角的和等于180°18推论1直角三角形的两个锐角互余19推论2三角形的一个外角等于和它不相邻的两个内角的和20推论3三角形的一个外角大于任何一个和它不相邻的内角21全等三角形的对应边、对应角相等22边角边公理有两边和它们的夹角对应相等的两个三角形全等23角边角公理有两角和它们的夹边对应相等的两个三角形全等24推论25边边边公理有三边对应相等的两个三角形全等26斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等【角平分线】27定理1在角的平分线上的点到这个角的两边的距离相等28定理2到一个角的两边的距离相同的点,在这个角的平分线上29角的平分线是到角的两边距离相等的所有点的集合30等腰三角形的性质定理等腰三角形的两个底角相等31推论1等腰三角形顶角的平分线平分底边并且垂直于底边32等腰三角形的顶角平分线、底边上的中线和高互相重合33推论3等边三角形的各角都相等,并且每一个角都等于60°34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)【等边三角形】35推论1三个角都相等的三角形是等边三角形36推论2有一个角等于60°的等腰三角形是等边三角形【直角三角形】37在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38直角三角形斜边上的中线等于斜边上的一半39定理线段垂直平分线上的点和这条线段两个端点的距离相等40逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41线段的垂直平分线可看作和线段两端点距离相等的所有点的集合【对称图形】42定理1关于某条直线对称的两个图形是全等形43定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即47勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形【四边形和多边形】48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2) X180。

人教版初中几何知识点整理

人教版初中几何知识点整理

初中几何基本概念、定理、公式一、图形的初步知识1、过两点有且只有一条直线2、两点之间线段最短.3、连接两点间线段的长度,叫做两点间的距离.4、过一点有且只有一条直线和已知直线垂直5、直线外一点与直线上各点连接的所有线段中,垂线段最短.6、直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.7、同角或等角的补角相等;同角或等角的余角相等.8、对顶角相等.9、平行公理经过直线外一点,有且只有一条直线与这条直线平行10、如果两条直线都和第三条直线平行,这两条直线也互相平行11、平行线的性质:(1)同位角相等,两直线平行(2)内错角相等,两直线平行(3)同旁内角互补,两直线平行12、直线平行的条件:(1)两直线平行,同位角相等(2)两直线平行,内错角相等(3)两直线平行,同旁内角互补二、三角形1、三角形三边关系定理:三角形两边的和大于第三边;三角形两边的差小于第三边2、三角形内角和定理:三角形三个内角的和等于180°(1) 直角三角形的两个锐角互余(2) 三角形的一个外角等于和它不相邻的两个内角的和(3) 三角形的一个外角大于任何一个和它不相邻的内角3、三角形的中线平分三角形的面积4、全等三角形的性质:全等三角形的对应边、对应角相等5、全等三角形的判定:(1)边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等(2)角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等(3)推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等(4)边边边公理(SSS) 有三边对应相等的两个三角形全等(5)斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等6、角平分线的性质: 在角的平分线上的点到这个角的两边的距离相等7、角平分线的判定:到一个角的两边的距离相同的点,在这个角的平分线上8、角的平分线是到角的两边距离相等的所有点的集合9、等腰三角形的性质(1)等腰三角形的两个底角相等 (即等边对等角)(2)等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合(3)等腰三角形是轴对称图形,它的对称轴上是底边上的中线(顶角平分线、底边上的高)所在的直线(4)等边三角形的各角都相等,并且每一个角都等于60°(5) 等边三角形面积 243a S(a 表示边长) 10、等腰三角形的判定(1)如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)(2)三个角都相等的三角形是等边三角形(3)有一个角等于60°的等腰三角形是等边三角形11、线段垂直平分线的性质:线段垂直平分线上的点和这条线段两个端点的距离相等12、线段垂直平分线的判定:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上13、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合14、直角三角形的性质(1)直角三角形中两个锐角互余;(2)勾股定理 直角三角形两直角边a 、b 的平方和、等于斜边c 的平方,即a 2+b 2=c 2(3)直角三角形斜边上的中线等于斜边上的一半(4)在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半(5)直角三角形中两直角边的乘积等于斜边乘以斜边上的高(面积法).15、直角三角形的判定(1)有一个角是直角的三角形直角三角形.(2)勾股定理的逆定理 如果三角形的三边长a 、b 、c 有关系a 2+b 2=c 2,那么这个三角形是直角三角形(3)如果一个三角形一边的中线等于这边的一半,则这个三角形是直角三角形.16、轴对称的性质(1) 关于某条直线对称的两个图形是全等形(2) 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线(3) 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上17、多边形的内角和:⨯-)2(n 180°,)3(≥n18、多边形的外角和等于360°19、正多边形:各个角都相等、各条边也相等的多边形,叫做正多边形20、正多边形和圆(1)把圆分成n(n≥3): 依次连结各分点所得的多边形是这个圆的内接正n 边形;经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n 边形(2)任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆(3)正n 边形的每个内角都等于(n-2)×180°/n(4)正n 边形的半径和边心距把正n 边形分成2n 个全等的直角三角形(5)正n 边形的面积2pr S =(p :正n 边形的周长,r :正n 边形的边心距) 三、四边形(一)平行四边形1、定义:两组对边分别平行的四边形叫做平行四边形2、平行四边形性质(1)平行四边形的对角相等、邻角互补(2)平行四边形的对边平行且相等(3)平行四边形的对角线互相平分(4)平行四边形是中心对称图形,它的对称中心是对角线的交点(5)夹在两条平行线间的平行线段相等3、平行四边形判定(1)利用定义(2)两组对角分别相等的四边形是平行四边形(3)两组对边分别相等的四边形是平行四边形(4)对角线互相平分的四边形是平行四边形(5)一组对边平行相等的四边形是平行四边形4、三角形的中位线(1)概念:连接三角形两边中点的线段叫做三角形的中位线(2)性质:三角形的中位线平行于第三边,并且等于它的一半(二)矩形1、定义:有一个角是直角的平行四边形是矩形2、性质:(1) 矩形的四个角都是直角(2) 矩形的对角线相等(3)矩形既是轴对称图形,又是中心对称图形3、判定(1)利用定义(2)有三个角是直角的四边形是矩形(3)对角线相等的平行四边形是矩形(三)菱形1、定义:有一组邻边相等的平行四边形是菱形2、性质(1)菱形的四条边都相等(2)菱形的对角线互相垂直,并且每一条对角线平分一组对角(3)菱形既是轴对称图形,又是中心对称图形(4)菱形面积=对角线乘积的一半,即S=(a×b)÷23、判定(1)利用定义(2)四边都相等的四边形是菱形(3)对角线互相垂直的平行四边形是菱形(四)正方形69、正方形性质定理1 正方形的四个角都是直角,四条边都相等70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角(五)中心对称的性质1、关于中心对称的两个图形是全等的2、关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分(六)梯形1、定义2、分类3等腰梯形的性质(1) 等腰梯形在同一底上的两个角相等(2)等腰梯形的两条对角线相等4、等腰梯形判定(1)在同一底上的两个角相等的梯形是等腰梯形(2)对角线相等的梯形是等腰梯形78、平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80、推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h83、(1)比例的基本性质:如果a:b=c:d,那么ad=bc如果ad=bc ,那么a:b=c:d84、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d85、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87、推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91、相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93、判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94、判定定理3 三边对应成比例,两三角形相似(SSS)95、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97、性质定理2 相似三角形周长的比等于相似比98、性质定理3 相似三角形面积的比等于相似比的平方99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101、圆是定点的距离等于定长的点的集合102、圆的内部可以看作是圆心的距离小于半径的点的集合103、圆的外部可以看作是圆心的距离大于半径的点的集合104、同圆或等圆的半径相等105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107、到已知角的两边距离相等的点的轨迹,是这个角的平分线108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109、定理不在同一直线上的三点确定一个圆。

几何题初三知识点总结归纳

几何题初三知识点总结归纳

几何题初三知识点总结归纳几何学是数学的一个重要分支,它研究空间、形状和位置的性质和变化规律。

对于初三学生而言,几何学是一个需要掌握的重要知识领域。

本文将对初三几何题的知识点进行总结归纳,旨在帮助学生们更好地理解和应用几何学知识。

一、平面几何1.点、线、面的基本概念点是几何学中最基本的对象,它没有长度、宽度和高度。

线由无数个点组成,是没有宽度的对象。

面是由无数条线组成的,它有长度和宽度。

2.角的概念与性质角由两条射线的公共端点和这两条射线所夹的部分组成。

常见的角有锐角、直角、钝角等不同类别,它们的度数分别小于90°、等于90°和大于90°。

3.两点之间的距离及角的度量两点之间的距离可以用坐标公式进行计算,即d=√[(x₂-x₁)^2+(y₂-y₁)^2]。

角的度量可以用度度量、弧度制等不同单位进行表示。

4.平行线与相交线平行线是在同一平面内,方向相同且不相交的两条直线。

相交线是指在同一平面内,有一个公共的交点的两条直线。

5.三角形的性质三角形是由三条线段组成的多边形,具有三个顶点和三个内角。

三角形的性质包括角的性质、边的性质和面积的计算方法等。

6.四边形的性质四边形是由四条线段组成的多边形,具有四个顶点和四个内角。

四边形的性质包括平行四边形、矩形、正方形等特殊类型,并可以根据具体条件进行计算和证明。

7.相似三角形与全等三角形相似三角形是指具有相同形状但大小不同的三角形,其对应边长成比例。

全等三角形是指具有相同的形状和大小的三角形,其对应边和对应角都相等。

二、空间几何1.直线与平面直线是一个维度最低的几何对象,它与平面相交于一点或不相交。

平面是由无数条直线组成的,具有长度和宽度。

2.立体图形的名称与性质立体图形是具有三个维度的几何对象,常见的立体图形包括球体、正方体、长方体、圆柱体、圆锥体等。

每种立体图形都有独特的性质和计算方法。

3.空间的方位关系空间中的物体可以相对于其他物体或参照坐标系来确定方位关系,包括水平、垂直、平行、垂直平分线等不同概念。

中考几何知识点总结

中考几何知识点总结

中考几何知识点总结几何是数学的一个重要分支,它研究空间形状、大小和位置的关系,是人们日常生活和实际工作中都会接触到的数学分支。

而中考几何知识点是应用数学的重要组成部分,其中包括平面图形的性质、空间图形的性质、相似三角形的性质、圆的性质、三角形的性质等等。

下面我们就来总结一下中考几何知识点的要点。

一、平面图形的性质1、平行四边形和矩形平行四边形是指四边形的对边是平行的四边形,平行四边形的特点是对边相等、对角相等、相邻边互补。

矩形是指四边形的对边是平行且对角相等的四边形,矩形的特点是对边相等、对角相等、相邻边垂直。

2、菱形和正方形菱形是指四边形的对边相等的四边形,菱形的特点是对边相等、对角相等、对角互补。

正方形是指四边形的对边相等且对角相等的四边形,正方形的特点是对边相等、对角相等、对角互补、对边垂直。

3、三角形的性质三角形是平面图形中的基本图形之一,三角形的性质有很多,例如三角形的内角和为180°,三角形的外角和为360°,等腰三角形的两条边相等,等边三角形的三条边相等等等。

二、空间图形的性质1、立体图形的性质立体图形是指具有三维形状的图形,如长方体、圆柱体、球体等,立体图形的性质包括表面积、体积等概念。

2、直角棱柱和直角锥直角棱柱是指底面为矩形且母线垂直于底面的棱柱,直角锥是指底面为矩形且母线垂直于底面的锥体,直角棱柱和直角锥的特点是底面积相等,高相等。

3、棱台和棱锥棱台是指底面为多边形且母线与底面平行的棱台,棱锥是指底面为多边形且母线与底面平行的锥体,棱台和棱锥的特点是底面积相等、母线平行。

三、相似三角形的性质相似三角形是指三角形的对应角相等且对应边成比例的三角形,相似三角形的性质包括对应角相等、对应边成比例、相似三角形的高、中线、角平分线比例等。

四、圆的性质1、圆的相关概念圆是平面图形中一个特殊的图形,它是平面内所有到一个固定点距离相等的点的集合,圆的性质包括圆心、半径、直径、圆周、弧、圆心角等概念。

中考数学几何知识点总结

中考数学几何知识点总结

中考数学几何知识点总结数学几何是中考数学中的一个重要知识点,以下是对中考数学几何知识点的总结:一、基本概念:1.点、线、面:点是几何图形的最基本元素,线是点的集合,面是线的集合。

2.线段:由两个端点确定的线段,是线段边上的所有点组成的集合。

3.射线:由一个端点和该端点的同一直线上的其他所有点组成的集合。

4.角:由两条相交的射线组成的形状。

5.直角、钝角、锐角:角的开口程度不同,可分为直角(90°)、钝角(大于90°)和锐角(小于90°)。

6.平行线:在同一个平面内,不相交且任意延长都不相交的两条线。

7.垂直线:两条相交线的交角为90°,则它们是垂直线。

8.三角形:由三条线段组成的封闭图形,分别称为三角形的三边。

9.等边三角形:三条边相等的三角形。

10.等腰三角形:两边边长相等的三角形,两个顶角也相等。

11.直角三角形:一个角为直角(90°)的三角形。

12.合同三角形:两个三角形的对应角相等,并且对应边相等。

二、性质及定理:1.三角形内角和定理:三角形内角之和为180°。

2.三角形外角定理:三角形两个内角的非公共的外角之和等于第三个内角。

3.直线与平行线的性质:直线与平行线之间的相交角均为180°。

4.三角形的外心、内心、垂心、重心的特点及应用。

5.相似三角形:两个三角形对应角相等,则它们相似。

6.相似三角形的性质:相似三角形的边长比例相等,对应边成比例。

7.相似三角形的勾股定理:相似三角形的对应边的比值等于对应边的长度比值。

8.平行四边形的性质:平行四边形的对角线相互平分,对边相等。

9.正方形的性质:四条边相等且都是直角。

10.矩形的性质:两对对边相等且都是直角。

11.菱形的性质:四条边相等,两组对角线交于直角。

三、平面图形的周长和面积:1.三角形的周长和面积的计算公式:周长=边长之和,面积=底边×高除以22.矩形的周长和面积的计算公式:周长=两倍的长+两倍的宽,面积=长×宽。

中考数学几何知识点总结

中考数学几何知识点总结

中考数学几何知识点总结一、线段、角与三角形1、线段线段的定义:直线上两点间的部分叫做线段。

线段的性质:两点之间,线段最短。

线段的中点:把一条线段分成两条相等线段的点叫做线段的中点。

2、角角的定义:由公共端点的两条射线组成的图形叫做角。

角的度量:1 度= 60 分,1 分= 60 秒。

角的分类:锐角(小于 90 度)、直角(等于 90 度)、钝角(大于90 度小于 180 度)、平角(等于 180 度)、周角(等于 360 度)。

角平分线:把一个角分成两个相等的角的射线叫做角平分线。

3、三角形三角形的定义:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

三角形的分类按角分类:锐角三角形、直角三角形、钝角三角形。

按边分类:不等边三角形、等腰三角形(等边三角形是特殊的等腰三角形)。

三角形的三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边。

三角形的内角和:三角形的内角和为 180 度。

三角形的外角:三角形的一边与另一边的延长线组成的角叫做三角形的外角。

三角形的外角等于与它不相邻的两个内角的和。

三角形的中位线:连接三角形两边中点的线段叫做三角形的中位线。

三角形的中位线平行于第三边,且等于第三边的一半。

二、全等三角形1、全等三角形的定义:能够完全重合的两个三角形叫做全等三角形。

2、全等三角形的性质:全等三角形的对应边相等,对应角相等。

3、全等三角形的判定SSS(边边边):三边对应相等的两个三角形全等。

SAS(边角边):两边和它们的夹角对应相等的两个三角形全等。

ASA(角边角):两角和它们的夹边对应相等的两个三角形全等。

AAS(角角边):两角和其中一角的对边对应相等的两个三角形全等。

RHS(斜边、直角边):斜边和一条直角边对应相等的两个直角三角形全等。

三、相似三角形1、相似三角形的定义:对应角相等,对应边成比例的两个三角形叫做相似三角形。

2、相似三角形的性质相似三角形的对应角相等,对应边成比例。

数学九年级几何重点知识点

数学九年级几何重点知识点

数学九年级几何重点知识点几何是数学中的重要分支之一,它主要研究空间与形状之间的关系。

在九年级的数学学习中,几何是一个重要的知识点。

本文将介绍数学九年级几何的重点知识点,包括平面几何和立体几何。

一、平面几何1. 角的概念和性质角是由两条射线共同端点构成的图形,常用字母表示。

角的三要素是顶点、两个边。

角的度量单位是度。

在九年级中,我们需要掌握角的概念,如锐角、钝角、直角等,并能够根据角的性质求解相关问题。

2. 直线、线段和射线的关系直线是由无数个点连在一起形成的,没有粗细和长度。

线段有起点和终点的直线部分,长度是有限的。

射线是一条有起点但无终点的直线。

3. 三角形的分类和性质三角形是由三条线段连接而成的图形,常用字母表示。

在九年级中,我们需要了解三角形的分类,如等边三角形、等腰三角形、直角三角形等,并且要熟悉它们的性质,能够根据性质解决相关问题。

4. 直角三角形的勾股定理直角三角形是指其中一个角是直角的三角形。

勾股定理是直角三角形中最重要的定理之一,它表明直角三角形的两条直角边的平方和等于斜边的平方。

我们需要掌握勾股定理的表达形式,并能够运用它解决相关问题。

二、立体几何1. 图形的投影图形的投影是指物体在不同面上的阴影或影像,我们需要了解正交投影和斜投影的概念,并能够根据图形的位置和投影要求,进行相关计算和判断。

2. 空间几何体的表面积和体积空间几何体包括长方体、正方体、棱柱、棱锥、圆柱、圆锥等。

在九年级中,我们需要掌握各种几何体的表面积和体积的计算公式,并能够应用这些公式解决问题。

3. 圆的相关知识圆是具有特殊几何性质的图形,我们需要熟悉圆的相关术语如圆心、半径、直径等,并能够根据这些术语计算圆的周长和面积。

4. 直线与平面的位置关系直线与平面的位置关系常常涉及到点、直线、平面的相互位置。

我们需要了解直线与平面的四种关系,即相交、平行、垂直和重合,并能够根据题目要求判断它们的位置关系。

总结:以上介绍了九年级数学中几何的重点知识点,包括平面几何和立体几何。

中考数学几何知识点总结

中考数学几何知识点总结

中考数学几何知识点总结中考数学几何知识点总结前言在中考数学考试中,几何是一个重要的知识点。

掌握几何知识对于解题和提高数学成绩至关重要。

本文将总结中考数学几何知识点,帮助考生更好地复习和备考。

正文1. 图形的基本概念•点、线、面的概念。

•直线、射线、线段、角的定义和表示方法。

2. 角的性质•同位角、邻补角、余角等性质。

•锐角、直角、钝角的定义和判定方法。

3. 相交线与平行线•各种相交线之间的关系。

•平行线的定义及判定方法。

•平行线与横线、竖线之间的关系。

4. 三角形及其性质•三角形的定义和表示方法。

•分类:等边三角形、等腰三角形、直角三角形、等腰直角三角形等。

•三角形内角和、外角性质等。

5. 四边形及其性质•包括正方形、长方形、菱形、平行四边形等常见四边形。

•对角线性质、角平分线性质等。

6. 圆及其性质•圆的定义、半径、直径、圆心、弧等基本概念。

•圆心角、弧度、弦等与圆的相关性质。

7. 直角三角形相关知识•勾股定理及其应用。

•正弦定理、余弦定理及其应用。

8. 各种图形的周长和面积计算•三角形、四边形、圆形等图形的周长计算方法。

•三角形、四边形、圆形等图形的面积计算方法。

结尾以上是中考数学几何知识点的总结。

通过对这些知识点的整理和学习,考生可以更好地应对中考数学试卷中的几何题目。

建议考生在备考过程中,加强对这些知识点的掌握,并结合大量习题进行练习,以提高解题能力和应试能力。

祝愿所有考生取得好成绩!。

初三数学几何知识点归纳

初三数学几何知识点归纳

初三数学几何知识点归纳一、三角形1. 三角形的基本概念- 三角形由不在同一直线上的三条线段首尾顺次相接所组成。

- 三角形的三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边。

例如,若三角形三边为a、b、c,则a + b>c,a - b<c。

2. 三角形的分类- 按角分类:- 锐角三角形:三个角都是锐角的三角形。

- 直角三角形:有一个角是直角的三角形,直角三角形中斜边最长,两直角边的平方和等于斜边的平方(勾股定理a^2+b^2=c^2,其中c为斜边,a、b为两直角边)。

- 钝角三角形:有一个角是钝角的三角形。

- 按边分类:- 不等边三角形:三边都不相等的三角形。

- 等腰三角形:有两边相等的三角形,相等的两边叫做腰,另一边叫做底边;两腰的夹角叫做顶角,腰和底边的夹角叫做底角。

等腰三角形两底角相等(等边对等角),等腰三角形三线合一(底边上的高、底边上的中线、顶角平分线互相重合)。

- 等边三角形:三边都相等的三角形,等边三角形三个角都是60^∘,等边三角形是特殊的等腰三角形。

3. 三角形的内角和与外角- 三角形内角和定理:三角形三个内角的和等于180^∘。

- 三角形的外角:三角形的一边与另一边的延长线组成的角。

三角形的一个外角等于与它不相邻的两个内角的和;三角形的一个外角大于任何一个与它不相邻的内角。

二、四边形1. 平行四边形- 定义:两组对边分别平行的四边形叫做平行四边形。

- 性质:- 平行四边形的对边平行且相等。

- 平行四边形的对角相等,邻角互补。

- 平行四边形的对角线互相平分。

- 判定:- 两组对边分别平行的四边形是平行四边形。

- 两组对边分别相等的四边形是平行四边形。

- 一组对边平行且相等的四边形是平行四边形。

- 两组对角分别相等的四边形是平行四边形。

- 对角线互相平分的四边形是平行四边形。

2. 矩形- 定义:有一个角是直角的平行四边形叫做矩形。

- 性质:- 矩形具有平行四边形的所有性质。

人教版初中数学中考几何知识点大全

人教版初中数学中考几何知识点大全

⼈教版初中数学中考⼏何知识点⼤全直线:没有端点,没有长度射线:⼀个端点,另⼀端⽆限延长,没有长度线段:两个端点,有长度⼀、图形的认知1、我们把从实物中抽象出的各种图形统称为⼏何图形2、有些⼏何图形的各部分不都在同⼀平⾯内,它们是⽴体图形3、有些⼏何图形的各部分都在同⼀平⾯内,它们是平⾯图形4、有些⽴体图形是由⼀些平⾯图形转成的,将它们的表⾯适当展开,可以展开成平⾯图形。

这样的平⾯图形称为相应⽴体图形的展开图5、长⽅体、正⽂体、圆柱、圆锥、球等都是⼏何体,简称体6、包围着体的是⾯,⾯有平⾯和曲⾯两种。

由若⼲个多边形所围成的⼏何体,叫做多⾯体。

围成多⾯体的各个多边形叫做多⾯体的⾯,两个⾯的公共边叫做多⾯体的棱,若⼲个⾯的公共顶点叫做多⾯体的顶点。

注意:各⾯都是平⾯的⽴体图形称为多⾯体。

像圆锥、圆台因为有的⾯是曲⾯,⽽不被称为“多⾯体”。

圆锥、圆柱、圆台统称为旋转体。

⽴体图形的各个⾯都是平的⾯,这样的⽴体图形称为多⾯体。

7、经过两点有⼀条直线,并且只有⼀条直线。

简述为:两点确定⼀条直线8、当两条不同的直线有⼀个公共点时,我们就称这两条直线相交。

这个公共点叫做它们的交点9、两点的所有连线中,线段最短。

简单说成:两点之间,线段最短10、连接两点间的线段的长度,叫做这两点的距离11、⾓:有公共端点的两条射线组成的图形叫做⾓,这个公共端点是⾓的顶点,这两条射线是⾓的两条边12、⾓的平分线:从⼀个⾓的顶点出发,把这个⾓分成相等的两个⾓的射线,叫做这个⾓的平分线13、余⾓和补⾓:如果两个⾓加起来为90,则⼀个⾓是另⼀个⾓的余⾓如果两个⾓加起来为180,则⼀个⾓是另⼀个⾓的补⾓邻补⾓:相邻的补⾓14、同⾓的余⾓相等,等⾓的余⾓相等同⾓的补⾓相等,等⾓的补⾓相等⼆、平⾏线知识点1、对顶⾓性质:对顶⾓相等。

注意:对顶⾓的判断⼀个⾓的两边分别是另⼀个⾓两边的反向延长线,这两个⾓是对顶⾓。

两条直线相交后所得的只有⼀个公共顶点且两个⾓的两边互为反向延长线,这样的两个⾓叫做互为对顶⾓。

九年级数学几何必考知识点

九年级数学几何必考知识点

九年级数学几何必考知识点在九年级数学中,几何是一个非常重要的部分。

经过前几年的学习,学生们已经掌握了基本的几何概念和性质,如平行线、垂直线、全等三角形等。

在九年级中,数学几何的难度将会进一步提升,下面是一些九年级数学几何必考的知识点。

一、圆的性质1. 圆的定义:圆是由平面上距离一个定点恒定的距离的点的集合,这个定点称为圆心,距离称为半径。

2. 圆的要素:圆心、半径、弧、圆周等。

3. 圆与正多边形的关系:当正多边形的边数逐渐增大时,它们的内接圆和外接圆逐渐逼近于同一个圆。

4. 圆的弧度:弧度是度量角的单位,一周对应2π弧度。

二、直角三角形1. 直角三角形的定义:直角三角形是一个内含一个直角(90度)的三角形。

2. 特殊直角三角形:45-45-90三角形和30-60-90三角形。

3. 45-45-90三角形:两个直角边相等,斜边等于直角边乘以√2。

4. 30-60-90三角形:较小的角为30度,斜边等于较长直角边的两倍,较短直角边等于较长直角边乘以√3。

三、相似三角形1. 相似三角形的定义:两个三角形中的对应角相等,对应边成比例。

2. 判定相似三角形的方法:AA相似定理、SAS相似定理、SSS 相似定理。

3. 相似三角形的性质:对应角相等、对应边成比例、对应角的边平行。

四、勾股定理1. 勾股定理的定义:直角三角形中,直角边上的两个平方和等于斜边上的平方。

2. 勾股定理的公式:c² = a² + b²,其中c表示斜边,a和b表示直角边。

3. 判断直角三角形的方法:可以利用勾股定理来判断一个三角形是否为直角三角形。

五、平行线和垂直线1. 平行线的定义:在同一个平面上,两条直线没有交点,它们之间的距离始终相等。

2. 平行线的性质:平行线具有平移不变性,平行线与一个截线的交点与另一个截线的交点之间的距离相等。

3. 垂直线的定义:在同一个平面上,两条直线相交成直角。

4. 垂直线的性质:相互垂直的两条线斜率的乘积为-1。

中考数学知识点总结几何篇

中考数学知识点总结几何篇

中考数学知识点总结几何篇初中几何公式:线1、同角或等角的余角相等。

2、过一点有且只有一条直线和已知直线垂直。

3、过两点有且只有一条直线。

4、两点之间线段最短。

5、同角或等角的补角相等。

6、直线外一点与直线上各点连接的所有线段中,垂线段最短。

7、平行公理经过直线外一点,有且只有一条直线与这条直线平行。

8、如果两条直线都和第三条直线平行,这两条直线也互相平行。

初中几何公式:角9、同位角相等,两直线平行。

10、内错角相等,两直线平行。

11、同旁内角互补,两直线平行。

12、两直线平行,同位角相等。

13、两直线平行,内错角相等。

14、两直线平行,同旁内角互补。

初中几何公式:三角形15、定理三角形两边的和大于第三边。

16、推论三角形两边的差小于第三边。

17、三角形内角和定理三角形三个内角的和等于180°。

18、推论1 直角三角形的两个锐角互余。

19、推论2 三角形的一个外角等于和它不相邻的两个内角的和。

20、推论3 三角形的一个外角大于任何一个和它不相邻的内角。

21、全等三角形的对应边、对应角相等。

22、边角边公理有两边和它们的夹角对应相等的两个三角形全等。

23、角边角公理有两角和它们的夹边对应相等的两个三角形全等。

24、推论有两角和其中一角的对边对应相等的两个三角形全等。

25、边边边公理有三边对应相等的两个三角形全等。

26、斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等。

27、定理1 在角的平分线上的点到这个角的两边的距离相等。

28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上。

29、角的平分线是到角的两边距离相等的所有点的集合。

初中几何公式:等腰三角形30、等腰三角形的性质定理等腰三角形的两个底角相等。

31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边。

32、等腰三角形的顶角平分线、底边上的中线和高互相重合。

33、推论3 等边三角形的各角都相等,并且每一个角都等于60°。

(完整版)新人教版初中数学中考几何知识点大全

(完整版)新人教版初中数学中考几何知识点大全

初中中考数学几何知识点大全直线:没有端点,没有长度射线:一个端点,另一端无限延长,没有长度线段:两个端点,有长度一、图形的认知1、余角;补角:邻补角:二、平行线知识点1、对顶角性质:对顶角相等。

注意:对顶角的判断2、垂线、垂足。

过一点有条直线与已知直线垂直3、垂线段;垂线段长度==点到直线的距离4、过直线外一点只有一条直线与已知直线平行5、直线的两种关系:平行与相交(垂直是相交的一种特殊情况)6、如果a∥b,a∥c,则b∥c7、同位角、内错角、同旁内角的定义。

注意从文字角度去解读。

8、两直线平行====同位角相等、内错角相等、同旁内角互补三、命题、定理1、真命题;假命题。

4、定理:经过推理证实的,这样得到的真命题叫做定理。

四、平移1、平移性质:平移之后的图形与原图形相比,对应边相等,对应角相等五、平面直角坐标系知识点1、平面直角坐标系:2、象限:坐标轴上的点不属于任何象限横坐标上的点坐标:(x,0)纵坐标上的点坐标:(0,y)3、距离问题:点(x,y)距x轴的距离为y的绝对值,距y轴的距离为x的绝对值坐标轴上两点间距离:点A(x1,0)点B(x2,0),则AB距离为x1-x2的绝对值点A(0,y1)点B(0,y2),则AB距离为y1-y2的绝对值4、角平分线:x=y x+y=05、若直线l与x轴平行,则直线l上的点纵坐标值相等若直线l与y轴平行,则直线l上的点横坐标值相等6、对称问题:7、距离问题(选讲):坐标系上点(x,y)距原点距离为坐标系中任意两点(x1,y1),(x2,y2)之间距离为8、中点坐标(选讲):点A(x1,0)点B(x2,0),则AB中点坐标为六、与三角形有关的线段1、三角形分类:不等边;等腰;等边三角形2、三角形两边之和大于第三边,两边之差小于第三边。

依据:两点之间,线段最短3、三角形的高:4三角形的中线:三角形的中线将三角形分为面积相等的两部分注:两个三角形周长之差为x,则存在两种可能:即可能是第一个△周长大,也有可能是第一个△周长小4、三角形的角平分线:七、与三角形有关的角1、三角形内角和定理:三角形三个内角的和等于180度。

初三数学知识点归纳人教版

初三数学知识点归纳人教版

初三数学知识点归纳人教版初三数学学问点总结一、直线、相交线、平行线1.线段、射线、直线三者的区分与联系从图形、表示法、界限、端点个数、基本性质等方面加以分析。

2.线段的中点及表示3.直线、线段的基本性质(用线段的基本性质论证三角形两边之和大于第三边)4.两点间的距离(三个距离:点点;点线;线线)5.角(平角、周角、直角、锐角、钝角)6.互为余角、互为补角及表示〔方法〕7.角的平分线及其表示8.垂线及基本性质(利用它证明直角三角形中斜边大于直角边)9.对顶角及性质10.平行线及判定与性质(互逆)(二者的区分与联系)11.常用定理:①同平行于一条直线的两条直线平行(传递性);②同垂直于一条直线的两条直线平行。

12.定义、命题、命题的组成13.公理、定理14.逆命题二、三角形分类:⑴按边分;⑵按角分1.定义(包括内、外角)2.三角形的边角关系:⑴角与角:①内角和及推论;②外角和;③n边形内角和;④n边形外角和。

⑵边与边:三角形两边之和大于第三边,两边之差小于第三边。

⑶角与边:在同一三角形中,3.三角形的主要线段商量:①定义②线的交点三角形的心③性质① 高线②中线③角平分线④中垂线⑤中位线⑴一般三角形⑵特别三角形:直角三角形、等腰三角形、等边三角形4.特别三角形(直角三角形、等腰三角形、等边三角形、等腰直角三角形)的判定与性质5.全等三角形⑴一般三角形全等的判定(SAS、ASA、AAS、SSS)⑵特别三角形全等的判定:①一般方法②专用方法6.三角形的面积⑴一般计算公式⑵性质:等底等高的三角形面积相等。

7.重要帮助线⑴中点配中点构成中位线;⑵加倍中线;⑶添加帮助平行线8.证明方法⑴直接证法:综合法、分析法⑵间接证法反证法:①反设②归谬③结论⑶证线段相等、角相等常通过证三角形全等⑷证线段倍分关系:加倍法、折半法⑸证线段和差关系:延结法、截余法⑹证面积关系:将面积表示出来三、四边形分类表:1.一般性质(角)⑴内角和:360⑵顺次连结各边中点得平行四边形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
十五、圆知识点汇总…………………………………………………………………………10
十六、相似三角形……………………………………………………………………………13
十七、投影与视图……………………………………………………………………………14
十八、尺规作图………………………………………………………………………………15
3、结论一定成立的命题,叫做真命题;不能保证结论一定成立的,叫做假命题。
4、定理:我们学习过的一些图形的性质,都是真命题。它们的正确性是我们经过推理证实的,这样得到的真命题叫做定理。
四、平移
1、平移性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。
2、平移作用:新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点,连接各组对应点的线段平行且相等。(或者在同一直线上且相等)
十一、轴对称…………………………………………………………………………………7
十二、勾股定理………………………………………………………………………………8
十三、四边形…………………………………………………………………………………8
十四、旋转……………………………………………………………………………………9
三、命题、定理………………………………………………………………………………3
四、平移………………………………………………………………………………………3
五、平面直角坐标系知识点…………………………………………………………………4
六、与三角形有关的线段……………………………………………………………………5
初中中考数学几何知识点大全
直线:没有端点,没有长度
射线:一个端点,另一端无限延长,没有长度
线段:两个端点,有长度
一、图形的认知
1、我们把从实物中抽象出的各种图形统称为几何图形
2、有些几何图形的各部分不都在同一平面内,它们是立体图形
3、有些几何图形的各部分都在同一平面内,它们是平面图形
4、有些立体图形是由一些平面图形转成的,将它们的表面适当展开,可以展开成平面图形。
4、直线外一点到它与这条直线垂足的连线,叫做垂线段
连接直线外一点与直线上各点所有线段中,垂线段最短。我们把垂线段的长度,叫点到直线的距离
5、过直线外一点只有一条直线与已知直线平行
6、直线的两种关系:平行与相交(垂直是相交的一种特殊情况)
6、如果a∥b,a∥c,则b∥c
7、同位角、内错角、同旁内角的定义。注意从文字角度去解读。
这样的平面图形称为相应立体图形的展开图
5、长方体、正文体、圆柱、圆锥、球等都是几何体,简称体
6、包围着体的是面,面有平面和曲面两种。
由若干个多边形所围成的几何体,叫做多面体。
围成多面体的各个多边形叫做多面体的面,两个面的公共边叫做多面体的棱,若干个面的公共顶点叫做多面体的顶点。
注意:各面都是平面的立体图形称为多面体。像圆锥、圆台因为有的面是曲面,而不被称为“多面体”。圆锥、圆柱、圆台统称为旋转体。立体图形的各个面都是平的面,这样的立体图形称为多面体。
人教版初中数学中考几何知识点大全
———————————————————————————————— 作者:
———————————————————————————————— 日期:

一、图形的认知………………………………………………………………………………2
二、平行线知识点……………………………………………………………………………3
12、角的平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线
13、余角和补角:如果两个角加起来为90,则一个角是另一个角的余角
如果两个角加起来为180,则一个角是另一个角的补角
邻补角:相邻的补角
14、同角的余角相等,等角的余角相等
同角的补角相等,等角的补角相等
二、平行线知识点
竖直的数轴称为y轴或纵轴,取向上方向为正方向
两坐标轴的交点为平面直角坐标系的原点
3、象限:坐标轴上的点不属于任何象限
第一象限:x>0,y>0第二象限:x<0,y>0
第三象限:x<0,y<0第四象限:x>0,y<0
横坐标上的点坐标:(x,0)纵坐标上的点坐标:(0,y)
8、平行线的性质:两直线平行,同位角相等、内错角相等、同旁内角互补
9、注意区分判定及性质。将平行线性质反向解读,即为判定
10、在同一平面内,平行线永不交
三、命题、定理
1、判断一件事情的语句,叫做命题,命题由题设和结论两部分组成
2、命题可以写成“如果……那么……”的形式,这时“如果”后接的部分就是题设,“那么”后接的部分就是结论。
7、经过两点有一条直线,并且只有一条直线。简述为:两点确定一条直线
8、当两条不同的直线有一个公共点时,我们就称这两条直线相交。这个公共点叫做它们的交点
9、两点的所有连线中,线段最短。简单说成:两点之间,线段最短
10、连接两点间的线段的长度,叫做这两点的距离
11、角:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边
图形的这种移动,叫做平移变换,简称平移。
平移之后的图形与原图形相比,对应边相等,对应角相等
五、平面直角坐标系知识点
1、有序数对:我们把这种有顺序的两个数a与b组成的数队,叫做有序数对。
2、平面直角坐标系:我们可以在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,习惯上取向右为正方向
1、对顶角性质:对顶角相等。注意:对顶角的判断
一个角的两边分别是另一个角两边的反向延长线,这两个角是对顶角。
两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角。
2、一直线互相垂直,(相交成90度角),那么一条直线就叫另一条直线的垂线,它们的交点叫垂足。
3、过一点有且只有一条直线与已知直线垂直
七、与三角形有关的角………………………………………………………………………5
八、多边形及其内角和………………………………………………………………………6
九、镶嵌………………………………………………………………………………………6
十、全等三角形知识点………………………………………………………………………7
相关文档
最新文档