北师大版数学八年级上册1 函数PPT

合集下载

北师大版八年级数学上册《一次函数与正比例函数》一次函数PPT教学课件

北师大版八年级数学上册《一次函数与正比例函数》一次函数PPT教学课件

知识点 3
知3-讲
1.一般地,形如y=kx+b(k,b是常数,k≠0)的函 数,叫做一次函数.当b=0时,y=kx+b即为y
=kx,所以说正比例函数是特殊的一次函数.
2.正比例函数是一次函数,但一次函数不一定是正
比例函数.
第十五页,共二十八页。
例3 知写识出点下列各题中y与x之间的关系式,并判断:
例函数.
第十七页,共二十八页。
例知4 识点已知函数y=(m-1)x+1-3m.
知3-讲
(1)当m为何值时,y是x的一次函数?
(2)当m为何值时,y是x的正比例函数?
解:(1) 根据一次函数的定义可得:m-1≠0,所以
m≠1,即当m≠1时,y是x的一次函数.
1
1
(2) 根据正比例函数的定义可3得:m-1≠0且3
(3)z = 60 - 3 x 25
第五页,共二十八页。
一次函数:
若两个变量x,y间的对应关系可以表示成
y=kx+b(k,b为常数,k≠0) 的形式,则称y是x
的一次函数.
知1-讲
第六页,共二十八页。
例1 〈原创易错题〉已知函数y=(n2-4)x2+(2n-4)xm-2 -(m+n-8).
(1)当m,n为何值时,函数是一次函数? (2)如果函数是一次函数,计算当x=1时的函数值.
y是否为x的一次函数?是否为正比例函数?
(1)汽车以60 km/h的速度匀速行驶,行驶路程 y( km )与行驶时间x (h)之间的关系;
(2)圆的面积y(cm2)与它的半径x (cm)之间的关系;
(3)某水池有水15 m3,现打开进水管进水,进水 速度为5 m3/h, x h后这个水池内有水ym3.

北师大版八年级数学上册一次函数的应用教学课件(第一课时24张)

北师大版八年级数学上册一次函数的应用教学课件(第一课时24张)
(2)两种租书方式每天的收费是多少元?(x<10)
解:(1)设使用会员卡租书金额y1(元)与租书时间x(天)之间的关系式为y1=kx+b. 从图象可知它过(0,20),可得b=20,将(10,50),代入关系式得k=3.∴y1= 3x+20.设使用租书卡租书金额y2(元)与租书时间x(天)之间的关系式为y2=mx. 它经过(10,50),代入得10m=50,m=5.∴y2=5x (2)会员卡方式每天收费(50-20)÷10=3(元),租书卡方式每天收费5元
二 确定一次函数的表达式
例2:已知一次函数的图象经过(0,5)、(2,-5)两点,求一次函 数的表达式.
解:设一次函数的表达式为y=kx+b,根据题意得, ∴-5=2k+b,5=b, 解得b=5,k=-5. ∴一次函数的表达式为y=-5x+5.
练一练
已知直线l与直线y=-2x平行,且与y轴交于点(0,2),求直线l 的表达式.
(1)设出式子中的未知系数;
将已知数据代入 (2)

(3) 求出未知系数的值 ;
(4) 写出一次函数表达式 .
1.正比例函数 y=kx 的图象如右图所示,则这个函数的表达式是(B ) A.y=x B.y=-x C.y=-2x
D.y=-12x
2.如图,一次函数的图象过点A,且与正比例函数y=-x的图象交于点B, 则该一次函数的表达式为( ) B
解:由题易得一次函数为 y=x+2,当 y=0 时,x+2=0, x=-2,∴C(-2,0),∴S△AOC=12×2×4=4
11.某图书馆开展两种方式的租书业务:一种是使用会员卡,另一种是使用 租书卡,使用这两种卡租书,租书金额y(元)与租书时间x(天)之间的关系如下 图所示:
(1)分别写出用租书卡和会员卡租书金额y(元)与租书时间x(天)之间的关系式 ;

北师大版八年级数学上册一次函数的图像课件

北师大版八年级数学上册一次函数的图像课件

_降__落__趋势。
学习内容
一次函数的图象 ——借助描点法画出一次函数的图象
一次函数的性质
——借助图象特点归纳一次函数的性质
第二环节:问题引导,活动探究
(1)探究一次函数的画法
请用描点法画出y=2x+1的图象
x… y=2x+1 …
-2 -1 0 -3 -1 1
12… 35 …
列表
描点
连线
几何画板
-2
y=2x+3
y=5x-2
( , 0) 12 x
(0,-2)
② y=-x, y=-x+3
x
…0 1…
x
…3
y=-x … 0 -1 … y=-x+3 … 0
0… 3…
y=-x+3 y 5
y=-x
4
3
2
1
-4 -3 -2 -1 0 -1
-2 -3 -4
12 3 4 x
合作探究:
y
问题2:
y=2x+3 3
四象限,则有( D )。 =mx-mn
y
A、m>0,n>0
B、m<0、n>0
C、m>0、n<0
D、m<0、n<0
0x
m<0, mn>0 n<0
第五环节:畅谈收获,自我反思 谈谈自己在本节课的收获,学习了哪
些数学方法?有哪些方面的提升?
第六环节:作业布置,巩固提升 1、数学书87页习题4.4:1题、2题、3题、4题 2、在同一直角坐标系中分别画出y=2x+1,
4、正比例函数性质:
y=kx(k≠0)
k>0

4.1 函数(课件)北师大版数学八年级上册

4.1 函数(课件)北师大版数学八年级上册
(2)函数不是数,函数的实质是两个变量的对应关系.
2. 判断一个关系是否是函数关系的方法
知1-讲
一看是否在一个变化过程中;
二看是否存在两个变量;
三看对于变量每取一个确定的值,另一个变量是否
都有唯一确定的值与其对应.
以上三者(简称“三要素”)缺一不可.
知1-讲
特别提醒 函数的定义中包括了对应值的存在性和唯一性两重
知3-讲
类型
自变量在整 式中
自变量在分 母中
特点
等号右边是整式
等号右边的自变 量在分母的位置 上
举例
y=2x2-1( x 为全体实数)
y=
1 x+1
(
x

-1)
自变量的 取值范围
全体实数
使分母不为 0 的 实数
自变量在 等号右边是开平 y= x-3 (x 使被开方数大于
二次根号下 方的式子
≥ 3)
或等于 0 的实数
(2)当每月乘客至少达到多少人时,该公交车才不会亏损?
知3-练
解题秘方:根据题意列出函数表达式,紧扣函数 表达式解题即可 .
(1)请写出 y 与 x 之间的关系式,并列表格表示当 x 的值 知3-练 分别是 1 000,1 500,2 000,2 500,3 000 时, y 的值; 解:y 与 x 之间的关系式为 y=2x-4 000,列表如下:
知2-练
(1)这个人的最高体温和最低体温分别是多少摄氏度?在什 么时刻达到最高或最低?
(2)若用x(时)表示时间,y(℃)表示体温,将相应数据填入 下表.
x/时 2 4 8 12 16 18 20 22 y/℃
(3) y是x的函数吗?
知2-练
解题秘方:紧扣函数三种表示方法的优点,从每种 表示方法中获取信息解决问题.

北师大版八年级数学上册《一次函数与正比例函数》一次函数PPT课件

北师大版八年级数学上册《一次函数与正比例函数》一次函数PPT课件
体会数学应用的广泛性.
导入新知
明天是小美妈妈的生日,小美坐爸爸的车以48 km/h的速度去
花店为妈妈准备生日礼物.
导入新知

康乃馨
6 元/支
君子兰
8 元/支

包装费
20 元/次
明天是小美妈妈的生日,小美坐爸爸的车以48 km/h的速度去
花店为妈妈准备生日礼物.很快到了花店,花店里琳琅满目:
康乃馨6元/支,君子兰8元/支,……包装费为20元/次.
花店为妈妈准备生日礼物.很快到了花店,花店里琳琅满目:
康乃馨6元/支,君子兰8元/支,……包装费为20元/次.
此时小美爸爸提出了一些数学问题,你能帮忙解决吗?
若小美想给妈妈买康乃馨.设买花的费用z元,买花及包装的
总费用y元,所买康乃馨数量x支.
(1)题中有几个量,哪些是常量?哪些是变量?有哪些等
量关系? 题中有7个量,48、6、8、20是常量,
次收入超过800元但不超过4000元的,预扣预缴税款=(每次收入800)×20%;……如某人取得劳务报酬2000元,他这笔所得应预扣
预缴税款(2000-800)×20%=240(元).
(3)如果某人某次预扣预缴劳务报酬所得税600元,那么此人这次取
得的劳务报酬是多少元?
(3)因为(4000-800)×20%=640(元),600<640,
z、y、x是变量,等量关系:z=6x,y=6x+20.
导入新知
明天是小美妈妈的生日,小Байду номын сангаас坐爸爸的车以48 km/h的速度去
花店为妈妈准备生日礼物.很快到了花店,花店里琳琅满目:
康乃馨6元/支,君子兰8元/支,……包装费为20元/次.

《一次函数的图象》一次函数PPT课件

《一次函数的图象》一次函数PPT课件

观察图象可以发现:①直线y=x,y=3x向右


逐渐
,
上升

即y的值随x的增大而增大;

②直线
,y=-4x向右逐渐

即y的值随yx的 增 1大x而减小. 2
下降
探究新知
在正比例函数y=kx中: 当k>0时,y的值随着x值的增大而增大; 当k<0时,y的值随着x值的增大而减小.
y
y
y=kx(k>0)
解析:因为函数图象经过第一、三象限,所以k-3>0,解得k>3.
(2)若函数图象经过点(2,4),则k_____.
=5
解析:将坐标(2,4)带入函数解析式中,得4=(k-3)·2,解得 k=5.
巩固练习
变式训练
已知正比例函数y=(k+5)x.
(1)若函数图象经过第二、四象限,则k的取值范围是_______.
数 分析:对于函数y=x,当x=-1时,y= ;当x=1时,-1y= ;当x=2时,y= 1;不难发
值 现y的值随x的增大而
.

2
增大

分析:对于函数y=-4x,当x=-1时,y= ;当x=1时,4y= ;当x=2时,y= ;-不4 难
发现y的值随x的增大-而8
.
减小
探究新知
我们还可以借助函数图象分析此问题.
值的增大,y的值都减小了,其中哪一个减小得更快?
你是如何判断的?
解:y=-4x减小得更快.
在自变量的变化情况相
同的条件下y=-4x的函数来自值的减小量大于y= -1 2
x的
函数值的减小量.
故y=-4x减小得更快.
y 4x

北师大版八年级数学上册 (一次函数与正比例函数)一次函数教育课件

北师大版八年级数学上册 (一次函数与正比例函数)一次函数教育课件
n=8m,w=8m+20
导入新知
明天是小美妈妈的生日,小美坐爸爸的车以48 km/h的速度去 花店为妈妈准备生日礼物.很快到了花店,花店里琳琅满目: 康乃馨6元/支,君子兰8元/支,……包装费为20元/次. 此时小美爸爸提出了一些数学问题,你能帮忙解决吗?
(6)函数w=8m+20有何特点?
式子两边各有一个变量, 式子左边是一个单项式,式子右边是两个单项式的和.
42 36 30
(2) 你能写出y与x的关系吗? y=60-0.12x
上面的两个函数关系式: (1)y=3+0.5x 有什么关系?
若两个变量 x、y之间的关系可以表示成
y=kx+b(k,b为常数,k不等于0)的形式,则称 y是x 的一次函数.(x为自变量,y为因变量.)
体会一次函数是刻画现实世界变化规律的重要数学模型, 体会数学应用的广泛性.
导入新知
明天是小美妈妈的生日,小美坐爸爸的车以48 km/h的速度去 花店为妈妈准备生日礼物.
导入新知

康乃馨 6 元/支
君子兰
8 元/支

包装费 20 元/次
明天是小美妈妈的生日,小美坐爸爸的车以48 km/h的速度去 花店为妈妈准备生日礼物.很快到了花店,花店里琳琅满目: 康乃馨6元/支,君子兰8元/支,……包装费为20元/次. 此时小美爸爸提出了一些数学问题,你能帮忙解决吗?
所以 m2-24=1且m-5≠0, 所以 m=±5且m≠5, 所以 m=-5. 所以,当m=-5时,函数y=(m-5)xm2-24 +m+1是一次函数.
(2)若它是正比例函数,求 m 的值. 解:(2)因为 y=(m-5)xm2-24+m+1是一次函数,
所以 m2-24=1且m-5≠0且m+1=0. 所以 m=±5且m≠5且m=-1, 则这样的m不存在, 所以函数y=(m-5)xm2-24+m+1不可能为 正比例函数.

北师大版八年级数学上册一次函数图像和性质课件

北师大版八年级数学上册一次函数图像和性质课件

一次函数图像和性质
一、复习提问
1、正比例函数的解析式为: 当x=0时,y= 当x=1时,y=所以,它的图像必经过点( )( )
y= kx,(k≠0)
2、一次函数的解析式为:
y=kx+b(k≠0)
0
b
0 , b
当x=0时,y= 当y=0时,x= 或当x=1时,y= 所以,它的图像必经过点( )和点( )或( )
y
x
o
K<<0, b<0
y
x
o
K<0, b>0
1已知一次函数y=kx+b,y随着x的增大而减小,且kb<0,则在直角坐标系内它的大致图象是( )
八.一次函数中k,b的意义
1. 当a___时, 一次函数 y=(a-2)x+1 不过第三象限.
<2
c
4.已知函数y=ax的图象如图甲所示,则函数y=-ax-a2的图象可能是( )
A B C D
增大
考考大家: 填一填
y=2x
做一做
1.已知一次函数y=(3 – k)x –2k2+18 (1) k为何值时,它的图象经过点(0, – 2); (2)k为何值时,它的图象经过原点; (3) k为何值时,它的图象与y轴的交点在x轴上方.
5. 已知函数 y=kx 的图像经过第二、四象限, 那么函数 y=-kx+1的图像不经过的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限
D
八.一次函数中k,b的意义
C
6、直线y=kx+b经过一、二、四象限,则K 0, b 0.
以坐标轴上坐标特点来确定两点
提出问题形成思路

北师大版八年级数学上册《一次函数与正比例函数》一次函数PPT精品课件

北师大版八年级数学上册《一次函数与正比例函数》一次函数PPT精品课件

零.


2200232/35//45/4
9



• •
例典单1例:精击写析此出处下编列各辑题母中版y与标题x之样间式的三级关二级 单击此处系式,并判断单击此
:•y单是击否此为处编x的辑母一版次文函本样数式?是否为五 四级正比编辑例函数? (1)• 二汽•级三车级 以60km/h的速度匀速级行驶,行母版 驶路程为
击 此 处 编
但m-1• ≠三0•级,四即级 m≠1,
版 文

• 五级
所以m=-1.


样 式

4.若函数y=(m-3)x+m2-9是正比例函数,求m的值. 标
解:根据题意,得m2-9=0,

解得m=±3,
样 式
但m-3≠0,即m≠3,
所以m=-3.
2200232/35//45/4
18



• •
样 式
y=60-0.12x
2200232/35//45/4
6



• •


上单•(1单面)•击y击二=的此级3此+处两0处编.个5辑x编函母版数辑文关母本系样版式式标: 题样五级大两有式四级个家什三级讨么函二级论关数击此处编辑母关一系?系下,式这
击 此 处 编
(2) y=• 三60级-0.12x • 四级

• 五级


一次 函数
正比例函数的概样式念
版 标

函数关系式的确定


2200232/35//45/4
23
5 kg 时• 三的•级四级长度,并填入下表:

北师大版八年级数学上册一次函数的图象(第1课时)课件

北师大版八年级数学上册一次函数的图象(第1课时)课件
-1
-2
-3
-4
y=x
1
2 3xBiblioteka y=y=-2x合作探究
小组讨论:正比例函数 y =2 x、 y =-2 x、 y = x、y
2、当自变量 x 增大时,函数值
y 有何变化?
当 k>0 时直线 y = kx ,从左向
上升
右呈______趋势,即
y 随 x 的增
增大
大而____.
当 k< 0 时直线 y = kx ,从左向
加得更快?你能说明其中的道理吗?
y=3x增加得更
快.
y=3x的函数值的
增加量大于y=x的函
数值的增加量.
故y=3x增加
得更快.
y 3x
yx
知识讲授

(2)类似地,正比例函数y=- x和y=
4x中,随着x值的增大,y的值都减小了,
其中哪一个减小得更快?你是如何判断的?
y=-4x减小得更快.
在自变量的变化情况相同
降落
右呈______趋势,即
y 随 x 的增
减小
大而____.

=- x

y
5
y=2x
4
3
2
1
-3 -2 -1 0
-1
-2
-3
-4
y=x
1
2 3
x
y=y=-2x
知识讲授
在正比例函数y=kx中,图象是一条经过原点(0,0)的直线
(1)、当k>0时,图象经过第 一、三
右 上升 ,y的值随着x值得增大而
②描点
-2
-3
③连线
-4
x
y=y=-2x
合作探究

北师大版八年级数学上册《函数》一次函数PPT课件

北师大版八年级数学上册《函数》一次函数PPT课件
(4)当关系式有零指数幂(或负整数指数幂)时,自变 量的取值需使相应的底数不为0;
(5)当关系式是实际问题的关系式时,自变量的取值 需使实际问题有意义;
(6)当关系式是复合形式时,自变量的取值需使所有 式子同时有意义.
知2-讲
知例(1)3识y=点求3x下+列7;函(2数) 中y=自3变x1量2x;的(取3) 值y=范围x: 4 .
干旱持续时间t/天 蓄水量V/万立方米
0 10 20 30 40 50 60
(3)当t取0至60之间的任一值时,对应几个V值? (4)V可以看作t的函数吗?若可以,写出函数关系式.
知3-讲
知导引识:点(1)通过读图可知,横坐标表示干旱持续时间,纵坐标表
示水库蓄水量,因此它表示的是干旱持续时间与水库蓄水 量之间的关系;(2)根据图象信息确定每个特殊点的坐标即 可;(3)观察图象即可得解;(4)可根据函数的定义来判断. 解:(1)这个图象反映了干旱持续时间与水库蓄水量之间的关
知1-讲
例1 已知三角形的一边长为12,这边上的高是h,
则三角形的面积S= 1 ×12·h,即S=6h.在 2
这个式子中,常量和变量分别是什么? 导引:根据常量和变量的定义分析.由于三角形的面
积是边长与该边上的高的长度的乘积的一半, 已知边长,因此可以得出常量是边长的一半, 变量是高和面积. 解: 常量是6,变量是h和S.
(1)根据图填表:
t/min 0 1 2 3 4 5 …
h/m

(2)对于给定的时间t,相应的高度h确定吗?
知识点 1 函 数
知1-导
做一做 1. 罐头盒等圆柱形的物体常常如下图那样堆放,随着
层数的增加,物体的总数是如何变化的?
知1-导

北师大版八年级上册数学《一次函数的图象》一次函数PPT教学课件

北师大版八年级上册数学《一次函数的图象》一次函数PPT教学课件


y
3 4
x
x
0
.
y/元
(2)列表 x 0 4
6
描点 y 0 3
5 4
连线
3
2
(3)当x=220时,
1
y 3 220 165(元).
O 1 2 34 5 67
x/k m
4
答:该汽车行驶220 km所需油费是165元.
正比例函 数的图象 和性质
课堂小结
画正比例函数图象的一般 步骤:列表、描点、连线
__2__个单位长度而得到.
比较三个函数的解析式, 自变量系数k 相同,
它们的图象的位置关系是 平行
.
要点归纳
思考:与x轴的交 点坐标是什么?
b k
,
0
一次函数y=kx+b(k≠0)的图象经过点(0,b),
可以由正比例函数y=kx的图象平移 b 个单位长度得到
(当b>0时,向 上 平移;当b<0时,向 下 平移).
当k<0时,直线y=kx+b由左到右逐渐下降,y 随x的增大而减小.
① b>0时,直线经过 一、二、四象限; ② b<0时,直线经过二、三、四象限.
练一练
两个一次函数y1=ax+b与y2=bx+a,它们在同
一坐标系中的图象可能是( C )
例3 已知一次函数 y=(1-2m)x+m-1 , 求满足下列条件的 m的值: (1)函数值y 随x的增大而增大; (2)函数图象与y 轴的负半轴相交; (3)函数的图象过第二、三、四象限; 解:(1)由题意得1-2m>0,解得 m 1
导入新课
复习引入
(1)什么叫一次函数?从解析式上看,一次函数 与正比例函数有什么关系?

北师大版数学八年级上册一次函数与正比例函数课件

北师大版数学八年级上册一次函数与正比例函数课件

特别地,当b=0时,称y是x的正比例函数.
正比例函数
关系式为:y=kx (k为常数,k≠0)
练习 以下函数:一次函数有哪些?正比例
函数有哪些?
(1) y 2x2 x 1
(3) y 1 x
(5)s 2t
(7) y x2 (x2 x 1)
(2) y 2 r
(4) y 1 3 x 4
(6) y x 1 5
(1)都是含有两个变量x,y的等式.其中
左边是因变量y,右边是自变量x; (2)自变量x的系数都不为0; (3)自变量和因变量的次数都是一次的.
若两个变量 x,y间的对应关系可以表示成
y=kx+b(k, b为常数,k≠0)的情势,则称y是x
的一次函数.
一次函数
关系式为:y=kx+b (k,b为常数,k≠0)
(8) y kx
练习
若y=(m-2)x+ m2 - 4是关于x的正比例函数,
则m为
;若它是关于x的一次函数,
则m为
.
练习
如图,甲乙两地相距100km,现在有一列火车从乙地 出发,以80km/h的速度向丙地行驶;设x(h)表示火车 行驶的时间,y(km)表示火车与甲地的距离,s(km)表 示火车距乙地的距离. (1)写出s与x之间的关系式,并判断s是否是x的一次 函数?是否为正比பைடு நூலகம்函数?
第四章 一次函数
4.2 一次函数与正比例函数
温故知新
什么叫函数?函数的表达方式有哪些?
在某个变化过程中,有两个变量x 和y,对 于变量x的每一个值,变量y都有唯一的值与 它对应,那么我们称y是x的函数,其中x是自 变量,y是因变量. 函数有图象、表格、关系式三种表达方式.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课后作业
布置作业:习题4.1 1、2题。 完成练习册中本课时的习题。
声明
本文件仅用于个人学习、研究或欣赏,以及其他非商 业性或非盈利性用途,但同时应遵守著作权法及其他相关 法律的规定,不得侵犯本司及相关权利人的合法权利。
除此以外,将本文件任何内容用于其他用途时,应获 得授权,如发现未经授权用于商业或盈利用途将追加侵权 者的法律责任。
的关系式为:
.
பைடு நூலகம்
3. 判断下列关系式是不是函数.
(1)y=±x; × (2)y=|x|; √ (3)y=60x; √ (4)y=100x+5. √
函数:一般的,在一个变化过程中,如果有两个变 量x和y,并且对于x的每一个确定的值,y 都有唯一 确定的值与其对应,那么我们就把 x 称为自变量, 把 y 称为因变量,y 是 x的函数。
• 在上面的案例中,都有两个量,给定其中某一 个变量的值,相应地就确定了另一个变量的值.
• 一般地,如果在一个变化过程中有两个变量 x 和 y, 并且对于变量 x 的每一个值,变量y都有唯一的值与 它对应,那么我们称 y是x的函数,其中x是自变量.
• 函数的表示方法一般有:列表法、关系式法和图像法.
武汉天成贵龙文化传播有限公司 湖北山河律师事务所
同学们下课啦
授课老师:xxx
1、罐头盒等圆柱形的物体常常如下图那样堆放, 随着层数的增加,物体的总数是如何变化的?
填写下表:
层数n
1 23 4 5…
物体总数y 1 3 6 10 15 …
2、一定质量的气体在体积不变时,假若温度降低到-273℃, 则气体的压强为零。因此,物理学中把-273℃作为热力学温 度的零度。热力学温度T(K)与摄氏温度t(℃)之间有如 下数量关系:T=t+273,T≥0. (1)当t分别为-43℃,-27℃,0℃,18℃时,相应的热力 学温度T是多少? 230K, 246K, 273K, 291K (2)给定一个大于-273℃的t值,你都能求出相应的T值吗?
上述问题中,自变量能取哪些值?
对于自变量在可取值范围内的一个确定的值 a, 函数有唯一确定对应的值,这个对应值称为当自 变量等于a的函数值.
1. 现将500本笔记本捐助给贫困学生,每人5本,写出
余下的笔记本数 y 和学生数 x(名)之间的关系式

,自变量 x 的取值范围是

2. 某商品单价K一定,总价 y 与重量 x 之间
第四章 一次函数
1 函数
北师大版 八年级上册
【根据最新版数学教材编
1
你坐过摩天轮吗?想一想,如果你坐在摩天轮上随着 时间的变化,你离开地面的高度是如何变化的?
如图反映了摩天轮上一点的高度h(m)与旋转 时间t(min)之间的关系。
根据上图填表
t/min 0 1 2 3 4 5 …
h/m

思考:对于给定的时间t,相应的高度h确定吗?
相关文档
最新文档