七年级下册数学同步练习题库:立方根(选择题:一般)
精品解析:人教版初中数学七年级下册第六章《实数——立方根》同步练习(解析版).docx
人教版初中数学七年级下册第六章《实数一一立方根》同步练习一、选择题(每小题只有一个正确答案)1.如果一个实数的平方根与它的立方根相等,则这个数是()A.0和1B.正实数C.OD. 1【答案】C【解析】0的立方根和它的平方根相等都是0;1的立方根是1,平方根是±1,・・・一个实数的平方根与它的立方根相等,则这个数是0.故选:C.2.下列说法正确的是()A.4的平方根是±2B.8的立方根是±2C.彼=±2D. J(—2尸=-2【答案】A【解析】解:A. 4的平方根是±2,故本选项正确;B.8的立方根是2,故本选项错误;C.訶=2,故本选项错误;D.{(-2)2=2,故本选项错误;故选A.点睛:本题考查了对平方根、立方根、算术平方根的定义的应用,主要考查学生的计算能力.3.下列计算正确的是().A.2a + 3b = 5abB. 廊=±6C.令=3D. 73 x 72 = 75【答案】D【解析】A项.错误;B项.^/36 = 6,错误;C项.畅S3错误;73 X 72=75-故选D.4.下列说法错误的是()A. 1是1的算术平方根B. 肓亍=7C.-27的立方根是-3D.盯石=± 12【答案】D【解析】试题分析:A、因为12=1,所以1是1的算术平方根,故此选项正确;B、J(-7)2 =何=7,故此选项止确;C、(⑶彳二27,所以・27的立方根是・3,故此选项正确;D、“历二12,故此选项错误.故选D.5.如果返亍7= 1.333,逗亍7 = 2.872,那么#0.0237约等于( ).A. 13.33B. 28.72C. 0.1333D. 0.2872【答案】D【解析】・・・疸7 = 2.872,・:“0.0237 = ^23.7 x 0.001 = 2.872 x 0」=0.02872故选:D.6.下列各式中值为正数的是()A.拓5B. -改-3.4)2 c.畅 D.洞【答案】D【解析】解:A. J25冬0,・・・厂了v0,故不符合题意;B.V(-3.4)2>0, /.-改.3.4)2 V0,故不符合题意;C.vVo=O,故不符合题意;D.117| > 0 ,・・・洞>0,故符合题意;故选D.点睛:本题主要考查如何判断三次根式的值的情况.对于此类题目,只要判断被开方数与0的大小关系,若被开方数>0,则三次根式>0;若被开方数=0,则三次根式=0;若被开方数V0,则三次根式<0.例如本题,就是通过判断四个选项中被开方数是否大于0得到答案的.7.扳+衙=0,则x与y的关系是()A. x+yxOB. x与y相等C. x与y互为相反数D. x = -y【答案】c【解析】解:丁扳+衙=0,・••扳=一衙=恭玄「.x二y,即X、y互为相反数.故选C.8.若a是(-3)2的平方根贝陥等于( )A. —3B. ^3C.诉或—和D. 3 或一3【答案】c【解析】解:*•* ( - 3) 2= (±3) 2=9, ・・.a=±3,・••訴=砺,或物=一丽,故选C・二、填空题9.-8的立方根是_________ .【答案】-2【解析】解:一8的立方根是一2.故答案为:一2.10.如果&的平方根是±3,则奸万= _______________ •【答案】4【解析】先利用平方根及算术平方根的定义求出G的值,再代入求值即可.解:•・・、$的平方根是±3,・:&=9,/.a = 81,yja - 17—- 17 — \/64—4.故答案为:4.11.己知一个数的平方根是3a+l和a+11,求这个数的立方根______________ 。
人教七年级下册数学 6.2立方根 同步练习(解析版)
6.2立方根基础闯关全练1.下列说法正确的是( )A .0.8的立方根是0.2B .1的立方根为±1C .-1的立方根是-1D .-25没有立方根 2.下列说法正确的是( ) A .64的立方根是4364±=±B .21-是61-的立方根C .327327-=- D .立方根等于它本身的数是0和13.有一块正方体水晶砖,它的体积为100 cm³.则它的棱长大约在( ) A.4 cm 到5 cm 之间 B.5 cm 到6 cm 之间 C.6 cm 到7 cm 之间 D.7 cm 到8 cm 之间 4.-827的立方根与827的立方根的和是________________. 5.求下列各数的立方根. (1)-343; (2)0.512.6.求下列各式的值:(1).327-; (2)327102; (3).310001-.7.已知2a-1的平方根是±3,3a+b-1的算术平方根是4,求50a-17b 的立方根.8.下列式子不正确的是( )A .33a a -=-B .a a =33C .a a =3)3(D .a a =-3)3(9.下列语句正确的是( )A .如果一个数的立方根是这个数本身,那么这个数一定是0 B.一个数的立方根不是正数就是负数 C .负数没有立方根D .一个不为零的数的立方根和这个数同号,0的立方根是010.利用计算器计算:(结果保留四个有效数字)≈325.5_____,≈300525.0_______,观察所得结果,总结存在的规律,运用得到的规律可直接得≈35250________.能力提升全练1.如果a 是(-3)²的平方根,那么3a 等于( )A .-3B .33-C.±3D.33或33-2.已知738.1328.5=,1738.03=a ,则a 的值为( )A.0.528B.0.0528C.0.00528D.0.000528 3.计算:(1)=-3641_______;(2)=3833______; (3)=-3027.0____;(4)=-33)2(____.4.求下列各式中x 的值.(1)(x-2)³=8; (2) 64x³+27=0.5.已知2a-1的平方根是±3,3a-b+2的算术平方根是4.求a+3b 的立方根.三年模拟全练 一、选择题1.下列关于立方根的说法中,正确的是( ) A .-9的立方根是-3B .立方根等于它本身的数有-1,0,1C .64-的立方根为-4D .一个数的立方根不是正数就是负数 2.下列各式中正确的是( )A.62)6(-=- B .24±= C .131±=± D .3327=-二、填空题 3.-12527的立方根是_______. 4.计算:=-⎪⎭⎫ ⎝⎛-⨯-+-+-32722133)4(2)4(3)2(______.三、解答题5.求满足8x³+125 =0的x 的值.五年中考全练 一、选择题1.64的立方根为( )A .8 B.-8 C .4 D .-42.38的算术平方根是( )A .2 B.±2 C .2 D .2± 二、填空题3.27的立方根是____.4.计算:=--382_______.核心素养全练1.不用计算器,研究解决下列问题:(1)已知x³ =10648,则x 的个位数字一定是________;∵8000= 20³ <10648<30³ = 27000,∴x 的十位数字一定是_____.∴x=_______. (2)已知x³= 59319,则x 的个位数字一定是________;∵27000= 30³<59319<40³= 64000,∴x 的十位数字一定是____,∴x=____. (3)已知x³= 148877,则x 的个位数字一定是____;∵125000= 50³<148877<60³= 216000,∴x 的十位数字一定是______,∴x=____.(4)按照以上思考方法,直接写出x 的值,①若x³= 857375,则x=______;②若x³= 373248,则x=_________.2.依照平方根(二次方根)和立方根(三次方根)的定义可给出四次方根、五次方根的定义:①如果x ⁴ =a(a ≥0),那么x 叫做a 的四次方根;②如果x ⁵=a .那么x 叫做a 的五次方根.请依据以上两个定义,解决下列问题: (1)求81的四次方根; (2)求-32的五次方根;(3)求下列各式中未知数x 的值: ①x ⁴= 16; ②100000x ⁵= 243.6.2立方根1.C 正数的立方根为正数,负数的立方根为负数,故B 、D 错.0.2³= 0.008≠0.8,(-1)³=-1.故选C .2.C 64的立方根是4364=,故A 错误;∵813)21(-=-,∴21-是81-的立方根,故B 错误;立方根等于它本身的数是0、1和-1,故D 错误.3.A 设棱长为x cm ,则x³= 100,∴3100=x ,∵64<100<125.∴531004<<,∴选A .4.答案0解析827-的立方根是23-,827的立方根是23,它们的和为02323=+-(或由互为相反数的两个数的立方根也互为相反数,知答案为0).5.解析(1)因为(-7)³=- 343,所以-343的立方根是-7.即73343-=-. (2)因为(0.8)³=0. 512,所以0.512的立方根是0.8.即8.03512.0=. 6.解析(1)327-表示-27的立方根,是-3.(2)327102表示2764的立方根,是34。
6.2 立方根 人教版数学七年级下册分层作业(含答案)
人教版初中数学七年级下册6.2 立方根同步练习夯实基础篇一、单选题:1.下列说法正确的是( )A.2的平方根是B.3是的一个平方根C.负数没有立方根D.立方根等于它本身的数是【答案】B【分析】根据平方根、算术平方根、立方根的定义逐项进行判断即可.【详解】A.的平方根为,因此选项A不符合题意;B.由于的平方根是,因此是的一个平方根,因此选项B符合题意;C.任意一个实数都有立方根,因此选项C不符合题意;D.立方根等于它本身的数是,因此选项D不符合题意;故选:B.【点睛】本题考查平方根、算术平方根、立方根,理解算术平方根、平方根、立方根的定义是正确判断的前提.2.的立方根是()A.2B.2C.8D.-8【答案】A【详解】先根据算术平方根的意义,求得=8,然后根据立方根的意义,求得其立方根为2.故选A.3.下列计算正确的是()A.B.C.D.【答案】D【分析】本题只要根据算术平方根、平方根以及立方根的计算法则即可得出答案.【详解】解:A、,故该选项不符合题意;B、,故该选项不符合题意;C、,故该选项不符合题意;D、正确,故该选项符合题意;故选:D.【点睛】本题主要考查的就是立方根、平方根、算术平方根的计算,属于基础题型.一个非负数的平方根有两个,他们互为相反数;表示a的算术平方根,表示a的平方根.4.下列各组数中,不相等的一组是()A.和B.和C.和D.和【答案】C【分析】先求出每个式子的值,再比较即可.【详解】解:A、,相等,故此选项不符合题意;B、,,相等,故此选项不符合题意;C、,,不相等,故此选项符合题意;D、,相等,故此选项不符合题意.故选:C.【点睛】此题考查了立方根,算术平方根,有理数的乘方,以及绝对值,熟练掌握相关定义和运算法则是解本题的关键.5.下列说法:①如果一个实数的立方根等于它本身,这个数只有0或1;②的算术平方根是a;③的立方根是;④的算术平方根是4;其中,不正确的有()A.1个B.2个C.3个D.4个【答案】D【分析】根据立方根和平方根,算术平方根的性质,逐项判断即可求解.【详解】解:①如果一个实数的立方根等于它本身,这个数只有0或1或,故本选项错误;②当时,的算术平方根是a,故本选项错误;③的立方根是,故本选项错误;④因为,所以的算术平方根是2,故本选项错误;所以不正确的有4个.故选:D【点睛】本题主要考查了立方根和平方根,算术平方根的性质,熟练掌握立方根和平方根,算术平方根的性质是解题的关键.6.若,,()A.0.716B.7.16C.1.542D.15.42【答案】D【分析】根据小数点位置移动引起数的大小变化规律可知:一个数的小数点向右移动三位,它的立方根的小数点应向右移动一位,据此解答即可.【详解】解:一个小数的小数点向右移动三位,这个小数就扩大了1000倍,它的立方根的小数点就向右移动一位,,,故选:D.【点睛】本题考查了立方根的性质,熟练掌握和运用求一个数的立方根的方法是解决本题的关键.7.若,则的值为()A.5B.15C.25D.-5【答案】D【分析】直接利用算术平方根以及绝对值的性质得出x,y的值,进而代入得出答案.【详解】解:∵,∴x-5=0,y+25=0,∴x=5,y=-25,∴===-5,故选D.【点睛】此题主要考查了算术平方根以及绝对值的性质,立方根的求法,正确得出x,y的值是解题关键.二、填空题:8.算术平方根是本身的数是_________,平方根是本身的数是_________,立方根是本身的数是________.【答案】 0,1 0 0,±1【分析】根据算术平方根、平方根、立方根的定义即可解答.【详解】解:算术平方根是本身的数是0、1,平方根是其本身的数是0,立方根是其本身的数是0,±1.故答案为0,1;0,1;0,±1.【点睛】本题主要考查了算术平方根、平方根、立方根的定义等知识点,掌握特殊数的算术平方根、平方根、立方根是解答本题的关键.9.计算:(1)________;(2)________;(3)________;(4)________;(5)________;(6)________.【答案】【分析】根据平方根、算术平方根、立方根的定义逐项进行计算即可.【详解】(1),故答案为:;(2),故答案为:;(3),故答案为:;(4),故答案为:;(5),故答案为:;(6).故答案为:本题考查了平方根和立方根的概念和求法,理解、记忆平方根和立方根的概念是解题关键.平方根:如果x2=a,则x叫做a的平方根,记作“±”(a称为被开方数),立方根:如果x3=a,则x叫做a的立方根,记作“”(a 称为被开方数).10.计算________.【答案】-1【分析】根据立方根的定义和有理数的乘方法则进行计算,再相加即可.【详解】解:故答案为:-1.【点睛】本题考查了实数的混合运算,解题的关键是掌握立方根的定义和有理数的乘方运算法则.11.如果一个正数的两个平方根是a+1和2a﹣22,这个正数的立方根是_____.【答案】【分析】根据一个正数的两个平方根互为相反数,可得出关于的方程,解出即可.【详解】解:∵一个正数的两个平方根是和,∴,解得,∴这个正数是,∴这个正数的立方根是,故答案为:.【点睛】本题考查了平方根的定义和性质,立方根的定义,熟练掌握一个正数的两个平方根互为相反数是解题的关键.12.的算术平方根是3,的立方根是2,则的算术平方根为___________.【答案】6【分析】根据算术平方根的定义和立方根的定义,先求出a和b的值,再将a和b的值代入求解即可.【详解】解:∵的算术平方根是3,的立方根是2,∴,,∴,,∴,∴的算数平方根为:.故答案为:6.【点睛】本题主要考查了算术平方根和立方根的定义,解题的关键是熟练掌握算术平方根和立方根的定义.13.已知实数a,b满足,则的立方根是______.【答案】【分析】利用绝对值与算术平方根的非负性求解得到从而可得答案.【详解】解:∵,∴解得:∴∴的立方根是故答案为:【点睛】本题考查的是绝对值与算术平方根的非负性的应用,立方根的含义,掌握“算术平方根的非负性”是解本题的关键.14.如果,则________;,则________;如果,,则________;,则________.【答案】 395.22 1562 0.2872【分析】根据立方根和算术平方根的定义找出他们之间的规律即可得出答案.【详解】解:如果,则,,则;如果,,则;,则;故答案为:①395.22,②1562;③0.2872,④.【点睛】此题考查了立方根和算术平方根,熟练掌握立方根和算术平方根的定义是解题的关键.三、解答题:15.求下列各数的立方根.(1)64(2)(3)(4).【答案】(1)4(2)(3)(4)【分析】(1)根据立方根的定义,求解即可;(2)根据立方根的定义,求解即可;(3)根据立方根的定义,求解即可;(4)根据立方根的定义,求解即可.【详解】(1)解:64的立方根是4;(2)解:,立方根是;(3)解:的立方根是;(4)解:的立方根是.【点睛】本题考查了立方根的知识,解题的关键是掌握开立方的运算.16.求下列各式中x的值.(1);(2).【答案】(1),;(2).【分析】(1)直接利用平方根定义计算即可求出解;(2)方程变形后,利用立方根定义开立方即可求出解.【详解】(1)解:;开方得:,移项得,,系数化1得,,,;(2)解:方程变形得:,开立方得:,解得:.【点睛】此题考查了立方根,以及平方根,熟练掌握各自的定义是解本题的关键.17.已知:的平方根是与,且.(1)求,的值;(2)求的值;(3)求的立方根.【答案】(1),(2)(3)2【分析】(1)根据一个数的两个平方根互为相反数可得答案;(2)求出或者的平方即可得出答案;(3)将的值代入中,求其立方根即可.【详解】(1)解:的平方根是与,,解得,,;(2)的平方根是与,;(3).【点睛】本题考查了平方根以及立方根,熟知一个数的两个平方根互为相反数是解本题的关键.18.已知M=是m+12的算术平方根,N=是n-30的立方根,试求的值.【答案】M-N=7【分析】根据算术平方根及立方根的定义,求出m和n的值,进而求出M、N的值,代入可得出M−N的平方根.【详解】解:∵M=是m+12的算术平方根,N=是n−30的立方根,∴5−n=2,m−1=3,解得:m=4,n=3,把m=4,n=3代入m+12=16,n−30=−27,∴M=,N=,把M=4,N=−3代入可得:M−N=7.【点睛】本题考查了立方根、算术平方根的定义,属于基础题,求出M、N的值是解答本题的关键.能力提升篇一、单选题:1.已知x﹣1,则x2﹣1的值为()A.0和1B.0和2C.0、﹣1或3D.0或±1【答案】C【分析】根据立方根的定义,求得的值,代入代数式即可求解.【详解】∵x﹣1的立方根等于它本身,∴x﹣1=±1或0,∴x=0,1或2,∴当x=0时,原式=﹣1;当x=1时,原式=0;当x=2时,原式=3.故选:C.【点睛】本题考查了立方根,掌握立方根的定义与求法是解题的关键.2.若a是的平方根,b是的立方根,则a+b的值是()A.4B.4或0C.6或2D.6【答案】C【分析】由a是的平方根可得a=±2,由b是的立方根可得b=4,由此即可求得a+b的值.【详解】∵a是的平方根,∴a=±2,∵b是的立方根,∴b=4,∴a+b=2+4=6或a+b=-2+4=2.故选C.【点睛】本题考查了平方根及立方根的定义,根据平方根及立方根的定义求得a=±2、b=4是解决问题的关键.3.下列各式中,不正确的是()A.B.C.D.【答案】B【分析】根据平方根和立方根的特点求出各数,再根据实数的大小比较的法则进行解答即可.【详解】解:、,,,故本选项正确;B、,,,故本选项错误;C、,,故本选项正确;D、,,,故本选项正确;故选:.【点睛】此题考查了实数的大小比较,掌握实数的大小比较的法则是本题的关键.二、填空题:4.将一个体积为的立方体木块锯成个同样大小的小立方体木块,则每个小立方体木块的表面积_____.【答案】【分析】根据题意求得每个小正方体的体积,继而求得小正方体的棱长为,即可求解.【详解】解:每个小正方体的体积为:∴小正方体的棱长为∴每个小立方体木块的表面积.故答案为:.【点睛】本题考查了立方根的应用,求得小正方体的棱长为是解题的关键.5.已知﹣2x﹣1=0,则x=_____.【答案】0或﹣1或﹣【分析】将原方程变形得到=2x+1,根据一个数的立方根等于它本身得到这个数是0或1或-1,由此化成一元一次方程,解方程即可得到答案.【详解】∵﹣2x﹣1=0,∴=2x+1,∴2x+1=1或2x+1=﹣1或2x+1=0,解得x=0或x=﹣1或x=﹣.故答案为:0或﹣1或﹣.【点睛】此题考查立方根的性质,解一元一次方程,由立方根的性质得到方程是解题的关键.6.观察下列各式:用字母n表示出一般规律是__________.(n为不小于2的整数)【答案】(n为不小于2的整数)【分析】分析被开方数的变换规律即可求得【详解】解:1、观察4个等式左边根号内分数的特点:①整数部分与分数部分的分子相等,即2=2,3=3,4=4,5=5,②整数部分与分数部分的分母有下列关系:,2、观察四个等式右边的立方根前的倍数正好是等式左边被开方数的整数部分,立方根里的分数正好是左边被开方数的分数部分,所以其中的规律可以表示为(n为不小于2的整数)故答案为:(n为不小于2的整数).【点睛】本题考查了立方根的规律探究,分析被开方数的变换规律是解题关键.三、解答题:7.小燕在测量铅球的半径时,先将铅球完全浸没在一个带刻度的圆柱形小水桶中,拿出铅球时,小燕发现小水桶中的水面下降了,小燕量得小水桶的直径为,于是她就算出了铅球的半径.你知道她是如何计算的吗?请求出铅球的半径.(球的体积公式,r为球的半径.)【答案】3cm.【分析】设球的半径为r,求出下降的水的体积,即圆柱形小水桶中下降的水的体积,最后根据球的体积公式列式求解即可.【详解】解:设球的半径为r,小水桶的直径为,水面下降了,小水桶的半径为6cm,下降的水的体积是π×62×1=36π(cm3),即,解得:,,答:铅球的半径是3cm.【点睛】本题考查了立方根的应用,涉及圆柱的体积求解,解此题的关键是得出关于r的方程.8.已知为有理数,且,求的平方根.【答案】【分析】根据题意得:,解出,代入,求出平方根.【详解】解:,,解得,.【点睛】本题主要考查平方根、立方根,熟练掌握其定义及性质是解题关键.。
人教版数学七年级下册6.2立方根试题试卷含答案
6.2 立方根6.2.1 立方根的概念及性质1.﹣27的立方根是( )A.﹣3B.3C.±3D.±92的立方根是( )A.2±B.4±C.4D.23A.3B.9C.24D.814.下列各数的立方根是﹣2的数是( )A.4B.﹣4C.8D.﹣8.=( )5A.b-也是a-的立方根B.b是a的立方根C.b是a-的立方根D.b±都是a的立方根纠错笔记________________________________________________________________________6.2 立方根6.2.1 立方根的概念及性质1.【答案】A【解析】﹣27的立方根是﹣3,故选A .2.【答案】D8=,8的立方根是2,故选D .3.【答案】A=3,故选A .4.【答案】D【解析】立方根是﹣2的数是﹣8,故选D .5.【答案】A【解析】(2)2=--=,故选A .6.【答案】C【解析】如果b -是ab =-b =,即b 是a -的立方根,故选C .参考答案及解析6.2.2 开立方1.开立方等于( )A.8-B.4-C.2-D.4±2.求一个数__________的运算叫做开立方,开立方与__________是互逆的两种运算.3.对于任意一个非零正实数,利用计算器对它不断进行开立方运算,其结果越来越趋近__________.4.=__________(保留两位有效数字).5.≈__________(精确到0.01)6.求下列各式中x的值.(1)x2=49;(2)3(x+1)3=24.________________________________________________________________________纠错笔记6.2.2 开立方1.【答案】C【解析】8=- ,8-的立方根是2-,开立方等于2-,故选C .2.【答案】a 的立方根,立方【解析】求一个数a 的立方根的运算叫开立方,其中a 叫做被开方数; 开立方与立方是互逆的两种运算.故答案为:a 的立方根,立方.3.【答案】1【解析】对于任意一个非零正实数,利用计算器对它不断进行开立方运算,其结果越来越趋近1.故答案为:1.4.【答案】0.562=1.442≈,原式2 1.4420.5580.56=-=≈,故答案为0.56.5.【答案】12.63≈12.63,故答案为12.63.6.【答案】(1)∵(±7)2=49,∴x =±7;(2)∵3(x +1)3=24,∴(x +1)3=8,∵23=8,∴x +1=2,∴x =1.参考答案及解析。
人教版数学七年级下册6.2《立方根》同步练习 (含答案)
如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。
——高斯人教版数学七下6.2《立方根》同步练习一、选择题1.下列说法错误的是( )A.1的平方根是1B.﹣1的立方根是﹣1C.是2的平方根D.是的平方根2.64的立方根是( )A.8B.±2C.4D.23.32)1(-的立方根是( )A.-1B.OC.1D.±14.下列计算正确的是( )A.4= ±2B.327-= -3C.2)4(-= -4D.39=35.若一个数的平方根是±8,则这个数的立方根是( ).A.2B.±2C.4D.±46.下列说法正确的是( )A.如果一个数的立方根是这个数本身,那么这个数一定是0B.一个数的立方根不是正数就是负数C.负数没有立方根D.一个不为零的数的立方根和这个数同号,0的立方根是07.如果-b 是a 的立方根,那么下列结论正确的是( ).A.-b 也是-a 的立方根B.b 也是a 的立方根C.b 也是-a 的立方根D.±b 都是a 的立方根8.正方体A 的体积是正方体B 的体积的27倍,那么正方体A 的棱长是正方体B 的棱长的( )A.2倍B.3倍C.4倍D.5倍9.估计96的立方根的大小在( )A.2与3之间B.3与4之间C.4与5之间D.5与6之间10.若a 2=(-5)2,b 3=(-5)3,则a +b 的值为( )A.0B.±10C.0或10D.0或-10二、填空题11.计算: = .12.若x -1是125的立方根,则x -7的立方根是 .13.小马做了一个棱长为6 cm 的正方体礼品盒,小朱说:“我做的礼品盒的体积比你的大127 cm 3”,则小朱的礼品盒的棱长为________cm.14.16的平方根与﹣8的立方根的和是_______.15.(1)填表:(2)由上表你发现了什么规律?请用语言叙述这个规律:;(3)根据你发现的规律填空:①已知33=1.442,则33 000=,30.003=;②已知30.000 456=0.076 97,则3456=.三、解答题16.求x的值:(x+3)3+27=0.17.求x的值:(2x﹣1)3﹣125=0.18.求x的值:27(x+1) 3+64=0;19.求x的值:﹣2(7﹣x)3=250.20.已知:2x+y+7的立方根是3,16的算术平方根是2x﹣y,求:(1)x、y的值;(2)x2+y2的平方根.参考答案1.答案为:A1.答案为:D.1.答案为:C.1.B1.C1.D1.C1.B1.C1.答案为:D.1.答案为:﹣0.4.1.答案为:-1.1.答案为:71.答案为:2或﹣61.填表:(2)被开方数扩大1_000倍,则立方根扩大10倍;(3)①14.42,0.144_2;②7.697.1.解:(x+3)3=-27,x+3=-3,x=-6.1.答案为:x=3;1.答案为:x=-7/3.1.答案为:x=12.1.解:(1)依题意,解得:;(2)x2+y2=36+64=100,100的平方根是±10.一天,毕达哥拉斯应邀到朋友家做客。
人教版七年级下册数学 6.2 立方根 同步练习
人教版七年级下册数学6.2 立方根 同步练习一、选择题1)A .8B .4C .2D .162、若x -6能开立方,则x 为 ( )A .6x ≥B .6x =C .6x <D .x 为一切实数3、2.078=,0.2708=,则y =( )A.0.8966 B.0.008966 C.89.66 D.0.000089664、若a ,b满足2(2)0b +-=,则ab 等于( ).A 、2B 、12C 、-2D 、-125、如果一个数的立方根等于它的算术平方根,则这个数是( )A.1B.-1C.±1D.0和1二、填空题6、一个数的立方根的相反数是,则这个数是7、计算:381264273292531+-+= 8、若=x , 则x 的取值范围是_____,若有意义,则x 的取值范围是 9、7的平方根为 ,21.1=10、2的立方等于 ,8的立方根是 ;()33- = ,-27的立方根是 三、解答题11、求x 的值:(1)33x = -81 (2)31(21)42x -=- (3)027.0)7.0(3=-x12. 求下列各式的值:(1) 364125-(2)38321+ (3) 31000 (4)327102---134x y -+的平方根是它本身,求x .y 的值. 3-x14、已知x-2的平方根是4,2x-y+2的立方根是4,求x,y 的值15、已知:x -2的平方根是±2, 2x+y+7的立方根是3,求x 2+y2的平方根.16、如果A=323+-+b a b a 为3a b +的算数平方根,B=1221---b a a 为21a -的立方根,求A+B 的平方根.17、如果A=323+-+b a b a 为3a b +的算数平方根,B=1221---b a a 为21a -的立方根,求A+B 的平方根.。
人教版数学七年级下册 立方根 同步练习
6.2 立方根班级_______ 姓名 _______一、选择题1. 下列等式成立的是( )A. 113±=B. 21613-=C. 51253-=-D. 393-=-2. 立方根等于3的数是( )A. 9B. ±9C. 27D. ±273. 若35-a 有意义,则a 的取值范围是( )A. a =5B. a ≥5C. a<5D. a 为任意数4. 若)0,0(033≠≠=+b a b a ,则下列式子成立的是 ( )A. a +b =0B. a -b =0C. a 2+b 2=0D. a 3-b 3=05.下列说法正确的是( )A. 64的立方根是2B. -3是27的立方根C. 278的立方根是32± D. (-l)2的立方根是-1 6. 下列说法正确的有( )① 对任意的数a 有33a a -=-; ② 一个数的立方根有两个;③ 一个数的立方根一定比这个数小; ④ 一个非负数的立方根,仍然是一个非负数.A. 1个B. 2个C. 3个D. 4个7. 比较2,5,37的大小,正确的是( )A. 3752<<B. 5723<<C. 5273<<D. 2753<<二、填空题8.填空:(1)3027.0-= ; (2)3833-= ; (3)3278--= .(4)364731-= ; 9. 73-=a ,则a = .10. 若(a -2)3 =216,则-a 的立方根是 .11. 已知a ,b 是两个连续的整数,且b a <<340,则a +b 的值为 .12.已知2a -1的平方根是±3,3a -b -1的立方根是2,则6a +b 的算术平方根是_____.13. (1)填表:(2)由此你发现了什么规律?用语言叙述这个规律.规律: .(3)利用你发现的规律猜想下列问题的答案. 已知442.133≈,则33000000的近似值为 ,30.003的近似值为 .三、解答题14.计算下列各题:(1 (2 (3(、15.求下列方程中x 的值:(1)2323-=-x ; (2)64(2x +1)3=8.16. 规定一种新运算“*”:a ab b b a +=*,如3*1=21133=+,试求2*4和3*(-8)的值.17.已知实数x 、y |x 2y 4|0-+=,求423x y -的立方根。
6.2 立方根 同步练习(含答案)数学人教版七年级下册
6.2 立方根一、选择题1.-64的立方根是( )A .4B .-4C .±4 D.142.估计68的立方根在( )A .2与3之间B .3与4之间C .4与5之间D .5与6之间3.下列说法正确的是( )A .一个正数的立方根有两个,它们互为相反数B .负数没有立方根C .任何一个数的立方根都是非负数D .正数有一个正的立方根,负数有一个负的立方根 4.3(-8)3的立方根是( )A .8B .-8C .2D .-25.若x 满足x =3x ,则x 的值为( )A .1B .0C .0或1D .0或±16.若3x =1.02,3xy =10.2,则y 等于( )A .1000000B .1000C .10D .100007.已知31-a =-2,则a 的平方根为( )A .2B .±2C .±3D .48.已知3x -1=x -1,则x 2-x 的值为( )A .0或1B .0或2C .0或-1D .0或±1二、填空题9.(1)18的立方根是 ;(2)计算:3-8= ;(3)若数a 的立方等于27,则a = .10.有以下四个说法:①因为(-1)3=-1,所以-1是-1的立方根;②因为43=64,所以64是4的立方根;③将2求立方与将8开立方互为逆运算;④将8求立方与将8开立方互为逆运算.其中正确的是 (填序号).11.正方体A 的体积是16 cm 3,正方体B 的体积是正方体A 体积的4倍,则正方体B 的表面积是 .12.如果一个正数a 的两个平方根是2x -2和6-3x ,则17+3a 的立方根为 ____.三、解答题13.求下列各数的立方根:(1)0.001; (2)-338;(3)-343; (4)103.14.计算: (1)3-27+(-3)2-3-1; (2)30.125+0.0121-3-0.216.15.求下列各式中x 的值:(1)x 3+1=3764; (2)(x -1)3=-216;(3)27(x +1)3+125=0.16.已知2a +1的平方根是±3,3a +2b -4的立方根是-2,求4a -5b +8的立方根.17.我们知道a+b=0时,a3+b3=0也成立,若将a看成a3的立方根,b看成b3的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数.(1)上述结论是否成立?若成立,请给出证明;若不成立,请举出一个反例;(2)若31-2x与33x-5互为相反数,求1-x的值.参考答案一、选择题1.-64的立方根是( B )A .4B .-4C .±4 D.142.估计68的立方根在( C )A .2与3之间B .3与4之间C .4与5之间D .5与6之间3.下列说法正确的是( D )A .一个正数的立方根有两个,它们互为相反数B .负数没有立方根C .任何一个数的立方根都是非负数D .正数有一个正的立方根,负数有一个负的立方根 4.3(-8)3的立方根是( D )A .8B .-8C .2D .-25.若x 满足x =3x ,则x 的值为( C )A .1B .0C .0或1D .0或±16.若3x =1.02,3xy =10.2,则y 等于( B )A .1000000B .1000C .10D .100007.已知31-a =-2,则a 的平方根为( C )A .2B .±2C .±3D .48.已知3x -1=x -1,则x 2-x 的值为( B )A .0或1B .0或2C .0或-1D .0或±1二、填空题9.(1)18的立方根是 ;(2)计算:3-8= ;(3)若数a 的立方等于27,则a = .【答案】12 -2 310.有以下四个说法:①因为(-1)3=-1,所以-1是-1的立方根;②因为43=64,所以64是4的立方根;③将2求立方与将8开立方互为逆运算;④将8求立方与将8开立方互为逆运算.其中正确的是 (填序号).【答案】①③11.正方体A 的体积是16 cm 3,正方体B 的体积是正方体A 体积的4倍,则正方体B 的表面积是 .【答案】96 cm 212.如果一个正数a 的两个平方根是2x -2和6-3x ,则17+3a 的立方根为 ____.【答案】5三、解答题13.求下列各数的立方根:(1)0.001; (2)-338; 解:30.001=0.1. 解:3-338=3-278=-32. (3)-343; (4)103.解:3-343=-7. 解:3103=10.14.计算: (1)3-27+(-3)2-3-1;解:原式=-3+3+1=1. (2)30.125+0.0121-3-0.216.解:原式=0.5+0.11+0.6=1.21.15.求下列各式中x 的值:(1)x 3+1=3764; (2)(x -1)3=-216;解:x =-34. 解:x =-5. (3)27(x +1)3+125=0.解:x =-83. 16.已知2a +1的平方根是±3,3a +2b -4的立方根是-2,求4a -5b +8的立方根. 解:由题意,得2a +1=9,3a +2b -4=-8.解得a =4,b =-8.∴4a-5b+8=64=8,38=2.∴4a-5b+8的立方根是2.17.我们知道a+b=0时,a3+b3=0也成立,若将a看成a3的立方根,b看成b3的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数.(1)上述结论是否成立?若成立,请给出证明;若不成立,请举出一个反例;解:上述结论成立.证明如下:∵a+b=0,∴b=-a.∴b3=(-a)3=-a3.∴a3+b3=a3-a3=0.即“若两个数的立方根互为相反数,则这两个数也互为相反数”是成立的.(2)若31-2x与33x-5互为相反数,求1-x的值.解:由题意得1-2x与3x-5互为相反数,即1-2x+3x-5=0.解得x=4.∴1-x=1-2=-1.。
人教版数学七年级下册 同步练习(含解析)6.2立方根同步练习6.2立方根同步练习(解析版)
6.2立方根同步练习参考答案与试题解析一.选择题1.﹣8的立方根是()A.2 B.﹣2 C.±2 D.﹣解:﹣8的立方根是:=﹣2.故选:B.2.的算术平方根是()A.2 B.±2 C.D.解:=2,2的算术平方根是.故选:C.3.下列叙述中,不正确的是()A.绝对值最小的实数是零B.算术平方根最小的实数是零C.平方最小的实数是零D.立方根最小的实数是零选D4.的立方根是()A.2 B.±2 C.4 D.±4解:=8,8的立方根是2.故选:A.5.下列说法正确的是()A.9的倒数是﹣B.9的相反数是﹣9C.9的立方根是3 D.9的平方根是3解:A、9的倒数是,故错误;B、9的相反数是﹣9,正确;C、9的立方根是,故错误;D、9的平方根是±3,故错误;故选:B.6.下列说法中,正确的是()A.任何一个数都有平方根B.任何正数都有两个平方根C.算术平方根一定大于0 D.一个数不一定有立方根解:A、任何一个数都有平方根,错误,负数没有平方根;B、任何正数都有两个平方根,正确;C、算术平方根一定大于0,错误,0的算术平方根是0;D、任何数都有立方根,故错误;故选:B.7.计算﹣的结果精确到0.01是(可用科学计算器计算或笔算)()A.0.30 B.0.31 C.0.32 D.0.33解:∵≈1.732,≈1.414,∴﹣≈1.732﹣1.414=0.318≈0.32.故选:C.8.在计算器上按键显示的结果是()A.3 B.﹣3 C.﹣1 D.1解:在计算器上依次按键转化为算式为﹣7=;计算可得结果为﹣3.故选B.9.用计算器求2014的算术平方根时,下列四个键中,必须按的键是()A.B.C.D.解:根据计算器的知识可知答案:C故选C.10.若a、b均为正整数,且a>,b>,则a+b的最小值是()A.6 B.7 C.8 D.9解:∵9<11<16,∴3<<4,而a>,∴正整数a的最小值为4,∵8<9<27,∴2<<3,而b,∴正整数b的最小值为3,∴a+b的最小值是3+4=7.故选:B.二.填空题11.﹣3的相反数是3;的立方根是.解:﹣3的相反数是3;∵=,∴的立方根是.故答案为:3、.12.约等于:10.3(精确到0.1).解:=10.344…≈10.3.故答案为:10.3三.解答题13.已知m+2的算术平方根是4,2m+n+1的立方根是3,求m﹣n的平方根.解:由题意得,,解得:故可得m﹣n=16,m﹣n的平方根是±4.14.按要求填空:(1)填表:a0.00040.044400(2)根据你发现规律填空:已知:=2.638,则=26.38,=0.02638;已知:=0.06164,=61.64,则x=3800.解:(1)=0.02,=0.2,=2,=20;(2)==2.638×10=26.38,==2.638×10﹣2=0.02638;∵=0.06164,=61.64,61.64=0.06164×10﹣3∴x=3800.故答案为:0.02、0.2、2、20;26.38、0.2638;3800.15.已知一个正数x的平方根是3a+2与2﹣5a.(1)求a的值;(2)求这个数x的立方根.解:(1)∵一个正数x的平方根是3a+2与2﹣5a.∴(3a+2)+(2﹣5a)=0,∴a=2.(2)当a=2时,3a+2=3×2+2=8,∴x=82=64.∴这个数的立方根是4.16.(1)用计算器计算:=3=33=333=3333(2)观察题(1)中各式的计算结果,你能发现什么规律?(3)试运用发现的规律猜想:=33333,并通过计算器验证你的猜想.解:(1)=3,=33,=333,=3333;故答案为:3,33,333,3333;(2)根据以上可以得出:根号内被开方数是2n个数字1和n个数字2的差,结果为n个数字3;(3)试运用发现的规律可得:=33333.故答案为:33333.17.已知实数x、y满足,求2x﹣的立方根.18.请根据如图所示的对话内容回答下列问题.(1)求该魔方的棱长;(2)求该长方体纸盒的长.解:(1)设魔方的棱长为xcm,可得:x3=216,解得:x=6.答:该魔方的棱长6cm.(2)设该长方体纸盒的长为ycm,6y2=600,y2=100,y=10.答:该长方体纸盒的长为10cm.。
七年级数学下册《立方根》练习题及答案
七年级数学下册《立方根》练习题及答案一、单选题1.下列说法正确的是( )A .负数有一个平方根B .14是0.5的一个平方根C .82的平方根是8D .﹣8的立方根是﹣22.有理数-8的立方根为( )A .-2B .2C .±2D .±4 3.下列说法中不正确...的是( ) A .-1的平方是1 B .-1的立方是-1C .-1的平方根是-1D .-1的立方根是-14.下列说法不正确的是( )A .0的平方根是0B .1的算术平方根是1C .﹣1的立方根是±1D .4的平方根是±25.下列说法中不正确的是( )A .9的算术平方根是3B .两直线平行,内错角相等C .27的立方根是3±D .对顶角相等 6.下列各式中计算正确的是( )A 2(9)-9B 255±C 22(1)1-=-D .3(2)2-=- 7.下列说法正确的是( )A .4的平方根是2B .1的算术平方根是±1C .-1的立方根是-1D .8的立方根是±2 8.下列说法错误的是( )A .一个正数的算术平方根一定是正数B .一个数的立方根一定比这个数小C .一个非零的数的立方根仍然是一个非零的数D .负数没有平方根,但有立方根 9.的算术平方根是( ) A .2 B . 2 C . D .10.下列等式成立的是( )A 42-=B 393C 11=D 164=±二、填空题11.64的立方根是_______.12.16的平方根是___________ 16的立方根是____________. 13.0.001-的立方根是__________.14.若3125x =,则x =____________ 336x =,则x =____________,若33(4)x =-,则x =____________.15.已知|x-2|+410y -, 3x y +________.三、解答题16.求出该方程中x 的值: (1)32732(1)2x -= (2)()2351480x +-=17.求x 的值:(1)33270x +=(2)2(5)16x -=.18.已知:37x y ++的立方根是3,25的算术平方根是2x y -,求:(1)x 、y 的值(2)22xy +的平方根.19.计算:2327-420.求下列等式中x 的值(1) 22500x -=(2)3(21)8x -=-参考答案1.D2.A3.C4.C5.C6.A7.C8.B9.C10.C11.412. ±4 31613.-0.114. 5 6 -4 1531216.(1)74x = (2)35x =或1x =-17.(1)9x =-9x =或1x =18.(1)x =5 y =5 (2219.220.(1)5x =± (2)12x =-.。
人教版七年级下第六章实数(立方根)同步练习题含答案
人教版七年级下第六章实数(立方根)同步练习题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列各式中,无意义的是( )A B C D 2.若一个数的立方根是-15,则该数为( )A B .-1125 C .D .±11253( ) A .6B .7C .8D .9 4.下列命题不是真命题的是( )A .0.3是0.09的平方根B .(-2)2的算术平方根是-2CD .已知a ||a5( )A .12.17B .±1.868C .1.868D .﹣1.8686m 的最小正整数值为( )A .5B .6C .7D .87.一个数的平方根与立方根相等,这样的数有( ).A .1个B .2个C .3个D .无数个8.|3|a b --互为相反数,则点(,)M a b 关于x 轴对称点的坐标为( ) A .(15,12)- B .(15,12)- C .(12,15) D .(12,15)-二、填空题9.若x ,y 都是实数,且8y =,则3x y +的立方根是______. 10.求一个数a 的平方根的运算,叫做_________.( a 叫做_________)平方与开平方互逆运算.一个数的算术平方根等于它本身,这个数是_________.110.1260≈0.2714≈0.5848≈ 1.260≈ 2.714≈______≈_______.12.(1)一般地,如果____________,即____________,那么这个数x 叫做a 的平方根或____________,非负数a 的平方根记为____________.(2)一个正数有____________个平方根,它们____________;0有____________平方根,它的平方根是____________;负数____________平方根.132x ﹣1=0,则x =_____.三、解答题14.下列计算结果正确吗?说说你的理由.(19.5;(2231≈.15.计算:.16.用计算器求下列各式的值:17.观察下表,回答问题:(1)表格中x =_________________,y =_________________;(2)用一句话描述你发现的规律:_________________;(3)根据你发现的规律填空:2.714≈≈≈,=_________________;②58.48,则=a _________________.18.已知:6x -和314x +是a 的两个不同的平方根,22y +是a 的立方根.(1)求x ,y ,a 的值;(2)求14x -的平方根.19.求下列各式中的x 的值49x 2﹣16=020.已知m A =3m n ++算术平方根,2m B -=4620m n +-的21.求下列各式中的x .(1)4x 2﹣16=0;(2)23(x ﹣2)3=18. 22.如图,以直角三角形AOC 的直角顶点O 为原点,以OC ,OA 所在直线为x 轴和y 轴建立平面直角坐标系,点()0,A a ,(),0C b 80b -=.(1)点A 的坐标为(______,______);点C 的坐标为(_______,______);(2)已知坐标轴上有两动点P ,Q 同时出发,P 点从C 点出发沿x 轴负方向以每秒2个单位长度的速度匀速移动,Q 点从O 点出发沿y 轴正方向以每秒1个单位长度的速度匀速移动,点P 到达O 点整个运动随之结束. AC 的中点D 的坐标是()4,3,设运动时间为t 秒.是否存在这样的t ,使得三角形ODP 与三角形ODQ 的面积相等?若存在,请求出t 的值:若不存在,请说明理由.(3)在(2)的条件下,若DOC DCO ∠=∠,点G 是第二象限中一点,并且y 轴平分GOD ∠.点E 是线段OA 上一动点,连接CE 交OD 于点H ,当点E 在线段OA 上运动的过程中,探究GOA ∠,OHC ∠,ACE ∠之间的数量关系,并证明你的结论(三角形的内角和为180).参考答案:1.C【分析】根据二次根式的被开方数是非负数判断即可.【详解】解:A.原式3==,故该选项不符合题意;B.原式3=-,故该选项不符合题意;C.原式=9-是负数,二次根式无意义,故该选项符合题意;D.原式=故选:C.【点睛】本题考查了二次根式有意义的条件,立方根,掌握二次根式的被开方数是非负数是解题的关键.2.B【解析】略3.B【详解】解:∵9<11<16,∵34,∵第一个数的最小值为4,∵8<9<27,∵23,∵第二个数的最小值为3,∵两数之和的最小值是3+4=7.故选:B.【点睛】本题考查实数的估算,熟练掌握平方根和立方根的估算方法是解题的关键.4.B【分析】利用有关的性质、定义及定理分别对每个小题判断后即可确定正确的选项.【详解】解:A、0.3是0.09的平方根,是真命题;B、()224-=,4的算术平方根是2,是假命题;C、2-D、已知a a=,是真命题;故选:B.【点睛】本题考查了命题与定理的知识,解题的关键是理解有关的定义、定理及性质.5.C【分析】此题首先熟悉开平方的按键顺序,然后即可利用计算器求平方根,并保留四个有效数字..故选C.【点睛】此题主要考查了利用计算器求算术平方根,注意有效数字的定义:在一个近似数中,从左边第一个不是0的数字起,到精确到末位数止,所有的数字,都叫这个近似数字的有效数字.6.A80m是完全平方数,求出即可.【详解】解:∵80m>0,80m是完全平方数,∵80×5=400=202,∵m的最小正整数值为:5,故选:A.【点睛】本题考查了对算术平方根的应用,注意:a(a≥07.A【分析】一个数的平方根与立方根相等的只有0.【详解】解:一个数的平方根与立方根相等的只有0.故选A.【点睛】本题考查平方根和立方根的概念,熟记这些概念才能求解.8.A--=,再根据二次根式及绝对值的非a b30负性得出关于a、b的方程,求出即可得出M的坐标,再根据关于x轴对称点的坐标的特征求解即可.【详解】|3|a b --互为相反数,30a b --=,290,30a b a b ∴-+=--=,解得15,12a b ==,(15,12)M ∴∴点M 关于x 轴对称点的坐标为(15,12)-,故选:A .【点睛】本题考查了相反数的定义,二次根式及绝对值的非负性,关于x 轴对称点的坐标的特征,熟练掌握知识点是解题的关键.9.3【分析】根据被开方数大于等于0列式求出x 的值,然后求出y 的值,代入代数式求解,再根据立方根的定义解答.【详解】解:根据题意得,x -3≥0且3-x≥0,解得x≥3且x≤3,所以x=3,y=8,x+3y=3+3×8=27,∵x+3y 的立方根为3.故答案为:3.【点睛】本题考查二次根式的被开方数是非负数,立方根的定义,根据x 的取值范围求出x 的值是解题的关键.10. 开平方 被开方数 0或1【解析】略11. 5.848, 12.60【分析】根据被开方数小数点向右每移3位,立方根的小数点向右移1位,据此可得答案.【详解】解:0.5848,5.848;1.260,12.60,故答案为:5.848,12.60.【点睛】本题主要考查立方根,解题的关键是掌握被开方数小数点向右每移3位,立方根的小数点向右移1位.12.一个数x的平方等于a2x a=二次方根两互为相反数一个0没有【分析】(1)根据平方根的定义得出即可;(2)根据平方根的性质得出即可.【详解】解:(1)一般地,如果一个数x的平方等于a,即2x a=,那么这个数x叫做a的平方根或二次方根,非负数a的平方根记为(2)一个正数有两个平方根,它们互为相反数;0有一个平方根,它的平方根是0;负数没有平方根.故答案为:一个数x的平方等于a;2x a=;二次方根;0;没有【点睛】本题考查了平方根,主要考查学生的理解能力和记忆能力.13.0或﹣1或﹣122x+1,根据一个数的立方根等于它本身得到这个数是0或1或-1,由此化成一元一次方程,解方程即可得到答案.【详解】2x﹣1=0,2x+1,∵2x+1=1或2x+1=﹣1或2x+1=0,.解得x=0或x=﹣1或x=﹣12故答案为:0或﹣1或﹣1.2【点睛】此题考查立方根的性质,解一元一次方程,由立方根的性质得到方程是解题的关键. 14.(1)错,理由见解析;(2)错,理由见解析.【分析】(1)根据算术平方根定义求出9.52的值,再比较即可;(2)根据立方根的定义求出2313的值,再比较即可.【详解】解:(1)∵9.52=90.25,又∵90.25和8955不接近,不正确;(2)∵2313=12326391,又∵12326391和12345不接近,不正确.【点睛】本题考查了对算术平方根和立方根定义的应用,能理解算术平方根和立方根的定义是解此题的关键.15.(1)3-(2)2【分析】(1)分别求解算术平方根与立方根,再合并即可;(2)先化简二次根式,绝对值,再合并即可.(1)40.2453.80.83(2)2332=-2【点睛】本题考查的是算术平方根,立方根的含义,化简绝对值,二次根式的加减运算,掌握以上基础运算是解本题的关键.16.(1)99(2)8.78【分析】在计算器中输入所求式子即可.(1)99(2)8.78=【点睛】本题考查计算器的开方运算.能够准确使用计算器是解题的关键.17.(1)0.1,10;(2)在开立方运算中,被开方数的小数点向右或向左移动3位,它的立方根的小数点就相应地向右或向左移动1位;(3)∵0.2714;∵200000【分析】根据立方根的被开方数扩大1000倍,立方根扩大10倍,可得答案.【详解】解:(1)根据题意,则立方根的被开方数扩大1000倍,立方根扩大10倍;∵0.1x =,10y =;故答案为:0.1;10.()2在开立方运算中,被开方数的小数点向右或向左移动3位,它的立方根的小数点就相应地向右或向左移动1位;(3)0.2714≈;0.5848,∵1001000.584858.48⨯=,58.48≈,100≈=∵200000a =;故答案为:∵0.2714;∵200000.【点睛】本题考查了立方根的应用,注意被开方数扩大1000倍,立方根扩大10倍是解题的关键.18.(1)x =-2,y =1,a =64;(2)1-4x 的平方根为3±.【分析】(1)根据正数的两个平方根互为相反数列方程求出x 的值,再求出a ,然后根据立方根的定义求出y 即可;(2)先求出1-4x,再根据平方根的定义解答.(1)解:由题意得:(x-6)+(3x+14)=0,解得,x=-2,所以,a=(x-6)2=64;又∵2y+2是a的立方根,∵2y,∵y=1,即x=-2,y=1,a=64;(2)由(1)知:x=-2,所以,1-4x=1-4×(-2)=9,所以,1493x,即:1-4x的平方根为3±.【点睛】本题考查了立方根,平方根,算术平方根的定义,是基础题,熟记概念是解题的关键,要注意准确计算.19.x=4 7±【分析】直接移项,整理后,直接开平方求出x的值即可.【详解】解:49x2﹣16=0,解得:x=47±;【点睛】本题主要考查了平方根,正确把握平方根的求法.201=-【分析】由算术平方根与立方根的含义可得方程组2{233m nm n-=-+=,再解方程组求解,m n的值,从而可得答案.【详解】解:根据题意得:2{233m nm n-=-+=,解得:42mn⎧=⎨=⎩,∵39m n++=,46208m n+-=,∵3A=;2B=,∵1B A-=-,1=-【点睛】本题考查的是算术平方根与立方根的含义,二元一次方程组的解法,理解题意,求解42mn⎧=⎨=⎩是解本题的关键.21.(1)2x=±;(2)x=5.【分析】(1)直接利用开方法解一元二次方程即可;(2)直接利用求立方根的方法解方程即可.【详解】解:(1)∵ 24160x -=,∵2416x =,∵24x =∵2x =±(2)∵()322183x -=, ()332182x -=⨯, ∵()3227x -=∵23x -=∵x =5【点睛】本题主要考查利用平方根与立方根解方程,解题的关键在于能够熟练掌握平方根与立方根的定义.22.(1)0,6;8,0(2)存在 2.4t =时,使得ODP 与ODQ 的面积相等(3)2GOA ACE OHC ∠+∠=∠,证明见解析【分析】(1)利用非负数的性质求出a ,b ,即可得出结论;(2)先表示出OQ ,OP ,利用面积相等,建立方程求解即可得出结论;(3)先判断出∵OAC =∵AOD ,进而证明OG ∥AC ,过点H 作HF OG ∥交x 轴于点F ,求出∵FHC =∵ACE ,∵FHO =∵GOD ,即可得出结论.(1)解:点()0,A a ,(),0C b 80b -=,2080a b b -+=⎧∴⎨-=⎩,解得68a b =⎧⎨=⎩, ()()0,68,0A C ∴、,故答案为:0,6;8,0;(2)解:由(1)知,()0,6A ,()8,0C ,∵6,8OA OC ==,由运动知,OQ t =,2PC t =,∵82OP t =-∵()4,3D , ∵114222ODQ D S OQ x t t =⨯=⨯=△, ()1182312322ODP D S OP y t t =⨯=-⨯=-△, ∵ODP 与ODQ 的面积相等,∵2123t t =-,解得 2.4t =,∵存在 2.4t =时,使得ODP 与ODQ 的面积相等;(3)解:2GOA ACE OHC ∠+∠=∠,理由如下:∵x y ⊥轴,∵90AOC DOC AOD ∠=∠+∠=,∵90OAC ACO ∠+∠=,又∵DOC DCO ∠=∠,∵OAC AOD ∠=∠,∵y 轴平分GOD ∠,∵GOA AOD ∠=∠,∵GOA OAC ∠∠=,∵OG AC ∥,如图,过点H 作HF OG ∥交x 轴于点F ,∵HF AC ∥,∵FHC ACE ∠=∠,∵OG FH ∥,∵GOD FHO ∠=∠,∵GOD ACE FHO FHC ∠+∠=∠+∠,即GOD ACE OHC ∠+∠=∠,∵2GOA ACE OHC ∠+∠=∠.【点睛】本题考查了坐标与图形,非负数的性质,三角形的面积公式,角平分线的定义,平行线的判定和性质,正确作出辅助线是解本题的关键.。
七年级下数学立方根练习题含答案
七年级下数学立方根练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 下列命题中,是真命题的是( )A.√9的算术平方根是3B.5是25的一个平方根C.(−4)2的平方根是−4D.64的立方根是±42. −27的立方根是( )A.3B.−3C.9D.−93. 计算√273的结果是( )A.±3√3B.3√3C.±3D. 34. 立方根等于它本身的有( )A.0,1B.−1,0,1C.0D.15. 如图是马小虎同学的答卷,他的得分应是( )A.80B.60C.40D.206. 若√x 3+√y 3=0,则x 与y 的关系是( )A.x =y =0B.x =yC.x 与y 互为相反数D.x 与y 互为倒数7. 已知√8.9663=2.078,√y 3=0.2708,则y =( )A.0.8966B.89.66C.0.008966D.0.000089668. (620−√2002)3的结果(保留三位有效数字)是( )A.1.90×108B.1.9×108C.1.91×108D.以上答案都不对9. 下列说法中,正确的是( )A.−2是−4的平方根B.1的立方根是1和−1C.−2是(−2)2的算术平方根D.2是(−2)2的算术平方根10. 下列各数互为相反数的是( )A.−2与B.−2与C.|−2|与2D.与11. −64的立方根是________.12. 用计算器计算(结果精确到0.01).(1)√4.225≈________;(2)√68923≈________.13. 用计算器计算:√13−3.142≈________(结果保留三个有效数字).14. 当k <0时,随着k 的增大,它的立方根随着________.15. 求一个正数的立方根,有些数可以直接求得,如√83=2,有些数则不能直接求得,如√93,但可以利用计算器求得,还可以通过一组数的内在联系,运用规律求得,请同学观察下表:≈6,运用你发现的规律求√216000003=________.16. 已知√20203≈12.64,√202.03≈5.867 ,√20.203≈2.723;则 √2020003≈________.17. 若√x 3=−35,则x =________;若√|x|3=6,则x =________.18.的倒数是________;=________.19. 计算√−273的结果为________.20. 若√52b+1和√a −13都是5的立方根,则a =________,b =________.21. 解方程:(3x −1)3+64=0.22. 求下列式子中x 的值.(1)12(x −2)2=825;(2)64(x +1)3+125=0.23. 已知√x −23+2=x ,且√3y −13与√1−2x 3互为相反数,求x ,y 的值.24. 用计算器求下列各式的值(精确到0.001).(1)√7653;(2)√0.4262553;(3)−√7233.25. 解方程:(1)3(x −1)3=24;(2)x x+2−1=1x−2.26. 某居民生活小区需要建一个大型的球形储水罐,需储水13.5立方米,那么这个球罐的半径r 为多少米(球的体积V =43πr 3,π取3.14,结果精确到0.1米)?27. 计算:(2+√3)(2−√3)+(2+√3)2.28. 一个底面的长为25cm ,宽为16cm 的长方体玻璃容器中装满了水,现小明从这个长方体玻璃容器中打水,然后装进另一个正方体储水容器,当正方体容器装满水时,长方体容器的水面下降了20cm .(1)求正方体储水容器装满水时水的体积.(2)求正方体储水容器的棱长(容器的厚度忽略不计)29. 用计算器比较大小,A =√25.4,B =√38.83.30. 求出下列式子中的x :(2x −1)3+8=031. 计算:(−1)2018+|2−√5|−√83.32. 求x 的值:14x 3+3=5.33. 求式子x 3=32768中x 的值.34. 计算:(1)√32+42;(2)√81+√−273+√(−23)2;(3)|√2−√3|+2√2−√3;(4)−√(−2)2+√214+√(−1)813.35. 用计算器计算(精确到0.01)(1)3√2−2√3(2)√3×√2+√5−π2.36. 计算下列各式.(1)|√2−√3|+√83+2(√3−1).(2)若x ,y 为实数,且y =√1−4x +√4x −1+12,求x ⋅y 的算术平方根.37. (1)填表:(2)由上表发现什么规律?请用语言叙述这个规律. 37.(3)根据你发现的规律填空: ①已知√33=1.442,则√30003=________,√0.0033=________;②已知√0.0004563=0.07697,则√4563=________.38. 计算:(1)√1−925;(2)4√3−2(1−√3)+√(−2)2;(3)√83+√0+√4;(4)√2+3√2−5√2.39. 计算:√−83+√(−1)2+√25.40. 已知第一个立方体纸盒的棱长是6厘米,第二个立方体纸盒的体积比第一个立方体纸盒的体积大127立方厘米,求第二个纸盒的棱长.参考答案与试题解析七年级下数学立方根练习题含答案一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】B【考点】命题与定理平方根算术平方根立方根【解析】此题暂无解析【解答】此题暂无解答2.【答案】B【考点】立方根的性质【解析】此题暂无解析【解答】此题暂无解答3.【答案】D【考点】立方根的应用【解析】此题暂无解析【解答】此题暂无解答4.【答案】B【考点】立方根的性质【解析】此题暂无解析【解答】此题暂无解答5.A【考点】平方根相反数绝对值近似数和有效数字立方根【解析】此题暂无解析【解答】此题暂无解答6.【答案】C【考点】立方根的实际应用【解析】此题暂无解析【解答】此题暂无解答7.【答案】C【考点】立方根的实际应用【解析】此题暂无解析【解答】此题暂无解答8.【答案】A【考点】计算器—数的开方【解析】此题暂无解析【解答】此题暂无解答9.【答案】D【考点】立方根的性质【解答】此题暂无解答10.【答案】A【考点】立方根的性质【解析】此题暂无解析【解答】此题暂无解答二、填空题(本题共计 10 小题,每题 3 分,共计30分)11.【答案】−4【考点】立方根的应用【解析】此题暂无解析【解答】此题暂无解答12.【答案】2.06;19.03.【考点】计算器—数的开方【解析】此题暂无解析【解答】此题暂无解答13.【答案】0.464【考点】计算器—数的开方【解析】此题暂无解析【解答】此题暂无解答14.【答案】增大【考点】立方根的实际应用【解答】此题暂无解答15.【答案】278.5【考点】立方根的应用【解析】此题暂无解析【解答】此题暂无解答16.【答案】58.67【考点】立方根的应用【解析】此题暂无解析【解答】此题暂无解答17.【答案】−27,±216125【考点】立方根的性质【解析】此题暂无解析【解答】此题暂无解答18.【答案】∼4,3【考点】立方根的性质【解析】此题暂无解析【解答】此题暂无解答19.【答案】−3【考点】立方根的性质【解析】此题暂无解析【解答】此题暂无解答20.【答案】6,1【考点】立方根的实际应用【解析】此题暂无解析【解答】此题暂无解答三、 解答题 (本题共计 20 小题 ,每题 10 分 ,共计200分 )21.【答案】解:原方程可化为:(3x −1)3=−64,开立方,得3x −1=−4,解得x =−1.【考点】立方根的性质【解析】此题暂无解析【解答】此题暂无解答22.【答案】解:(1)(x −2)2=1625,x −2=±45,x 1=145,x 2=−65. (2)(x +1)3=−12564,x +1=−54, x =−94.【考点】立方根平方根【解析】23.【答案】解:∵ √x −23+2=x ,即√x −23=x −2,∴ x −2=0或1或−1,解得:x =2或3或1,∵ √3y −13与√1−2x 3互为相反数,即√3y −13+√1−2x 3=0, ∴ x =2时,y =43;当x =3时,y =2;当x =1时,y =23.【考点】立方根的实际应用立方根的性质【解析】此题暂无解析【解答】此题暂无解答24.【答案】解:(1)√7653≈9.1457≈9.146;(2)√0.4262553≈0.7525≈0.753;(3)−√7233≈−0.6726≈−0.673.【考点】计算器—数的开方【解析】此题暂无解析【解答】此题暂无解答25.【答案】方程整理得:(x −1)3=8,开立方得:x −1=2,解得:x =3;去分母得:x 2−2x −x 2+4=x +2,解得:x =23,经检验x =23是分式方程的解.【考点】解分式方程立方根的性质【解析】26.【答案】πr3=13.5,解得r≈1.5.解:根据球的体积公式,得43故这个球罐的半径r为1.5米.【考点】立方根的实际应用【解析】此题暂无解析【解答】此题暂无解答27.【答案】解:原式=8+4√3.【考点】计算器—数的开方【解析】此题暂无解析【解答】此题暂无解答28.【答案】长方体中打出的水的体积为25×16×20=8000(cm3),故正方体储水容器装满水时水的体积为8000cm3.3=20,∵√8000∴正方体储水容器的棱长为20cm.【考点】立方根的性质【解析】此题暂无解析【解答】此题暂无解答29.【答案】3≈3.39,解:∵√25.4≈5.04,√38.8而5.04>3.39,3,∴√25.4>√38.8∴A>B.【考点】计算器—数的开方【解析】此题暂无解析【答案】解:(2x−1)3=−8 2x−1=−2x=−1 2【考点】立方根的应用【解析】此题暂无解析【解答】此题暂无解答31.【答案】√5−3【考点】计算器—数的开方【解析】此题暂无解析【解答】此题暂无解答32.【答案】∵14x3+3=5,∴14x3=2,则x3=8,∴x=2.【考点】立方根的性质【解析】此题暂无解析【解答】此题暂无解答33.【答案】解:x3=32768,开立方得:x=32.【考点】立方根的实际应用【解析】此题暂无解析【答案】解:(1)原式=√9+16=5.(2)原式=9−3+23=623.(3)原式=√3−√2+2√2−√3=√2.(4)原式=−2+32−1=−3+32=−32.【考点】立方根的应用实数的运算算术平方根绝对值【解析】此题暂无解析【解答】此题暂无解答35.【答案】解:(1)原式≈3×1.414−2×1.732≈0.78;(2)原式≈1.732×1.414+2.236−3.142÷2≈3.11.【考点】计算器—数的开方【解析】此题暂无解析【解答】此题暂无解答36.【答案】解:(1)|√2−√3|+√83+2(√3−1)=√3−√2+2+2√3−2=3√3−√2;(2)由题意得,1−4x≥0,4x−1≥0,解得,x=14,则y=12,故xy=18,则x⋅y的算术平方根是√24.立方根的应用实数的运算算术平方根绝对值【解析】此题暂无解析【解答】此题暂无解答37.【答案】0.01,0.1,1,10,100(2)被开方数的小数点每向右(或向左)移动3位,立方根的小数点就相应的向右(或向左)移动1位.14.42,0.1442,7.697【考点】立方根的实际应用【解析】此题暂无解析【解答】此题暂无解答38.【答案】解:(1)原式=√1625=45.(2)原式=4√3−2+2√3+2=6√3.(3)原式=2+0+2=4.(4)原式=−√2.【考点】立方根的应用实数的运算算术平方根合并同类项【解析】此题暂无解析【解答】此题暂无解答39.【答案】解:原式=−2+1+5=4.【考点】立方根的应用算术平方根【解析】此题暂无解析【解答】此题暂无解答40.【答案】解:∵第一个立方体的体积是63=216,∴第二个立方体的体积是216+127=343,∴第二个立方体的棱长是343的立方根,即棱长为7厘米.【考点】立方根的实际应用【解析】此题暂无解析【解答】此题暂无解答。
人教版七年级下册数学6.2 立方根 同步测试03含答案
(1) 3 -125 ;(2) 3 0.064 ;(3) 3 61 -1 . 125
17.已知
a,b
互为相反数,c,d
互为倒数,m
的倒数等于它本身,求
cd m2
+
(a
+ b)m
-
m
的立方根.
18.一个正方体木块的体积是 125cm3,现将它锯成 8 块同样大小的正方体小木块,再把这
8 13.将一个长、宽、高分别为 9cm , 8cm , 3cm 的长方体铁块融化后制成一个正方体,则 该正方体的边长为_______ cm .
14.若 3 x2 + 4 与 3 1 - 2 y 互为相反数,则 x2 - 2 y 的值为______.
ቤተ መጻሕፍቲ ባይዱ
15.(规律探究题)若 3 3 ≈1.442, 3 30 ≈3.107,则 3 0.03 ≈_____, 3 0.003 ≈____.
③如果
,那么 x=-2. ④算术平方根等于立方根的数只有 1.
A.1
B.2
4.下列结论正确的是( )
A. 的立方根是
C.3
D.4
B. 没有立方根
C.有理数一定有立方根
D.
的立方根是-1
5.若 x<0,则 x2 - 3 x3 等于( )
A.x
B.2x
C.0
6.下列说法正确的是( )
A.一个数的立方根有两个,它们互为相反数
些小正方体排列成一个如图所示的长方体,求这个长方体的表面积.
参考答案
1.B 2.D 3.A 4.C 5.D 6.D 7.B 8.D 9.B 10.D 11.>
3
12.
七年级下册数学同步练习题库:立方根(简答题:一般)
立方根(简答题:一般)1、计算:(1)(2)2、计算:(1)(π-3)0+(-)- 1(2)+3、计算(1)(2)4、解下列方程:(1)4x2﹣16=0;(2)(x﹣1)3=﹣125.5、求下列各式中的:(1)4x2=81;(2)(x+1)3-8=0.6、填表:7、已知一个正数的平方根是a+3和2a-18,求这个正数的立方根.8、如果a是100的算术平方根,b为125的立方根,求的平方根.9、已知M=是m+3的算术平方根,N=是n﹣2的立方根,试求M﹣N的值.10、依照平方根(二次方根)和立方根(三次方根)的定义可给出四次方根、五次方根的定义:①如果x4=a(a≥0),那么x叫做a的四次方根;②如果x5=a,那么x叫做a的五次方根.请依据以上两个定义,解决下列问题:(1)求81的四次方根;(2)求-32的五次方根;(3)求下列各式中未知数x的值:①x4=16;②100000x5=243.11、求下列各式中x的值: (1) 4(x+2)2﹣5=11 (2) (x﹣2)3+27=012、已知2a﹣1的平方根是±3,3a+b﹣1的立方根是4,求a+b的平方根.13、求下列各式中x的值:(1)(x+2)2-36=0; (2)64(x+1)3=27.14、已知3x+1的算术平方根是4,x+2y的立方根是-1,(1)求x、y的值; (2)求2x-5y的平方根.15、求下列各式中x的值:(1)(2)16、已知2x+y+7的立方根是3,16的算术平方根是2x﹣y,求:(1)x、y的值;(2)x2+y2的平方根.17、求下列各等式中x的值.(1)=9;(2)=" -" 9.18、求下列各式中的x的值:19、求x值:(1)5(x﹣1)2=125 (2)2x3=54.20、解下列方程:(1)(2x﹣1)2 =16 (2)(x﹣1)3+27=0;21、解方程(1)(x+1)2﹣1=24 (2)125x3+343=022、解下列方程(1)3(2)3(2x+1)3+24=023、(1)计算:;(2)已知:,求.24、求下列各式中的(1); (2) (2x+10)=-27.25、已知3a+b﹣1的立方根是3,2a+1的算术平方根是5,求a+b的平方根.26、求下列各式中x的值:(1);(2)27、我们知道时,也成立,若将看成的立方根,看成的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数.(1)试举一个例子来判断上述猜测结论是否成立;(2)若与互为相反数,求的值.28、解方程(1);(2)29、解下列方程.(1)(2)30、(1)已知是有理数且满足:是-27的立方根,,求的值;(2)已知,求的值.31、已知2a一1的平方根是±5,3a+b﹣1的立方根是4,求a+2b+10的平方根.32、解下列方程.(1)(2)33、解方程(1) (x+5)2=16,求x; (2)34、计算和解方程(1)(2)(3);(4)(5). (6)(2x-3)2=3635、已知一个正方体的体积是1000Cm³,现在要在它的8个角上分别截去8个大小相同的小正方体,使截去后余下的体积是488Cm³,问截得的每个小正方体的棱长是多少?36、计算:(1)(2)37、计算:38、下面是某位同学进行实数运算的全过程,其中错误有几处?请在题中圈出来,并直接写出正确答案. 计算:.39、计算:.40、计算:41、计算(1);(2)42、计算:43、计算:(1);(2)44、计算:.45、计算:﹣(π﹣1)0﹣()﹣1.46、一个正数的两个平方根分别是2a-5与1-a,b-7的立方根是-2.求(1)a,b的值;(2)a+b的算数平方根.47、(1);(2)(3);(4)48、(1)计算:(2) 解方程:49、求下列各式中的x的值:(1)(2x-1)2= 25 (2)3(x-4)3= -37550、计算:(1)(2)51、计算:(1)(2).52、己知2a-1的平方根是±3,3a+2b+4的立方根是3,求a+b的平方根.53、解方程:(1)3(x﹣2)2=27(2)2(x﹣1)3+16=0.54、已知2a-1的平方根是±3,3a-b+2的算术平方根是4,求a+3b的立方根.55、计算:(1)计算:;(2)求式中x的值:;56、已知某数的平方根是和,的立方根是,求的平方根.57、求下列各式中的x的值.(1)(3x+2)2=16;(2)58、计算:.59、已知:,,求代数式的值.60、(1)、计算:(2)、解方程:61、求下列各式中x的值.(1)=﹣8;(2)﹣9=0.62、求下列各式中的实数x(1)(x+1) 2-9=0;(2)(x+10)=-27;63、解方程(1)8 x3+125=0 (2)64(x+1)2-25=064、求下列各式中的x(1)4x2-16=0(2)27(x-3)3=-6465、求下列方程中x的值(1)9x2﹣16=0(2)(﹣2+x)3=﹣216.66、已知2a﹣1的算术平方根是5,a+b﹣2的平方根是±3,c+1的立方根是2,求a+b+c的值.67、已知2a﹣1的平方根是±3,3a+b﹣1的立方根是2,求2a﹣b的平方根.68、求式子中x的值:(1)25(x+2)2﹣36=0;(2)(2x+1)3+1=0.69、求下列x的值.(1)2x3=﹣16 (2)(x﹣1)2=4.70、(1)制作一个表面积为12平方分米的正方体纸盒,棱长应为多少分米?(2)如果2a-1的平方根是±3,3a+2b+4的立方根是3,求a+b的平方根.参考答案1、(1);(2)02、(1)-1(2)3、(1)-5(2)4、(1)x=±2;(2)x=﹣4.5、(1)x=±;(2) x=1.6、填表见解析7、48、±.9、2.10、(1)±3.(2)-2.(3)①;②.11、(1)x="0,x=-4" ;(2)x=-1.12、±13、(1)x=4或x=-8 ;(2)x=-.14、(1)x=5,y=-3;(2)±5.15、(1),;(2).16、(1)x=6,y=8;(2)±10.17、(1)4或—2 ;(2)—218、(1);(2)-2.19、(1)x1=6,x2=﹣4,(2)x=3.20、(1)x=2.5,x=" -1.5" ;(2)x= -221、(1)=4,=-6, (2) x=22、(1);(2)23、(1);(2)或24、(1)±;(2)x=﹣.25、±226、(1)x=±4;(2)x=-327、(1)举例见解析;(2)-1.28、(1)x=3;(2) x=+129、(1) x=4或x=−4(2) x=−2.30、(1)(2)031、±(或 ±)32、(1) x=4或x=−4(2) x=−2.33、x=−1534、(1)-;(2);(3);(4);(5)x="1" ;(6)x=或x=35、截得的每个小正方体的棱长是4cm.36、(1)0(2)37、138、4处,错误位置见解析,正确答案是39、540、241、(1)0;(2)+2-π42、243、(1)8;(2)144、245、3.46、(1)a=4,b=-1;(2)47、(1)-2;(2);(3);(4)48、(1)-1 (2)x=449、(1)x ₁="3,x" ₂=-2;(2)x=-150、(1)(2)951、(1)8;(2)52、a+b的平方根为53、(1)x=5或﹣1.(2)x=﹣1.54、255、(1)-1+(2)x=±56、±2.57、(1)x=或x=﹣2;(2)x=58、59、1360、(1)、1;(2)、x=-61、(1)﹣1;(2).62、(1)、x=2或-4;(2)、x=-1363、(1)x=-(2)64、(1) ±2 (2)65、(1)x=±(2)x=﹣466、1867、±468、x=﹣或x=﹣;x=﹣1.69、70、(1)、分米,(2)、±3.【解析】1、试题分析:分别进行开平方、开立方的运算,然后合并即可得出答案.试题解析:(1)原式=﹣1﹣﹣=﹣1﹣=﹣.(2)原式=2﹣2﹣+=0.2、原式=1-2=-1.原式 .3、(1)==(2)===4、试题分析:(1)根据平方根的定义计算即可;(2)根据立方根的定义计算即可.试题解析:(1)4x2=16,x2=4,x=±2;(2)x﹣1=﹣5,x=﹣4.5、试题分析:(1)先变形为x2=,然后根据平方根的定义求的平方根即可;(2)先变形得到(x-1)3=8,然后根据立方根的定义求解.试题解析:(1)∵x²=,∴x=±;(2)(x−1) ³=8,∴x−1=2,∴x=3.6、试题分析:(1)根据相反数的性质,相反数等于它本身的数只能是0;(2)根据绝对值的性质解答.非负数的绝对值是它本身;(3)根据倒数的定义可知,±1的倒数等于它本身;(4)根据平方的性质解答;(5)根据立方的性质解答;(6)-1没有平方根,1的平方根是±1,0的平方根是0;(7)由于一个非负数的正的平方根,即为这个数的算术平方根.所以结果必须为正数,算术平方根等于它本身的数是只能是0和1,由此即可求解;(8)直接利用立方根的性质得出符合题的答案;(9)根据负整数的定义可知;(10)根据绝对值的性质解答,一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.试题解析:填表如下7、分析:根据平方根的和为零,可得一元一次方程,根据解方程,可得a的值,根据平方运算,可得这个数,根据开立方运算,可得答案.本题解析:由题意得:a+3+2a-18=0,∴a=5.∴这个正数的一个平方根是:a+3=8,∴原数=64,∵,∴这个数的立方根是4.点睛:本题主要考查实数的平方根和实数的立方根,根据平方根的性质解出的值,则可确定这个正数的值,再求出其立方根即可.8、试题分析:先根据算术平方根、立方根的定义求得a、b的值,再代入所求代数式即可计算.解:∵a是100的算术平方根,b为125的立方根,∴a=10,b=5,∴a2+4b+1=121,∴=11,∴的平方根=±.【点评】此题主要考查了算术平方根的定义、立方根的定义.解题时注意对的平方根的理解.要双重开平方.9、试题分析:根据算术平方根及立方根的定义,求出M、N的值,代入可得出M﹣N的平方根.解:因为M=是m+3的算术平方根,N=是n﹣2的立方根,所以可得:m﹣4=2,2m﹣4n+3=3,解得:m=6,n=3,把m=6,n=3代入m+3=9,n﹣2=1,所以可得M=3,N=1,把M=3,N=1代入M﹣N=3﹣1=2.考点:立方根;算术平方根.10、(1)∵(±3)4=81,∴81的四次方根是±3.(2)∵(-2)5=-32,∴-32的五次方根是-2.(3)①;②原式变形为x5=0.00243,∴.11、【分析】(1)变形为(x+2)2=4,再根据平方根的定义得到x-2=±2然后解两个一次方程即可;(2)变形为(x﹣2)3=-27,根据立方根的定义得到x-2=-3,然后解一次方程即可.【详解】(1) 4(x+2)2﹣5=11,4(x+2)2="11" +5,4(x+2)2=16,(x+2)2=4,x+2=±2,x=0或x=-4;(2) (x﹣2)3+27=0,(x﹣2)3=-27,x﹣2=-3,x=-1.【点睛】本题考查了利用平方根定义、立方根解方程,解题的关键是熟练应用这两个定义进行解答.12、试题分析:根据平方根可求出2a-1=9,根据立方根可求出3a+b-1=64,然后解方程求出a、b的值即可. 试题解析:解:∵2a﹣1的平方根是±3,∴2a﹣1=9,∴a=5,∵3a+b﹣1的立方根是4,∴3a+b﹣1=64,∴b=50,∴a+b=55,∴a+b的平方根是.点睛:此题主要考查了立方根和平方根的意义的应用,关键是根据平方根,求出2a-1=9,根据立方根求出3a+b-1=64,转化为解方程得问题解决.13、试题分析:(1)先移项,再开平方法进行解答;(2)先系数化为1,再开立方法进行解答.试题解析:(1)(x+2)2-36=0,(x+2)2=36,x+2=±6,x=4或x=-8;(2)64(x+1)3=27,(x+1)3=,x+1=,x=-.14、试题分析:(1)先根据算术平方根的意义可得出3x+1=16,解得x=5,再根据立方根的意义可得x+2y=-1,把代入可求出y=-3,(2)把x=5, y=-3,代入2x-5y计算求值,再根据平方根的意义求平方根.试题解析:(1)因为3x+1的算术平方根是4,所以3x+1=16,解得x=5,又因为x+2y的立方根是-1,所以x+2y=-1,即5+2y=-1,解得y=-3,所以x=5, y=-3.(2)因为x=5, y=-3,所以2x-5y=2×5-5×(-3)=25,因为5的平方是25, -5的平方是25,所以25的平方根是5和-5,15、试题分析:(1)先将常数项移动到等号的右边,然后根据平方根的意义进行解答,(2)先将等式两边同时除以8,然后再根据立方根的意义开立方运算,最后解方程求出x的值.试题解析:(1),,因为4的平方是16, -4的平方是16,所以或.(2),,所以,,解得,.点睛:本题主要考查开平方和开立方求值问题,学生要熟练掌握平方根和立方根的概念,能够熟练的进行开方运算.16、试题分析:(1)根据立方根和平方根的定义列方程求解;(2)先求x2+y2,再求它的平方根,注意正数的平方根有两个,且互为相反数.试题解析:(1)根据题意得,解得即x=6,y=8.(2)由(1)得x=6,y=8,所以x2+y2=62+82=100,则x2+y2的平方根是±10.17、试题分析:(1)根据平方根的定义先求出x-1,再求出x.(2)先整理成x3=a的形式,再直接开立方解方程即可.试题解析:(1)∵(x-1)2=9∴x-1=±3,∴x=4或x=-2.(2)(x-1)3=-27∴x-1=-3∴x=-2.18、试题分析:(1)先算算术平方根,再系数化为1,再根据平方根即可解答;(2)先系数化为1,再根据立方根即可解答.试题解析:(1)4(2x-1)2=,4(2x-1)2=9,(2x-1)2=,2x-1=±,解得x1=-,x2=;(2)8(x3+1)=-56,x3+1=-7,x3=-8,x=-2.19、试题分析:(1)方程两边同时除以5后,利用平方根的定义解方程即可;(2)方程两边同时除以2后,利用立方根的定义解方程即可.试题解析:(1)(x﹣1)2=25x﹣1=±5x-1=5或x-1=-5∴x1=6,x2=﹣4(2)x3=27x=320、试题分析:(1)直接开平方即可得解;(2)先移项,再开立方即可得解.试题解析:(1)(2x﹣1)2 =16,2x-1=±4,∴2x=5,2x=-3,x=2.5,x=" -1.5" ;(2)(x﹣1)3+27=0;(x﹣1)3=-27,x-1=-3,x=-2.21、分析:(1)化成(x+1)²=25的形式,推出x+1=±5,求出即可;(2)推出,两边开立方求出即可.本题解析:(1)(x+1)2﹣1=24,(x+1)²=25,x+1=±5,=4,=-6.(2) 125+343=0,125="-343" , =, x=,故方程的解为:x=。
2022-2023学年人教版七年下学期数学6.2立方根同步练习
6.2立方根同步练习一、选择题1.8的立方根是()A. ±2B.±4C.2D.42. 下列 各式计算正确的是()A. −32=9B.√9=±3C.√(−3)2=3D.√−273=33. 下列说法正确的是()A. -1是1的平方根B.-1是1的算术平方根C.-1是1的立方根D.-1没有立方根4.下列说法正确的是()A.6−√5的整数部分是4B.两个实数的和一定是实数C.-4是√16的平方根D.立方根等于本身的数是0和15.若一个正数m 的两个平方根分别是3a+2和a -10,则m 的立方根为()A.-4B.4C.-2D.26.下列说法正确的是()A.-2是-4的平方根B.2是(−2)2的算术平方根C.(−2)2的平方根是2D.8的立方根是±27.若√33=1.442,√0.33=0.6694,那么√300×643等于()A.57.68B.115.36C.26.776D.53.5528. 一个正方体的体积为63,则它的棱长a 的取值范围是()A.3<a<4B.4<a<5C.7<a<8D.8<a<99. 若x ,y 都是实数,且y =√x −3+√3−x +8,x+3y 的立方根是()A.27B.-27C.3D.-310. 下面给出的结论中,①立方根等于算术平方根的是0;②在同一个平面内,经过一点可以画一条直线和已知直线平行;③√a 2=a ;④若a 2=9,则a=3;⑤邻补角的两条角平分线构成一个直角;⑥经过一个已知点只能画一条直线和已知直线垂直;⑦若a ∥b ,a ⊥c ,那么b ⊥c ;⑧±4是√16的平方根,其中不正确的说法有()A. 4个B. 5个C.6个D.7个二、填空题1.8的立方根为x ,4是y+1的一个平方根,则x -y=_______.2. 已知2x -1的算术平方根是5,则5x -1的立方根是________.3. 若(x −1)3=8, 则x 的值是________.4. 已知√2.14≈1.463,√21.4≈4.626,√0.2143≈0.5981,√2.143≈0.289,若√x ≈46.26,则x =_____;若√y 3≈−5.981,则y =_______.5. 若x -2的平方根是±2,y+7的立方根是2,则x 2+y 2的算术平方根是______.6. 如果√a =3,则√a −173=________.7. 若√a 3=−5,则a=_______。
人教版七年级下册实数立方根同步练习(含答案)
立方根同步练习一.选择题(共10小题)1.平方根和立方根都是本身的数是()A.0B.1C.±1D.0和±12.的立方根是()A.8B.2C.±8D.±43.-8的立方根与4的平方根的和是()A.0B.0或4C.4D.0或-44.下列计算正确的是()A.B.C.D.5.下列说法正确的是()A.的立方根是±0.5B.-49的平方根是±7C.11的算术平方根是D.(-1)2的立方根是-16.在下列式子中,正确的是()A.B.C.D.7.若a2=16,,则a+b的值是()A.12B.12或4C.12或±4D.-12或4 8.在实数范围内,下列判断正确的是()A.若|m|=|n|,则m=n B.若a2>b2,则a>bC.若,则a=b D.若,则a=b9.下列说法①2是8的立方根;②±4是64的立方根;③是的立方根;④(-4)3的立方根是-4,其中正确的说法有()个.A.1B.2C.3D.410.下列运算中:,错误的个数有()A.1个B.2个C.3个D.4个二.填空题(共7小题)11.的立方根是12.的算术平方根是13.已知2a-1的平方根是±3,则7+4a的立方根是14.下面是一个简单的数值运算程序,当输入x的值为16时,输出的数值为.(用科学计算器计算或笔算).15.若的整数部分为2,则满足条件的奇数a有个.16.2x-9立方根等于-3,-x+7的平方根是.17.已知a2=16,,且ab<0,则.三.解答题(共7小题)18.计算:19.已知2x-1的算术平方根是3,的立方根是-1,求代数式2x+y的平方根.20.已知是m+3的算术平方根,是n-2的立方根,求:M-N的值的平方根.21.已知互为相反数,且x-6的平方根是它本身,求x+y的值.22.已知x的两个不同的平方根分别是a+3和2a-15,且,求x,y的值.23.一个底面的长为25cm,宽为16cm的长方体玻璃容器中装满了水,现小明从这个长方体玻璃容器中打水,然后装进另一个正方体储水容器,当正方体容器装满水时,长方体容器的水面下降了20cm.(1)求正方体储水容器装满水时水的体积.(2)求正方体储水容器的棱长(容器的厚度忽略不计)24.下面是巧求立方根的问题,请你阅读理解后直接填空:(1)由103=1000,1003=1000000,你能确定59319的立方根是位数(2)由59319的个位数是9,你能确定59319的立方根的个位数是(3)如果划去59319后面的三位319得到数59,而33=27,43=64,由此你能确定59319的立方根的十位数是,因此59319的立方根是;(4)现在换一个数148877,按照上面的方法它的立方根是位数,它的立方根的个位数是,148877的立方根是参考答案1-5:ABDCC 6-10:ABCCD13、14、215、316、317、918、±419、220、21、互为相反数,∴y-1=2y-3,解得:y=2,∵x-6的平方根是它本身,∴x-6=0,解得:x=6,∴x+y=2+6=8.22、x=49,y=1723、:(1)长方体中打出的水的体积为25×16×20=8000(cm3),故正方体储水容器装满水时水的体积为8000cm3.(2)正方体储水容器的棱长为20cm24、两;3;53。
人教版七年级下册数学6.2 立方根 同步练习试卷含答案
6.2立方根同步练习一.选择题1.13的立方根是()A.±B.C.±D.2.下列语句正确的是()A.一个数的平方等于它本身,则这个数是0,1,﹣1B.平方根等于本身的数是1C.立方根等于本身的数是1D.算术平方根等于本身的数是0和13.下列说法中正确的是()A.9的平方根是3B.的平方根是±4C.8的立方根是±2D.0的立方根是04.已知=1﹣a2,则a的值为()A.±B.0或±1C.0D.0,±1或±5.计算:4(3x+1)2﹣1=0、﹣2=0的结果分别为()A.x=±,y=±B.x=±,y=C.x=﹣,y=D.x=﹣或﹣,y=6.已知一个正数的两个平方根分别是3a+1和a+11,这个数的立方根为()A.4B.3C.2D.07.某工厂计划修建一个体积为70m3的正方体水池,则其棱长应为()A.m B.7m C.m D.10m 8.一个自然数的立方根为a,则下一个自然数的立方根是()A.a+1B.C.D.a3+19.下列计算中错误的是()A.=6B.﹣=﹣4C.﹣=﹣3D.﹣=﹣0.110.有一个数值转换器,流程如下:当输入x的值为64时,输出y的值是()A.2B.C.D.二.填空题11.的立方根是.12.的算术平方根为.13.设a2=(﹣3)2,b3=(﹣3)3,则a+b的所有可能的值为.14.已知a的平方根是±3,b的立方根是﹣2,则a+b的平方根为.15.已知≈1.2639,≈2.7629,则≈.三.解答题16.解方程(1)(2x+1)2=;(2)3x3=.17.已知A=是2x﹣y+4的算术平方根,B=是y﹣3x的立方根,试求A+B的平方根.18.如图,这是由8个同样大小的立方体组成的魔方,体积为8cm3.(1)这个魔方的棱长为.(2)图中阴影部分是一个正方形,求出阴影部分的周长.参考答案1.D 2.D 3.D 4.D 5.D6.A 7.C 8.C 9.C 10.C11.12.13.0或﹣614.±115.﹣0.1263916.解:(1)(2x+1)2=,∴2x+1=±,解得x=或﹣;(2)3x3=,x3=,解得x=.17.解:由题意得:,方程组整理,得,,②﹣①,得3y=3,解得y=1,把y=1代入①,得x﹣1=2,解得x=3,∴A==,B==,∴A+B=3﹣2=1,∴A+B的平方根为:.18.解:(1)=2(cm).故这个魔方的棱长是2cm.故答案为:2cm.(2)∵魔方的棱长为2cm,∴小立方体的棱长为1cm,∴阴影部分是正方形,其边长为:=(cm),∴出阴影部分的周长4cm.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立方根(选择题:一般)1、如果一个实数的平方根与它的立方根相等,则这个数是()A.0 B.正实数 C.0和1 D.12、下列选项正确的是()A.任何一个数都有平方根 B.立方根等于平方根的数是1 C.算术平方根一定大于0 D.任何正数都有两个平方根3、8的立方根是 ( )A.2 B.±2 C. D.4、下列计算正确的是A.=4 B. C. D.5、下列说法中,错误的是()A.4的算术平方根是±2 B.的平方根是±3C.8的立方根是2 D.立方根等于-1的实数是-16、下列说法正确的是()A.负数没有立方根B.如果一个数有立方根,那么它一定有平方根C.一个数有两个立方根D.一个数的立方根与被开方数同号7、x是9的平方根,y是64的立方根,则x+y的值为()A.3 B.7 C.3,7 D.1,78、的绝对值是()A.﹣4 B.4 C.﹣ D.9、的立方根是()A.-1B.0C.1D.±110、估计68的立方根的大小在()A.2与3之间B.3与4之间C.4与5之间D.5与6之间11、(2014山东威海)若a3=-8,则a的绝对值是() A.2B.-2C.D.12、在等式x3=125中,求x的值需用的运算是()A.开平方B.开立方C.平方D.立方13、要使成立,则a的取值范围是()A.a≤4B.a≤-4C.a≥4D.一切实数14、下列说法正确的是()A.64的立方根是B.是的立方根C.D.立方根等于它本身的数是0和115、下列计算正确的是()A.B.C.D.16、下列说法正确的是()A.0没有立方根B.一个数的立方根有两个C.一个数的立方根一定比这个数小D.一个非零的数的立方根仍然是一个非零的数17、若,则x等于()A.27B.9C.3D.±2718、的值是()A.-8B.-6C.-4D.-219、如果,,则() A.0.2872B.28.72C.2.872D.0.0287220、使用某种电子计算器求+的近似值,其按键顺序正确的是 () A.8+2ndF6=B.8+2ndF6=C.8+6=D.8+6=21、下列说法正确的是()A.36的平方根是±6 B.-3是的算术平方根C.8的立方根是±2 D.3是-9的算术平方根22、x是(﹣3)2的平方根,y是64的立方根,则x+y=()A.3 B.7 C.3,7 D.1,723、一个立方体的体积为64,则这个立方体的棱长的算术平方根为()A.±4 B.4 C.±2 D.224、是的平方根,是27的立方根,则-的值为()A.0 B.-6 C.0 或-6 D.0或 -325、下列各组数中,互为相反数的是()A.-2与 B.-2与-C.-2与 D.-2与26、下列说法正确的是()A.a的平方根是± B.a的立方根是 C.的平方根是0.1 D.=-327、下列各式化简结果为无理数的是().A. B. C. D.28、下列各数中,界于6和7之间的数是()29、下列各式中,正确的是( ).A. B.C. D.30、下列说法正确的是()A.a的平方根是±B.a的立方根是C.的平方根是0.1D.31、下列计算或说法:①±3都是27的立方根;②=a;③的立方根是2;④=±4,其中正确的个数是()A.1个 B.2个 C.3个 D.4个32、﹣27的立方根是()A.﹣3 B.+3 C.±3 D.±933、下列说法不正确的是()A.的平方根是B.-9是81的一个平方根C.0.2的算术平方根是0.04D.-27的立方根是-334、若一个有理数的平方根与立方根是相等的,则这个有理数一定是()A.0 B.1 C.0或1 D.0和±135、在下述的四个说法中:(1)、﹣27的立方根是3;(2)、49的算术平方根为±7;(3)、的立方根为;(4)、的平方根为.正确的说法的个数是()A.1 B.2 C.3 D.436、下列说法不正确的是( )A.4是16的算术平方根 B.是的一个平方根C.(-6)2的平方根-6 D.(-3)3的立方根-337、64的立方根是( )A.±8 B.±4 C.8 D.438、有如下命题:①负数没有立方根;②一个实数的立方根不是正数就是负数;③一个正数或负数的立方根与这个数同号;④如果一个数的立方根是这个数本身,那么这个数是1或0.其中错误的是()A.①②③ B.①②④ C.②③④ D.①③④39、下列说法中不正确的是()A.﹣1的立方根是﹣1 B.0的平方根与立方根相等C.﹣4的平方根是±2 D.每个数都有一个立方根40、若一个有理数的平方根与立方根是相等的,则这个有理数一定是()A.0 B.1 C.0或1 D.0和±141、若与是同类项,则的立方根是()A. B. C. D.42、(2015秋•绍兴校级期中)下列计算正确的是()A.=±2 B.﹣42=16 C.=﹣2 D.87=5643、(2010•烟台)﹣8的立方根为()A.2 B.﹣2 C.±2 D.±444、下列说法正确的是()A.8的立方根是2B.-4的平方根是-2C.16的平方根是4D.1的立方根是±145、-8的立方根是()A.±2 B.2 C.-2 D.2446、下列说法正确的是()A.没有平方根B.=C.的平方是2D.立方根等于本身的数是0和 147、下列说法中,错误的是()A.9的算术平方根是3 B.C.27的平方根是 D.立方根等于的实数是48、有下列说法:①每一个正数都有两个立方根;②零的平方根等于零的算术平方根;③没有平方根的数也没有立方根;④有理数中绝对值最小的数是零.正确的个数是()A.1 B.2 C.3 D.449、下列各式正确的是A.=±6 B. C.=-6 D.50、下列判断中,错误的有()①0的绝对值是0;②是无理数;③4的平方根是2;④1的倒数是.A.1个 B.2个 C.3个 D.4个51、立方根等于它本身的数有()个.A.1 B.2 C.3 D.452、(3分)化简:=()A.±2 B.﹣2 C.2 D.53、下列计算正确的是()A. B.= C. D.54、下列语句正确的是()A.如果一个数的立方根是这个数的本身,那么这个数一定是零;B.一个数的立方根不是正数就是负数;C.负数没有立方根;D.一个数的立方根与这个数同号,零的立方根是零。
55、立方根等于3的数是()A.9 B.±9 C.27 D.±2756、(2010山东烟台)-8的立方根是()A.2B.-2C.D.57、下列说法正确的是( )A.64的立方根是B.是的立方根C.D.立方根等于它本身的数是0和158、下列等式成立的是( )A.B.C.D.59、一块正方体的水晶砖,体积为100cm3,它的棱长大约在( )A.4cm~5cm之间B.5cm~6cm之间C.6cm~7cm之间D.7cm~8cm之间60、(2010江苏南京)如图,下列各数中,数轴上点A表示的可能是( )A.4的算术平方根B.4的立方根C.8的算术平方根D.8的立方根61、立方根等于3的数是( )A.9B.±9C.27D.±2762、要使成立,则a的取值范围是( )A.a≤4B.a≤-4C.a≥4D.一切实数63、(2014山东威海)若a3=-8,则a的绝对值是( )A.2B.-2C.D.64、如果,,则( ) A.0.2872B.28.72C.2.872D.0.0287265、下列说法正确的是( )A.0没有立方根B.一个数的立方根有两个C.一个数的立方根一定比这个数小D.一个非零的数的立方根仍然是一个非零的数66、估计68的立方根的大小在( )A.2与3之间B.3与4之间C.4与5之间D.5与6之间67、的立方根是( )A.B.C.D.68、( )A.±2B.2C.-2D.不存在69、(2014山东潍坊)的立方根是( )A.-1B.0C.1D.±170、下列语句正确的是( )A.如果一个数的立方根是这个数本身,那么这个数一定是0 B.一个数的立方根不是正数就是负数C.负数没有立方根D.一个不为零的数的立方根和这个数同号,0的立方根是0参考答案1、A2、D3、A4、A5、A6、D7、D8、B9、C10、C11、A12、B13、D14、C15、A16、D17、A18、C19、A20、A21、A22、D23、D24、C25、D26、B27、B.28、B29、A30、B31、B32、A33、C34、A35、A36、C37、D38、B39、C40、A.41、A42、C43、B44、A.45、C46、C47、C48、B49、D50、C51、C.52、C.53、C54、D55、C56、B57、C58、C59、A60、C61、C62、D63、A64、A65、D66、C67、A68、C69、C70、D【解析】1、试题分析:根据立方根和平方根的性质可知,只有0的立方根和它的平方根相等,解决问题.解:0的立方根和它的平方根相等都是0;1的立方根是1,平方根是±1,∴一个实数的平方根与它的立方根相等,则这个数是0.故选A.考点:立方根;平方根.2、因为负数没有平方根,所以A选项错误,因为立方根等于平方根的数是0,所以B选项错误,因为0的算术平方根等于0,所以C选项错误,因为正数的平方根有两个,它们互为相反数,所以D选项正确,故选D.3、∵64的算术平方根是8,8的立方根是2,∴这个数的立方根是2.故选A.4、试题解析:B、原式=,故B错误;C、原式=-4,故C错误;D、原式=22×()2=4×3=12,;故选A.5、A. 4的算术平方根是2,故A错误,与要求相符;B.=9,9的平方根是±3,故B正确,与要求不相符;C. 8的立方根是2,故C正确,与要求不相符;D. 立方根等于−1的实数是−1,故D正确,与要求不相符。
故选:A.6、试题分析:任何数都有且只有一个立方根,负数的立方根为负数,正数的立方根为正数,零的立方根为零;只有非负数有平方根.考点:(1)、立方根;(2)、平方根7、试题分析:根据平方根的定义求出x,立方根的定义求出y,然后相加计算即可得解.解:∵x是9的平方根,∴x=±3,∵y是64的立方根,∴y=4,所以,x+y=3+4=7,或x+y=(﹣3)+4=1.故选D.【点评】本题考查了平方根和立方根的定义,是基础题,熟记概念是解题的关键.8、试题分析:根据开立方,可得立方根,根据负数的绝对值是它的相反数,可得答案.解:=﹣4,的绝对值是4,故选:B.【点评】本题考查了实数的性质,利用了绝对值的性质:负数的绝对值是它的相反数,非负数的绝对值是它本身.9、∵,1的立方根是1,故选C.10、因为43<68<53,所以68的立方根的大小在4与5之间.11、∵a3=-8,∴a=-2,-2的绝对值是2,故选A.12、125是X的立方,所以求X要开立方13、∵a取任意实数时均有成立,故成立时,a取任意实数都可以.14、64的立方根是,故A错误;∵,∴是的立方根,故B错误;立方根等于它本身的数是0、1和-1,故D错误.15、负数的立方根还是负数.16、0的立方根是0;一个数的立方根只有一个;大于0且小于1的数的立方根比它本身更大,如的立方根是,而就大于;一个数的立方根和它本身的符号相同.17、x的值就是3的立方,即是27.18、因为43=64,所以.19、一个正数的立方根,被开方数扩大(或缩小)1000倍,立方根扩大(或缩小)10倍,据此可推出选项A正确.20、根据无理数运算中计算器的使用法则可知,是先按,再按8,是先按2ndf键,再按,再按6.故本题正确答案为A.21、A选项,∵,∴36的平方根是是正确的;B选项,∵是的平方根,但不是算术平方根,∴B选项说法错误;C选项,∵,∴不是8的立方根,∴C选项说法错误;D选项,∵负数没有平方根,∴D选项说法错误;故选A.22、试题解析:∵x是(−3)2的平方根,y是64的立方根,∴x=±3,y=4则x+y=3+4=7或x+y=-3+4=1.故选D.23、∵立方体的体积为64,∴它的棱长=,∴它的棱长的平方根为:.故选D.24、∵,是的平方根,是27的立方根,∴,,∴或.故选C.25、A. 都是−2,故A错误;B. 都是−2,故B错误;C. 只有符号不同的两个数互为相反数,故C错误;D. 只有符号不同的两个数互为相反数,故D正确;故选:D.26、试题解析:A、当a≥0时,a的平方根为±,故A错误;B、a的立方根为,本B正确;C、=0.1,0.1的平方根为±,故C错误;D、=|-3|=3,故D错误,故选B.27、试题分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.,,是有理数,是无理数.故选:B.考点:无理数;零指数幂.28、试题分析:根据,,可知,,因此可得6<<7.故选:B考点:二次根式的估算29、试题分析:根据立方根的性质可知:,故正确;根据平方根的性质知,故B不正确;根据二次根式的性质可知,,故不正确.故选:A考点:平方根与立方根30、解:A、当a≥0时,a的平方根为±,故A错误;B、a的立方根为,本B正确;C、=0.1,0.1的平方根为±,故C错误;D、=|﹣3|=3,故D错误,故选:B.31、试题分析:根据立方根的定义得到﹣3是27的立方根,=a,可对①②进行判断,先计算,=,然后根据立方根的定义对③④进行判断.解:﹣3是27的立方根,所以①错误;由于=a,所以②正确;=8,8的立方根为2,所以③正确;==4,所以④错误.故选B.32、试题分析:利用立方根定义计算即可得到结果.解:﹣27的立方根是﹣3,故选A33、试题分析:一个正数的平方根有两个,他们互为相反数;正的平方根是这个数的算术平方根;一个正数有一个正的立方根;一个负数有一个负的立方根.考点:(1)、平方根;(2)、立方根34、试题分析:0的平方根是0,0的立方根是0,则0的平方根和立方根相等;﹣1没有平方根;1的平方根是±1,1的立方根是1;所以只有0的平方根和立方根相等.考点:(1)、立方根;(2)、平方根35、试题分析:一个正数的平方根有两个,它们互为相反数,正的平方根是这个数的算术平方根;一个负数有一个负的立方根;一个正数有一个正的立方根.(1)、-27的立方根为-3;(2)、49的算术平方根为7;(3)、的立方根为;(4)、的平方根为±.考点:(1)、平方根;(2)、立方根36、试题分析:A、因为42=16,所以4是16的算术平方根,正确;B、因为,所以的平方根是±,所以是的一个平方根,正确;C、(-6)2=36,36的平方根是±6,此项错误;D、(-3)3的立方根-3正确.故选C.点睛:本题考查了算术平方根,平方根和立方根的定义,熟练掌握概念是解题的关键.37、试题分析:根据=64,则64的立方根为4.考点:立方根的计算.38、试题分析:①根据立方根的定义即可判定;②根据立方根的性质即可判定;③根据立方根的性质即可判定;④根据立方根的性质即可判定.解:①负数有立方根,故错误;②一个实数的立方根是正数、0、负数,故错误;③一个正数或负数的立方根与这个数同号,故正确;④如果一个数的立方根是这个数本身,那么这个数是±1或0,故错误.故选B.考点:立方根.39、试题分析:根据立方根和平方根的知识点进行解答,一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根,任何实数都有立方根.解:A、﹣1的立方根是﹣1,本结论正确,B、0的平方根与立方根都是0,本结论正确,C、负数没有平方根,本结论错误,D、每个数都有一个立方根,本结论正确,故选C.考点:立方根;平方根.40、试题分析:分别求出0、1、﹣1的平方根和立方根,再得出答案即可.解:∵0的平方根是0,0的立方根是0,∴0的平方根和立方根相等,∵﹣1没有平方根,1的平方根是±1,1的立方根是1,∴只有0的平方根和立方根相等,故选A.考点:立方根;平方根.41、试题分析:同类项是指所含的字母完全相同,且相同字母的指数也完全相同的单项式.根据同类项的定义可得:m-n=4,2m+n=2,则m=2,n=-2,则m-3n=2-3×(-2)=8,则8的立方根为2,即(m-3n)的立方根为2.考点:(1)、同类项的定义;(2)、立方根的计算42、试题分析:原式各项计算得到结果,即可做出判断.解:A、原式=2,错误;B、原式=﹣16,错误;C、原式=﹣2,正确;D、原式=8×8×8×8×8×8×8=2097125,错误.故选C.考点:立方根;有理数的乘方;算术平方根.43、试题分析:如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.解:∵﹣2的立方等于﹣8,∴﹣8的立方根等于﹣2.故选B.考点:立方根.44、试题解析:A、8的立方根是2,正确;B、-4没有平方根,错误;C、16的平方根是±4,错误;D、1的立方根是1,错误.故选A.考点:1.立方根;2.平方根.45、试题解析:-8的立方根是-2.故选C.考点:立方根.46、试题分析:原式利用算术平方根,平方根,以及立方根的定义判断即可.A、(-4)2=16,16有平方根,错误;B、,错误;C、的平方是2,正确;D、立方根等于本身的数是0,-1,1,错误.故选C考点:立方根;平方根;算数平方根.47、试题分析:一个正数的平方根有2个,且他们互为相反数;负数的立方根只有1个.C、27的平方根为:±3.考点:(1)、平方根;(2)、立方根48、试题分析:(1)根据立方根的性质,每一个正数都有一个立方根,故说法错误;(2)根据平方根的定义,零的平方根等于零的算术平方根,故说法正确;(3)根据平方根、立方根的定义,没有平方根的数也有立方根,故说法错误;(4)根据绝对值的定义,有理数中绝对值最小的数是零,故说法正确.故(2)和(4)正确,共2个.故选B考点:立方根,平方根,绝对值49、试题分析:因为=6,所以A错误;因为,所以B错误;因为,所以C错误;因为,所以D正确;故选:D.考点:算术平方根、立方根.50、试题分析:①、正确;②、是有理数,则错误;③、4的平方根是±2,则错误;④、1的倒数是1,则错误.即错误的有3个.考点:绝对值、无理数、平方根、倒数51、试题分析:立方根等于它本身的数有0、1、-1共3个.故选C.考点:立方根.52、试题分析:=2.故选C.考点:立方根.53、试题分析:因为,所以A错误;因为=9,所以B错误;因为,所以C正确;因为,所以D错误;故选;C.考点:实属的运算.54、立方根等于本身的数有1、-1和0,故A错;0的立方根是0,故B错;负数有立方根,故C错.55、∵33=27,∴27的立方根是3.56、负数的立方根是一个负数.因为(-2)3=-8,所以-8的立方根是-2.57、64的立方根是,故A错误;∵,∴是的立方根,故B错误;立方根等于它本身的数是0、1和-1,故D错误.58、∵(-5)3=-125,∴-125的立方根是-5,故选C.59、设正方体棱长为xcm,则x3=100,∴,∵64<100<125,∴,∴选A.60、观察数轴发现:点A在2与3之间,因此可排除选项A和D;再由4的立方根小于2排除选项B.所以选C.61、∵33=27,∴27的立方根是3.62、∵a取任意实数时均有成立,故成立时,a取任意实数都可以.63、∵a3=-8,∴a=-2,-2的绝对值是2,故选A.64、一个正数的立方根,被开方数扩大(或缩小)1000倍,立方根扩大(或缩小)10倍,据此可推出选项A正确.65、0的立方根是0;一个数的立方根只有一个;大于0且小于1的数的立方根比它本身更大,如的立方根是,而就大于;一个数的立方根和它本身的符号相同.66、因为43<68<53,所以68的立方根的大小在4与5之间.67、∵,∴的立方根是.68、因为(-2)3=8,所以.69、∵,1的立方根是1,故选C.70、立方根等于本身的数有1、-1和0,故A错;0的立方根是0,故B错;负数有立方根,故C错.。