2004年高考数学试题(重庆理)及答案
2007年高考试题——数学理(重庆卷)
cba2007年普通高等学校招生全国统一考试数学 (重庆理)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. (1)若等差数列{n a }的前三项和93=S 且11=a ,则2a 等于( ) A .3 B.4 C. 5 D. 6【答案】:A【分析】:由3133339S a d d =+=+=可得 2.d =21 3.a a d ∴=+= (2)命题“若12<x ,则11<<-x ”的逆否命题是( )A .若12≥x ,则1≥x 或1-≤x B.若11<<-x ,则12<x C.若1>x 或1-<x ,则12>x D.若1≥x 或1-≤x ,则12≥x 【答案】:D【分析】:其逆否命题是:若1≥x 或1-≤x ,则12≥x 。
(3)若三个平面两两相交,且三条交线互相平行,则这三个平面把空间分成( )A .5部分 B.6部分 C.7部分 D.8部分 【答案】:C【分析】:可用三线,,a b c 表示三个平面,如图,将空间分成7个部分。
(4)若nxx )1(+展开式的二项式系数之和为64,则展开式的常数项为( )A.10B.20C.30D.120【答案】:B【分析】:662166264 6..n r r r r rr n T C x x C x ---+=⇒=⇒=⋅= 346620320.r r T C ⇒-=⇒=∴==(5)在ABC ∆中,,75,45,300===C A AB 则BC =( )A.33-B.2C.2D.33+ 【答案】:A 【分析】:003,45,75,AB A C ===由正弦定理得:3,sin sin sin 45sin 7564a c BCABA C =⇒==+3BC ∴=-(6)从5张100元,3张200元,2张300元的奥运预赛门票中任取3张,则所取3张中至少有2张价格相同的概率为( )A .41 B .12079 C . 43 D .2423 【答案】:C【分析】:可从对立面考虑,即三张价格均不相同,11153231031.4C C C P C ⇒=-= (7)若a 是1+2b 与1-2b 的等比中项,则||2||2b a ab+的最大值为( )A.1552 B.42 C.55 D.22【答案】:B【分析】:a 是1+2b 与1-2b 的等比中项,则222214414||.a b a b ab =-⇒+=≥1||.4ab ∴≤2224(||2||)4|| 1.a b a b ab+=+-=2||2||ab a b∴=≤=+ ==11||4,4||ab ab ≤∴≥4=(8)设正数a,b 满足4)(22lim =-+→b ax x x , 则=++--+∞→nn n n n b a ab a 2111lim ( ) A .0 B .41 C .21D .1【答案】:B 【分析】:221()44242.2lim x a x ax b a b a b b →+-=⇒+-=⇒=∴=11111()()122.11124()2()22lim lim lim n n n n n n nn n n n a a a a a ab b b a ab a b a +--→∞→∞→∞+++∴===+++ (9)已知定义域为R 的函数f(x)在),8(+∞上为减函数,且函数y=f(x+8)函数为偶函数, 则( )A.f(6)>f(7)B.f(6)>f(9)C.f(7)>f(9)D.f(7)>f(10) 【答案】:D【分析】:y=f(x+8)为偶函数,(8)(8).f x f x ⇒+=-+即()y f x =关于直线8x =对称。
2006年高考数学试卷(重庆卷.理)含详解
2006年普通高等学校招生全国统一考试(重庆卷)数学试题卷(理工农医类)一、选择题:本大题共10小题,每小题5分。
在每小题给出的四个备选项中,只有一项是符合题目要求的。
(1)已知集合{}{}{}5,4,3,7,5,4,2,7,6,5,4,3,2,1===B A U ,则()()U UA B ⋃痧=( )(A ){}6,1 (B ){}5,4 (C ){}7,5,4,3,2 (D ){7,6,3,2,1}(2)在等差数列{}n a 中,若4612a a +=,n S 是数列的{}n a 的前n 项和,则9S 的值为( ) (A )48 (B)54 (C)60 (D )66(3)过坐标原点且与圆2254202x y x y +-++=相切的直线方程为( ) (A )x y x y 313=-=或 (B )x y x y 313-==或(C )x y x y 313-=-=或 (D )x y x y 313==或(4)对于任意的直线l 与平面α,在平面α内必有直线m ,使m 与l ( )(A )平行 (B )相交 (C )垂直 (D )互为异面直线(5)若nx x ⎪⎪⎭⎫ ⎝⎛-13的展开式中各项系数之和为64,则展开式的常数项为( )(A )-540 (B )-162 (C )162 (D )540(6)为了了解某地区高三学生的身体发育情况,抽查了该地区100名年龄为17.5岁-18岁的男生体重(kg ),得到频率分布直方图如下:根据上图可得这100名学生中体重在[)5.64,5.56的学生人数是( ) (A )20 (B )30 (C )40 (D )50(7)与向量7117,,,2222a b ⎛⎫⎛⎫==- ⎪ ⎪⎝⎭⎝⎭的夹角相等,且模为1的向量是( )(A )⎪⎭⎫ ⎝⎛-53,54(B )⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-53,5453,54或(C )⎪⎪⎭⎫ ⎝⎛-31,322(D )⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-31,32231,322或 (8)将5名实习教师分配到高一年级的3个班实习,每班至少1名,最多2名,则不同的分配方案有( )(A )30种 (B )90种 (C )180种 (D )270种(9)如图所示,单位圆中AB 的长为x ,()f x 表示弧 AB 与弦AB 所围成的弓形面积的2倍,则函数()y f x =的图像是( )(A 1 (B 1 (C )2 (D )2 二、填空题:本大题共6小题,每小题4分,共24分。
2024年重庆市高考数学真题及参考答案
2024年重庆市高考数学真题及参考答案一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项符合题目要求。
1.已知1i z =--,则||z =().A.0B.1D.22.已知命题:R p x ∀∈,|1|1x +>;命题:0q x ∃>,3x x =.则().A.p 和q 都是真命题B.p ⌝和q 都是真命题C.p 和q ⌝都是真命题D.p ⌝和q ⌝都是真命题3.已知向量a ,b 满足||1a = ,|2|2a b += ,且(2)b a b -⊥ ,则||b =().A.12B.22C.32D.14.某农业研究部门在面积相等的100块稻田上种植新型水稻,得到各块稻田的亩产量(单位:kg )并部分整理如下表所示.根据表中数据,下列结论正确的是()A.100块稻田亩产量的中位数小于1050kgB.100块稻田中的亩产量低于1100kg 的稻田所占比例超过80%C.100块稻田亩产量的极差介于200kg 到300kg 之间D.100块稻田亩产量的平均值介于900kg 到1000kg 之间5.已知曲线22:16(0)C x y y +=>,从C 上任意一点P 向x 轴作垂线PP ',P '为垂足,则线段PP '的中点M 的轨迹方程为().A.221(0)164x y y +=> B.221(0)168x y y +=>C.221(0)164y x y +=> D.221(0)168y x y +=>6.设函数2()(1)1f x a x =+-,()cos 2g x x ax =+,当(1,1)x ∈-时,曲线()y f x =和()y g x =恰有一个交点,则a =()A.-1B.12C.1D.27.已知正三棱台111ABC A B C -的体积为523,6AB =,112A B =,则1A A 与平面ABC 所成角的正切值为().A.12 B.1C.2D.38.设函数()()ln()f x x a x b =++,若()0f x ≥,则22a b +的最小值为().A.18B.14C.12D.1二、多项选择题:本题共3小题,每小题6分,共18分。
重庆市高考数学试卷(理科)答案与解析
2011年重庆市高考数学试卷(理科)参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2011•重庆)复数=()A.B.C.D.【考点】复数代数形式的混合运算.【专题】计算题.【分析】利用i的幂的运算法则,化简分子,然后复数的分子、分母同乘分母的共轭复数,化简为a+bi(a,b∈R)的形式,即可.【解答】解:复数====故选C【点评】题考查复数代数形式的混合运算,考查计算能力,是基础题.2.(3分)(2011•重庆)“x<﹣1”是“x2﹣1>0”的()A.充分而不必要条件B.必要而不充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【专题】计算题.【分析】由x<﹣1,知x2﹣1>0,由x2﹣1>0知x<﹣1或x>1.由此知“x<﹣1”是“x2﹣1>0”的充分而不必要条件.【解答】解:∵“x<﹣1”⇒“x2﹣1>0”,“x2﹣1>0”⇒“x<﹣1或x>1”.∴“x<﹣1”是“x2﹣1>0”的充分而不必要条件.故选A.【点评】本题考查充分条件、必要条件和充要条件的应用.3.(3分)(2011•重庆)已知,则a=()A.1 B.2 C.3 D.6【考点】极限及其运算.【专题】计算题.【分析】先将极限式通分化简,得到,分子分母同时除以x2,再取极限即可.【解答】解:原式==(分子分母同时除以x2)===2∴a=6故选:D.【点评】关于高中极限式的运算,一般要先化简再代值取极限,本题中运用到的分子分母同时除以某个数或某个式子,是极限运算中常用的计算技巧.4.(3分)(2011•重庆)(1+3x )n (其中n ∈N 且n≥6)的展开式中x 5与x 6的系数相等,则n=( ) A .6 B .7 C .8 D .9 【考点】二项式系数的性质. 【专题】计算题.【分析】利用二项展开式的通项公式求出二项展开式的通项,求出展开式中x 5与x 6的系数,列出方程求出n . 【解答】解:二项式展开式的通项为T r+1=3r C n r x r ∴展开式中x 5与x 6的系数分别是35C n 5,36C n 6 ∴35C n 5=36C n 6 解得n=7 故选B【点评】本题考查利用二项展开式的通项公式解决二项展开式的特定项问题.5.(3分)(2011•重庆)下列区间中,函数f (x )=|lg (2﹣x )|在其上为增函数的是( ) A .(﹣∞,1]B .C .D .(1,2)【考点】对数函数的单调性与特殊点.【分析】根据零点分段法,我们易将函数f(x)=|lg(2﹣x)|的解析式化为分段函数的形式,再根据复合函数“同增异减”的原则我们易求出函数的单调区间进而得到结论.【解答】解:∵f(x)=|lg(2﹣x)|,∴f(x)=根据复合函数的单调性我们易得在区间(﹣∞,1]上单调递减在区间(1,2)上单调递增故选D【点评】本题考查的知识点是对数函数的单调性与特殊点,其中根据“同增异减”的原则确定每一段函数的单调性是解答本题的关键.6.(3分)(2011•重庆)△ABC的内角A,B,C所对的边a,b,c满足(a+b)2﹣c2=4,且C=60°,则ab的值为()A.B.C.1 D.【考点】余弦定理.【专题】计算题;解三角形.【分析】将(a+b)2﹣c2=4化为c2=(a+b)2﹣4=a2+b2+2ab﹣4,又C=60°,再利用余弦定理得c2=a2+b2﹣2abcosC=a2+b2﹣ab 即可求得答案.【解答】解:∵△ABC的边a、b、c满足(a+b)2﹣c2=4,∴c2=(a+b)2﹣4=a2+b2+2ab﹣4,又C=60°,由余弦定理得c2=a2+b2﹣2abcosC=a2+b2﹣ab,∴2ab﹣4=﹣ab,∴ab=.故选:A.【点评】本题考查余弦定理,考查代换与运算的能力,属于基本知识的考查.7.(3分)(2011•重庆)已知a>0,b>0,a+b=2,则的最小值是()A.B.4 C.D.5【考点】基本不等式.【专题】计算题.【分析】利用题设中的等式,把y的表达式转化成()()展开后,利用基本不等式求得y的最小值.【解答】解:∵a+b=2,∴=1∴=()()=++≥+2=(当且仅当b=2a时等号成立)故选C【点评】本题主要考查了基本不等式求最值.注意把握好一定,二正,三相等的原则.8.(3分)(2011•重庆)在圆x2+y2﹣2x﹣6y=0内,过点E(0,1)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为()A.B.C.D.【考点】圆的标准方程;两点间的距离公式.【专题】数形结合;直线与圆.【分析】把圆的方程化为标准方程后,找出圆心坐标与圆的半径,根据图形可知,过点E最长的弦为直径AC,最短的弦为过E与直径AC垂直的弦BD,根据两点间的距离公式求出ME的长度,根据垂径定理得到E为BD的中点,在直角三角形BME中,根据勾股定理求出BE,则BD=2BE,然后利用AC与BD的乘积的一半即可求出四边形ABCD的面积.【解答】解:把圆的方程化为标准方程得:(x﹣1)2+(y﹣3)2=10,则圆心坐标为(1,3),半径为,根据题意画出图象,如图所示:由图象可知:过点E最长的弦为直径AC,最短的弦为过E与直径AC垂直的弦,则AC=2,MB=,ME==,所以BD=2BE=2=2,又AC⊥BD,所以四边形ABCD的面积S=AC•BD=×2×2=10.故选B.【点评】此题考查学生掌握垂径定理及勾股定理的应用,灵活运用两点间的距离公式化简求值,是一道中档题.学生做题时注意对角线垂直的四边形的面积等于对角线乘积的一半.9.(3分)(2011•重庆)高为的四棱锥S﹣ABCD的底面是边长为1的正方形,点S,A,B,C,D均在半径为1的同一球面上,则底面ABCD的中心与顶点S之间的距离为()A. B. C.1 D.【考点】点、线、面间的距离计算;球内接多面体.【专题】计算题;压轴题.【分析】由题意可知ABCD所在的圆是小圆,对角线长为,四棱锥的高为,而球心到小圆圆心的距离为,则推出顶点S在球心距的垂直分的平面上,而顶点S到球心的距离为1,即可求出底面ABCD 的中心与顶点S之间的距离.【解答】解:由题意可知ABCD所在的圆是小圆,对角线长为,四棱锥的高为,点S,A,B,C,D均在半径为1的同一球面上,球心到小圆圆心的距离为,顶点S在球心距的垂直分的平面上,而顶点S到球心O 的距离为1,所以底面ABCD的中心O'与顶点S之间的距离为1 故选C【点评】本题是基础题,考查球的内接多面体的知识,考查逻辑推理能力,计算能力,转化与划归的思想.10.(3分)(2011•重庆)设m,k为整数,方程mx2﹣kx+2=0在区间(0,1)内有两个不同的根,则m+k的最小值为()A.﹣8 B.8 C.12 D.13【考点】二次函数的性质.【专题】计算题;压轴题.【分析】将一元二次方程的根的分布转化为确定相应的二次函数的图象来处理,根据图象可得到关于m和k的不等式组,此时不妨考虑利用不等式所表示的平面区域来解决,但须注意这不是线性规划问题,同时注意取整点.【解答】解:设f(x)=mx2﹣kx+2,由f(0)=2,易知f(x)的图象恒过定点(0,2),因此要使已知方程在区间(0,1)内两个不同的根,即f(x)的图象在区间(0,1)内与x轴有两个不同的交点即由题意可以得到:必有,即,在直角坐标系mok中作出满足不等式平面区域,如图所示,设z=m+k,则直线m+k﹣z=0经过图中的阴影中的整点(6,7)时,=13.z=m+k取得最小值,即zmin故选D.【点评】此题考查了二次函数与二次方程之间的联系,解答要注意几个关键点:(1)将一元二次方程根的分布转化一元二次函数的图象与x轴的交点来处理;(2)将根据不等式组求两个变量的最值问题处理为规划问题;(3)作出不等式表示的平面区域时注意各个不等式表示的公共区域;(4)不可忽视求得最优解是整点.二、填空题(共5小题,每小题3分,满分15分) 11.(3分)(2011•重庆)在等差数列{a n }中,a 3+a 7=37,则a 2+a 4+a 6+a 8= 74 . 【考点】等差数列的性质. 【专题】计算题.【分析】根据等差数列的性质所有下标之和相同的两项之和相等,看出第三项与第七项的和等于第四项与第六项的和等于第二项与第八项的和,得到结果.【解答】解:等差数列{a n }中,a 3+a 7=37, ∵a 3+a 7=a 2+a 8=a 4+a 6=37 ∴a 2+a 4+a 6+a 8=37+37=74, 故答案为:74【点评】本题考查等差数列的性质,这是经常用到的一个性质的应用,注意解题要灵活,不要出现数字运算的错误是一个送分题目.12.(3分)(2011•重庆)已知单位向量,的夹角为60°,则|2﹣|=.【考点】平面向量数量积的坐标表示、模、夹角. 【专题】计算题.【分析】利用向量模的平方等于向量的平方,将已知等式平方,利用向量的数量积公式及将已知条件代入,求出模.【解答】解:===5﹣4cos60°=3∴故答案为【点评】本题考查求向量的模常利用向量模的平方等于向量的平方、考查向量的数量积公式.13.(3分)(2011•重庆)将一枚均匀的硬币投掷6次,则正面出现的次数比反面出现的次数多的概率为.【考点】n次独立重复试验中恰好发生k次的概率.【专题】计算题.【分析】本题是一个n次独立重复试验中恰好发生k次的概率,正面出现的次数比反面出现的次数多包括三种情况,正面出现4次,反面出现2次;正面出现5次,反面出现1次;正面出现6次,共有三种情况,这三种情况是互斥的,写出概率,得到结果.【解答】解:由题意知本题是一个n次独立重复试验中恰好发生k 次的概率,正面出现的次数比反面出现的次数多包括正面出现4次,反面出现2次;正面出现5次,反面出现1次;正面出现6次,共有三种情况,这三种情况是互斥的,∴正面出现的次数比反面出现的次数多的概率是++==故答案为:【点评】本题考查n次独立重复试验中恰好发生k次的概率,考查互斥事件的概率,是一个基础题,解题的关键是看清题目所给的条件符合什么规律,在按照规律解题.14.(3分)(2011•重庆)已知sinα=+cosα,且α∈(0,),则的值为﹣.【考点】二倍角的余弦;同角三角函数间的基本关系.【专题】三角函数的求值.【分析】由已知的等式变形后,记作①,利用同角三角函数间的基本关系列出关系式,记作②,再根据α为锐角,联立①②求出sinα和cosα的值,进而利用二倍角的余弦函数公式及两角和与差的正弦函数公式分别求出所求式子的分子与分母,代入即可求出所求式子的值.【解答】解:由sinα=+cosα,得到sinα﹣cosα=①,又sin2α+cos2α=1②,且α∈(0,),联立①②解得:sinα=,cosα=,∴cos2α=cos2α﹣sin2α=﹣,sin(α﹣)=(sinα﹣cosα)=,则==﹣.故答案为:﹣【点评】此题考查了二倍角的余弦函数公式,两角和与差的正弦函数公式,以及同角三角函数间的基本关系,熟练掌握公式是解本题的关键.15.(3分)(2011•重庆)动圆的圆心在抛物线y2=8x上,且动圆恒与直线x+2=0相切,则动圆必过点(2,0).【考点】圆与圆锥曲线的综合.【专题】计算题;压轴题.【分析】先由抛物线的标准方程写出其焦点坐标,准线方程,再结合抛物线的定义得出焦点必在动圆上,从而解决问题.【解答】解:抛物线y2=8x的焦点F(2,0),准线方程为x+2=0,故圆心到直线x+2=0的距离即半径等于圆心到焦点F的距离,所以F在圆上.故答案为:(2,0).【点评】主要考查知识点:抛物线,本小题主要考查圆与抛物线的综合、抛物线的定义等基础知识,考查运算求解能力,考查数形结合思想.属于基础题.三、解答题(共6小题,满分75分)16.(13分)(2011•重庆)设α∈R,f(x)=cosx(asinx﹣cosx)+cos2(﹣x)满足,求函数f(x)在上的最大值和最小值.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;三角函数的最值.【专题】计算题.【分析】利用二倍角公式化简函数f(x),然后,求出a的值,进一步化简为f(x)=2sin(2x﹣),然后根据x的范围求出2x﹣,的范围,利用单调性求出函数的最大值和最小值.【解答】解:f(x)=cosx(asinx﹣cosx)+cos2(﹣x)=asinxcosx﹣cos2x+sin2x=由得解得a=2所以f(x)=2sin(2x﹣),所以x∈[]时2x﹣,f(x)是增函数,所以x∈[]时2x﹣,f(x)是减函数,函数f(x)在上的最大值是:f()=2;又f()=,f()=;所以函数f(x)在上的最小值为:f()=;【点评】本题是中档题,考查三角函数的化简,二倍角公式的应用,三角函数的求值,函数的单调性、最值,考查计算能力,常考题型.17.(13分)(2011•重庆)某市公租房的房源位于A、B、C三个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的,求该市的任4位申请人中:(Ⅰ)恰有2人申请A片区房源的概率;(Ⅱ)申请的房源所在片区的个数的ξ分布列与期望.【考点】离散型随机变量的期望与方差;等可能事件的概率.【专题】计算题;压轴题.【分析】(I)本题是一个等可能事件的概率,试验发生包含的事件是4个人中,每一个人有3种选择,共有34种结果,满足条件的事件是恰有2人申请A片区房源,共有C222,得到概率.4(II)由题意知变量ξ的可能取值是1,2,3,结合变量对应的事件和第一问的做法写出变量对应的概率,写出分布列,做出变量的期望值.【解答】解:(I)由题意知本题是一个等可能事件的概率试验发生包含的事件是4个人中,每一个人有3种选择,共有34种结果,满足条件的事件是恰有2人申请A片区房源,共有C2224∴根据等可能事件的概率公式得到P==(II)由题意知ξ的可能取值是1,2,3P(ξ=1)=,P(ξ=2)=,P(ξ=3)=∴ξ的分布列是:ξ 1 2 3P∴Eξ=【点评】本题考查等可能事件的概率,考查离散型随机变量的分布列和期望,求离散型随机变量的分布列和期望是近年来理科高考必出的一个问题,题目做起来不难,运算量也不大,只要注意解题格式就问题不大.18.(13分)(2011•重庆)设f(x)=x3+ax2+bx+1的导数f′(x)满足f′(1)=2a,f′(2)=﹣b,其中常数a,b∈R.(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程.(Ⅱ)设g(x)=f′(x)e﹣x.求函数g(x)的极值.【考点】利用导数研究曲线上某点切线方程.【专题】计算题;综合题;转化思想.【分析】(I)根据已知中f(x)=x3+ax2+bx+1,我们根据求函数导函数的公式,易求出导数f'(x),结合f'(1)=2a,f'(2)=﹣b,计算出参数a,b的值,然后求出f(1)及f'(1)的值,然后代入点斜式方程,即可得到曲线y=f(x)在点(1,f(1))处的切线方程.(II)根据g(x)=f′(x)e﹣1求出函数g(x)的解析式,然后求出g(x)的导数g'(x)的解析式,求出导函数零点后,利用零点分段法,分类讨论后,即可得到函数g(x)的极值.【解答】解:(I)∵f(x)=x3+ax2+bx+1∴f'(x)=3x2+2ax+b.令x=1,得f'(1)=3+2a+b=2a,解得b=﹣3令x=2,得f'(2)=12+4a+b=﹣b,因此12+4a+b=﹣b,解得a=﹣,因此f(x)=x3﹣x2﹣3x+1∴f(1)=﹣,又∵f'(1)=2×(﹣)=﹣3,故曲线在点(1,f(1))处的切线方程为y﹣(﹣)=﹣3(x﹣1),即6x+2y﹣1=0.(II)由(I)知g(x)=(3x2﹣3x﹣3)e﹣x从而有g'(x)=(﹣3x2+9x)e﹣x令g'(x)=0,则x=0或x=3∵当x∈(﹣∞,0)时,g'(x)<0,当x∈(0,3)时,g'(x)>0,当x∈(3,+∞)时,g'(x)<0,∴g(x)=(3x2﹣3x﹣3)e﹣x在x=0时取极小值g(0)=﹣3,在x=3时取极大值g(3)=15e﹣3【点评】本题主要考查了利用导数研究曲线上某点切线方程,以及方程组的求解等有关问题,属于中档题.19.(12分)(2011•重庆)如图,在四面体ABCD中,平面ABC⊥ACD,AB⊥BC,AD=CD,∠CAD=30°(Ⅰ)若AD=2,AB=2BC,求四面体ABCD的体积.(Ⅱ)若二面角C﹣AB﹣D为60°,求异面直线AD与BC所成角的余弦值.【考点】异面直线及其所成的角;棱柱、棱锥、棱台的体积.【专题】计算题;综合题;数形结合.【分析】(I)要求四面体ABCD的体积,必须确定它的高和底面,由已知,△ABC作为底面,高易作,根据线段的长度,即可求得四面体ABCD的体积;(Ⅱ)利用三垂线定理找出二面角C﹣AB﹣D的平面角,根据该角为60°,找到各边之间的关系,利用平移的方法找出异面直线AD 与BC所成角,解三角形,即可求得异面直线AD与BC所成角的余弦值.【解答】解:(I)设F为AC的中点,由于AD=CD,所以DF⊥AC.故由平面ABC⊥平面ACD,知DF⊥平面ABC,即DF是四面体ABCD的面ABC上的高,且DF=ADsin30°=1,AF=ADcos30°=,在Rt△ABC中,因AC=2AF=2,AB=2BC,由勾股定理易知BC=,AB=.故四面体ABCD的体积V==.(II)设E为边AB的中点,则EF∥BC,由AB⊥BC,知EF⊥AB,又由(I)有DF⊥平面ABC,故由三垂线定理知DE⊥AB,所以∠DEF为二面角C﹣AB﹣D的平面角,由题设知∠DEF=60°.设AD=a,则DF=AD•sin∠CAD=,在Rt△DEF中,EF=DF•cotDEF==,取BD的中点M,连EM,FM,由中位线定理得,∠MEF为异面直线AD,BC所成的角或其补角,EM=FM=,由余弦定理得cos∠MEF===.【点评】此题是个中档题.考查棱锥的体积公式和异面直线所成角问题,求解方法一般是平移法,找二面角的平面角时注意三垂线定理及其逆定理的应用,体现了数形结合和转化的思想.20.(12分)(2011•重庆)如图,椭圆的中心为原点O ,离心率e=,一条准线的方程为x=2. (Ⅰ)求该椭圆的标准方程.(Ⅱ)设动点P 满足,其中M ,N 是椭圆上的点.直线OM 与ON 的斜率之积为﹣.问:是否存在两个定点F 1,F 2,使得|PF 1|+|PF 2|为定值.若存在,求F 1,F 2的坐标;若不存在,说明理由.【考点】椭圆的简单性质;椭圆的定义.【专题】计算题;压轴题.【分析】(Ⅰ)根据离心率和准线方程求得a 和c ,则b 可得,则椭圆的方程可得.(Ⅱ)设出P ,M ,N 的坐标,根据题设等式建立等式,把M ,N 代入椭圆方程,整理求得x 2+2y 220+4(x 1x 2+2y 1y 2),设出直线OM ,ON 的斜率,利用题意可求得x 1x 2+2y 1y 2=0,进而求得x 2+2y 2的值,利用椭圆的定义可推断出|PF 1|+|PF 2|为定值求得c ,则两焦点坐标可得.【解答】解:(Ⅰ)由e==,=2,求得a=2,c=∴b==∴椭圆的方程为:(Ⅱ)设P (x ,y ),M (x 1,y 1),N (x 2,y 2), 则由,得(x ,y )=(x 1,y 1)+2(x 2,y 2), 即x=x 1+2x 2,y=y 1+2y 2, ∵点M ,N 在椭圆上,所以,故x 2+2y 2=(x 12+4x 22+4x 1x 2)+2(y 12+4y 22+4y 1y 2)=20+4(x 1x 2+2y 1y 2) 设k 0M ,k ON 分别为直线OM ,ON 的斜率,根据题意可知k 0M k ON =﹣∴x 1x 2+2y 1y 2=0 ∴x 2+2y 2=20所以P 在椭圆上;设该椭圆的左,右焦点为F 1,F 2,由椭圆的定义可推断出|PF 1|+|PF 2|为定值,因为c=,则这两个焦点坐标是(﹣,0)(,0)【点评】本题主要考查了椭圆的简单性质.考查了学生分析问题和解决问题的能力.21.(12分)(2011•重庆)设实数数列{a n }的前n 项和S n 满足S n+1=a n+1S n (n ∈N *).(Ⅰ)若a 1,S 2,﹣2a 2成等比数列,求S 2和a 3.(Ⅱ)求证:对k≥3有0≤a k ≤. 【考点】数列与不等式的综合;数列递推式.【专题】综合题;压轴题.【分析】(Ⅰ)由题意,得S 22=﹣2S 2,由S 2是等比中项知S 2=﹣2,由此能求出S 2和a 3.(Ⅱ)由题设条件知S n +a n+1=a n+1S n ,S n ≠1,a n+1≠1,且,,由此能够证明对k≥3有0≤a n ﹣1≤. 【解答】解:(Ⅰ)由题意,得S 22=﹣2S 2, 由S 2是等比中项知S 2≠0,∴S 2=﹣2.由S 2+a 3=a 3S 2,解得. (Ⅱ)证明:因为S n+1=a 1+a 2+a 3+…+a n +a n+1=a n+1+S n ,由题设条件知S n +a n+1=a n+1S n ,∴S n ≠1,a n+1≠1,且,从而对k≥3 有a k ===①因,且, 要证,由①,只要证即证,即,此式明显成立,因此.【点评】本题考查数列的性质和应用,解题时要认真审题,仔细解答,注意公式的合理运用.。
高考数学平面向量及其综合运用 人教版
高考数学平面向量及其综合运用 人教版复习要点:Ⅰ、平面向量知识结构表Ⅱ、内容概述1、向量的概念向量有三种表示法:①有向线段,②a 或AB ,③坐标a =(x , y )。
注意:共线向量与相等向量的联系与区别。
2、向量的运算加法、减法、数乘向量和向量的数量积。
如:11221212(,)(,)a b x y x y x x y y =⋅=+注意:几何运算与坐标运算 3、平面向量的定理及相关性质(1)两个非零向量平行的充要条件: a ∥b ⇔ a =λb (λ∈R)设a =(x1,y1),b = (x2,y2) 则a ∥b ⇔ x1y2-x2y1=0(2)两个非零向量垂直的充要条件: a ⊥b ⇔ a·b =0 设a =(x1,y1),b =(x2,y2)则a ⊥b ⇔ x1·x2+y1·y2=0(3)平面向量基本定理:如果有e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2使 a =λ1e1+λ2e2.(4)三点共线定理:平面上三点A 、B 、C 共线的充要条件是:存在实数α、β,使OC OB OA βα+=,其中α+β=1,O 为平面内的任一点。
4、 常用公式及结论a 、向量模的公式:设a =(x,y ),则︱a ︱=22y x +b 、两点间的距离公式:21P P =212212)()(y y x x -+- [P1(x1,y1),P2(x2,y2)]c 、线段的定比分点坐标公式:向量向量的概念向量的运算向量的运用向量的加、减法实数与向量的积 向量的数量积 两个向量平行的充要条件两个向量垂直的充要条件定比分点公式平移公式 在物理学中的应用 在几何中的应用d 、中点坐标公式: 或)(21OB OA OM +=其中M (x0 ,y0)是线段AB 中点。
e 、两向量的夹角公式:cos θ=222221212121y x y x y y x x ba ba +⋅++=⋅⋅其中0°≤θ≤180°,a=(x1,y1),b =(x2,y2)f 、图形平移公式:若点P(x,y)按向量a =(h,k)平移至P '(x ',y '), 则g 、有关向量模的常用结论: ① aa a ⋅=2② 22222bb a a )b a (b a +⋅±=±=± ③ba b a ≤⋅,a b a b a b-≤±≤+④222||||2||2||a b a b a b ++-=+ 范例及其点评(一)平面向量学科内综合运用深刻理解平面向量的相关概念与性质,熟练掌握向量的各种运算,熟悉常用公式及结论,理解并掌握两向量共线、垂直的充要条件。
【数学】高考数学考前提醒82个问题(八)
高考数学 考前提醒的 82 个问题
82. 经过多次的考试,你是否明白“成也审题,败也审题”的道理? 在解答试题时,应该如何审题? (1)审题的第一步就是弄清问题和熟悉问题. 主要是弄清已知条件和解题目标,这里面包括; ① 有几个已知条件,能否把各个已知条件分开; ② 解题的目标是什么?要求是什么? ③ 是否需要画一个图,如果能画图,最好画一个图,并在图中标出 必要的条件和数据,画图的过程是一个熟悉问题的过程,是一个对已知 条件和解题目标的再认识的过程. 7 【 例 1 】 如 果 1 2 x a0 a1 x a2 x 2 a7 x 7 , 那 么 , a1 a2 a7 的值等于( ). (A) 2 (B) 1 (C) 0 (D) 2
1 a 1,a 2 , b 2. b 1 . 2 这个结果是否正确?还是要注意题目的条件,即条件④中有一点容易被
1 忽略,这就是点 M 应在线段 AB 的内部,因此应满足 0 1 2a, a , 2
1 于是第二组解应舍去.或者说,若 a ,则点 B 的坐标为 1,0 与 M 1,0 2 重合,这时候, M 成为线段 AB 的端点,与题意不符
审题的第二个注意点是 , 点 P a, b 与 Q a b.a b 的ቤተ መጻሕፍቲ ባይዱ系 ,其中
P a, b 满足不等式组,而 Q a b.a b 并不满足不等式组,因而需要设
2004年高考数学试题(全国2理)及答案
2004年高考试题全国卷Ⅱ理科数学(必修+选修Ⅱ)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的. (1)已知集合M ={x |x 2<4},N ={x |x 2-2x -3<0},则集合M ∩N =(A ){x |x <-2} (B ){x |x >3} (C ){x |-1<x <2} (D ){x |2<x <3}(2)542lim 221-+-+→x x x x n =(A )21 (B )1 (C )52 (D )41 (3)设复数ω=-21+23i ,则1+ω=(A )–ω (B )ω2 (C )ω1-(D )21ω(4)已知圆C 与圆(x -1)2+y 2=1关于直线y =-x 对称,则圆C 的方程为(A )(x +1)2+y 2=1 (B )x 2+y 2=1 (C )x 2+(y +1)2=1 (D )x 2+(y -1)2=1 (5)已知函数y =tan(2x +φ)的图象过点(12π,0),则φ可以是 (A )-6π (B )6π (C )-12π (D )12π(6)函数y =-e x 的图象(A )与y =e x 的图象关于y 轴对称 (B )与y =e x 的图象关于坐标原点对称(C )与y =e -x 的图象关于y 轴对称 (D )与y =e -x 的图象关于坐标原点对称 (7)已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离为2π,则球心O 到平面ABC 的距离为 (A )31 (B )33 (C )32 (D )36 (8)在坐标平面内,与点A (1,2)距离为1,且与点B (3,1)距离为2的直线共有(A )1条 (B )2条 (C )3条 (D )4条 (9)已知平面上直线l 的方向向量)53,54(-=e,点O (0,0)和A (1,-2)在l 上的射影分别是O 1和A 1,则11A O =λe ,其中λ= (A )511 (B )-511 (C )2 (D )-2 (10)函数y =x cos x -sin x 在下面哪个区间内是增函数(A )(2π,23π) (B )(π,2π) (C )(23π,25π) (D )(2π,3π)(11)函数y =sin 4x +cos 2x 的最小正周期为(A )4π (B )2π(C )π (D )2π(12)在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有(A )56个 (B )57个 (C )58个 (D )60个 二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.(13)从装有3个红球,2个白球的袋中随机取出2个球,设其中有ξ个红球,则随机变量ξ的概率分布为ξ0 1 2 P(14)设x ,y 满足约束条件⎪⎩⎪⎨⎧≤-≥≥,y x y ,x ,x 120则z =3x +2y 的最大值是 .(15)设中心在原点的椭圆与双曲线2x 2-2y 2=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是 .(16)下面是关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱;②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;③若四个侧面两两全等,则该四棱柱为直四棱柱;④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱,其中,真命题的编号是 (写出所有真命题的编号). 三、解答题:本大题共6个小题,共74分.解答应写出文字说明,证明过程或演算步骤. (17) (本小题满分12分)已知锐角三角形ABC 中,sin(A +B )=53,sin(A -B )=51. (Ⅰ)求证:tan A =2tan B ;(Ⅱ)设AB =3,求AB 边上的高. (18)(本小题满分12分)已知8个球队中有3个弱队,以抽签方式将这8个球队分为A 、B 两组,每组4个.求 (Ⅰ)A 、B 两组中有一组恰有两个弱队的概率; (Ⅱ)A 组中至少有两个弱队的概率. (19)(本小题满分12分)数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=nn 2+S n (n =1,2,3,…).证明: (Ⅰ)数列{nS n}是等比数列; (Ⅱ)S n +1=4a n .(20)(本小题满分12分) .如图,直三棱柱ABC -A 1B 1C 1中,∠ACB =90o ,AC =1,CB =2,侧棱AA 1=1,侧面AA 1B 1B 的两条对角线交点为D ,B 1C 1的中点为M . (Ⅰ)求证:CD ⊥平面BDM ;(Ⅱ)求面B 1BD 与面CBD 所成二面角的大小.(21)(本小题满分12分) 给定抛物线C :y 2=4x ,F 是C 的焦点,过点F 的直线l 与C 相交于A 、B 两点.(Ⅰ)设l 的斜率为1,求OA 与OB 夹角的大小;(Ⅱ)设=AF λ,若λ∈[4,9],求l 在y 轴上截距的变化范围. (22)(本小题满分14分)已知函数f (x )=ln(1+x )-x ,g (x )=x ln x .(1)求函数f (x )的最大值;(2)设0<a <b ,证明:0<g (a )+g (b )-2g (2ba +)<(b -a )ln2.2004年高考试题全国卷2 理科数学(必修+选修Ⅱ)答案:一、选择题:本大题共12小题,每小题5分,共60分.(1)C (2)A (3)C (4)C (5)A (6)D (7)B (8)B (9)D (10)B (11)B (12)C 二、填空题:本大题共4小题,每小题4分,共16分. (13)0.1,0.6,0.3 (14)5 (15)21x 2+y 2=1 (16)②④ 17.(I)证明:∵sin(A+B)=53,sin(A-B)=51∴⎪⎪⎩⎪⎪⎨⎧=-=+51sin cos cos sin 53sin cos cos sin B A B A B A B A ⎪⎪⎩⎪⎪⎨⎧==⇒51sin cos 52cos sin B A B A ⇒2tan tan =B A ,∴B A tan 2tan =. (II)解:∵2π<A+B<π, 53)sin(=+B A , ∴54)cos(-=+B A , 43)tan(-=+B A即43tan tan 1tan tan -=-+B A B A ,将B A tan 2tan =代入上式并整理得01tan 4tan 22=--B B 解得262tan ±=B ,因为B 为锐角,所以262tan +=B ,∴B A tan 2tan = =2+6设AB 上的高为CD ,则AB=AD+DB=623tan tan +=+CDB CD A CD ,由AB=3得CD=2+6 故AB 边上的高为2+618.(I) 解:有一组恰有两支弱队的概率762482523=C C C(II)解:A 组中至少有两支弱队的概率21481533482523=+C C C C C C 19.(I )证: 由a 1=1,a n+1=nn 2+S n (n=1,2,3,…), 知a 2=112+S 1=3a 1,224212==a S , 111=S ,∴21212=S S又a n+1=S n+1-S n (n=1,2,3,…),则S n+1-S n =nn 2+S n (n=1,2,3,…),∴nS n+1=2(n+1)S n , 211=++nS n S n n (n=1,2,3,…).故数列{nSn }是首项为1,公比为2的等比数列A'(II )解:由(I )知,)2(14111≥-∙=+-+n n Sn S n n ,于是S n+1=4(n+1)·11--n S n =4a n (n 2≥)又a 2=3S 1=3,则S 2=a 1+a 2=4=4a 1,因此对于任意正整数n ≥1都有S n+1=4a n .20.解法一:(I)如图,连结CA 1、AC 1、CM ,则CA 1=2, ∵CB=CA 1=2,∴△CBA 1为等腰三角形, 又知D 为其底边A 1B 的中点,∴CD ⊥A 1B , ∵A 1C 1=1,C 1B 1=2,∴A 1B 1=3, 又BB 1=1,∴A 1B=2,∵△A 1CB 为直角三角形,D 为A 1B 的中点,CD=21A 1B=1,CD=CC 1 又DM=21AC 1=22,DM=C 1M ,∴△CDN ≌△CC 1M ,∠CDM=∠CC 1M=90°,即CD ⊥DM , 因为A 1B 、DM 为平面BDM 内两条相交直线,所以CD ⊥平面BDM(II)设F 、G 分别为BC 、BD 的中点,连结B 1G 、FG 、B 1F , 则FG ∥CD ,FG=21CD ∴FG=21,FG ⊥BD.由侧面矩形BB 1A 1A 的对角线的交点为D,知BD=B 1D=21A 1B=1, 所以△BB 1D 是边长为1的正三角形,于是B 1G ⊥BD ,B 1G=23, ∴∠B 1GF 是所求二面角的平面角 又B 1F 2=B 1B 2+BF 2=1+(22)2=23.∴cos ∠B 1GF=332123223)21()23(222121221-=∙∙-+=∙-+FGG B F B FG G B即所求二面角的大小为π-arccos33 解法二:如图以C 为原点建立坐标系 (I):B(2,0,0),B 1(2,1,0),A 1(0,1,1),D(22,21,21), M(22,1,0),=CD (22,21,21),=B A 1(2,-1,-1), =DM (0,21,-21),,0,01=∙=∙DM CD B A CD∴CD ⊥A 1B,CD ⊥DM.因为A 1B 、DM 为平面BDM 内两条相交直线, 所以CD ⊥平面BDM(II):设BD 中点为G ,连结B 1G ,则G ),41,41,423(=(-22,21,21),=G B 1),41,43,42(--∴01=∙G B BD ,∴BD ⊥B 1G ,又CD ⊥BD ,∴与G B 1的夹角θ等于所求二面角的平面角, cos .3311-==θ 所以所求二面角的大小为π-arccos33 21.解:(I )C 的焦点为F(1,0),直线l 的斜率为1,所以l 的方程为y=x-1.将y=x-1代入方程y 2=4x ,并整理得x 2-6x+1=0.设A(x 1,y 1),B(x 2,y 2),则有x 1+x 2=6,x 1x 2=1,OB OA ∙=(x 1,y 1)·(x 2,y 2)=x 1x 2+y 1y 2=2x 1x 2-(x 1+x 2)+1=-3.41]16)(4[||||21212122222121=+++=+∙+=∙x x x x x x y x y x OB OAcos<OB OA ,.41413||||-=∙OB OA 所以OA 与OB 夹角的大小为π-arccos41413. 解:(II)由题设知AF FB λ=得:(x 2-1,y 2)=λ(1-x 1,-y 1),即⎩⎨⎧-=-=-)2()1()1(11212 y y x x λλ由 (2)得y 22=λ2y 12, ∵y 12=4x 1,y 22=4x 2,∴x 2=λ2x 1 (3)联立(1)(3)解得x 2=λ.依题意有λ>0. ∴B(λ,2λ)或B(λ,-2λ),又F(1,0),得直线l 的方程为(λ-1)y=2λ(x-1)或(λ-1)y=-2λ(x-1) 当λ∈[4,9]时,l 在y 轴上的截距为12-λλ或-12-λλ由12-λλ=1212-++λλ,可知12-λλ在[4,9]上是递减的, ∴≤4312-λλ34≤,-≤34-12-λλ43-≤ 直线l 在y 轴上截距的变化范围是]34,43[]43,34[ --22.(I)解:函数f(x)的定义域是(-1,∞),'f (x)=111-+x.令'f (x)=0,解得x=0,当-1<x<0时, 'f (x)>0,当x>0时,'f (x)<0,又f(0)=0,故当且仅当x=0时,f(x)取得最大值,最大值是0(II)证法一:g(a)+g(b)-2g(2b a +)=alna+blnb-(a+b)ln 2b a +=a ba bb b a a +++2ln 2ln .由(I)的结论知ln(1+x)-x<0(x>-1,且x ≠0),由题设0<a<b,得021,02<-<->-bba a ab ,因此a a b a a b b a a 2)21l n (2ln-->-+-=+,bba b b a b a b 2)21ln(2ln -->-+-=+. 所以a b a b b b a a +++2ln 2ln >-022=---ba ab . 又,22b b a b a a +<+ a b a b b b a a +++2ln 2ln <a .2ln )(2ln )(2ln 2ln a b ba ba b b a b b b b a -<+-=+++ 综上0<g(a)+g(b)-2g(2ba +)<(b-a)ln2.(II)证法二:g(x)=xlnx,1ln )('+=x x g ,设F(x)= g(a)+g(x)-2g(2xa +),则.2ln ln )]'2([2)(')('xa x x a g x g x F +==+-=当0<x<a 时,0)('<x F 因此F(x)在(0,a)内为减函数当x>a 时,0)('>x F 因此F(x)在(a,+∞)上为增函数从而,当x=a 时,F(x)有极小值F(a)因为F(a)=0,b>a,所以F(b)>0,即0<g(a)+g(b)-2g(2ba +).设G(x)=F(x)-(x-a)ln2,则).ln(ln 2ln 2ln ln )('x a x xa x x G +-=-+-=当x>0时,0)('<x G ,因此G(x)在(0,+∞)上为减函数,因为G(a)=0,b>a,所以G(b)<0.即g(a)+g(b)-2g(2ba +)<(b-a)ln2.。
2004年普通高等学校招生全国统一考试数学(理工农医类)(重庆卷)及答案
2004年普通高等学校招生全国统一考试数学(理工农医类)(重庆卷)本试卷分第Ⅰ部分(选择题)和第Ⅱ部分(非选择题)共150分 考试时间120分钟.第Ⅰ部分(选择题 共60分)参考公式:如果事件A 、B 互斥,那幺 P(A+B)=P(A)+P(B)如果事件A 、B 相互独立,那幺 P(A·B)=P(A)·P(B)如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率k n kk n n P P C k P --=)1()(一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数y =( )A .[1,)+∞B .23(,)+∞C .23[,1]D .23(,1] 2.设复数z z i z 2,212-+=则, 则22Z Z -=( ) A .–3 B .3 C .-3i D .3i3.圆222430x y x y +-++=的圆心到直线1x y -=的距离为 ( )A .2B .2C .1D 4.不等式221x x +>+的解集是( )A .(1,0)(1,)-+∞B .(,1)(0,1)-∞-C .(1,0)(0,1)-D .(,1)(1,)-∞-+∞5.sin163sin 223sin 253sin313+=( )A .12-B .12C .2-D .26.若向量a 与b 的夹角为60,||4,(2).(3)72b a b a b =+-=-,则向量a 的模为 ( )A .2B .4C .6D .127.一元二次方程2210,(0)ax x a ++=≠有一个正根和一个负根的充分不必要条件是:( )A .0a <B .0a >C .1a <-D .1a > 8.设P 是60的二面角l αβ--内一点,,PA PB αβ⊥⊥平面平面,A,B 为垂足,4,2,PA PB ==则AB 的长为( )A .B .C .D .9. 若{}n a 是等差数列,首项120032004200320040,0,.0a a a a a >+><,则使前n 项和0n S >成立的最大自然数n 是:( ) A .4005B .4006C .4007D .400810.已知双曲线22221,(0,0)x y a b a b-=>>的左,右焦点分别为12,F F ,点P 在双曲线的右支上,且12||4||PF PF =,则此双曲线的离心率e 的最大值为:( ) A .43 B .53 C .2 D .7311.某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为: ( )A .110B .120C .140 D .112012.若三棱锥A-BCD 的侧面ABC 内一动点P 到底面BCD 的距离与到棱AB 的距离相等,则动点P 的轨迹与△ABC 组成图形可能是( )(C ) (D )第Ⅱ部分(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.若在5(1)ax +的展开式中3x 的系数为80-,则_______a =.14.曲线23112224y x y x =-=-与在交点处切线的夹角是______,(用幅度数作答) 15.如图P 1是一块半径为1的半圆形纸板,在P 1的左下端剪去一个半径为12的半圆后得到图形P 2,然后依次剪去一个更小半圆(其直径为前一个被剪掉半圆的半径)得圆形P 3、P 4、…..,P n ,…,记纸板P n 的面积为n S ,则lim ______n x S →∞=.16.对任意实数K ,直线:y kx b =+与椭圆:)20(sin 41cos 23πθθθ<≤⎩⎨⎧+=+=y x 恒有公共点,则b 取值范围是_______________三、解答题:本题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)求函数44sincos cos y x x x x =+-的最小正周期和最小值;并写出该函数在[0,]π上的单调递增区间。
2004高考全国卷4理科数学试题及答案(必修+选修Ⅱ甘肃青海宁夏贵州新疆等地区)
2004年高考试题全国卷4理科数学(必修+选修Ⅱ)(甘肃、青海、宁夏、贵州、新疆等地区)本试卷分第I卷(选择题)和第II卷(非选择题)两部分. 共150分. 考试时间120分钟.第I卷参考公式:球的表面积公式S=4其中R表示球的半径,球的体积公式V=其中R表示球的半径如果事件A、B互斥,那么P(A+B)=P(A)+P(B)如果事件A、B相互独立,那么P(A·B)=P(A)·P(B)如果事件A在一次试验中发生的概率是P,那么n次独立重复试验中恰好发生k次的概率P n(k)=CP k(1-P)n-k一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的1.已知集合,则集合= ()A.{0} B.{0,1} C.{1,2} D.{0,2}2.函数的反函数为()A. B.C. D.3.过点(-1,3)且垂直于直线的直线方程为()A. B.C. D.4.= ()A. B. C. D.5.不等式的解集为()A. B.C. D.6.等差数列中,,则此数列前20项和等于()A.160 B.180 C.200 D.2207.对于直线m、n和平面,下面命题中的真命题是()A.如果、n是异面直线,那么B.如果、n是异面直线,那么相交C.如果、n共面,那么D.如果、n共面,那么8.已知椭圆的中心在原点,离心率,且它的一个焦点与抛物线的焦点重合,则此椭圆方程为()A. B.C. D.9.从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有()A.210种 B.420种 C.630种 D.840种10.已知球的表面积为20π,球面上有A、B、C三点.如果AB=AC=2,BC=,则球心到平面ABC的距离为()A.1 B. C. D.211.△ABC中,a、b、c分别为∠A、∠B、∠C的对边.如果a、b、c成等差数列,∠B=30°,△ABC的面积为,那么b= ()A. B. C. D.12.设函数为奇函数,则()A.0 B.1 C. D.5第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.展开式中的系数为 .14.向量、满足(-)·(2+)=-4,且||=2,||=4,则与夹角的余弦值等于 .15.函数的最大值等于 .16.设满足约束条件:则的最大值是 .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知α为第二象限角,且 sinα=求的值.18.(本小题满分12分)求函数在[0,2]上的最大值和最小值.19.(本小题满分12分)某同学参加科普知识竞赛,需回答三个问题.竞赛规则规定:每题回答正确得100分,回答不正确得-100分.假设这名同学每题回答正确的概率均为0.8,且各题回答正确与否相互之间没有影响.(Ⅰ)求这名同学回答这三个问题的总得分的概率分布和数学期望;(Ⅱ)求这名同学总得分不为负分(即≥0)的概率.20.(本小题满分12分)如图,四棱锥P—ABCD中,底面ABCD 为矩形,AB=8,AD=4,侧面PAD为等边三角形,并且与底面所成二面角为60°.(Ⅰ)求四棱锥P—ABCD的体积;(Ⅱ)证明PA⊥BD.21.(本小题满分12分)双曲线的焦点距为2c,直线过点(a,0)和(0,b),且点(1,0)到直线的距离与点(-1,0)到直线的距离之和求双曲线的离心率e 的取值范围.22.(本小题满分14分)已知函数的所有正数从小到大排成数列(Ⅰ)证明数列{}为等比数列;(Ⅱ)记是数列{}的前n项和,求2004年高考试题全国卷4理科数学(必修+选修Ⅱ)(甘肃、青海、宁夏、贵州、新疆等地区)参考答案一、选择题1—12 D C A D A B C A B A B C二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.28 14. 15. 16.2三、解答题17.本小题主要考查同角三角函数的基本关系式,二倍角公式以及三角函数式的恒等变形等基础知识和基本技能.满分12分.解:当为第二象限角,且时,所以=18.本小题主要考查函数的导数计算,利用导数讨论函数的性质,判断函数的最大值、最小值以及综合运算能力.满分12分.解:令化简为解得当单调增加;当单调减少.所以为函数的极大值.又因为所以为函数在[0,2]上的最小值,为函数在[0,2]上的最大值.19.本小题主要考查离散型随机变量的分布列、数学期望等概念,以及运用概率统计知识解决实际问题的能力.满分12分.解:(Ⅰ)的可能值为-300,-100,100,300.P(=-300)=0.23=0.008, P(=-100)=3×0.22×0.8=0.096,P(=100)=3×0.2×0.82=0.384, P(=300)=0.83=0.512,所以的概率分布为-300-100100300 P0.0080.0960.3840.512根据的概率分布,可得的期望E=(-300)×0.08+(-100)×0.096+100×0.384+300×0.512=180.(Ⅱ)这名同学总得分不为负分的概率为P(≥0)=0.384+0.512=0.896. 20.本小题主要考查棱锥的体积、二面角、异面直线所成的角等知识和空间想象能力、分析问题能力.满分12分.解:(Ⅰ)如图1,取AD的中点E,连结PE,则PE⊥AD.作PO⊥平面在ABCD,垂足为O,连结OE.根据三垂线定理的逆定理得OE⊥AD,所以∠PEO为侧面PAD与底面所成的二面角的平面角,由已知条件可知∠PEO=60°,PE=6,所以PO=3,四棱锥P—ABCD的体积V P—ABCD=(Ⅱ)解法一:如图1,以O为原点建立空间直角坐标系.通过计算可得P(0,0,3),A(2,-3,0),B(2,5,0),D(-2,-3,0)所以因为所以PA⊥BD.解法二:如图2,连结AO,延长AO交BD于点F.通过计算可得EO=3,AE=2,又知AD=4,AB=8,得所以 Rt△AEO∽Rt△BAD.得∠EAO=∠ABD.所以∠EAO+∠ADF=90°所以 AF⊥BD.因为直线AF为直线PA在平面ABCD 内的身影,所以PA⊥BD. 21.本小题主要考查点到直线距离公式,双曲线的基本性质以及综合运算能力.满分12分.解:直线的方程为,即由点到直线的距离公式,且,得到点(1,0)到直线的距离,同理得到点(-1,0)到直线的距离由即于是得解不等式,得由于所以的取值范围是22.本小题主要考查函数的导数,三角函数的性质,等差数列与等比数列的概念和性质,以及综合运用的能力.满分14分.(Ⅰ)证明:由得解出为整数,从而所以数列是公比的等比数列,且首项(Ⅱ)解:从而因为,所以。
2004高考数学试题(天津理)及答案
2004年普通高等学校招生全国统一考试(天津卷)数学(理工类)第一卷(选择题 共60分)参考公式:如果事件A 、B 互斥,那么)()()(B P A P B A P +=+。
如果事件A 、B 相互独立,那么)()()(B P A P B A P ⋅=⋅。
柱体(棱柱、圆柱)的体积公式Sh V =柱体。
其中S 表示柱体的底面积,h 表示柱体的高。
一. 选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. i 是虚数单位,3)2)(1(ii i ++-= A. i +1 B. i --1 C. i 31+D. i 31--2. 不等式21≥-xx 的解集为 A. )0,1[- B. ),1[∞+-C. ]1,(--∞D. ),0(]1,(∞+--∞3. 若平面向量与向量)2,1(-=a 的夹角是︒180,且53||=b ,则= A. )6,3(- B. )6,3(- C. )3,6(- D. )3,6(-4. 设P 是双曲线19222=-y ax 上一点,双曲线的一条渐近线方程为1,023F y x =-、F 2分别是双曲线的左、右焦点,若3||1=PF ,则=||2PFA. 1或5B. 6C. 7D. 95. 若函数)10(log )(<<=a x x f a 在区间]2,[a a 上的最大值是最小值的3倍,则a=A.2 B.2 C.1 D. 1 1、AD 的中0为等差数列”的A. 必要而不充分条件B. 充分而不必要条件C. 充要条件D. 既不充分也不必要条件9. 函数]),0[)(26sin(2ππ∈-=x x y 为增函数的区间是A. ]3,0[πB. ]127,12[ππC. ]65,3[ππD. ],65[ππ10. 如图,在长方体1111D C B A ABCD -中,AB=6,AD=4,31=AA 。
分别过BC 、11D A 的两个平行截面将长方体分成三部分,其体积分别记为111D F D AEA V V -=,11112D FCF A EBE V V -=,C F C B E B V V 11113-=。
重庆市2024年高考《数学考试说明(理工类)》解读
重庆市2024年高考《数学考试说明(理工类)》解读曾国荣(重庆市万州高级中学404020)Ⅰ.试卷结构全卷包括第Ⅰ卷和第Ⅱ卷.第Ⅰ卷为选择题;第Ⅱ卷为非选择题.全卷共22题,分为选择题、填空题和解答题三种题型.选择题是四选一型的单项选择题;填空题只要求干脆填写结果,不要求写出计算过程或证明过程;解答题包括计算题、证明题、应用题等,要求写出文字说明、演算步骤或证明过程.三种题型的题目个数分别为10、5、6;分值分别为50、试卷由简洁题、中等题和难题组成,并以中等题为主,总体难度适当.易:中:难=3:6:1Ⅱ.考试内容及要求考核目标与要求数学科高考留意考查中学数学的基础学问、基本技能、基本思想方法,考查空间想象实力、抽象概括实力、推理论证实力、运算求解实力、数据处理实力以及分析问题和解决问题的实力.依据一般高等学校对新生文化素养的要求,依据教化部2024年颁布的《一般中学课程方案(试验)》和《一般中学数学课程标准(试验)》,以及《重庆市一般中学新课程数学学科教学指导看法和模块学习要求(试行)》,确定必修课程、选修课程系列2和系列4中的4-1、4-4、4-5的内容为理工类高考数学科的考试内容.关于考试内容的学问要求和实力要求的说明如下:1.学问要求对学问的要求由低到高分为了解、理解、驾驭、敏捷和综合运用四个层次,且高一级的层次要求包含低一级的层次要求.了解、理解、驾驭是对学问的基本要求(详见考试范围与要求层次),敏捷和综合运用不对应详细的考试内容.(1)了解(A):对所列学问内容有初步的相识,会在有关的问题中进行识别和干脆应用.(2)理解(B):对所列学问内容有理性的相识,能够说明、举例或变形、推断,并能利用所列的学问解决简洁问题.(3)驾驭(C):对所列学问内容有深刻的理性相识,形成技能,并能利用所列学问解决有关问题.(4)敏捷和综合运用(D):系统地把握学问的内在联系,并能运用相关学问分析、解决比较综合的问题.2.实力要求实力是指空间想象实力、抽象概括实力、推理论证实力、运算求解实力、数据处理实力以及分析问题和解决问题的实力.(1)空间想象实力:能依据条件作出正确的图形,依据图形想象出直观形象;能正确地分析出图形中基本元素及其相互关系;能对图形进行分解、组合与变形.(2)抽象概括实力:能在对详细的实例抽象概括的过程中,发觉探讨对象的本质;从给定的大量信息材料中,概括出一些结论,并能将其应用于解决问题或作出新的推断.(3)推理论证实力:会依据已知的事实和已获得的正确数学命题来论证某一数学命题正确性.(4)运算求解实力:会依据概念、公式、法则正确对数、式、方程、几何量等进行变形和运算;能分析条件,寻求与设计合理、简捷的运算途径...............;能依据要求对数据进行估计,并能近似计算.(5)数据处理实力:会依据统计中的方法对数据进行整理、分析,并解决给定的实际问题.(6)分析和解决问题的实力:能阅读、理解对问题进行陈述的材料;能综合应用所学数学学问、思想和方法解决问题,包括解决在相关学科、生产、生活中简洁的数学问题,并能用数学语言正确地加以表述;能选择有效的方法和手段对新奇的信息、情境和设问进行独立的思索与探究,创建性地解决问题.3.特性品质要求考生能以平和的心态参与考试,合理支配考试时间,以实事求是的科学看法解答试题,树立战胜困难的信念,具有锲而不舍的精神.4.考查要求(1)对数学基础学问的考查,既全面又突出重点,留意学科的内在联系和学问的综合.(2)数学思想和方法是数学学问在更高层次上的抽象和概括.对数学思想和方法的考查与数学学问的考查结合进行,考查时,从学科整体意义和思想含义上立意,留意通性通法,淡化特别技巧..............(3)对数学实力的考查,以抽象概括实力和推理论证实力为核心,全面考查各种实力.强调探究性、综合性、应用性.突出数学试题的实力立意,强化对素养教化的正确导向.(4)留意试题的基础性、综合性和层次性.合理调控综合程度,坚持多角度,多层次的考查.二、考试范围与要求层次“若p则q”形式的命题及其逆命题、否命题与逆否命题主要考查:1.韦恩(venn)图2.含有一个量词的命题的否定留意:幂函数和二分法原则上不考留意:重庆市《考试说明》上面有句话:(包括推导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆)留意:重庆市确定不考推理与证明。
2024年重庆市高考数学真题及参考答案
2024年重庆市高考数学真题及参考答案一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项符合题目要求。
1.已知1i z =--,则||z =().A.0B.1D.22.已知命题:R p x ∀∈,|1|1x +>;命题:0q x ∃>,3x x =.则().A.p 和q 都是真命题B.p ⌝和q 都是真命题C.p 和q ⌝都是真命题D.p ⌝和q ⌝都是真命题3.已知向量a ,b 满足||1a = ,|2|2a b += ,且(2)b a b -⊥ ,则||b =().A.12B.22C.32D.14.某农业研究部门在面积相等的100块稻田上种植新型水稻,得到各块稻田的亩产量(单位:kg )并部分整理如下表所示.根据表中数据,下列结论正确的是()A.100块稻田亩产量的中位数小于1050kgB.100块稻田中的亩产量低于1100kg 的稻田所占比例超过80%C.100块稻田亩产量的极差介于200kg 到300kg 之间D.100块稻田亩产量的平均值介于900kg 到1000kg 之间5.已知曲线22:16(0)C x y y +=>,从C 上任意一点P 向x 轴作垂线PP ',P '为垂足,则线段PP '的中点M 的轨迹方程为().A.221(0)164x y y +=> B.221(0)168x y y +=>C.221(0)164y x y +=> D.221(0)168y x y +=>6.设函数2()(1)1f x a x =+-,()cos 2g x x ax =+,当(1,1)x ∈-时,曲线()y f x =和()y g x =恰有一个交点,则a =()A.-1B.12C.1D.27.已知正三棱台111ABC A B C -的体积为523,6AB =,112A B =,则1A A 与平面ABC 所成角的正切值为().A.12 B.1C.2D.38.设函数()()ln()f x x a x b =++,若()0f x ≥,则22a b +的最小值为().A.18B.14C.12D.1二、多项选择题:本题共3小题,每小题6分,共18分。
2004年高考数学试题(重庆理)及答案
2004年普通高等学校招生全国统一考试数学(理工农医类)(重庆卷)本试卷分第Ⅰ部分(选择题)和第Ⅱ部分(非选择题)共150分 考试时间120分钟.第Ⅰ部分(选择题 共60分)参考公式:如果事件A 、B 互斥,那幺 P(A+B)=P(A)+P(B) 如果事件A 、B 相互独立,那幺 P(A·B)=P(A)·P(B)如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率k n kk n n P P C k P --=)1()(一、每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数y =的定义域是:( )A .[1,)+∞B .23(,)+∞ C .23[,1] D .23(,1] 2.设复数z z i z 2,212-+=则, 则22Z Z -=( ) A .–3 B .3 C .-3i D .3i3.圆222430x y x y +-++=的圆心到直线1x y -=的距离为 ( )A .2B .2C .1D 4.不等式221x x +>+的解集是 ( ) A .(1,0)(1,)-+∞ B .(,1)(0,1)-∞- C .(1,0)(0,1)- D .(,1)(1,)-∞-+∞5.sin163sin 223sin 253sin313+=( )A .12-B .12C .2-D .2 6.若向量 a 与b 的夹角为60,||4,(2).(3)72b a b a b =+-=- ,则向量a 的模为 ( )A .2B .4C .6D .127.一元二次方程2210,(0)ax x a ++=≠有一个正根和一个负根的充分不必要条件是: ( ) A .0a < B .0a > C .1a <- D .1a >8.设P 是60的二面角l αβ--内一点,,PA PB αβ⊥⊥平面平面,A,B 为垂足,4,2,PA PB ==则AB 的长为 ( )A .B .C .D .9. 若{}n a 是等差数列,首项120032004200320040,0,.0a a a a a >+><,则使前n 项和0n S >成立的最大自然数n是:( ) A .4005B .4006C .4007D .400810.已知双曲线22221,(0,0)x y a b a b-=>>的左,右焦点分别为12,F F ,点P 在双曲线的右支上,且12||4||PF PF =,则此双曲线的离心率e 的最大值为:( )A .43B .53 C .2D .7311.某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为: ( ) A .110B .120C .140 D .112012.若三棱锥A-BCD 的侧面ABC 内一动点P 到底面BCD 的距离与到棱AB 的距离相等,则动点P 的轨迹与△ABC 组成图形可能是 ( )(C ) (D )第Ⅱ部分(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.若在5(1)ax +的展开式中3x 的系数为80-,则_______a =.14.曲线23112224y x y x =-=-与在交点处切线的夹角是______,(用幅度数作答) 15.如图P 1是一块半径为1的半圆形纸板,在P 1的左下端剪去一个半径为12的半圆后得到图形P 2,然后依次剪P 3、n S ,则lim n x S →∞=16.对任意实数)20(sin 41cos 2πθθθ<≤⎩+=+y 恒有公共点,则b 取值范围是_______ 三、解答题:本题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)求函数44sincos cos y x x x x =+-的最小正周期和最小值;并写出该函数在[0,]π上的单调递增区间。
高考数学一轮复习 11.1 随机事件的概率教案
第十一章 概率●网络体系总览 ●考点目标定位1.了解等可能性事件的概率的意义,会用排列组合公式计算一些等可能性事件的概率.2.了解互斥事件的意义,会用互斥事件的概率加法公式计算一些事件的概率.3.了解相互独立事件的意义,会用相互独立事件的概率乘法公式计算一些事件的概率,会计算事件在n 次独立重复试验中恰好发生k 次的概率.●复习方略指南概率是新课程中新增加部分的主要内容之一.这一内容是在学习排列、组合等计数知识之后学习的,主要内容为等可能性事件的概率、互斥事件有一个发生的概率及相互独立事件同时发生的概率.这一内容从2000年被列入新课程高考的考试说明.在2000,2001,2002,2003,2004这五年高考中,新课程试卷每年都有一道概率解答题,并且这五年的命题趋势是:从分值上看,从10分提高到17分,从题目的位置看,2000年为第(17)题,2001年为第(18)题,2002年为第(19)题,2003年为第(20)题即题目的位置后移,2004年两题分值增加到17分.从概率在试卷中的分数比与课时比看,在试卷中的分数比(12∶150=1∶12.5)是在数学中课时比(约为11∶330=1∶30)的2.4倍.概率试题体现了考试中心提出的“突出应用能力考查”以及“突出新增加内容的教学价值和应用功能”的指导思想,在命题时,提高了分值,提高了难度,并设置了灵活的题目情境,如普法考试、串联并联系统、计算机上网、产品合格率等,所以在概率复习中要注意全面复习,加强基础,注重应用.11.1 随机事件的概率●知识梳理1.随机事件:在一定条件下可能发生也可能不发生的事件.2.必然事件:在一定条件下必然要发生的事件.3.不可能事件:在一定条件下不可能发生的事件.4.事件A 的概率:在大量重复进行同一试验时,事件A 发生的频率nm总接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作P (A ).由定义可知0≤P (A )≤1,显然必然事件的概率是1,不可能事件的概率是0.5.等可能性事件的概率:一次试验连同其中可能出现的每一个结果称为一个基本事件,通常此试验中的某一事件A 由几个基本事件组成.如果一次试验中可能出现的结果有n 个,即此试验由n 个基本事件组成,而且所有结果出现的可能性都相等,那么每一基本事件的概率都是n 1.如果某个事件A 包含的结果有m 个,那么事件A 的概率P (A )=nm . 6.使用公式P (A )=nm计算时,确定m 、n 的数值是关键所在,其计算方法灵活多变,没有固定的模式,可充分利用排列组合知识中的分类计数原理和分步计数原理,必须做到不重复不遗漏.●点击双基1.(2004年全国Ⅰ,文11)从1,2,…,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是A.95B.94C.2111D.2110解析:基本事件总数为C 39,设抽取3个数,和为偶数为事件A ,则A 事件数包括两类:抽取3个数全为偶数,或抽取3数中2个奇数1个偶数,前者C 34,后者C 14C 25.∴A 中基本事件数为C 34+C 14C 25.∴符合要求的概率为39251434C C C C +=2111. 答案:C 2.(2004年重庆,理11)某校高三年级举行的一次演讲比赛共有10位同学参加,其中一班有3位,二班有2位,其他班有5位.若采取抽签的方式确定他们的演讲顺序,则一班的3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为A.101 B.201 C.401 D.1201解析:10位同学总参赛次序A 1010.一班3位同学恰好排在一起,而二班的2位同学没有排在一起的方法数为先将一班3人捆在一起A 33,与另外5人全排列A 66,二班2位同学不排在一起,采用插空法A 27,即A 33A 66A 27.∴所求概率为1010276633AA A A =201. 答案:B3.(2004年江苏,9)将一颗质地均匀的骰子(它是一种各面上分别标有点数1、2、3、4、5、6的正方体玩具)先后抛掷3次,至少出现一次6点向上的概率是A.2165 B.21625 C.21631 D.21691 解析:质地均匀的骰子先后抛掷3次,共有6×6×6种结果.3次均不出现6点向上的掷法有5×5×5种结果.由于抛掷的每一种结果都是等可能出现的,所以不出现6点向上的概率为666555⨯⨯⨯⨯=216125,由对立事件概率公式,知3次至少出现一次6点向上的概率是1-216125=21691. 答案:D4.一盒中装有20个大小相同的弹子球,其中红球10个,白球6个,黄球4个,一小孩随手拿出4个,求至少有3个红球的概率为________.解析:恰有3个红球的概率P 1=420110310C C C =32380. 有4个红球的概率P 2=420410C C =32314.至少有3个红球的概率P =P 1+P 2=32394. 答案:323945.在两个袋中各装有分别写着0,1,2,3,4,5的6张卡片.今从每个袋中任取一张卡片,则取出的两张卡片上数字之和恰为7的概率为________.解析:P =1616C C 4⋅=91. 答案:91 ●典例剖析【例1】用数字1,2,3,4,5组成五位数,求其中恰有4个相同数字的概率.解:五位数共有55个等可能的结果.现在求五位数中恰有4个相同数字的结果数:4个相同数字的取法有C 15种,另一个不同数字的取法有C 14种.而这取出的五个数字共可排出C 15个不同的五位数,故恰有4个相同数字的五位数的结果有C 15C 14C 15个,所求概率P =51514155C C C =1254. 答:其中恰恰有4个相同数字的概率是1254. 【例2】 从男女生共36人的班中,选出2名代表,每人当选的机会均等.如果选得同性代表的概率是21,求该班中男女生相差几名? 解:设男生有x 名,则女生有(36-x )人,选出的2名代表是同性的概率为P =2362-362C C C xx +=21, 即3536)1(⨯-x x +3536)35)(36(⨯--x x =21,解得x =15或21.所以男女生相差6人.【例3】把4个不同的球任意投入4个不同的盒子内(每盒装球数不限),计算: (1)无空盒的概率;(2)恰有一个空盒的概率.解:4个球任意投入4个不同的盒子内有44种等可能的结果. (1)其中无空盒的结果有A 44种,所求概率P =4444A =323.答:无空盒的概率是323. (2)先求恰有一空盒的结果数:选定一个空盒有C 14种,选两个球放入一盒有C 24A 13种,其余两球放入两盒有A 22种.故恰有一个空盒的结果数为C 14C 24A 13A 22,所求概率P (A )=4221324144A A C C =169. 答:恰有一个空盒的概率是169. 深化拓展把n +1个不同的球投入n 个不同的盒子(n ∈N *).求: (1)无空盒的概率;(2)恰有一空盒的概率. 解:(1)121A C ++n nnn n.(2)111222121311A )A C C C (C +---++⋅⋅+⋅n n n n n n n n.【例4】某人有5把钥匙,一把是房门钥匙,但忘记了开房门的是哪一把.于是,他逐把不重复地试开,问:(1)恰好第三次打开房门锁的概率是多少? (2)三次内打开的概率是多少?(3)如果5把内有2把房门钥匙,那么三次内打开的概率是多少?解:5把钥匙,逐把试开有A 55种等可能的结果. (1)第三次打开房门的结果有A 44种,因此第三次打开房门的概率P (A )=5544A A =51. (2)三次内打开房门的结果有3A 44种,因此,所求概率P (A )=5544A A 3=53. (3)方法一:因5把内有2把房门钥匙,故三次内打不开的结果有A 33A 22种,从而三次内打开的结果有A 55-A 33A 22种,所求概率P (A )=55223355A A A A -=109. 方法二:三次内打开的结果包括:三次内恰有一次打开的结果有C 12A 13A 12A 33种;三次内恰有2次打开的结果有A 23A 33种.因此,三次内打开的结果有C 12A 13A 12A 33+A 23A 33种,所求概率P (A )=55332333121312A A A A A A C +=109. 特别提示1.在上例(1)中,读者如何解释下列两种解法的意义.P (A )=3524A A =51或P (A )=54·43·31= 51. 2.仿照1中,你能解例题中的(2)吗?●闯关训练夯实基础1.从分别写有A 、B 、C 、D 、E 的5张卡片中,任取2张,这2张上的字母恰好按字母顺序相邻的概率为A.51B.52C.103D.107 解析:P =25C 4=52. 答案:B2.(2004年湖北模拟题)甲、乙二人参加法律知识竞赛,共有12个不同的题目,其中选择题8个,判断题4个.甲、乙二人各依次抽一题,则甲抽到判断题,乙抽到选择题的概率是A.256 B.2521 C.338 D.3325 解析:甲、乙二人依次抽一题有C 112·C 111种方法, 而甲抽到判断题,乙抽到选择题的方法有C 14C 18种.∴P =1111121814C C C C =338. 答案:C3.(2004年全国Ⅰ,理11)从数字1、2、3、4、5中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为A.12513 B.12516 C.12518 D.12519解析:从数字1、2、3、4、5中,允许重复地随机抽取3个数字,这三个数字和为9的情况为5、2、2;5、3、1;4、3、2;4、4、1;3、3、3.∴概率为32333332351C A A C ++++=12519. 答案:D4.一次二期课改经验交流会打算交流试点学校的论文5篇和非试点学校的论文3篇.若任意排列交流次序,则最先和最后交流的论文都为试点学校的概率是________.(结果用分数表示)解析:总的排法有A 88种.最先和最后排试点学校的排法有A 25A 66种.概率为886625A A A ⋅=145. 答案:1455.甲、乙二人参加普法知识竞答,共有10个不同的题目,其中选择题6个,判断题4个,甲、乙二人依次各抽一题.(1)甲抽到选择题,乙抽到判断题的概率是多少?(2)甲、乙二人中至少有一人抽到选择题的概率是多少? 分析:(1)是等可能性事件,求基本事件总数和A 包含的基本事件数即可.(2)分类或间接法,先求出对立事件的概率.解:(1)基本事件总数甲、乙依次抽一题有C 110C 19种,事件A 包含的基本事件数为C 16C 14,故甲抽到选择题,乙抽到判断题的概率为191101416C C C C =154. (2)A 包含的基本事件总数分三类:甲抽到选择题,乙抽到判断题有C 16C 14; 甲抽到选择题,乙也抽到选择题有C 16C 15; 甲抽到判断题,乙抽到选择题有C 14C 16. 共C 16C 14+C 16C 15+C 14C 16. 基本事件总数C 110C 19,∴甲、乙二人中至少有一人抽到选择题的概率为19110161415161416C C C C C C C C ++=1513或P (A )=191101314C C C C =152,P (A )=1-P (A )=1513. 6.把编号为1到6的六个小球,平均分到三个不同的盒子内,求: (1)每盒各有一个奇数号球的概率; (2)有一盒全是偶数号球的概率.解:6个球平均分入三盒有C 26C 24C 22种等可能的结果.(1)每盒各有一个奇数号球的结果有A 33A 33种,所求概率P (A )=2224463333C C C A A =52. (2)有一盒全是偶数号球的结果有(C 23C 13)·C 24C 22,所求概率P (A )=22242622241323C C C C C )C (C ⋅=53. 培养能力7.(2004年全国Ⅱ,18)已知8支球队中有3支弱队,以抽签方式将这8支球队分为A 、B 两组,每组4支.求:(1)A 、B 两组中有一组恰有两支弱队的概率; (2)A 组中至少有两支弱队的概率.(1)解法一:三支弱队在同一组的概率为4815C C +4815C C =71, 故有一组恰有两支弱队的概率为1-71=76. 解法二:有一组恰有两支弱队的概率为482523C C C +482523C C C =76. (2)解法一:A 组中至少有两支弱队的概率为482523C C C +481533C C C =21. 解法二:A 、B 两组有一组至少有两支弱队的概率为1,由于对A 组和B 组来说,至少有两支弱队的概率是相同的,所以A 组中至少有两支弱队的概率为21. 8.从1,2,…,10这10个数字中有放回地抽取3次,每次抽取一个数字,试求3次抽取中最小数为3的概率.解:有放回地抽取3次共有103个结果,因最小数为3又可分为:恰有一个3,恰有两个3,恰有三个3.故最小数为3的结果有C 13·72+C 23·7+C 33,所求概率P (A )=3332321310C 7C 7C +⋅+⋅=0.169.答:最小数为3的概率为0.169.探究创新9.有点难度哟!将甲、乙两颗骰子先后各抛一次,a 、b 分别表示抛掷甲、乙两颗骰子所出现的点数. (1)若点P (a ,b )落在不等式组⎪⎩⎪⎨⎧≤+>>4,0,0y x y x 表示的平面区域的事件记为A ,求事件A 的概率;(2)若点P (a ,b )落在直线x +y=m (m 为常数)上,且使此事件的概率最大,求m 的值. 解:(1)基本事件总数为6×6=36. 当a =1时,b =1,2,3; 当a =2时,b =1,2; 当a =3时,b =1.共有(1,1),(1,2),(1,3),(2,1),(2,2),(3,1)6个点落在条件区域内,∴P (A )=366=61. (2)当m =7时,(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)共有6种,此时P =366= 61最大. ●思悟小结求解等可能性事件A 的概率一般遵循如下步骤:(1)先确定一次试验是什么,此时一次试验的可能性结果有多少,即求出A . (2)再确定所研究的事件A 是什么,事件A 包括结果有多少,即求出m . (3)应用等可能性事件概率公式P =nm计算. ●教师下载中心 教学点睛1.一个随机事件的发生既有随机性(对单次试验),又存在着统计规律(对大量重复试验),这是偶然性和必然性的对立统一.2.随机事件A 的概率P (A )满足0≤P (A )≤1.(3)P (A )=nm既是等可能性事件的概率的定义,又是计算这种概率的基本方法. 拓展题例【例1】 某油漆公司发出10桶油漆,其中白漆5桶,黑漆3桶,红漆2桶.在搬运中所有标签脱落,交货人随意将这些标签重新贴上,问一个定货3桶白漆、2桶黑漆和1桶红漆的顾客,按所定的颜色如数得到定货的概率是多少?解:P (A )=610122335C C C C =72. 答:顾客按所定的颜色得到定货的概率是72. 【例2】 一个口袋里共有2个红球和8个黄球,从中随机地接连取3个球,每次取一个.设{恰有一个红球}=A ,{第三个球是红球}=B .求在下列条件下事件A 、B 的概率.(1)不返回抽样; (2)返回抽样. 解:(1)不返回抽样,P (A )=310281312A A C C =157,P (B )=3102912A A C = 51. (2)返回抽样,P (A )=C 13102(108)2=12548,P (B )=32121010C = 51.。
精编版-2004年重庆高考理科数学真题及答案
2004年重庆高考理科数学真题及答案一、选择题(共12小题,每小题5分,满分60分)1.(5分)函数y ( )A .[1,)+∞B .2(,)3+∞C .2[,1]3D .2(,1]32.(5分)设复数1Z =+,则22(Z Z -= ) A .3-B .3C .3i -D .3i3.(5分)圆222430x y x y +-++=的圆心到直线1x y -=的距离为:( )A .2B C .1 D 4.(5分)不等式221x x +>+的解集是( ) A .(1-,0)(1⋃,)+∞ B .(-∞,1)(0-⋃,1) C .(1-,0)(0⋃,1)D .(-∞,1)(1-⋃,)+∞5.(5分)sin163sin 223sin 253sin 313︒︒+︒︒等于( )A .12-B .12C .D 6.(5分)若向量a b 与的夹角为60︒,||4,(2)(3)72b a b a b =+-=-,则向量a 的模为( ) A .2B .4C .6D .127.(5分)一元二次方程2210ax x ++=,(0)a ≠有一个正根和一个负根的充分不必要条件是( ) A .0a <B .0a >C .1a <-D .1a >8.(5分)设P 是60︒的二面角l αβ--内一点,PA ⊥平面α,PB ⊥平面β,A ,B 为垂足,4PA =,2PB =,则AB 的长为:( )A .B .C .D .9.(5分)若数列{}n a 是等差数列,首项10a >,200320040a a +>,2003a .20040a <,则使前n 项和0n S >成立的最大自然数n 是( ) A .4005B .4006C .4007D .400810.(5分)已知双曲线22221x y a b-=,(0,0)a b >>的左,右焦点分别为1F ,2F ,点P 在双曲线的右支上,且12||4||PF PF =,则此双曲线的离心率e 的最大值为( )A .43 B .53C .2D .7311.(5分)某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为:( ) A .110B .120C .140D .112012.(5分)若三棱锥A BCD -的侧面ABC 内一动点P 到底面BCD 的距离与到棱AB 的距离相等,则动点P 的轨迹与ABC ∆组成图形可能是:( )A .B .C .D .二、填空题(共4小题,每小题4分,满分16分)13.(4分)若在5(1)ax +的展开式中3x 的系数为80-,则a = .14.(4分)曲线2122y x =-与3124y x =-在交点处的切线夹角是 .(以弧度数作答)15.(4分)如图1P 是一块半径为1的半圆形纸板,在1P 的左下端剪去一个半径为12的半圆后得到图形2P ,然后依次剪去一个更小半圆(其直径为前一个被剪掉半圆的半径)得圆形3P 、4P 、⋯、n P ⋯,记纸板n P 的面积为n S ,则lim n n S →∞= .16.(4分)直线:(3)5y k x =+与椭圆:32cos (02)14sin x y θθπθ⎧=⎪⎨=+⎪⎩恰有一个公共点,则k 取值是 .三、解答题(共6小题,满分74分)17.(12分)求函数44sin 23sin cos cos y x x x x =+-的最小正周期和最小值;并写出该函数在[0,]π上的单调递增区间.18.(12分)设一汽车在前进途中要经过4个路口,汽车在每个路口遇到绿灯的概率为34,遇到红灯(禁止通行)的概率为14.假定汽车只在遇到红灯或到达目的地才停止前进,ξ表示停车时已经通过的路口数,求:(Ⅰ)ξ的概率的分布列及期望E ξ; (Ⅱ)停车时最多已通过3个路口的概率.19.(12分)如图,四棱锥P ABCD -的底面是正方形,PA ⊥底面ABCD ,AE PD ⊥,//EF CD ,AM EF = (1)证明MF 是异面直线AB 与PC 的公垂线;(2)若3PA AB =,求直线AC 与平面EAM 所成角的正弦值.20.(12分)设函数()(1)()f x x x x a =--,(1)a >(1)求导数()f x '并证明()f x 有两个不同的极值点1x ,2x ; (2)若不等式12()()0f x f x +成立,求a 的取值范围.21.(12分)设0p >是一常数,过点(2,0)Q p 的直线与抛物线22y px =交于相异两点A 、B ,以线段AB 为直径作圆(H H 为圆心).试证抛物线顶点在圆H 的圆周上;并求圆H 的面积最小时直线AB 的方程.22.(14分)设数列{}n a 满足:12a =,*11()n n na a n N a +=+∈. (Ⅰ)证明:21n a n +*n N ∈恒成立; (Ⅱ)令*)n nb n N n=∈,判断n b 与1n b +的大小,并说明理由.2004年重庆市高考数学试卷(理科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)函数y ( )A .[1,)+∞B .2(,)3+∞C .2[,1]3D .2(,1]3【解答】解:要使函数有意义:(32)12log 0x -, 即:1122log (32)log 1x -可得 0321x <- 解得2(,1]3x ∈故选:D .2.(5分)设复数1Z =+,则22(Z Z -= ) A .3-B .3C .3i -D .3i【解答】解:复数1Z =,222(1)2(1Z Z ∴-=-12=-+--3=-故选:A .3.(5分)圆222430x y x y +-++=的圆心到直线1x y -=的距离为:( )A .2B C .1 D 【解答】解:圆222430x y x y +-++=的圆心(1,2)-,它到直线1x y -=故选:D . 4.(5分)不等式221x x +>+的解集是( ) A .(1-,0)(1⋃,)+∞ B .(-∞,1)(0-⋃,1)C .(1-,0)(0⋃,1)D .(-∞,1)(1-⋃,)+∞【解答】解:法一:221x x +>+ 得2201x x -+>+ 即(1)01x x x ->+ 可得 (1)(1)0x x x -+>可得10x -<<或1x >. 法二:验证,2x =-、12不满足不等式,排除B 、C 、D . 故选:A .5.(5分)sin163sin 223sin 253sin 313︒︒+︒︒等于( )A .12-B .12C .D 【解答】解:原式sin163sin 223cos163cos 223=︒︒+︒︒ cos(163223)=︒-︒ cos(60)=-︒12=. 故选:B .6.(5分)若向量a b 与的夹角为60︒,||4,(2)(3)72b a b a b =+-=-,则向量a 的模为( ) A .2B .4C .6D .12【解答】解:(2)(3)a b a b +-22||||||cos606||a a b b =-︒- 2||2||9672a a =--=-, 2||2||240a a ∴--=.(||6)(||4)0a a ∴-+=. ||6a ∴=.故选:C .7.(5分)一元二次方程2210ax x ++=,(0)a ≠有一个正根和一个负根的充分不必要条件是( ) A .0a <B .0a >C .1a <-D .1a >【解答】解:一元二次方程2210ax x ++=,(0)a ≠有一个正根和一个负根的充要条件是1210x x a⨯=<,即0a <,而0a <的一个充分不必要条件是1a <-故选:C .8.(5分)设P 是60︒的二面角l αβ--内一点,PA ⊥平面α,PB ⊥平面β,A ,B 为垂足,4PA =,2PB =,则AB 的长为:( ) A .23B .25C .27D .42【解答】解:设平面PAB 与二面角的棱l 交于点Q , 连接AQ 、BQ 可得直线l ⊥平面PAQB ,所以AQB ∠是二面角l αβ--的平面角,60AQB ∠=︒, 故PAB ∆中,18060120APB ∠=︒-︒=︒,4PA =,2PB =,由余弦定理得:2222cos120AB PA PB PA PB =+-︒,22142242()282=+-⨯⨯⨯-=,所以2827AB ==, 故选:C .9.(5分)若数列{}n a 是等差数列,首项10a >,200320040a a +>,2003a .20040a <,则使前n 项和0n S >成立的最大自然数n 是( ) A .4005 B .4006C .4007D .4008【解答】解:解法1:由200320040a a +>,200320040a a <,知2003a 和2004a 两项中有一正数一负数,又10a >,则公差为负数,否则各项总为正数,故20032004a a >,即20030a >,20040a <.140062003200440064006()4006()022a a a a S ++∴==>,40071400720044007()400702S a a a ∴=+=<, 故4006为0n S >的最大自然数. 故选B .解法2:由10a >,200320040a a +>,200320040a a <,同解法1的分析得20030a >,20040a <,2003S ∴为n S 中的最大值.n S 是关于n 的二次函数,如草图所示,2003∴到对称轴的距离比2004到对称轴的距离小,∴40072在对称轴的右侧. 根据已知条件及图象的对称性可得4006在图象中右侧零点B 的左侧, 4007,4008都在其右侧,0n S >的最大自然数是4006. 故选:B .10.(5分)已知双曲线22221x y a b-=,(0,0)a b >>的左,右焦点分别为1F ,2F ,点P 在双曲线的右支上,且12||4||PF PF =,则此双曲线的离心率e 的最大值为( ) A .43B .53C .2D .73【解答】解:设(,)P x y ,由焦半径得1||PF ex a =+,2||PF ex a =-, 4()ex a ex a ∴+=-,化简得53a e x=, p 在双曲线的右支上,x a ∴,53e∴,即双曲线的离心率e 的最大值为53故选:B .11.(5分)某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为:( ) A .110B .120C .140D .1120【解答】解:由题意知本题是一个古典概型,试验发生包含的所有事件是10位同学参赛演讲的顺序共有:1010A ;满足条件的事件要得到“一班有3位同学恰好被排在一起而二班的2位同学没有被排在一起的演讲的顺序”可通过如下步骤:①将一班的3位同学“捆绑”在一起,有33A 种方法;②将一班的“一梱”看作一个对象与其它班的5位同学共6个对象排成一列,有66A 种方法;③在以上6个对象所排成一列的7个间隙(包括两端的位置)中选2个位置,将二班的2位同学插入,有27A 种方法.根据分步计数原理(乘法原理),共有362367A A A 种方法.∴一班有3位同学恰好被排在一起(指演讲序号相连), 而二班的2位同学没有被排在一起的概率为:3623671010120A A A P A ==. 故选:B .12.(5分)若三棱锥A BCD -的侧面ABC 内一动点P 到底面BCD 的距离与到棱AB 的距离相等,则动点P 的轨迹与ABC ∆组成图形可能是:( )A .B .C .D .【解答】解:设二面角A BC D --的大小为θ,如图.作PR ⊥面BCD 于R ,PQ BC ⊥于Q ,PC AB ⊥于T ,则PQR θ∠=, 且由条件sin PT PR PQ θ==, ∴sin PTPQθ=为小于1的常数, 故选:D .二、填空题(共4小题,每小题4分,满分16分)13.(4分)若在5(1)ax +的展开式中3x 的系数为80-,则a = 2- .【解答】解:5(1)ax +展开式的通项为155()r r r r rr T C ax a C x +== 令3x =的展开式中3x 的系数为333510a C a = 展开式中3x 的系数为80- 31080a ∴=-2a ∴=-故答案为2-14.(4分)曲线2122y x =-与3124y x =-在交点处的切线夹角是 4π.(以弧度数作答)【解答】解:由232224x y x y ⎧=-⎪⎪⎨⎪=-⎪⎩得322160x x +-=,2(2)(48)0x x x -++=,2x ∴=. ∴两曲线只有一个交点.21(2)2y x x '=-'=-,2|2x y =∴'=-.又323(2)44x y x '=-'=,∴当2x =时,3y '=.∴两曲线在交点处的切线斜率分别为2-、3, 23||11(2)3--=+-⨯.∴夹角为4π. 故答案为:4π15.(4分)如图1P 是一块半径为1的半圆形纸板,在1P 的左下端剪去一个半径为12的半圆后得到图形2P ,然后依次剪去一个更小半圆(其直径为前一个被剪掉半圆的半径)得圆形3P 、4P 、⋯、n P ⋯,记纸板n P 的面积为n S ,则lim n n S →∞=3π.【解答】解:每次剪掉的半圆形面积构成一个以8π为首项,以14为公比的等比数列, 则128lim 1614n n a a a ππ→∞++⋯+==- 故:lim 263n n S πππ→∞=-=故答案为:3π 16.(4分)直线:(3)5y k x =+与椭圆:32cos (02)14sin x y θθπθ⎧=⎪⎨=+⎪⎩恰有一个公共点,则k 取值是 0 .【解答】解:椭圆:32cos (02)14sin x y θθπθ⎧=⎪⎨=+⎪⎩22(3)(1)116x y --= 直线(3)5y k x =+恒过(35) 而点(35)在椭圆上且为上定点,则直线:(3)5y k x =+与椭圆:32cos (02)14sin x y θθπθ⎧⎪⎨=+⎪⎩恰有一个公共点即0k =, 故答案为0.三、解答题(共6小题,满分74分)17.(12分)求函数44sin cos cos y x x x x =+-的最小正周期和最小值;并写出该函数在[0,]π上的单调递增区间.【解答】解:44sin cos cos y x x x x =+-2222(sin cos )(sin cos )2x x x x x =+-2cos2x x =-2sin(2)6x π=-.故该函数的最小正周期是π;最小值是2-;单调递增区间是[0,]3π,5[6π,]π.18.(12分)设一汽车在前进途中要经过4个路口,汽车在每个路口遇到绿灯的概率为34,遇到红灯(禁止通行)的概率为14.假定汽车只在遇到红灯或到达目的地才停止前进,ξ表示停车时已经通过的路口数,求:(Ⅰ)ξ的概率的分布列及期望E ξ; (Ⅱ)停车时最多已通过3个路口的概率.【解答】解:()I 由题意知ξ的所有可能值为0,1,2,3,4 用K A 表示“汽车通过第k 个路口时不停(遇绿灯)”, 则()()123431,2,3,4,,,,4K P A k A A A A ==且独立. 故11(0)()4P P A ξ===, 12313(1)()4416P P A A ξ===⨯=2123319(2)()()4464P P A A A ξ====, 312343127(3)()()44256P P A A A A ξ====, 41234381(4)()()4256P P A A A A ξ====从而ξ有分布列:13927815250123441664256256256E ξ=⨯+⨯+⨯+⨯+⨯=81175()(3)1(4)1256256II P P ξξ=-==-=即停车时最多已通过3个路口的概率为175256. 19.(12分)如图,四棱锥P ABCD -的底面是正方形,PA ⊥底面ABCD ,AE PD ⊥,//EF CD ,AM EF = (1)证明MF 是异面直线AB 与PC 的公垂线;(2)若3PA AB =,求直线AC 与平面EAM 所成角的正弦值.【解答】()I 证明:因PA ⊥底面,有PA AB ⊥,又知AB AD ⊥, 故AB ⊥面PAD ,推得BA AE ⊥, 又////AM CD EF ,且AM EF =, 证得AEFM 是矩形,故AM M F ⊥.又因AE PD ⊥,AE CD ⊥,故AE ⊥面PCD , 而//MF AE ,得M F ⊥面PCD , 故MF PC ⊥,因此MF 是AB 与PC 的公垂线.()II 解:连接BD 交AC 于O ,连接BE ,过O 作BE 的垂线OH ,垂足H 在BE 上.易知PD ⊥面MAE ,故DE BE ⊥, 又OH BE ⊥,故//OH DE ,因此OH ⊥面MAE .连接AH ,则HAO ∠是所要求的线AC 与面NAE 所成的角 设AB a =,则3PA a =,1222AO AC a ==. 因Rt ADE ~Rt PDA ∆∆,故 222210(3)AD a aED PD a a ===+, 12210aOH ED ==. 从而在Rt AHO ∆中 215sin 10210220OH a HAO AO a ==⨯==.20.(12分)设函数()(1)()f x x x x a =--,(1)a >(1)求导数()f x '并证明()f x 有两个不同的极值点1x ,2x ; (2)若不等式12()()0f x f x +成立,求a 的取值范围. 【解答】解:(1)2()32(1)f x x a x a '=-++. 令()0f x '=得方程232(1)0x a x a -++=.因△24(1)40a a a =-+>,故方程有两个不同实根1x ,2x 不妨设12x x <,由12()3()()f x x x x x '=--可判断()f x '的符号如下: 当1x x <时,()0f x '>; 当12x x x <<时,()0f x '<;当2x x >时,()0f x '>因此1x 是极大值点,2x 是极小值点.(2)因12()()0f x f x +,故得不等式3322121212(1)()()0x x a x x a x x +-++++.即22121212121212()[()3](1)[()2]()0x x x x x x a x x x x a x x ++--++-++. 又由()I 知12122(1)3.3x x a a x x ⎧+=+⎪⎪⎨⎪=⎪⎩代入前面不等式,两边除以(1)a +,并化简得 22520a a -+.解不等式得2a 或12a(舍去) 因此,当2a 时,不等式12()()0f x f x +成立.21.(12分)设0p >是一常数,过点(2,0)Q p 的直线与抛物线22y px =交于相异两点A 、B ,以线段AB 为直径作圆(H H 为圆心).试证抛物线顶点在圆H 的圆周上;并求圆H 的面积最小时直线AB 的方程.【解答】解:由题意,设直线AB 的方程为2ay x =-, 设1(A x ,1)y ,2(B x ,2)y ,则其坐标满足222ay x y px =-⎧⎨=⎩消去x 的22240y apy p --=,则212212(42)4x x a p x x p ⎧+=+⎪⎨=⎪⎩因此12120OA OB x x y y =+=OA OB ∴⊥,故O 必在圆H 的圆周上,又由题意圆心H 是AB 的中点,故2(2)H Hx a p y ap ⎧=+⎪⎨=⎪⎩, 由前已证OH 应是圆H 的半径,且42||54OH a a p =++; 从而当0a =时,圆H 的半径最小,也使圆H 的面积最小.22.(14分)设数列{}n a 满足:12a =,*11()n n na a n N a +=+∈. (Ⅰ)证明:21n a n +*n N ∈恒成立; (Ⅱ)令*)n nb n N n=∈,判断n b 与1n b +的大小,并说明理由.【解答】解:(1)证法一:当1n =时,12211a =⨯+ 假设n k =时,21k a k +2分), 当1n k =+时,22122112232(1)1k k k ka a k k a a +=++>++>++.(5分) 1n k ∴=+时,12(1)1k a k +>++综上由数学归纳法可知,21n a n +6分)证法二:由递推公式得2212112n n n a a a --=++,2222122122211122n n m a a a a a a ---=++=++(2分) 上述各式相加并化简得22212211112(1)22(1)222111(2)nn a a n n n n n a a -=+-++⋯+>+-=+>+++(4分)又1n=时,na*)na n N>∈(6分)(2)解法一:1211(1)(1)21nn nbb a n+==+<++(8分)12n===<+(10分)又显然*0()nb n N>∈,故1n nb b+<成立(12分)解法二:22222211211(2)11n n nn n nma a ab b an n n a n++-=-=++-++(8分)22111121(2)(2)1121nma nn a n n n n+=+-<+-+++(10分)111()0121n n n=-<++故221n nb b+<,因此1n nb b+<(12分)。
2004高考数学全国卷及答案理
2004年高考试题全国卷1 理科数学(必修+选修Ⅱ)(河南、河北、山东、山西、安徽、江西等地区)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷(选择题 共60分)参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C kn P k (1-P)n -k一、选择题 :本大题共12小题,每小题6分,共601.(1-i)2·i= ( )A .2-2iB .2+2iC .-2D .2 2.已知函数=-=+-=)(.)(.11lg )(a f b a f xxx f 则若 ( )A .bB .-bC .b1D .-b1 3.已知a 、b 均为单位向量,它们的夹角为60°,那么|a +3b|=( )A .7B .10C .13D .4 4.函数)1(11≥+-=x x y 的反函数是( )A .y=x 2-2x +2(x <1)B .y=x 2-2x +2(x ≥1)C .y=x 2-2x (x <1)D .y=x 2-2x (x ≥1) 5.73)12(xx -的展开式中常数项是( )球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π, 其中R 表示球的半径A .14B .-14C .42D .-42 6.设A 、B 、I 均为非空集合,且满足A ⊆B ⊆I ,则下列各式中错误..的是 ( )A .(I C A)∪B=IB .(IC A)∪(I C B)=I C .A ∩(I C B)=φD .(I C A) (I C B)= I C B7.椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点 为P ,则||2PF =( )A .23 B .3C .27 D .48.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( )A .[-21,21] B .[-2,2]C .[-1,1]D .[-4,4]9.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象( ) A .向右平移6π个单位长度 B .向右平移3π个单位长度C .向左平移6π个单位长度D .向左平移3π个单位长度10.已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H.设四面体EFGH的表面积为T ,则ST等于( )A .91B .94C .41 D .31 11.从数字1,2,3,4,5,中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为 ( )A .12513 B .12516 C .12518 D .12519 12.ca bc ab a c c b b a ++=+=+=+则,2,2,1222222的最小值为 ( )A .3-21 B .21-3 C .-21-3 D .21+3第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.不等式|x +2|≥|x |的解集是 .14.由动点P 向圆x 2+y 2=1引两条切线PA 、PB ,切点分别为A 、B ,∠APB=60°,则动点P的轨迹方程为 .15.已知数列{a n },满足a 1=1,a n =a 1+2a 2+3a 3+…+(n -1)a n -1(n ≥2),则{a n }的通项 1___n a ⎧=⎨⎩12n n =≥ 16.已知a 、b 为不垂直的异面直线,α是一个平面,则a 、b 在α上的射影有可能是 .①两条平行直线 ②两条互相垂直的直线 ③同一条直线④一条直线及其外一点在一面结论中,正确结论的编号是 (写出所有正确结论的编号).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)求函数xxx x x x f 2sin 2cos sin cos sin )(2244-++=的最小正周期、最大值和最小值.18.(本小题满分12分)一接待中心有A 、B 、C 、D 四部热线电话,已知某一时刻电话A 、B 占线的概率均为0.5,电话C 、D 占线的概率均为0.4,各部电话是否占线相互之间没有影响.假设该时刻有ξ部电话占线.试求随机变量ξ的概率分布和它的期望. 19.(本小题满分12分)已知,R a ∈求函数axe x xf 2)(=的单调区间. 20.(本小题满分12分)如图,已知四棱锥 P —ABCD ,PB ⊥AD 侧面PAD 为边长等于2的正三角形,底面ABCD 为菱形,侧面PAD 与底面ABCD 所成的二面角为120°.(I )求点P 到平面ABCD 的距离,(II )求面APB 与面CPB 所成二面角的大小.21.(本小题满分12分)设双曲线C :1:)0(1222=+>=-y x l a y ax 与直线相交于两个不同的点A 、B.(I )求双曲线C 的离心率e 的取值范围: (II )设直线l 与y 轴的交点为P ,且.125=求a 的值. 22.(本小题满分14分)已知数列1}{1=a a n 中,且a 2k =a 2k -1+(-1)K , a 2k+1=a 2k +3k , 其中k=1,2,3,……. (I )求a 3, a 5;(II )求{ a n }的通项公式.2004年高考试题全国卷1 理科数学(必修+选修Ⅱ)(河南、河北、山东、山西、安徽、江西等地区)参考答案一、选择题DBCBABCCBADB二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.{x |x ≥-1} 14.x 2+y 2=4 15.2!n 16.①②④ 三、解答题17.本小题主要考查三角函数基本公式和简单的变形,以及三角函娄的有关性质.满分12分.解:xx xx x x x f cos sin 22cos sin )cos (sin )(22222--+=212sin 41)cos sin 1(21)cos sin 1(2cos sin 122+=+=--=x x x x x x x所以函数f (x )的最小正周期是π,最大值是43,最小值是41. 18.本小题主要考查离散型随机变量分布列和数学期望等概念.考查运用概率知识解决实际问题的能力.满分12分. 解:P(ξ=0)=0.52×0.62=0.09.P(ξ=1)=12C ×0.52×0.62+12C ×0.52×0.4×0.6=0.3P(ξ=2)= 22C ×0.52×0.62+12C 12C ×0.52×0.4×0.6+22C ×0.52×0.42=0.37. P(ξ=3)= 22C 12C ×0.52×0.4×0.6+12C 22C ×0.52×0.42=0.2 P(ξ=4)= 0.52×0.42=0.0419.本小题主要考查导数的概率和计算,应用导数研究函数性质的方法,考查分类讨论的数学思想.满分12分. 解:函数f (x )的导数:.)2(2)(22ax ax ax e ax x e ax xe x f ++=+='(I )当a =0时,若x <0,则)(x f '<0,若x >0,则)(x f '>0.所以当a =0时,函数f (x )在区间(-∞,0)内为减函数,在区间(0,+∞)内为增函数. (II )当,02,02,02>-<>+>x ax ax x a 或解得由时 由.02,022<<-<+x aax x 解得 所以,当a >0时,函数f (x )在区间(-∞,-a 2)内为增函数,在区间(-a2,0)内为减函数,在区间(0,+∞)内为增函数;(III )当a <0时,由2x +ax 2>0,解得0<x <-a2, 由2x +ax 2<0,解得x <0或x >-a2. 所以当a <0时,函数f (x )在区间(-∞,0)内为减函数,在区间(0,-a2)内为增函数,在区间(-a2,+∞)内为减函数. 20.本小题主要考查棱锥,二面角和线面关系等基本知识,同时考查空间想象能力和推理、运算能力.满分12分.(I )解:如图,作PO ⊥平面ABCD ,垂足为点O.连结OB 、OA 、OD 、OB 与AD 交于点E ,连结PE.∵AD ⊥PB ,∴AD ⊥OB ,∵PA=PD ,∴OA=OD ,于是OB 平分AD ,点E 为AD 的中点,所以PE ⊥AD.由此知∠PEB 为面PAD 与面ABCD 所成二面角的平面角, ∴∠PEB=120°,∠PEO=60°由已知可求得PE=3∴PO=PE ·sin60°=23233=⨯, 即点P 到平面ABCD 的距离为23. (II )解法一:如图建立直角坐标系,其中O 为坐标原点,x 轴平行于DA.)43,433,0(),0,233,0(),23,0,0(的坐标为中点G PB B P .连结AG.又知).0,233,2(),0,23,1(-C A 由此得到: 0,0).0,0,2(),23,233,0(),43,43,1(=⋅=⋅-=-=--=BC PB 于是有所以θ的夹角,.⊥⋅⊥ 等于所求二面角的平面角, 于是,772cos -==θ 所以所求二面角的大小为772arccos-π . 解法二:如图,取PB 的中点G ,PC 的中点F ,连结EG 、AG 、GF ,则AG ⊥PB ,FG//BC ,FG=21BC. ∵AD ⊥PB ,∴BC ⊥PB ,FG ⊥PB , ∴∠AGF 是所求二面角的平面角. ∵AD ⊥面POB ,∴AD ⊥EG.又∵PE=BE ,∴EG ⊥PB ,且∠PEG=60°. 在Rt △PEG 中,EG=PE ·cos60°=23. 在Rt △PEG 中,EG=21AD=1.于是tan ∠GAE=AE EG =23, 又∠AGF=π-∠GAE.所以所求二面角的大小为π-arctan23. 21.(本小题主要考查直线和双曲线的概念和性质,平面向量的运算等解析几何的基本思想和综合解题能力.满分12分. 解:(I )由C 与t 相交于两个不同的点,故知方程组⎪⎩⎪⎨⎧=+=-.1,1222y x y ax 有两个不同的实数解.消去y 并整理得(1-a 2)x 2+2a 2x -2a 2=0. ①.120.0)1(84.012242≠<<⎪⎩⎪⎨⎧>-+≠-a a a a a a 且解得所以双曲线的离心率).,2()2,26(226,120.11122+∞≠>∴≠<<+=+= 的取值范围为即离心率且且e e e a a aaa e(II )设)1,0(),,(),,(2211P y x B y x A.125).1,(125)1,(,125212211x x y x y x =-=-∴=由此得 由于x 1+x 2都是方程①的根,且1-a 2≠0,1317,06028912,,.12125.1212172222222222=>=----=--=a a a a x a a x a a x 所以由得消去所以 22.本小题主要考查数列,等比数列的概念和基本知识,考查运算能力以及分析、归纳和推理能力.满分14分. 解:(I )a 2=a 1+(-1)1=0,a 3=a 2+31=3.a 4=a 3+(-1)2=4, a 5=a 4+32=13, 所以,a 3=3,a 5=13. (II) a 2k+1=a 2k +3k= a 2k -1+(-1)k +3k,所以a 2k+1-a 2k -1=3k +(-1)k,同理a 2k -1-a 2k -3=3k -1+(-1)k -1, ……a 3-a 1=3+(-1).所以(a 2k+1-a 2k -1)+(a 2k -1-a 2k -3)+…+(a 3-a 1)=(3k +3k -1+…+3)+[(-1)k +(-1)k -1+…+(-1)], 由此得a 2k+1-a 1=23(3k -1)+21[(-1)k -1], 于是a 2k+1=.1)1(21231--++k k a 2k = a 2k -1+(-1)k=2123+k (-1)k -1-1+(-1)k =2123+k(-1)k =1. {a n }的通项公式为: 当n 为奇数时,a n =;121)1(232121-⨯-+-+n n 当n 为偶数时,.121)1(2322-⨯-+=nn n a。
【备战2013年】历届高考数学真题汇编专题7_平面向量_理(2000-2006)
且 ,由向量加法的平行四边形
法则,OP为平行四边形的对角线,该四边形应是以
OB和OA的反向延长线为两邻边,∴ 的取值范围
是(-∞,0);
当 时,要使P点落在指定区域内,即P点应落在DE上,CD= OB,CE= OB,∴ 的取值范围是( , ).
37.(江苏卷)在△ABC中,已知BC=12,A=60°,B=45°,则AC=
38.(江西卷)已知向量 , ,则 的最大值为.
解: =|sin-cos|= |sin(- )| 。
39.(全国II)已知△ABC的三个内角A、B、C成等差数列,且AB=1,BC=4,则边BC上的中线AD的长为.
解析:由 的三个内角A、B、C成等差数列可得A+C=2B而A+B+C= 可得
AD为边BC上的中线可知BD=2,由余弦定理定理可得 。
(A)(1,-1)(B)(-1,1)(C)(-4,6)(D)(4,-6)
解:4a=(4,-12),3b-2a=(-8,18),设向量c=(x,y),依题意,得4a+(3b-2a)+c=0,所以4-8+x=0,-12+18+y=0,解得x=4,y=-6,选D
22.(陕西卷)已知非零向量与满足(+)·=0且·=,则△ABC为( )
本小题主要考察三角函数概念、同角三角函数的关系、两角和与差的三角函数的公式以及倍角公式,考察应用、分析和计算能力。满分12分。
(Ⅱ)由题知 ,整理得
∴ ∴
∴ 或 ,而 使 ,舍去
∴
54.(天津卷)如图,在 中, , , .
(1)求 的值;
(2)求 的值.
本小题考查同角三角函数关系、两角和公式、倍角公式、正弦定理、余弦定理等基础知识,考察基本运算能力及分析解决问题的能力.满分12分.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2004年普通高等学校招生全国统一考试数学(理工农医类)(重庆卷)本试卷分第Ⅰ部分(选择题)和第Ⅱ部分(非选择题)共150分 考试时间120分钟.第Ⅰ部分(选择题 共60分)参考公式:如果事件A 、B 互斥,那幺 P(A+B)=P(A)+P(B) 如果事件A 、B 相互独立,那幺 P(A·B)=P(A)·P(B)如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率k n kk n n P P C k P --=)1()(一、每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数y =的定义域是:( )A .[1,)+∞B .23(,)+∞ C .23[,1] D .23(,1] 2.设复数z z i z 2,212-+=则, 则22Z Z -=( ) A .–3 B .3 C .-3i D .3i3.圆222430x y x y +-++=的圆心到直线1x y -=的距离为 ( )A .2B .2C .1D 4.不等式221x x +>+的解集是 ( ) A .(1,0)(1,)-+∞ B .(,1)(0,1)-∞- C .(1,0)(0,1)- D .(,1)(1,)-∞-+∞5.sin163sin 223sin 253sin313+=( )A .12-B .12C .2-D .2 6.若向量 a 与b 的夹角为60,||4,(2).(3)72b a b a b =+-=- ,则向量a 的模为 ( )A .2B .4C .6D .127.一元二次方程2210,(0)ax x a ++=≠有一个正根和一个负根的充分不必要条件是: ( ) A .0a < B .0a > C .1a <- D .1a >8.设P 是60的二面角l αβ--内一点,,PA PB αβ⊥⊥平面平面,A,B 为垂足,4,2,PA PB ==则AB 的长为 ( )A .B .C .D .9. 若{}n a 是等差数列,首项120032004200320040,0,.0a a a a a >+><,则使前n 项和0n S >成立的最大自然数n是:( ) A .4005B .4006C .4007D .400810.已知双曲线22221,(0,0)x y a b a b-=>>的左,右焦点分别为12,F F ,点P 在双曲线的右支上,且12||4||PF PF =,则此双曲线的离心率e 的最大值为:( )A .43B .53 C .2D .7311.某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为: ( ) A .110B .120C .140 D .112012.若三棱锥A-BCD 的侧面ABC 内一动点P 到底面BCD 的距离与到棱AB 的距离相等,则动点P 的轨迹与△ABC 组成图形可能是 ( )(C ) (D )第Ⅱ部分(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.若在5(1)ax +的展开式中3x 的系数为80-,则_______a =.14.曲线23112224y x y x =-=-与在交点处切线的夹角是______,(用幅度数作答) 15.如图P 1是一块半径为1的半圆形纸板,在P 1的左下端剪去一个半径为12的半圆后得到图形P 2,然后依次剪P 3、n S ,则lim n x S →∞=16.对任意实数)20(sin 41cos 2πθθθ<≤⎩+=+y 恒有公共点,则b 取值范围是_______ 三、解答题:本题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)求函数44sincos cos y x x x x =+-的最小正周期和最小值;并写出该函数在[0,]π上的单调递增区间。
18.(本小题满分12分)设一汽车在前进途中要经过4个路口,汽车在每个路口遇到绿灯(允许通行)的概率为34,遇到红灯(禁止通行)的概率为14。
假定汽车只在遇到红灯或到达目的地才停止前进,ξ表示停车时已经通过的路口数,求: (1)ξ的概率的分布列及期望E ξ;(2 ) 停车时最多已通过3个路口的概率。
19.(本小题满分12分)如图,四棱锥P-ABCD的底面是正方形,,,//,PA ABCD AE PD EF CD AM EF⊥⊥=底面(1)明MF是异面直线AB与PC的公垂线;(2)若3PA AB=,求直线AC与平面EAM所成角的正弦值。
20.(本小题满分12分)设函数()(1)(),(1)f x x x x a a=-->(1)求导数/()f x; 并证明()f x有两个不同的极值点12,x x;(2)若不等式12()()0f x f x+≤成立,求a的取值范围.21.(本小题满分12分)设0p>是一常数,过点(2,0)Q p的直线与抛物线22y px=交于相异两点A、B,以线段AB为直经作圆H (H为圆心)。
试证抛物线顶点在圆H的圆周上;并求圆H的面积最小时直线AB的方程.22.(本小题满分14分)设数列{}n a满足1112,,(1,2,3.......)n nna a a na+==+=(1)证明na>n 成立;(2)令1,2,3......)nb n==,判断1n nb b+与的大小,并说明理由。
参考答案一、选择题:每小题5分,共60分.1.D 2.A 3.D 4.A 5.B 6.C 7.C 8.C 9.B 10.B 11.D 12.D 二、填空题:每小题4分,共16分. 13.-2 14.4π 15.3π16.[-1,3] 三、解答题:共74分.17.(本小题12分)解:x x x x y 44cos cos sin 32sin -+=2222(s i n c o s )(s i nc )n 23s i n 2c o s 22s i n (2)6x xx x x x x π=+--=-故该函数的最小正周期是π;最小值是-2; 单增区间是[π31,0],],65[ππ18.(本小题12分)解:(I )ξ的所有可能值为0,1,2,3,4 用A K 表示“汽车通过第k 个路口时不停(遇绿灯)”,则P (A K )=4321,,,),4,3,2,1(43A A A A k 且=独立. 故,41)()0(1===A P P ξ25681)43()()4(,2562741)43()()3(,64941)43()()2(1634143)()1(4432134321232121==⋅⋅⋅====⋅⋅⋅====⋅⋅===⨯=⋅==A A A A P P A A A A P P A A A P P A A P P ξξξξ从而ζ有分布列:ξ 0 1 2 3 4P41 163 649 25627 2568125652525681425627364921631410=⨯+⨯+⨯+⨯+⨯=ξE(II )256175256811)4(1)3(=-==-=≤ξξP P答:停车时最多已通过3个路口的概率为256175.19.(本小题12分)(I )证明:因PA ⊥底面,有PA ⊥AB ,又知AB ⊥AD ,故AB ⊥面PAD ,推得BA ⊥AE , 又AM ∥CD ∥EF ,且AM=EF , 证得AEFM 是矩形,故AM ⊥MF.又因AE ⊥PD ,AE ⊥CD ,故AE ⊥面PCD , 而MF ∥AE ,得MF ⊥面PCD , 故MF ⊥PC ,因此MF 是AB 与PC 的公垂线.(II )解:连结BD 交AC 于O ,连结BE ,过O 作BE 的垂线OH , 垂足H 在BE 上. 易知PD ⊥面MAE ,故DE ⊥BE , 又OH ⊥BE ,故OH//DE , 因此OH ⊥面MAE. 连结AH ,则∠HAO 是所要求的线AC 与面NAE 所成的角 设AB=a ,则PA=3a , a AC AO 2221==. 因Rt △ADE~Rt △PDA ,故2212AD ED OH ED Rt AHO PD =====∆从而在中.10520122102sin ==⨯==a a AO OH HAO 20.(本小题12分)解:(I ).)1(23)(2a x a x x f ++-='221212121122()032(1)0.4(1)40,,,()3()()():,()0;,()0;,()0f x x a x a a a a x x x x f x x x x x f x x x f x x x x f x x x f x '=-++=∆=-+≥>''<=--'<<'<<<'>>令得方程因故方程有两个不同实根不妨设由可判断的符号如下当时当时当时因此1x 是极大值点,2x 是极小值点.(II )因故得不等式,0)()(21≤+x f x f.0)(]2))[(1(]3))[((.0)())(1(212122121221212122213231≤++-++--++≤++++-+x x a x x x x a x x x x x x x x a x x a x x 即又由(I )知⎪⎪⎩⎪⎪⎨⎧=+=+.3),1(322121a x x a x x代入前面不等式,两边除以(1+a ),并化简得22520.a a -+≥1212()2,2,()()0.a a a f x f x ≥≤≥+≤解不等式得或舍去因此当时不等式成立 21.(本小题12分)解法一:由题意,直线AB 不能是水平线, 故可设直线方程为:p x ky 2-=. 又设),(),,(B B A A y x B y x A ,则其坐标满足⎩⎨⎧=-=.2,22px y p x ky消去x 得 04222=--p p k y y由此得 ⎩⎨⎧-==+.4,22p y y pk y y B A B A⎪⎩⎪⎨⎧==+=++=+22224)2()(,)24()(4p p y y x x p k y y k p x x B A BA B A B A 因此OB OA y y x x B A B A ⊥=+=⋅即,0.故O 必在圆H 的圆周上.又由题意圆心H (H H y x ,)是AB 的中点,故⎪⎪⎩⎪⎪⎨⎧=+=+=+=.2,)2(22kp y y y p k x x x B A B B A H由前已证,OH 应是圆H 的半径,且p k k y x OH H H 45||2422++=+=.从而当k=0时,圆H 的半径最小,亦使圆H 的面积最小. 此时,直线AB 的方程为:x=2p.解法二:由题意,直线AB 不能是水平线,故可设直线方程为:ky =x -2p又设),(),,(B B A A y x B y x A ,则其坐标满足⎩⎨⎧=-=.2,22px y p x ky分别消去x ,y 得⎪⎩⎪⎨⎧=++-=--.04)2(2,04222222p x k p x p pky y 故得A 、B 所在圆的方程.02)2(2222=-+-+pky x k p y x明显地,O (0,0)满足上面方程所表示的圆上, 又知A 、B 中点H 的坐标为),,)2(()2,2(2kp p k y y x x BA B A +=++ 故 22222)2(||p k p k OH ++=而前面圆的方程可表示为22222222)2()(])2([p k p k pk y p k x ++=-++-故|OH|为上面圆的半径R ,从而以AB 为直径的圆必过点O (0,0). 又22422)45(||p k k OH R ++==,故当k=0时,R 2最小,从而圆的面积最小,此时直线AB 的方程为:x=2p. 解法三:同解法一得O 必在圆H 的圆周上又直径|AB|=22)()(B A B A y y x x -+-4.p ==≥=上式当B A x x =时,等号成立,直径|AB|最小,从而圆面积最小.此时直线AB 的方程为x=2p. 22.(本小题14分)(I )证法一:当,1122,11+⨯>==a n 时不等式成立..1)1(2,1.1)1(213221,1.12,122221时成立时时当成立时假设++>+=∴++>++>++=+=+>=++k a k n k a k a a a k n k a k n k k k k k k 综上由数学归纳法可知,12+>n a n 对一切正整数成立.证法二:当n=1时,112321+⨯=>=a .结论成立.假设n=k 时结论成立,即 .12+>k a k当)1(1)(,1>+=+=x x x x f k n 由函数时的单增性和归纳假设有.012132)12112(.3212112:.12112121显然成立而这等价于因此只需证≥+⇔+≥++++≥++++++>+=+k k k k k k k k k a a a kk k 所以当n=k+1时,结论成立. 因此,12+>n a n 对一切正整数n 均成立.证法三:由递推公式得 ,1221212--++=n n n a a a21212222222112,12a a a a a a n n n ++=++=---上述各式相加并化简得 )1(2211)1(222121212-+>+++-+=-n a a n a a n n).,2,1(12,12,1).2(1222 =+>+>=≥+>+=n n a n a n n n n n n 故明显成立时又 (II )解法一:1)1211(1)11(1211+++<++=+=++n nn n n a n a n a b b nn n n n..12141)21(12)1(21)12()1(212n n b b n n n n n n n n n <<+-+=++=+++=+故 解法二:na a a n na n ab b n n n n n n n -++=-+=-++)1(1111121]1)](())(21)](1)]0..n n n a n n n b b +=≤+=-+=+=<<由的结论所以解法三:n a n a b bn n nn 2212211-+=-++2222211111121111(2)(2)(2)()011121121n n n n n a a n a n a n n a n n n n n n n+=++-=+-<+-=-<++++++故n n n n b b b b <<++1221,因此.。