SPSS的参数检验和非参数检验

合集下载

spss分析

spss分析

spss分析SPSS (Statistical Package for the Social Sciences) 是一种常用的统计软件,可以进行各种数据分析。

SPSS分析方法如下:1. 描述性统计分析:对数据进行描述性统计,包括平均数、中位数、众数、标准差、方差等。

2. 参数检验:通过参数检验可以判断总体参数是否符合预期,常见的参数检验方法有t检验、方差分析(ANOVA)、卡方检验等。

3. 非参数检验:非参数检验方法用于处理数据样本不满足正态分布或方差齐性的情况,常见的非参数检验方法有Wilcoxon秩和检验、Kruskal-Wallis检验等。

4. 相关分析:用于分析两个或多个变量之间的关系,常见的相关分析方法有Pearson相关系数、Spearman秩相关系数等。

5. 回归分析:通过建立回归方程来研究自变量与因变量之间的关系,常见的回归分析方法有线性回归、多元回归等。

6. 方差分析:用于比较不同因素对结果的影响,常见的方差分析方法有单因素方差分析、多因素方差分析等。

7. 聚类分析:将数据集中的个体划分为不同的类别,常见的聚类分析方法有K均值聚类、层次聚类等。

8. 判别分析:用于确定将个体划分到已知类别中的判别准则,常见的判别分析方法有线性判别分析、逻辑回归等。

9. 生存分析:用于分析个体在某个时间段内生存的概率,常见的生存分析方法有Kaplan-Meier生存曲线、Cox比例风险模型等。

10. 因子分析:用于确定影响多个变量的共同因素,常见的因子分析方法有主成分分析、因子旋转等。

以上只是SPSS分析的一部分,还有很多其他的分析方法可以在SPSS中实现。

具体选择哪种分析方法取决于研究目的和数据特点。

第7章spss非参数检验

第7章spss非参数检验

Statistics按钮: 计算卡方值,用于行列
变量的独立性检验
计算pearson和spearman 相关系数
定类资料的行列变 量相关性检验
定序资料的行列变 量相关性检验
定序与定距资料的行 列变量相关性检验
评判内部一致性 相关风险比例 两相关二项分类变量的非参检验
二项分类变量的因、自变量独立性检验
p(1 p) / n
17
【界面设置】
检验的落入第一组的 概率常数值
分组值,小于该值为1 组,其余为1组
注意大小样本的选择
18
【结果形式】
19
7.3 Runs 游程检验 主要用于对二分变量(数值型)或利用断点分 为两组的变量,检验取值的分布随机性或两总体分 布是否一致,即一个case的取值是否影响下一个。 统计原假设H0:样本二分值分布是随机的或两总体分 布相同。
5、 2 Independent Samples 两独立(成组)样本检验
6、 K Independent Samples K个独立样本检验 5、 2 Related Samples 两关联(配对)样本检验 6、 K Related Samples K个关联样本检验
2
7.1 Chi-Square
1、卡方拟合优度检验 (Nonparametric Tests - Chi-Square) 主要用于分析实际频数与理论频数(已知)拟合情况;χ2 值反映了实际频数和理论频数的吻合程度。χ2值越小, 说明实际频数与理论频数越吻合。 适用于一个变量的多项分类数据的检验分析。 统计原假设:实际频数与理论频数相等或实际构成比等于 已知构成比。 k ( f 0 f e )2 卡方统计量为 2
25
【界面设置】

第5讲SPSS非参数检验

第5讲SPSS非参数检验
二、操作
数据文件:“糖果中的卡路里.sav” 菜单:“分析→非参数检验→旧对话框→K个独立样本”
多独立样本非参数检验整体分析与设计的内容
输入最大值、 最小值。
Kruskal-Wallis H检 验:是曼-惠特尼U 检验在多个独立样 本下的推广。
检验各个样本是否来自有相同中位数的 总体。--- 这种检验的效能最低。
2)对数据的测量尺度无约束,对数据的要求也不严格,任何数据类型 都可以。
3)适用于小样本、无分布样本、数据污染样本、混杂样本等。
注:若参数检验模型的所有假设在数据中都能满足,而且测量达到了所 要求的水平,那么,此时用非参数检验就浪费了数据。
因此,若所需假设都满足的情况下,一般就选择参数检验方法。
卡方检验
此时,零假设:两总体的 均值无显著性差异;就可 能不成立。
K-S检验。以变量的秩 作为分析对象;而非变 量值本身。
也需要先将两组样本混 合、升序排列。
两独立样本非参数检验整体分析与设计的内容 二、操作
该检验有特定用途,给出的结果均为单侧 检验。若施加的处理时的某些个体出现正 向效应,而另一些个体出现负向效应时, 就应当采用该检验方法。 基本思想为:将一组样本作为控制样本, 另一组作为试验样本。以控制样本为对照, 检验试验样本相对于控制样本是否出现了 极端反应。若无极端反应,则认为两总体 分布无显著性差异;否则,有显著性差异。
选择分布
“结”的处理
单样本K-S检验
整体分析与设计的内容
三、补充描述性统计的P-P图和Q-Q图
P-P图的输出样子: P-P图
期望(理论)累计 概率值
去势P-P图
样本数据实际累计 概率值
实际与期望的差值
样本数据实际累计 概率值

SPSS教程-非参数检验

SPSS教程-非参数检验
两独立样本的非参数检验是在对总体分布不很 了解的情况下,通过分析样本数据,推断样本 来自的两个独立总体分布是否存在显著差异。
一般用来对两个独立样本的均数、中位数、离 散趋势、偏度等进行差异比较检验。
两个样本是否独立,主要看在一个总体中抽取 样本对另外一个总体中抽取样本有无影响。
Mann-Whitney检验
=0.18576
计算表
SPSS基本操作
SPSS基本操作
SPSS基本操作
SPSS基本操作
SPSS基本操作
单样本K-S检验
利用样本数据推断样本来自的总体是否服从某一理论 分布,是一种拟合优度的检验方法,适用于探索连续 型随机变量的分布
步骤
计算各样本观测值在理论分布中出现的理论累计概率值F(x) 计算各样本观测值的实际累计概率值S(x) 计算理论累计概率值与实际累计概率值的差D(x) 计算差值序列中最大绝对差值D
针麻效果
(1) Ⅰ Ⅱ Ⅲ Ⅳ

肺癌 (2) 10 17 19 4
三种病人肺切除术的针麻效果比较肺化脓症Fra bibliotek肺结核
(3)
(4)
24
48
41
65
33
36
7
8
合计 (5) 82 123 88 19
SPSS基本操作
与例7的操作相同
随机区组设计资料的秩和检验
M检验(Friedman法)法计算步骤
将每个区组的数据由小到大分别编秩 计算各处理组的秩和Ri 求平均秩:R=1/2b(k+1) 计算各处理组的( Ri-R) 求M 查M界值表,F近似法
参数统计(parametric statistics) : 在 统计推断 中,若样本所来自的总体分布为已知的函数形式 (正态/近似正态分布),但其中的参数未知,统 计推断的目的就是对这些未知参数进行估计/检验, 这类统计推断方法称参数统计。

SPSS中非参数检验方法

SPSS中非参数检验方法

1. 总体分布的卡方(Chi-square)检验 2. 二项分布检验 3. SPSS单样本变量的随机性检验 4. SPSS单样本的K-S检验 5. 两个独立样本的非参数检验 6. 多个独立样本的非参数检验 7. 两个配对样本的非参数检验 8. 多配对样本的非参数检验
本章主要介绍总体分布的卡方(Chi-square) 检验、二项分布(Binomial)检验、单样本K-S ( Kolmogorov-Smirnov ) 检 验 、 单 样 本 变 量 值 随机性检验(Runs Test);两独立样本非参数 检验、多独立样本非参数检验、两配对样本非 参数检验、多配对样本非参数检验等8类常用的 非参数检验方法。
前面已经讨论的统计分析方法,对总体有特殊的要求,如T检 验要求总体符合正态分布;F检验要求误差呈正态分布,且各 组方差齐,等等。这些方法常用来估计或检验总体参数,统 称为参数检验。
现实中,许多调查或实验所得的科研数据,其总体分布未知 或无法确定。因为有的数据不是来自所假定分布的总体,或 者数据根本不是来自一个总体;还有可能数据因为某种原因 被严重污染。这样在假定分布的情况下进行推断的做法,就 有可能产生错误的结论。此时人们希望检验对一个总体分布 形状不必作限制。
人数 2 4 7 16 20 25 24 22 16 2 6 1
实现步骤
在菜单中选择“1-Sample K-S”命令
“One-Sample Kolmogorov-Smirnov Test”对话框
“One-Sample K-S:Options”对话框
4.3 结果和讨论
(1)本例输出结果如下表所示。
总体分布的卡方检验的数据是实际收集到 的样本数据,而非频数数据。
1.2 SPSS中实现过程

spss参数与非参数检验实验报告

spss参数与非参数检验实验报告
基本思路:
(1).将一样本作为控制样本,另一样本作为实验样本。两样本混合后按升序排列;
(2).找出控制样本的跨度(最低秩和最高秩间的样品数)和截头跨度(去掉控制样本的最小值和最大值后的跨度)。若跨度(截头跨度)很小,认为样本存在极端反应。
以上四种检验的基本操作步骤:
(1)【Analyze】--->【Nonparametric Tests】--->【2 Independent Sample】
该检验可用来检验两个独立样本是否取自同一总体,它是最强的非参数检验之一。
基本思路:
1.将样本X和样本Y混合后作升序排列,计算每个数据的秩;
2.分别对两样本的秩求平均,得到两个平均秩,分别用W1=WX/m和W2=WY/n表示。
若W1和W2比较接近,则说明两个样本来自相同分布的总体,若W1和W2差异较大,则说明两个样本来自不同的总体。
(2)选择待检验变量到【Test Variable】框中
(3)指定存放样本标志值的变量到【Grouping Variable】框
(4)选择非参数检验方法
三、多个独立样本的非参数检验包括:中位数检验、Kruskal-Wallis H检验、Jonkheere-Terpstra检验
3.1中位数检验
(一)含义:通过对多组独立样本的分析,检验它们来自的总体的中位数是否存在显著差异。其原假设是:多个独立样本来自的多个总体的中位数无显著差异。
(2)选定待检验的变量到【Test Variable list】框中
(3)在【Cut Point】框中确定计算游程数的分界点
二、两个独立样本的非参数检验包括:Mann-Whitney U检验、K-S双样本检验、Wald-Wolfowitz游程检验、Moses极端反应检验

SPSS数据分析教程-第6章-非参数

SPSS数据分析教程-第6章-非参数
Moses extreme reaction 比较各组的中位数
Median test
独立样本检验举例
➢ 一个公司把他们的销售代表随机分到三个 不同的组中,进行不同的培训。两个月后 对销售进行考察,我们想通过非参数检验 比较不同组别的销售代表考试得分是否有 显著性差异。这里,不同组别的考试得分 是相互独立的,因此为独立样本数据,我 们采用独立样本非参数检验。

独立样本包括两个独立样本或者两个以上的独 立样本。
➢ SPSS提供的独立样本非参数检验的方法有:
两个独立样本分布的比较
Mann-Whitney U
Kolmogorov-Smimov
Wald-Wolfowitz K个独立样本分布的比较
Kruskal-Wallis
Jonckheere-Terpstra 比较全矩
➢ Wilcoxon符号秩检验用于检验样本所来自的 总体的中位数和所给的值是否有显著区别。 该检验适用于连续型数据(或者尺度数 据),它把观测值和原假设的中心位置之 差的绝对值的秩分别按照不同的符号相加 作为其检验统计量。
➢ Wilcoxon符号秩检验的假设为:
样本所来自的总体的中位数等于给定的数值。
游程检验
➢ 游程检验用于检验某一变量的两个值的出 现顺序是否随机,对于连续型变量的随机 性检验也可以转化为只有两个取值的分类 变量的随机性的检验。游程检验通过对样 本观测值的分析,用来检验该样本所来自 的总体序列是否为随机序列(又称为白噪 声序列)。它也可以用来检验一个样本的 观测值之间是否相互独立。
二项式检验
➢ SPSS的二项式检验通过样本数据检验样本 来自的总体是否服从指定的二项分布。例 如,现代社会男、女的比例是否为1.01:1; 工厂的次品率是否为1%等都可以通过二项 式检验完成。

spss教程_14-1(非参数检验)

spss教程_14-1(非参数检验)
将样本值从小到大排序,排列的序号 称为相应数据的的秩,对相同的数据取 序号的平均值作为秩
Xi Ri
15 7
9 5
18 9
3 1
17 8
8 4
5 2
13 6
7 3
19 10
Mann-Whitney U检验(Rank检验)
1 将两组样本混合按升序排序,得到每个 数据的秩
R (Q1 ,Qm , R1 , Rn )
游程检验 基本操作
1 Analyze==>Nonparametic test==> Runs
Test Variable List:待检验变量 Cut Point:游程数的分界值
实例分析
检验某耐压设备在某段时间内 工作是否持续正常
第2 节
两独立样本非参数检验
问题
例:检验两种工艺下产品的使用寿命 是否存在显著差异
非参数检验
非参数检验特点
(1)不要求总体分布已知或对总体分布作任 何限制性假定; (2)不以估计总体参数为目的; (3)能用于定性变量(即定类变量和定序 变量); (4)方法直观,易于理解,运算比较简单。 (5)缺点是检验的功效不如参数检验方法。
本章内容
单样本非参数检验 两独立样本非参数检验 多独立样本非参数检验 两相关样本非参数检验 多相关样本非参数检验
k 2 i
ni
2
i 1 j 1
3 H 0 成立, H值偏小 , n较大时, H ~ 2 ( K 1)
Jonkheere-Terpstra检验
基本思想与Mann-Whitney U检验 类似
基本操作 Analyze==>Nonparametic test ==>K Independent Samples Test Variable List:待检验变量 Grouping Variable:选入分组变量 Define Range :分组变量范围 Test Type:检验方法

SPSS的参数检验和非参数检验

SPSS的参数检验和非参数检验

实验报告SPSS 勺参数检验和非参数检验学期:_2013—至2013_第_1_学期 课程名称:_数学建模专业:数学实验项目 SPSS 勺参数检验和非参数检验实验成绩:一、 实验目的及要求熟练掌握t 检验及其结果分析。

熟练掌握单样本、两独立样本、多独立样本 的非参数检验及各种方法的适用范围,能对结果给出准确分析。

二、 实验内容使用指定的数据按实验教材完成相关的操作。

1、给幼鼠喂以不同的饲料,用以下两种方法设计实验: 方式1:同一鼠喂不同的饲料所测得的体内钙留存量数据如下:方式2:甲组有12只喂饲料1,乙组有9只喂饲料2,所测得的钙留存量数据如 下:请选用恰当方法对上述两种方式所获得的数据进行分析,研究不同饲料是否使幼鼠体内钙的留存量有显著不同。

2、为分析大众对牛奶品牌是否具有偏好,随机挑选超市收集其周一至周六各天 三种品牌牛奶的日销售额数据,如下表所示:请选用恰当的非参数检验方法,以恰当形式组织上述数据进行分析, 并说明分析 结论。

实验报告附页三、实验步骤(一)方式1:1、打开SPSS软件,根据所给表格录入数据,建立数据文件;2、选择菜单Analyze —Compare means- Paired-Samples T Test ,出现窗口;3、把检验变量饲料1,饲料2选择到Paired Variables 框,单击OK 方式2:1、打开SPSS软件,根据所给表格录入数据,建立数据文件;2、选择菜单Analyze —Compare mean—Independent-Samples T Test,出现窗口3、选择检验变量饲料到Test Variable(s)框中。

4、选择总体标志变量组号到Group ing Variables 框中5、单击Define Groups按钮定义两总体的标志值1、2,单击OK(二)1、打开SPSS软件,根据所给表格录入数据,建立数据文件;2、选择菜单Analyze->Nonparametric->k Independent sample3、选择待检验的若干变量入包装1,包装2,包装3到Test Variable(s)框中;4、选择推广的平均秩检验(Friedman检验),单击OK四、实验结果分析与评价(一):方式1:Paired Samples Correlations由上表知:两配对变量饲料1和饲料2对应的概率p值为0.108>0.05通过了检验,可以认为两配对变量饲料1和饲料2无相关关系。

SPSS的参数检验和非参数检验

SPSS的参数检验和非参数检验

SPSS的参数检验和非参数检验SPSS是一种非常常用的统计分析软件,可以用于参数检验和非参数检验。

参数检验是假设检验的一种方法,用于判断统计样本是否代表总体。

而非参数检验则是用于检验数据是否满足一些分布假设,或判断两个或多个群体是否具有差异。

参数检验主要有t检验、方差分析和回归分析等。

其中,t检验用于比较两个样本均值是否有显著差异,包括独立样本t检验和相关样本t检验。

方差分析用于比较三个或更多样本均值是否有显著差异,可以进行单因素方差分析或多因素方差分析。

回归分析用于建立预测模型,可以通过线性回归或多项式回归进行。

非参数检验通常适用于数据不满足正态分布或方差齐性的情况,如Wilcoxon符号秩检验、Kruskal-Wallis H检验、Mann-Whitney U检验等。

Wilcoxon符号秩检验用于比较两个配对样本的差异是否有显著差异,Kruskal-Wallis H检验用于比较三个或更多独立样本的差异是否有显著差异,Mann-Whitney U检验用于比较两个独立样本的差异是否有显著差异。

在SPSS中进行参数检验和非参数检验一般需要进行以下步骤:1.导入数据:将数据导入SPSS软件,可以通过选择文件-导入功能进行操作。

2.设定分析变量:定义需要进行分析的变量,并将其添加到分析列表中。

3.选择统计方法:根据实验设计和数据分布情况,选择合适的参数检验或非参数检验方法。

4.执行分析:点击运行按钮进行分析,在分析结果中可以查看得到显著性水平、均数、方差等指标。

5.结果解释:根据分析结果进行假设检验,判断是否存在显著差异,并解释其结果。

无论是参数检验还是非参数检验,在进行分析前需要注意数据的合理性、样本的选择和实验设计的合理性等,以保证分析结果的可靠性。

同时,还应根据不同的研究目的和数据特点选择适当的方法,并合理解释分析结果。

在SPSS软件中,可以通过图表、表格和描述性统计等形式展示和解释结果,并通过结果进行科学判断和相关推断。

spss卡方检验和非参数检验

spss卡方检验和非参数检验

练习一、 为试验某止疼药物的效果,将178例患者随机分为两组,用药组90 人,对照组88人,试验结果见数据chi_ex,请根据此数据回答,此 药物止疼效果如何?
练习二、 用两种方法检查乳腺癌患者120名,甲法检出率60%,乙法检出率 50%,两法检出都阳性的是35%,请问两种方法检出率是否有差别?
H1:B≠C
Test Statisticsb
N Chi-Squarea
VAR00001 & VAR00002 410
86.449
Asymp. Sig.
.000
a. Continuity Corrected
b. McNemar Test
χ2 =86.45, P=0.000 P<0.05,拒绝H0,接受H1,差别有显著性,两种方法 检验结果不同。
二、 行×列表的χ2检验
a. 什么是行×列表 整理表的行数多于2,或者列数多于2。 四格表是为了比较两个率(构成比)是 否相等;行×列表是为了比较三组或者 三组以上的率(构成比)是否相等。
b. 行×列表χ2检验的假设: H0:各组构成相同 H1:各组构成不同或不全相同
c. 行×列表的自由度: (行数-1) ×(列数-1)
L i ne a r-b y-L i ne a r Asso ci a ti on
2.333
1
.127
N of Valid Cases
25
a. Computed only for a 2x2 table
b. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 1. 60.
两型慢性布氏病患者得植物血凝素皮试反应

SPSS的参数检验和非参数检验

SPSS的参数检验和非参数检验

实验二 SPSS的参数检验和非参数检验(验证性实验 4学时)1、目的要求:熟练掌握t检验及其结果分析。

熟练掌握单样本、两独立样本、多独立样本的非参数检验及各种方法的适用范围,能对结果给出准确分析。

2、实验内容:使用指定的数据按实验教材完成相关的操作。

3、主要仪器设备:计算机。

练习:1、给幼鼠喂以不同的饲料,用以下两种方法设计实验:鼠体内钙的留存量有显著不同。

2、为分析大众对牛奶品牌是否具有偏好,随机挑选超市收集其周一至周六各天并说明分析结论。

1 参数检验概述假设检验的基本思想.事先对总体参数或分布形式作出某种假设,然后利用样本信息来判断原假设是否成立;.采用逻辑上的反证法,依据统计上的小概率原理。

2 单样本的T检验2.1检验目的:•检验单个变量的均值是否与给定的常数(总体均值)之间是否存在显著差异。

如:分析学生的IQ平均分是否为100分;大学生考研率是否为5%。

•要求样本来自的总体服从或近似服从正态分布。

2.2 单样本T检验的实现思路•提出原假设:•计算检验统计量和概率P值●给定显著性水平与p值做比较:如果p值小于显著性水平,小概率事件在一次实验中发生,则我们应该拒绝原假设,反之就不能拒绝原假设。

2.3 单样本t检验的基本操作步骤1、选择选项Analyze-Compare means-One-Samples T test,出现窗口:2、在Test Value框中输入检验值。

3、单击Option按钮定义其他选项。

Option选项用来指定缺失值的处理方法。

其中,Exclude cases analysis by analysis表示计算时涉及的变量上有缺失值,则剔除在该变量上为缺失值的个案;Exclude cases listwise表示剔除所有在任意变量上含有缺失值的个案后再进行分析。

可见,较第二种方式,第一种处理方式较充分地利用了样本数据。

在后面的分析方法中,SPSS对缺失值的处理方法与此相同,不再赘述。

SPSS-非参数检验

SPSS-非参数检验

SPSS-⾮参数检验⾮参数检验(卡⽅(Chi-square)检验、⼆项分布(Binomial)检验、单样本K-S(Kolmogorov-Smirnov)检验、单样本变量值随机性检验(Runs Test)、两独⽴样本⾮参数检验、多独⽴样本⾮参数检验、两配对样本⾮参数检验、多配对样本⾮参数检验)参数检验:T检验、F检验等常⽤来估计或检验总体参数,统称为参数检验⾮参数检验:这种不是针对总体参数,⽽是针对总体的某些⼀般性假设(如总体分布)的统计分析⽅法称⾮参数检验1.总体分布的卡⽅(Chi-square)检验(Q统计量)定义:总体分布的卡⽅检验适⽤于配合度检验,是根据样本数据的实际频数推断总体分布与期望分布或理论分布是否有显著差异。

特点:⽐较适⽤于⼀个因素的多项分类数据分析。

总体分布的卡⽅检验的数据是实际收集到的样本数据,⽽⾮频数数据。

SPSS操作2.⼆项分布检验(Z统计量)⼆项分布:从这种⼆分类总体中抽取的所有可能结果,要么是对⽴分类中的这⼀类,要么是另⼀类,其频数分布称为⼆项分布⼆项分布检验:SPSS⼆项分布检验就是根据收集到的样本数据,推断总体分布是否服从某个指定的⼆项分布SPSS操作3.SPSS单样本变量值随机性检验(Z统计量)定义:单样本变量值的随机性检验是对某变量的取值出现是否随机进⾏检验,也称为游程检验(Run过程)SPSS操作4.SPSS单样本K-S检验(Z统计量)定义:单样本K-S检验是利⽤样本数据推断总体是否服从某⼀理论分布的⽅法,适⽤于探索连续型随机变量的分布形态SPSS操作5.两独⽴样本⾮参数检验定义:两独⽴样本的⾮参数检验是在对总体分布不很了解的情况下,通过分析样本数据,推断样本来⾃的两个独⽴总体分布是否存在显著差异。

⼀般⽤来对两个独⽴样本的均数、中位数、离散趋势、偏度等进⾏差异⽐较检验。

检验⽅法:①两独⽴样本的Mann-Whitney U检验(主要检验总体均值有没有显著差异)②两独⽴样本的K-S检验③两独⽴样本的游程检验④两独⽴样本的极端反应检验SPSS操作6.多独⽴样本⾮参数检验定义:多独⽴样本⾮参数检验分析样本数据是推断样本来⾃的多个独⽴总体分布是否存在显著差异SPSS多独⽴样本⾮参数检验⼀般推断多个独⽴总体的均值或中位数是否存在显著差异检验⽅法:①多独⽴样本的中位数检验②多独⽴样本的K-W检验③多独⽴样本的Jonkheere-Terpstra检验SPSS操作7.两配对样本⾮参数检验定义:两配对样本(2 Related Samples)⾮参数检验是在对总体分布不很清楚的情况下,对样本来⾃的两相关配对总体分别进⾏检验。

SPSS非参数检验

SPSS非参数检验

SPSS非参数检验非参数检验 SPSS单样本非参数检验是对单个总体的分布形态等进行推断的方法,其中包括卡方检验、二项分布检验、K-S检验以及变量值随机性检验等方法。

参数检验与非参数检验的区别:参数检验是在总体分布形式已知的情况下,对总体分布的参数如均值、方差等进行推断的方法。

但是,在数据分析过程中,由于种种原因,人们往往无法对总体分布形态作简单假定,此时参数检验的方法就不再适用了。

非参数检验正是一类基于这种考虑,在总体方差未知或知道甚少的情况下,利用样本数据对总体分布形态等进行推断的方法。

由于非参数检验方法在推断过程中不涉及有关总体分布的参数,因而得名为“非参数检验”。

一、几种常见的非参数检验1、总体分布的卡方检验卡方检验方法可以根据样本数据,推断总体分布与期望分布或某一理论分布是否存在显著差异,是一种吻合性检验,通常适于对有多项分类值的总体分布的分析。

它的原假设是:样本来自的总体分布与期望分布或某一理论分布无差异。

例如,医学家在研究心脏病人猝死人数与日期的关系时发现:一周之中,星期一心脏病人猝死者较多,其他日子则基本相当。

当天的比例近似为2.8:1:1:1:1:1:1。

现收集到心脏病人死亡日期的样本数据,推断其总体分布是否与上述理论分布相吻合。

2、二项分布检验SPSS的二项分布检验正是要通过样本数据检验样本来自的总体是否服从指定的概率为P的二项分布,其原假设是:样本来自的总体与指定的二项分布无显著差异。

在生活中有很多数据的取值是二值的,例如,人群可以分成男性和女性,产品可以分成合格和不合格,学生可以分成三好学生和非三好学生,投掷硬币实验的结果可以分成出现正面和出现反面等。

通常将这样的二值分别用1或0表示。

如果进行n次相同的实验,则出现两类(1或0)的次数可以用离散型随机变量X来描述。

如果随机变量X为1的概率设为P,则随机变量X值为0的概率Q便等于1-P,形成二项分布。

从某产品中随机抽取23个样品进行检测并得到检测结果。

SPSS统计分析2:参数检验与非参数检验

SPSS统计分析2:参数检验与非参数检验

参数检验与非参数检验一、参数检验与非参数检验的区别(1)参数检验:一般是数据的总体分布已知的情况下,对数据分布的参数是否落在相应范围内进行检验。

是对参数平均值、方差进行的统计检验,是推断统计的重要组成部分。

适用条件:当总体分布已知(如总体为正态分布),根据样本数据对总体分布的统计参数进行推断。

此时,总体的分布形式是给定的或是假定的,只是其中一些参数的取值或范围未知,分析的主要目的是估计参数的取值,或对其进行某种统计检验。

这类问题往往用参数检验来进行统计推断。

它不仅仅能够对总体的特征参数进行推断,还能够实现两个或多个总体的参数进行比较。

(2)非参数检验:一般是在不知道数据总体分布的前提下,检验数据的分布情况。

适用条件:在数据分析过程中,由于种种原因,往往无法对总体分布形态作简单假定,此时参数检验不再适用。

非参数检验正是基于这种考虑,在总体方差未知或知道甚少的情况下,利用样本数据对总体分布形态等进行推断的方法。

二、参数检验方法及适用条件三、非参数检验方法及适用条件四、使用方法当分析某个因素对变量的影响差异时,即检验该因素分类的若干个样本差异:(1)如果因素为两个,使用独立样本T-检验,来分析两个总体平均数相等的显著性;结果判定:先看方差齐性F检验结果,再看均值相等性的t检验结果,即a.如果方差齐性显著性>0.05,则表明方差齐性显著,再看第一行的检验统计值t及显著性p(p<0.05表示差异明显);b.如果方差齐性显著性<=0.05,则表明方差显著不齐,再看第二行的检验统计值t及显著性p(p<0.05表示差异明显);(2)如果因素为多个,使用单因素方差检验(即F检验),来分析该因素的影响差异。

结果判定:方差齐性显著则看ANOVA的检验统计值F及其显著性p。

SPSS第6章 非参数检验

SPSS第6章 非参数检验
Test)
•现实生活中有很多现象的数据取值仅分两类,例如:学生可以按性别 分成男生和女生,产品可以按质量分成合格和不合格,投掷硬币实验的 结果可能出现正面或反面等。这时,如果某一类情况出现的概率是P, 则另一类情况出现的概率就是Q(即1-P),这种分布称为二项分布。 •【例6-3】根据过去的观察,用旧方法生产某种产品,其不合格率为1%。 现采用新方法,在600件产品中,发现了2件不合格品,问是否可以认为 新方法的不合格率明显低于旧方法的不合格率? •1、方法基本思路 •二项检验属于拟合优度检验,适用于数据只能划分为两类的总体。二 项检验是检验是否认为从样本中观察到的两类比例来自具有指定P的总 体。H0:样本所属总体的分布形态与指定的二项分布无显著差异。 •就例6-3而言,H0:样本所属总体分布是P=1%的二项分布。 •SPSS中的二项分布检验,在样本数小于等于30时,按照计算二项分布概 率的公式进行计算;在样本数大于30时,计算的是Z统计量。SPSS将自 动计算Z统计量,并给出其所对应的概率值。如果Z值对应的概率值小于 或等于给定的显著性水平α,则应拒绝H0,认为样本所属的总体分布形 态与指定的二项分布存在显著差异;如果对应的概率值大于给定的显著 性水平α,则没有足够理由拒绝H0,认为样本所属的总体分布形态与指 定的二项分布无显著差异。
•c.“Expected Values”选项区可设定总体的各类别构成。若选用默认值则表示 所有各类构成比都相等;在“Values”框中可自行定义设定总体的各类构成, 输入的数值的个数和排放次序应和数据文件中的相对应。本例选用默认值。
•d. 单击图6.2主对话框中的“Options”按钮进行统计,“Statistics”用于确定 是否需要输出描述统计指标和分位数。
3、简要评论

参数检验和非参数检验

参数检验和非参数检验
检验(2-Related samples Test)也是非参数检 验(Nonparametric Tests)方法的一种,其 基本功能是可以判断两个相关的样本是否来 自相同分布的总体。
5.4.2 两相关样本检验实例
• 【例5.4】为分析一种新药的效果,特选取了
15名病人进行试验,下面的资料给出了试验 者服药前后的血红蛋白数量。试用两相关样 本检验方法判断该药能否引起患者体内血红 蛋白数量的显著变化。
的高三学生的高考数学成绩做均值过程分析, 研究不同学校的学生之间成绩的差异。
• 配书资料\源文件\4\习题\原始数据文件\习题
4.1.sav
• (2)试对2.1节例题中山东省某学校50名高
二学生的身高的数据做单一样本t检验,检验 其是否与该校全体学生的平均身高170cm有 明显的差别。
• 配书资料\源文件\4\习题\原始数据文件\习题
义。
5.1.1 卡方检验的功能与意义
• SPSS的卡方检验(Chi-square Test)是非参数
检验(Nonparametric Tests)方法的一种, 其基本功能是通过样本的频数分布来推断总 体是否服从某种理论分布或者某种假设分布。 这种检验过程是通过分析实际的频数与理论 的频数之间的差别或者说吻合程度来完成的。
5.6.1 多相关样本检验的功能与意义
• 跟前面的检验方法一样,SPSS的多相关样本
检验(K-Related samples Test)也是非参数检 验(Nonparametric Tests)方法的一种,其 基本功能是可以判断多个相关的样本是否来 自相同分布的总体。
5.6.2 多相关样本检验实例
参数检验和非参数检验
4.1.1 均值过程分析的功能与意义
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

S P S S的参数检验和非
参数检验
公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]
实验报告 SPSS的参数检验和非参数检验
学期:_2013__至2013_ 第_1_学期
课程名称:_数学建模专业:数学
实验项目__SPSS的参数检验和非参数检验实验成绩:_____
一、实验目的及要求
熟练掌握t检验及其结果分析。

熟练掌握单样本、两独立样本、多独立样本的非参数检验及各种方法的适用范围,能对结果给出准确分析。

二、实验内容
使用指定的数据按实验教材完成相关的操作。

1、给幼鼠喂以不同的饲料,用以下两种方法设计实验:
方式1:同一鼠喂不同的饲料所测得的体内钙留存量数据如下:
方式2:甲组有12只喂饲料1,乙组有9只喂饲料2,所测得的钙留存量数据如下:
请选用恰当方法对上述两种方式所获得的数据进行分析,研究不同饲料是否使幼鼠体内钙的留存量有显着不同。

2、为分析大众对牛奶品牌是否具有偏好,随机挑选超市收集其周一至
周六各天三种品牌牛奶的日销售额数据,如下表所示:
请选用恰当的非参数检验方法,以恰当形式组织上述数据进行分析,并说明分析结论。

实验报告附页
三、实验步骤
(一)
方式1:
1、打开SPSS软件,根据所给表格录入数据,建立数据文件;
2、选择菜单Analyze-Compare means-Paired-Samples T Test,出现窗口;
3、把检验变量饲料1,饲料2 选择到Paired Variables框,单击OK。

方式2:
1、打开SPSS软件,根据所给表格录入数据,建立数据文件;
2、选择菜单Analyze-Compare means-Independent-Samples T Test,出现窗口
3、选择检验变量饲料到Test Variable(s)框中。

4、选择总体标志变量组号到Grouping Variables框中。

5、单击Define Groups按钮定义两总体的标志值1、2,单击OK。

(二)
1、打开SPSS软件,根据所给表格录入数据,建立数据文件;
2、选择菜单Analyze->Nonparametric->k Independent sample
3、选择待检验的若干变量入包装1,包装2,包装3到Test Variable(s)框中;
4、选择推广的平均秩检验(Friedman检验),单击OK。

四、实验结果分析与评价
(一):
方式1:
由上表知:两配对变量饲料1和饲料2对应的概率p值为>通过了
检验,可以认为两配对变量饲料1和饲料2无相关关系。

由上表知:吃饲料1和饲料2的幼鼠分别有9人,其中喂以饲料1
的9只幼鼠体内平均钙留存量为;而喂以饲料2的9只幼鼠体内平均钙
留存量为。

由上表知:两配对样本的配对差的均值为,t统计量的值为,对应的概率p值为>,所以不能拒绝原假设,可以认为不同饲料使幼鼠体内钙的留存量无显着不同。

方式2:
由上表知:喂以饲料1的幼鼠12只,幼鼠体内平均钙留存量为;喂以饲料2的幼鼠9只,幼鼠体内平均钙留存量为。

由上表知:F统计量的概率p值为>,所以两组数据的方差无显着差异。

对应第一行的t检验结果,t统计量的值为,对应的概率p值为>,故不能拒绝原假设,可以认为不同饲料使幼鼠体内钙的留存量无显着不同。

(二):
Friedman?Test
由上表可知:对应的概率p值为>,故不能拒绝原假设,可以认为三种品牌牛奶的日销售额无显着差异,即大众对牛奶品牌是不具有偏好。

注:实验成绩等级分为(90-100分)优,(80-89分)良,(70-79分)中,(60-69分)及格,(59分)不及格。

相关文档
最新文档