集合间的基本运算
集合的基本运算
交集的运算性质:
(1) ∩ = ,即任何集合与其本身的交集等于这个集合本身;
(2) ∩ ∅ = ∅,即任何集合与空集的交集等于空集.
若A B,则A B A.
若A B A,则A B.
探究三:补集
思考3:求方程 ሺ − 2)ሺ 2 − 3) = 0 在有理数范围内的解集,在
2 ,,,,
3 4 5 6 ,A {1,,
2 3},B 5 ,,,
6 7 8 ,则
B
U
A 中元素的个数为( B )
A.4
B.5
解析:
为 5.故选 B.
U
A {4 ,,
5 6} ,B
C.6
U
A {4 ,,
5 6,
7,
8} ,所以 B
D.7
U
A 中元素的个数
4. 已知集合 A 1,
试用集合的运算表示 1 , 2 的位置关系.
解:平面内直线 1 , 2 可能有三种位置关系,即相交于一点、平
行或重合.
(1)直线 1 , 2 相交于一点 P 可表示为 1 ∩ 2 = { 点 ሽ;
(2)直线 1 , 2 平行可表示为 1 ∩ 2 = ∅;
(3)直线 1 , 2 重合可表示为 1 ∩ 2 = 1 = 2 .
2. 已知集合 M {x | x 2} ,N {x | 1 x 1 1} ,则( D )
A. M N
B. M
NN
C. M
N R
解析:由题知,集合 N x | 0 x 2 ,所以 M
D. M
NN
N {x | 0 x 2} .故选 D.
3. 已知集合 U 1,
(CU A) B {x | 3 x 4} .
1.3.1集合的基本运算(并集与交集)
定义
一般地,由既属于集合A又属于集合 B的所有元素组成的集合叫做A与 B的交集.
记作 A∩B 读作 A交 B
即 A∩B={x x∈A,且x∈B}
A
B
A∩B
性质
⑴ A∩A = A A∩φ = φ A∩B =B∩A
⑵ A∪A = A A∪φ = A A∪B = B∪A
例6 设A={x x2+4x=0}, bbbbbcB={x x2+2(a+1)x+a2-1=0},
(1) 若A∩B=B,求a的值.
(2) 若A∪B=B,求a的值.
探究
(A∩B)∩C = A∩( B∩C ) A∩B∩C
(A∪B)∪C= A∪( B∪C ) A∪B∪C
课堂小结
1. 理解两个集合交集与并集的概念 bb和性质. 2. 求两个集合的交集与并集,常用 bbb数轴法和图示法. 3.注意灵活、准确地运用性质解题;
观察集合A,B,C元素间的关系: A={4,5,6,8}, B={3,5,7,8}, C={3,4,5,6,7,8}
定义
一般地,由属于集合A或属于集合B 的所有元素组成的集合叫做A与B
的并集,
记作 A∪B 读作 A并 B
即A∪B={x x∈A,或x∈B}
A
B
A∪B
观察集合A,B,C元素间的关系:
则A∩B= Φ
A∪B= {斜三角形}
例3 设A={x x>-2},B={x x<3}, 求A∩B, A∪B.
例4 已知A={2,-1,x2-x+1}, B={2y,-4,x+4}, C={-1,7}
且A∩B=C 求x,y的值及A∪B.
第五课时 1.1.3集合间的基本运算I
若A B A, 求实数 a 的值.
记作:A∪B(读作:“A并B”)
即: A∪B ={x| x ∈ A ,或x ∈ B}
说明:两个集合求并集,结果还是一个集 合,是由集合A与B 的所有元素组成的集合 (重复元素只看成一个元素). 用Venn图表示:
A
A∪B
B
A
A∪B
B
A
B
A∪B
并集的性质
(1) A A A ( 2) A A (3) A B B A (4) A A B)B A B) ( , ( (5) A B则A B B
若 A B B,求实数m的取值范围。 2.设 A x | 2 x 5, B x | m 1 x 1 3m , 若 A B A ,求实数m的取值范围。
3.已知A {x | x 3x 2 0}, B {x | x ax a 1 0}
例2 (p8例5): 设集合A={x|-1<x<2} B={x|1<x<3},求 AUB.
例3.设
A={(x,y)/y=-4x+6}, B={(x,y)/y=5x-3}, 求A B
例4:已知A为奇数集, B 为偶数集.求A∩ B,A∩Z, B∩Z, A∪B, A∪Z, B∪Z
知识小结
1.求集合的并、交、补是集合 间的基本运算,运算结果仍然还是 集合.
(1) A={1,3,5}, B={2,4, 6}, C={1,2,3,4,5,6}. (2)A={x|x是有理数}, B={x|x是 无理数}, C={x|x是实数}.
集合C是由所有属于集合A或属于B的元素组成的.
并集概念
一般地,由所有属于集合A或属于集合B的元素所 组成的集合,称为集合A与B的并集(Union set).
第10讲 集合的运算 (解析版)
第10讲 集合的基本运算一、 集合的运算 (一)交集文字语言对于两个给定的集合A ,B ,由属于A 又属于B 的所有元素构成的集合,叫做A ,B 的交集,记作A ∩B ,读作“A 交B ”符号语言A ∩B ={x |x ∈A 且x ∈B }图形语言阴影部分为A ∩B .例如(1){}{}1,2,3,4,5,3,4,5,6,8A B ==,{}3,4,5AB =(2)}31|{<<=x x A ,}42|{<<=x x B ,}32|{<<=x x B A性质A ∩B =B ∩A ,A ∩A =A ,A ∩∅=∅∩A =∅,如果A ⊆B ,则A ∩B =A【例1】交集(1)已知集合A ={1,2,3},B ={-1,2},则A ∩B 等于( )A .{1}B .{2}C .{-1,2}D .{1,2,3} 【答案】B【解析】由题得A ∩B ={}2(2)已知A ={y |y ≤1},B ={x|x ≥0},则集合A ∩B 等于( )A .∅B .{x |x ≤1}C .{x |0≤x ≤1}D .{x |0<x <1} 【答案】C,利用数轴,容易得到答案。
这里注意,不少同学会认为是A 答案,为什么不对? (3)已知集合A ={(0,1),(1,1),(-1,2)},B ={(x ,y )|x +y -1=0,x ,y ∈Z},则A ∩B =________. 【答案】{(0,1),(-1,2)}【解析】A ,B 都表示点集,A ∩B 即是由A 中在直线x +y -1=0上的所有点组成的集合,代入验证即可.(4)集合A ={x |2k <x <2k +1,k ∈Z},B ={x |1<x <6},求A ∩B ; (4)A ∩B ={x |2<x <3或4<x <5}.【变式1】(1)设集合{1,2,3,4}A =,{2,4}B =,则集合A B = .答案:(1)AB ={2,4}(2)集合A ={x |-2<x <3},B ={x |x ≤0或x >5},求A ∩B ; 答案:(2)A ∩B ={x |-2<x ≤0}.(3)集合A ={(x ,y )|y =x +2},B ={(x ,y )|y =x +3},求A ∩B . 答案:(3)A ∩B =∅.(4)设集合{}{}290,30A x x B x x a =-≤=+≥,且{}13A B x x ⋂=≤≤,则a =( )A .1-B .3-C .1D .3【答案】B 【分析】求出集合A ,B ,然后结合交集的结果得到关于a 的方程,求解方程即可确定实数a 的值. 【详解】{}{}29033A x x x x =-≤=-≤≤,3a B x x ⎧⎫=≥-⎨⎬⎩⎭,由{}13A B x x ⋂=≤≤,所以13a-=,即3a =-. 故选:B.(二)并集,阴影部分为A ∈B例如(1){}{}{}1,3,52,3,4,62,3,4,5,6=(2)}31|{<<=x x A ,}42|{<<=x x B ,}41|{<<=x x B A性质A ∈B =B ∈A ,A ∈A =A ,A ∈∅=∅∈A =A ,如果A ∈B ,则A ∈B =B .【例2(1) 设集合A ={1,2,3},B ={2,3,4},则A ∪B =( ) A .{1,2,3,4} B .{1,2,3} C .{2,3,4} D .{1,3,4} 【答案】A【解析】∈A ={1,2,3},B ={2,3,4},∈A ∈B ={1,2,3,4}.故选A. (2) A ={x |-1<x <2},B ={x |x ≤1或x >3},求A ∈B . 【解析】如图:由图知A ∈B ={x |x <2或x >3}.(3)已知集合2{|20}A x x x =-≥,{|}B x x a =<,且A B =R ,则实数a 的取值范围是 . 【答案】2a ≥ 【分析】先求出集合A ,然后由条件A B =R 结合数轴可得答案. 【详解】由220x x -≥解得0x ≤或2x ≥,则{|0,A x x =≤或}2x ≥,又{|}B x x a =<,若A B =R , 则2a ≥.故选:D .(4)A ={(x ,y )|x =2},B ={(x ,y )|y =2}.求A ∈B ,并说明其几何意义.【解析】A ∈B ={(x ,y )|x =2或y =2},其几何意义是直线x =2和直线y =2上所有的点组成的集合.【变式2】(1)已知集合{}=23A x x -≤≤,{}240B x x x =-≤,则AB = .A .[]2,4-B .[]2,0-C .[]0,3D .[]4,3-【答案】A 【分析】先解出集合B ,再求A B .【详解】由{}240B x x x =-≤解得:{}04B x x =≤≤,所以A B =[]2,4-.故选:A(2)已知集合A =⎩⎨⎧x ⎪⎪⎪ ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫3-x >0,3x +6>0,集合B ={m |3>2m -1},求A ∩B ,A ∪B .解 解不等式组⎩⎪⎨⎪⎧3-x >0,3x +6>0,得-2<x <3,则A ={x |-2<x <3},解不等式3>2m -1得m <2, 则B ={m |m <2}.用数轴表示集合A 和B ,如图所示,则A ∩B ={x |-2<x <2},A ∪B ={x |x <3}.(三)补集 (1)全集定义:在研究集合与集合之间的关系时,如果所要研究的集合都是某一给定集合的子集,那么称这个给定的集合为全集.记法:全集通常记作U . (2)补集例如(1)}{1,2,3,4,5=U ,{3,4}=A ,{1,2,5}=A C U(2)}51|{<<=x x U ,}32|{<<=x x B ,,21|{≤<=x x A C U 或}53<≤x性质A ∈∈A =U ;A ∩∈A =∈;∈(∈A )=A .【例3】(1)设集合U ={1,2,3,4,5},集合A ={1,2},则A C U =________. 【答案】{3,4,5}(2)若全集U ={x ∈R|-2≤x ≤2},A ={x ∈R|-2≤x ≤0},求A C U 【解析】∈U ={x ∈R|-2≤x ≤2},A ={x ∈R|-2≤x ≤0}, ∈A C U ={x ∈R|0<x ≤2}.(3)设全集U ={x |x 是三角形},A ={x |x 是锐角三角形},B ={x |x 是钝角三角形},求A ∩B ,)(B A C U . 【解析】根据三角形的分类可知,A ∩B =∈,A ∈B ={x |x 是锐角三角形或钝角三角形},)(B A C U ={x |x 是直角三角形}.【变式3】(1)设U ={x |x 是小于9的正整数},A ={1,2,3},B ={3,4,5,6},求A C U ,B C U .【解析】根据题意可知,U ={1,2,3,4,5,6,7,8},所以A C U ={4,5,6,7,8},B C U ={1,2,7,8}. (2)已知集合U =R ,A ={x |x 2-x -2≥0},则A C R =________. 【答案】{x |-1<x <2}(四)集合运算的综合【例4】(1)已知全集U =R ,A ={x |x ≤0},B ={x |x ≥1},则集合∁U (A ∪B )=______,(∁U A )∩(∁U B )=________. 答案 {x |0<x <1} {x |0<x <1}解析 A ∪B ={x |x ≤0或x ≥1},∁U (A ∪B )={x |0<x <1}.∁U A ={x |x >0},∁U B ={x |x <1},∴(∁U A )∩(∁U B )={x |0<x <1}.(2)设集合A ={x |-1≤x <2},B ={x |x <a },若A ∩B ≠∅,则a 的取值范围是( )A .-1<a ≤2B .a >2C .a ≥-1D .a >-1 【答案】D【解析】因为A ∩B ≠∅,所以集合A ,B 有公共元素,在数轴上表示出两个集合,如图所示,易知a >-1.故选D 。
集合间的基本运算(交集,并集,补集)非常全面的题型分类
集合间的基本运算一、并集(1)文字语言:由所有属于集合A或属于集合B的元素组成的集合,称为集合A 与B的并集.(2)符号语言:A∪B={x|x∈A,或x∈B}.(3)图形语言;如图所示.二、交集交集的三种语言表示:(1)文字语言:由属于集合A且属于集合B的所有元素组成的集合,称为A与B 的交集.(2)符号语言:A∩B={x|x∈A,且x∈B}.(3)图形语言:如图所示.三、并集与交集的运算性质题型一 并集及其运算例1 (1)设集合M ={4,5,6,8},集合N ={3,5,7,8},那么M ∪N 等于( ) A.{3,4,5,6,7,8} B.{5,8} C.{3,5,7,8} D.{4,5,6,8}(2)已知集合P ={x |x <3},Q ={x |-1≤x ≤4},那么P ∪Q 等于( ) A.{x |-1≤x <3} B.{x |-1≤x ≤4} C.{x |x ≤4}D.{x |x ≥-1} (3).已知集合=A {}31<≤-x x ,=B {}52≤<x x ,则B A ⋃=( )A .{}32<<x xB .{}51≤≤-x xC .{}51<<-x xD .{}51≤<-x x变式练习1 已知集合A ={x |(x -1)(x +2)=0};B ={x |(x +2)(x -3)=0},则集合A ∪B 是( ) A.{-1,2,3}B.{-1,-2,3}C.{1,-2,3}D.{1,-2,-3}2.若集合=A {}x ,3,1,=B {}2,1x ,B A ⋃={}x ,3,1,则满足条件的实数x 有( )A .1个B .2个C .3个D .4个题型二 交集及其运算例2 (1)设集合M ={m ∈Z |-3<m <2},N ={n ∈Z |-1≤n ≤3},则M ∩N 等于( ) A.{0,1} B.{-1,0,1} C.{0,1,2}D.{-1,0,1,2}(2)若集合A ={x |1≤x ≤3},B ={x |x >2},则A ∩B 等于( ) A.{x |2<x ≤3} B.{x |x ≥1} C.{x |2≤x <3} D.{x |x >2}变式练习2(1)设集合A ={x |x ∈N ,x ≤4},B ={x |x ∈N ,x >1},则A ∩B =________. (2)集合A ={x |x ≥2或-2<x ≤0},B ={x |0<x ≤2或x ≥5},则A ∩B =________.(3).设集合=M {}23<<-∈m Z m ,{}31≤≤-∈=n Z n N ,则N M ⋂=( ) A .{}1,0 B .{}1,0,1- C .{}2,1,0 D .{}2,1,0,1-(4).集合=A {}121+<<-a x a x ,=B {}10<<x x ,若=⋂B A ∅,求实数a 的取值范围.题型三已知集合的交集、并集求参数例3已知集合A={x|2a≤x≤a+3},B={x|x<-1,或x>5},若A∩B=∅,求实数a的取值范围变式练习3设集合M={x|-3≤x<7},N={x|2x+k≤0},若M∩N≠∅,则实数k的取值范围为________.例4设集合A={x|x2-x-2=0},B={x|x2+x+a=0},若A∪B=A,求实数a 的取值范围.变式练习4设集合A={x|x2-3x+2=0},集合B={x|2x2-ax+2=0},若A∪B =A,求实数a的取值范围.例5 (1)设集合A={(x,y)|x-2y=1},集合B={(x,y)|x+y=2},则A∩B 等于( )A.∅B.{53,13}C.{(53,13)} D.{x=53,y=13}(2)已知集合A={y|y=x2-2x-3,x∈R},B={y|y=-x2+2x+13,x∈R},求A∩B.变式练习5(1)设集合A={y|y=x2-2x+3,x∈R},B={y|y=-x2+2x+10,x∈R},求A∪B;(2)设集合A ={(x ,y )|y =x +1,x ∈R },集合B ={(x ,y )|y =-x 2+2x +34,x ∈R },求A ∩B .6.设集合A ={x |x 2=4x },B ={x |x 2+2(a -1)x +a 2-1=0}. (1)若A ∩B =B ,求a 的取值范围; (2)若A ∪B =B ,求a 的值.课后练习 一、选择题1.设集合A ={-1,0,-2},B ={x |x 2-x -6=0},则A ∪B 等于( ) A.{-2} B.{-2,3} C.{-1,0,-2}D.{-1,0,-2,3}2.已知集合M ={x |-1≤x ≤1,x ∈Z },N ={x |x 2=x },则M ∩N 等于( ) A.{1} B.{-1,1} C.{0,1}D.{-1,0,1}3.已知集合M ={0,1,2,3,4},N ={1,3,5},P =M ∩N ,则P 的子集共有( )A.2个B.4个C.6个D.8个4.已知集合M={x|-3<x≤5},N={x|x<-5或x>5},则M∪N等于( )A.{x|x<-5或x>-3}B.{x|-5<x<5}C.{x|-3<x<5}D.{x|x<-3或x>5}三、解答题5.已知集合A={x|-2≤x≤5},B={x|2a≤x≤a+3},若A∪B=A,求实数a的取值范围.6.已知集合A={x|x2-px+15=0}和B={x|x2-ax-b=0},若A∪B={2,3,5},A∩B={3},分别求实数p,a,b的值.7.(1)已知集合A={-4,2a-1,a2},B={a-5,1-a,9},若A∩B={9},求a的值;(2)若P={1,2,3,m},Q={m2,3},且满足P∩Q=Q,求m的值.四、全集(1)定义:如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集.(2)记法:全集通常记作U.五、补集对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集,记作∁U A符号语言为∁U A={x|x∈U,且x∉A}图形语言为六、补集的性质①A∪(∁U A)=U;②A∩(∁U A)=∅;③∁U U=∅,∁U∅=U,∁U(∁U A)=A;④(∁U A)∩(∁U B)=∁U(A∪B);⑤(∁U A )∪(∁U B )=∁U (A ∩B ).题型一 补集运算例1 (1)设全集U ={1,2,3,4,5},集合A ={1,2},则∁U A 等于( ) A.{1,2} B.{3,4,5} C.{1,2,3,4,5}D.∅(2)若全集U =R ,集合A ={x |x ≥1},则∁U A =________.变式练习 1 已知全集U ={x |x ≥-3},集合A ={x |-3<x ≤4},则A C U =________.2.已知全集U ={x |1≤x ≤5},A ={x |1≤x <a },若∁U A ={x |2≤x ≤5},则a =________.题型二 补集的应用例2 设全集U ={2,3,a 2+2a -3},A ={|2a -1|,2},∁U A ={5},求实数a 的值.变式练习2若全集U={2,4,a2-a+1},A={a+4,4},∁U A={7},则实数a=________.题型三并集、交集、补集的综合运算例3 已知全集U={x|-5≤x≤3},A={x|-5≤x<-1},B={x|-1≤x<1},求∁U A,∁U B,(∁U A)∩(∁U B).变式练习3设全集为R,A={x|3≤x<7},B={x|2<x<10},求∁R(A∪B)及(∁R A)∩B.题型四利用Venn图解题例4 设全集U={不大于20的质数},A∩∁U B={3,5},(∁U A)∩B={7,11},(∁U A)∩(∁UB)={2,17},求集合A,B.变式练习4全集U={x|x<10,x∈N*},A⊆U,B⊆U,(∁U B)∩A={1,9},A∩B={3},(∁U A)∩(∁U B)={4,6,7},求集合A,B.变式练习5已知集合A={x|x2-4ax+2a+6=0},B={x|x<0},若A∩B≠∅,求a的取值范围.课后作业一、选择题1.已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)等于( )A.{1,3,4}B.{3,4}C.{3}D.{4}2.已知全集U={1,2,3,4,5,6,7},A={3,4,5},B={1,3,6},则A∩(∁U B)等于( )A.{4,5}B.{2,4,5,7}C.{1,6}D.{3}3.设全集U={a,b,c,d,e},集合M={a,c,d},N={b,d,e},那么(∁U M)∩(∁N)等于( )UA.∅B.{d }C.{a ,c }D.{b ,e }4.已知集合A ={x |x <a },B ={x |1<x <2},且A ∪(∁R B )=R ,则实数a 的取值范围是( )A.{a |a ≤1}B.{a |a <1}C.{a |a ≥2}D.{a |a >2}5.设全集是实数集R ,M ={x |-2≤x ≤2},N ={x |x <1},则(∁R M )∩N 等于( )A.{x |x <-2}B.{x |-2<x <1}C.{x |x <1}D.{x |-2≤x <1}6.已知集合A ={x |-4≤x ≤-2},集合B ={x |x -a ≥0},若全集U =R ,且A ⊆∁U B ,则a 的取值范围为________.7.设U ={1,2,3,4,5,6,7,8,9},(∁U A )∩B ={3,7},(∁U B )∩A ={2,8},(∁U A )∩(∁U B )={1,5,6},则集合A =________,B =________.8.已知全集U =R ,A ={x ||3x -1|≤3},B ={x |⎩⎨⎧ 3x +2>0,x -2<0},求∁U (A ∩B ).9.已知集合A ={x |3≤x <6},B ={x |2<x <9}.(1)分别求∁R (A ∩B ),(∁R B )∪A ;(2)已知C ={x |a <x <a +1},若C ⊆B ,求实数a 的取值范围.10.已知A ={x |-1<x ≤3},B ={x |m ≤x <1+3m }.(1)当m =1时,求A ∪B ;(2)若B ⊆∁R A ,求实数m 的取值范围.11.已知集合{}31<≤-=x x A ;{}242-≥-=x x x B .(1)求B A ⋂;(2)若集合{}02>+=a x x C ,满足C C B =⋃,求实数a 的取值范围.12.设集合A ={x |x 2=4x },B ={x |x 2+2(a -1)x +a 2-1=0}.(1)若A ∩B =B ,求a 的取值范围;(2)若A ∪B =B ,求a 的值.。
1.2集合间的基本运算_交集和并集概要
A B {x | x A, 或x B} 思考4:如何用venn图表示 A B ?
A
B
思考5:集合A、B与集合 A B的关系如何? A B 与 B A的关系如何? A A B B A B A B B A
思考6:集合 A A, A 分别等于什么?
A A A, A A
2
B {x | x bx a 0} ,若 A B {1} ,求 A B
2
{-1,0,1}
例3 设集合 A {x |1 x 2},
B {x | 0 x a( } a 0 为常数),求
A B和A B.
知识小结
1.求集合的并、交、补是集合间的基本运算, 运算结果仍然还是集合. 2.区分交集与并集的关键是“且”与“或”, 在处理有关交集与并集的问题时,常常从这两个字 眼出发去揭示、挖掘题设条件. 3.注意结合Venn图或数轴进而用集合语言表 达,增强数形结合的思想方法.
A B
思考3:我们用符号“ A B”表示集合A与B 的并集,并读作“A交B”,那么如何用描 述法表示集合 A B ?
思考5:集合A、B与集合 A B的关系如何? A B 与 B A的关系如何? A A B B A B A B B A
思考6:集合 A A, A 分别等于什么?
A A A, A
思考1:上述两组集合中,集合A,B与集合C的 关系如何?
思考2:我们把上述集合C称为集合A与B的交集, 一般地,如何定义集合A与B的交集? 由属于集合A且属于集合B的所有元素组成的 集合,称为集合A与B的交集。
A B {x | x A, 且x B} 思考4:如何用venn图表示 A B ?
思考1:上述两组集合中,集合A,B与集合C的 关系如何? 思考2:我们把上述集合C称为集合A与B的并集, 一般地,如何定义集合A与B的并集? 由所有属于集合A或属于集合B的元素组成的 集合,称为集合A与B的并集
3集合的基本运算
3.1 交集与并集 3.2 全集与补集
AA∪用BBVenAn∪A图∩BB表B示两A个AA=∪∩集(BBB合) 的AAA关∪∩BB系
B
由属于A且 属于B的元素 组成的集合, 叫A与B的交 集.记 作:
由属于A或 属于B的元 素组成集 合,A与B的 并集.记 作:
设UU是全集A U.由U
⑴(A∩B)∩C与A∩(B∩C) ⑵(A∪B)∪C与A∪(B∪C) ⑶(A∩B)∪(A∩C)与A∪(B∩C) ⑷(A∪B)∩(A∪C)与A∩(B∪C) ⑸A(A∪B)与A∪(A∩B)
答案:是相等 请把这些相等的式子写在笔记本中
这些等式依次为(归纳):
(A∩B)∩C=A∩(B∩C)=A∩B∩C
(A∪B)∪C=A∪(B∪C)=
中所有不 属于A的元
素C组u成A的集合A叫U中
子集A的补集.记 作:
A∩ B =
{x|x∈A且x∈B}
CuA=
{x|x∈ U且∈A}
很显然
A B A A B; A B B A B
若A B A则A B;若A B A则B A.反之亦真。
填写两张表
第一张
第二张
∩ φ Α Β Cu ∪ φ Α Β Cu
A∪B∪C
(结合律)
A∩(A∪B)=A∪(A∩B)=A(吸收律)
应用二:p13例4题略.解略.
归纳 (反演律、狄·摩根定理De Morgan)
略
图形验证
U
A
B
U
A
B
可以用维恩图验证其他定律(课外完成)
应用三 P16B组2 题略
文字语言 图形语言 符号语言
9
A A∩B B
15 15 11
第八讲 集合的基本运算(精讲)(解析版)
2023年初高中衔接素养提升专题讲义第八讲集合的基本运算(精讲)(解析版)【知识点透析】一、交集1、文字语言:对于两个给定的集合A ,B ,由属于A 又属于B 的所有元素构成的集合,叫做A ,B 的交集,记作A ∩B ,读作“A 交B ”2、符号语言:A ∩B ={x |x ∈A 且x ∈B }3、图形语言:阴影部分为A ∩B4、性质:A ∩B =B ∩A ,A ∩A =A ,A ∩∅=∅∩A =∅,如果A ⊆B ,则A ∩B =A5、解题思路:单个数字交集找相同,不等式的交集画数轴,不同集合高度画不同。
二、并集1、文字语言:对于两个给定的集合A ,B ,由两个集合的所有的元素组成的集合,叫做A 与B 的并集,记作A ∪B ,读作“A 并B ”2、符号语言:A ∪B ={x |x ∈A 或x ∈B }3、符号语言:阴影部分为A ∪B4、性质:A ∪B =B ∪A ,A ∪A =A ,A ∪∅=∅∪A =A ,如果A ⊆B ,则A ∪B =B .5、解题思路:两个集合所有元素集中在一起,但是重复元素只写一次,要满足集合中的互异性三、补集1、全集:在研究集合与集合之间的关系时,如果所要研究的集合都是某一给定集合的子集,那么称这个给定的集合为全集.记法:全集通常记作U .2、补集(1)文字语言:如果给定集合A 是全集U 的一个子集,由U 中不属于A 的所有元素构成的集合,叫做A 在U 中的补集,记作A C U .(2)符号语言:}|{A x U x x A C U ∉∈=且(3)符号语言:(4)性质:A ∪∁U A =U ;A ∩∁U A =∅;∁U (∁U A )=A .【注意】并不是所有的全集都是用字母U 表示,也不是都是R,要看题目的。
四、利用交并补求参数范围的解题思路1、根据并集求参数范围:=⇒⊆ A B B A B ,若A 有参数,则需要讨论A 是否为空集;若B 有参数,则≠∅B 2、根据交集求参数范围:=⇒⊆ A B A A B 若A 有参数,则需要讨论A 是否为空集;若B 有参数,则≠∅B 【知识点精讲】题型一并集、交集、补集的运算【例题1】(2022·浙江·杭十四中高一期中)设全集{}1,2,3,4,5,6U =,集合{}{}1,3,5,2,3,4,5S T ==,则S T ⋃=()A .{}3,5B .{}2,4C .{}1,2,3,4,5D .{}1,2,3,4,5,6【答案】C【分析】根据并集的定义直接求解即可.【详解】因为{}{}1,3,5,2,3,4,5S T ==,所以S T ⋃={}1,2,3,4,5,故选:C【例题2】(2021春•山西大同期中)设集合{|1}A x x =<,{|22}B x x =-<<,则(A B = )A .{|21}x x -<<B .{|2}x x <C .{|22}x x -<<D .{|1}x x <【答案】B【解析】{|1}A x x =< ,{|22}B x x =-<<,{|2}A B x x ∴=< .故选B.【例题3】.(2022·江苏·高二期末)已知集合{}1,2A =,{}21,2B a a =-+,若{}1A B ⋂=,则实数a 的值为()A .0B .1C .2D .3【答案】C【解析】因为{}1A B ⋂=,所以11a -=或221a +=,解得:2a =.故选:C.【例题4】.(2022·陕西·宝鸡市陈仓高级中学高三开学考试(理))已知集合{}21A x x =-<≤,{}0B x x a =<≤,若{|23}A B x x =-<≤ ,A B = ()【例题5】.(2021·北京昌平区·高二期末)已知全集,集合,{3,4}B =,则()U A B = ð___________.【答案】.{}3,4,5【解析】解:{0U = ,1,2,3,4,5},{0A =,1,2,3},{3B =,4},{4U A ∴=ð,5},(){3U A B ⋃=ð,4,5}.故答案为:{3,4,5}.【例题6】.(2022·四川南充高一课时检测)已知全集{}16A x x =≤≤,集合{}15B x x =<<,则A B =ð().A .{}5x x ≥B .{1x x ≤或}5x ≥C .{1x x =或}56x <≤D .{1x x =或}56x ≤≤【例题7】.41.(2021·陕西商洛市·镇安中学高一期中)已知集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-.(1)若4m =,求A B ;(2)若A B =∅ ,求实数m 的取值范围.【答案】.(1){}27x x -≤≤;(2){2m m <或}4m >.【解析】(1)当4m =时,{}57B x x =≤≤,故{}27A B x x ⋃=-≤≤;(2)当121m m +>-时,即当2m <时,B =∅,则A B =∅ ;当121m m +≤-时,即当2m ≥时,B ≠∅,因为A B =∅ ,则212m -<-或15m +>,解得12m <-或4m >,此时有4m >.综上所述,实数m 的取值范围是{2m m <或}4m >.【变式1】.(2022·河北邢台高二期末)若集合{}|24M x x =-<≤,{}|46N x x =≤≤,则A .M N⊆B .{}4M N = C .M N⊇D .{}26|M N x x =-<< 【答案】B【分析】利用集合的交并运算求M N ⋂、M N ⋃,注意,M N 是否存在包含关系,即可得答案.【详解】因为{}|24M x x =-<≤,{}|46N x x =≤≤,所以{}4M N = ,{}|26M N x x =-<≤ ,,M N 相互没有包含关系.故选:B【变式2】.(2022·江苏常州高三开学考试)设集合{}11A x x =-<<,{}220B x x x =-≤,则A B ⋃=()A .(]1,2-B .()1,2-C .[)0,1D .(]0,1【变式3】(2022·青海·海东市第一中学模拟预测(文))已知集合{}1,1,2M =-,{}2N x x x =∈=R ,则M N ⋃=()A .{}1B .{}1,0-C .{}1,0,1,2-D .{}1,0,2-【答案】C【解析】{}{}20,1N x x x =∈==R ,{}1,0,1,2M N ∴=- .故选:C.【变式4】.(2022·浙江·三模)已知集合{}{}25,36P x x Q x x =≤<=≤<,则P Q = ()A .{}25x x ≤<B .{}26x x ≤<C .{}35x x ≤<D .{}36x x ≤<【答案】C【解析】由题意知:P Q = {}35x x ≤<.故选:C.题型二并集、交集、补集综合运算及性质的应用【例题8】.(2022·河南洛阳高一课时检测)已知全集U ,集合{}1,3,5,7,9A =,{}2,4,6,8U C A =,{}1,4,6,8,9U C B =,则集合B =()A .{}1,5,7B .{}3,5,7,9C .{}2,3,5,7,9D .{}2,3,5,7【答案】D【分析】根据集合补集的运算法则进行求解.【详解】 集合{}=1,3,5,79A ,,{}2468U C A =,,,{}=1,2,3,4,5,6,7,8,9U ∴又{}=1,4,6,8,9U C B {}=2,3,5,7B 故选:D【例题9】.(2022·重庆·西南大学附中模拟预测)已知集合{}|10A x ax =-=,{}*|14B x x =∈≤<N ,且A B B ⋃=,则实数a 的所有值构成的集合是()A .11,2⎧⎫⎨⎬B .11,23⎧⎫⎨⎬C .111,,23⎧⎫⎨⎬D .110,1,,23⎧⎫⎨⎬【例题10】.(湖北省“宜荆荆恩”2022-2023学年高三上学期起点考试)已知集合(,1][2,)A =-∞⋃+∞,{|11}B x a x a =-<<+,若A B =R ,则实数a 的取值范围为()A .(1,2)B .[1,2)C .(1,2]D .[1,2]【答案】D【分析】依题意可得1112a a -≤⎧⎨+≥⎩,解得即可.【详解】解:因为(,1][2,)A =-∞⋃+∞,{|11}B x a x a =-<<+且A B =R ,所以1112a a -≤⎧⎨+≥⎩,解得12a ≤≤,即[]1,2a ∈;故选:D【例题11】.(2022·云南昆明一中高一检测)已知A ,B 都是非空集合,(){}&A B x x A B =∈⋃且()x A B ∉ .若{}02A x x =<<,{}0B x x =≥,则&A B =()A .{}0x x ≥B .{}02x x <<C .{0x x =或}2x <-D .{0x x =或}2x ≥【例题12】.(2021·江苏高一专题练习)已知集合{}42A x x =-<<,{}110B x m x m m =--<<->,.(1)若A B B ⋃=,求实数m 的取值范围;(2)若A B ⋂≠∅,求实数m 的取值范围.【答案】(1)3m ≥;(2)0m >.【解析】:(1)因为A B B ⋃=,所以A B ⊆,014312m m m m >⎧⎪∴--≤-⇒≥⎨⎪-≥⎩;(2)若A B = ∅,则014m m >⎧⎨-≤-⎩或012m m >⎧⎨--≥⎩,不等式组无解,所以A B ⋂≠∅时,所以0.m >【变式1】(2022·辽宁沈阳高一课前预习)集合{}2320A x x x =-+=,{}2220B x x ax =-+=,若A B A ⋃=,求实数a 的取值范围.【答案】.{}44a a -<≤由题意,知{}1,2A =,因为A B A ⋃=,所以B A ⊆.(1)若1B ∈,则1是方程2220x ax -+=的根,所以4a =.当4a =时,{}1B A =⊆,符合题意.(2)若2B ∈,则2是方程2220x ax -+=的根,所以5a =.当5a =时,{}2125202,2B x x x ⎧⎫=-+==⎨⎬⎩⎭,此时不满足B A ⊆,所以5a =不符合题意.(3)若B =∅,则2160a ∆=-<,解得44a -<<,此时B A ⊆.综上所述,a 的取值范围为{}44a a -<≤.【变式2】.(2023·浙江高二开学考试)已知R a ∈,设集合{}22210A x x ax a =-+-<,{}2B x x =>,(1)当2a =时,求集合A .(2)若R A B ⊆ð,求实数a 的取值范围.【答案】(1){}13A x x =<<;(2)32a ≤.【解析】(1)当2a =时,有2430x x -+<,解得13x <<,故{}13A x x =<<.(2)∵{}2B x x =>,∴{}2R B x x =≤ð,不等式22210x ax a -+-<可以表示成()()1210x x a ---<⎡⎤⎣⎦,当1a <时,{}211A x a x =-<<,此时R A B ⊆ð成立,当1a =时,A =∅,R A B ⊆ð成立,当1a >时,{}121A x x a =<<-,若此时R A B ⊆ð成立,则212a -≤,解得32a ≤,故312a <≤.综上所述,32a ≤.【变式3】.(2022·四川乐山市高一单元测试)已知集合{}211A x a x a =-<<+,{}01B x x =≤≤.(1)在①1a =-,②0a =,③1a =这三个条件中任选一个作为已知条件,求A B ;(2)若R A B A ⋂=ð,求实数a 的取值范围.【答案】(1)答案见解析(2)(][),11,-∞-⋃+∞【分析】(1)代入a 的值求出集合A ,再求并集可得答案;(2)求出B R ð,根据A B A ⋂=R ð可得A B ⊆R ð,分A =∅、A ≠∅讨论可得答案.(1)选择条件①:因为1a =-,所以()3,0A =-,又[]0,1B =,所以(]3,1A B ⋃=-;选择条件②:因为0a =,所以()1,1A =-,又[]0,1B =,所以(]1,1A B ⋃=-;选择条件③:因为1a =,所以()1,2A =,又[]0,1B =,所以[)0,2A B ⋃=;(2)因为[]0,1B =,所以()(),01,B =-∞⋃+∞R ð,因为A B A ⋂=R ð,所以A B ⊆R ð,当A =∅时,满足R A B ⊆ð,此时211a a -≥+,即2a ≥,当A ≠∅时,则2 10a a <⎧⎨+≤⎩或2211a a <⎧⎨-≥⎩,解得1a ≤-或12a ≤<,综上,a 的取值范围为(][),11,-∞-⋃+∞.题型三Venn 图的应用【例题13】.(2021·贵州省思南中学高三月考(理))已知全集U =R ,集合{}23,A y y x x R ==+∈,{}24B x x =-<<,则图中阴影部分表示的集合为()A .[]2,3-B .()2,3-C .(]2,3-D .[)2,3-【答案】.B【解析】233y x =+≥,所以[)3,A =+∞,图象表示集合为()U A B ⋂ð,()U ,3A =-∞ð,()()U 2,3A B ⋂=-ð.故选:B【例题14】.(2021·全国高三其他模拟)已知全集U x y ⎧=∈=⎨⎩Z ,集合{}13M x x =∈-<Z ,{}4,2,0,1,5N =--,则下列Venn 图中阴影部分表示的集合为()A .{}0,1B .{}3,1,4-C .{}1,2,3-D .{}1,0,2,3-【答案】.C【解析】{}{}50,565,4,3,2,1,0,1,2,3,4,560x U x x x x ⎧+⎧⎫⎪=∈=∈-≤<=-----⎨⎨⎬->⎩⎭⎪⎩ZZ ,集合{}{}{}313241,0,1,2,3M x x x x =∈-<-<=∈-<<=-Z Z .因为集合{}4,2,0,1,5N =--,所以{}5,3,1,2,3,4U N =---ð,所以Venn 图中阴影部分表示的集合为(){}1,2,3U M N ⋂=-ð,故选:C.【例题15】.(2021·山东济南·高一期中)国庆期间,高一某班35名学生去电影院观看了《长津湖》、《我和我的父辈》这两部电影中的一部或两部.其中有23人观看了《长津湖》,有20人观看了《我和我的父辈》则同时观看了这两部电影的人数为()A .8B .10C .12D .15【答案】A【分析】根据集合的运算可得答案.【详解】解:由已知得同时观看了这两部电影的人数为2320358+-=.故选:A.【变式】.(2021·广东·广州外国语学校高一检测)某公司共有50人,此次组织参加社会公益活动,其中参加A 项公益活动的有28人,参加B 项公益活动的有33人,且A ,B 两项公益活动都不参加的人数比都参加的人数的三分之一多1人,则只参加A 项不参加B 项的有()【例12】.(2021·全国高一单元测试)已知对于集合A 、B ,定义{|}A B x x A x B -=∈∉,且,()()A B A B B A ⊕=-⋃-.设集合{123456}M =,,,,,,集合{}45678910N =,,,,,,,则M N ⊕中元素个数为()A .4B .5C .6D .7【答案】.D【解析】∵{123456}M =,,,,,,{}45678910N =,,,,,,,∴{}{|}123M N x x M x N -=∈∉=,且,,,{}{|}78910N M x x N x M -=∈∉=,且,,,,∴{}{}{}()()1237891012378910M N M N N M ⊕=-⋃-=⋃=,,,,,,,,,,,,其中有7个元素,故选D.(2021·湖北·葛洲坝中学高一期中)已知集合A ,B 是实数集R 的子集,定义{},A B x x A x B -=∈∉,若集合11|,13A y y x x ⎧⎫==≤≤⎨⎬⎩⎭,{}2|1,12B y y x x ==--≤≤,则B A -=()A .{}11x x -≤≤B .{}11x x -≤<C .{}01x x ≤≤D .{}01x x ≤<【变式1】(2022·山西太原高三专题检测)设{}1,2,3,4,I =,A 与B 是I 的子集,若{}1,3A B = ,则称(,)A B 为一个“理想配集”.那么符合此条件的“理想配集”(规定(,)A B 与(,)B A 是两个不同的“理想配集”的个数是()A .16B .9C .8D .4【答案】B【解析】由题意,对子集A 分类讨论:当集合{}1,3A =,集合B 可以是{1,2,3,4},{1,3,4},{1,2,3},{1,3},共4中结果;当集合{}1,2,3A =,集合B 可以是{1,3,4},{1,3},共2种结果;当集合{}1,3,4A =,集合B 可以是{1,2,3},{1,3},共2种结果;当集合{}1,2,3,4A =,集合B 可以是{1,3},共1种结果,根据计数原理,可得共有42219+++=种结果.故选:B.【变式2】.(2023·四川成都高三专题模拟)对于两个正整数m ,n ,定义某种运算“⊙”如下,当m ,n 都为正偶数或正奇数时,m ⊙n =m +n ;当m ,n 中一个为正偶数,另一个为正奇数时,m ⊙n =mn ,则在此定义下,集合M ={(p ,q )|p ⊙q =10,*N p ∈,q ∈*N }中元素的个数是_____.【答案】13【解析】∵当m ,n 都为正偶数或正奇数时,m ⊙n =m +n ;当m ,n 中一个为正偶数,另一个为正奇数时,m ⊙n =mn ,∴集合M ={(p ,q )|p ⊙q =10,*N p ∈,q ∈*N }={(1,9),(2,8),(3,7),(4,6),(5,5),(6,4),(7,3),(8,2),(9,1),(1,10),(2,5),(5,2),(10,1)},共13个元素,故答案为:13。
高中数学必修一:集合间的基本运算(交集与并集、补集)
6 6 14
A
B
画出Venn图右图 , 可知没有参加过比赛的同学有
45 12 20 6 19. 答 这个班共有 19名同学没有参加过比赛 .
例3.(1)已知集合A={1,2,3,4},B={x|x=n2, n∈A},则A∩B=( ) A.{1,4} B.{2,3} C.{9,16} D.{1,2} (2)设集合M={x|x2+2x=0,x∈R},N={x|x2- 2x=0,x∈R},则M∪N=( ) A.{0} B.{0,2} C.{-2,0} D.{-2,0,2}
4.已知集合A={(x,y)|y=x+3},B={(x,y)|y =3x-1},则A∩B=________.
y=x+3 解析:由 y=3x-1 x=2 得 y= 5
,
y=x+3 ∴A∩B=x,y| y=3x-1 x=2 ={(2,5)}. =x,y| y=5
解析: M∪N={-1,0,1,2}.
2.设A={4,5,6,8}, B={3,5,7,8},求A∪B.
解: A∪B={4,5,6,8} ∪ {3,5,7,8}
={3,4,5,6,7,8}
3.设集合A={x|-1<x<2},集合B={x|1<x<3} 求A∪B.
解: A∪B={x|-1<x<2} ∪ {x|1<x<3}
Venn图表示:
A
A∪B
B
A
A∪B
B
性质:
A B B A, A A B, B A B .
思考: A∪B=B可能成立吗?
A
A∪B
B
若A
B,则
A∪B=B
集合间的基本运算
集合间的基本运算一、知识概述1交集的定义一般地,由所有属于A且属于B的元素所组成的集合,叫做A, B的交集记作 A ' B (读作‘ A 交B'),即卩 A 1 B= {x|x 已A,且B} 2、并集的定义一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A, B的并集.记作:A」B (读作’A并B'),即卩A」B ={x|x三A,或B}.3、补集:一般地,设S是一个集合,A是S的一个子集(即…=1 ),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集),记作。
貝, 即[/ ={小胡且入¥ 2}性质:%/)二月“J©乓0二用全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集,全集通常用S, U表示+4、运算性质:(1) I I 「I 'I ;(2)I — -「';(3)I . ;(4)T __「T 1 -;(5)、二一匚 _「丄一「* 二:.(6)「厂_「;:「:冷」'J':,二、例题讲解例1、设集合A={ —4, 2m- 1, m2} , B={9, m-5, 1 —m},又A B={9},求实数m的值.解:I A B={9},二2m—1=9或m2=9,解得m=5或m=3或m=—3.若m=5 贝U A={—4, 9, 25} , B={9, 0,—4}与A B={9}矛盾;若m=3则B中元素m—5=1—m=—2,与B中元素互异矛盾;若m=-3,则A={ —4,—7, 9} , B={9,—8, 4}满足 A B={9}.二m=- 3.例2、设A={x|x 2+ ax+ b=0}, B={x|x 2+ ex + 15=0},又A B={3, 5} , A A B={3}, 求实数a , b , e的值.解:v A A B={3},二3 € B,二32+ 3e+ 15=0,••• e= —8,由方程x2—8x+ 15=0 解得x=3 或x=5.••• B={3 , 5}.由A二(A」B)={3 , 5}知,3€ A, A (否则5€ A A B,与A G B={3}矛盾)故必有A={3},.••方程x2+ ax+ b=0有两相同的根3.由韦达定理得3+ 3=—a, 3 3=b,即a=—6, b=9, c=—8.例3、已知A={x|x 3+ 3x2+ 2x >0} , B={x|x 2+ ax+ b< 0},且A G B={x|0 v x< 2}, A U B={ x | x > —2},求a、b 的值.解:A={x| —2v x v—1 或x>0},设B= [x i, X2],由A G B= (0, 2]知X2= 2,且—1<xW 0,①由A U B= (—2 ,+x)知一2w X1w —1. ②由①②知X i =—1, X2 = 2,a=—( X1+ X2)=—1, b= X1X2= —2.例4、已知A={x|x 2—ax+ a2—19=0}, B={x|x 2—5x + 8=2}, C={x|x 2+ 2x —8=0}. 若E =A G B,且A G C=] , 求a 的值.解:—3)(x —2)=0}={3 , 2},•- B={x|(xC={x|(x + 4)(x —2)=0}={ —4 , 2},又••• E =AG B,又••• A G C==,•可知-4^A, 2^A, 3€ A.• •由9—3a+ a —19=0 ,解得a=5或a=—2.①当a=5 时,A={2, 3},此时A H C={2} ,矛盾,二a^ 5;②当a=—2时,A={—5, 3},此时A H C山,A H B={3}工它,符合条件.综上①②知a=—2.例5、已知全集U={不大于20的质数} ,M N是U的两个子集,且满足MA (•门)={3,5},(「r)H N={7,19},(」')H( •「)={2,17},求M N.解:用图示法表示集合U, M N (如图),将符合条件的元素依次填入图中相应的区域内,由图可知:M={3, 5, 11, 13}, N={7, 11, 13, 19}.点评:本题用填图的方法使问题轻松地解决,但要注意的是在填图时,应从已知区域填起,从已知区域推测未知区域的元素.特别提示:下列四个区域:对应的集合分别是:①一q : ::②一-r 二:③―_ 5 ■':④一I一、选择题1下列命题中,正确的是()A. 若U=R 祐u,匸B. 若U为全集,①表示空集,则-①=①;C. 若A={1,①,{2}},则{2}二A;D. 若A={1,2,3},B={x|x 二A},则A€ B.3 IM= {工 |畝迄忑€ 血¥_}= (x l 也}『2、设数集 ' - …且MN都是集合{x|0 < x< 1}的子集,如果把b—a叫做集合{x|a <x< b}的“长度”,那么集合Mn N 的“长度”的最小值是()1 2A. - B .」丄5C. 1- D .一3、设M N是两个非空集合,定义M与N的差集为M—N={x|x € M且x己N},则M—(M—N)等于()A. N B . MA NC. MU N D . M 4、已知全集:=R,集合朴11"弔刀和严砂亠■“ L的关系的韦恩(Venn)图如下图所示,贝U阴影部分所示的集合的元素共有()B . 2个 D .无穷个1、 - ••匚 I -①=U, {2} € A, {2}单独看是一个集合,但它又是A 中的一个元素.3 £2、集合M 的“长度”为-,集合N 的“长度”为」,而集合—+ — — 1{x|0 <x < 1}的“长度”为1,故MAN 的“长度”最小值为4」3、M-N={x|x €“且x^N}是指图(1)中的阴影部分.同样M-( M- N )是指图(2)中的阴影部分.4、t 图形中的阴影部分表示的是集合 =;,由;解得集合‘"一—二一,而N 是正奇数的集合;-「,故选B.二、填空题 5、已知集合A={x|x 2— 3x + 2=0},集合B={x|ax — 2=0}(其中a 为实数),且A U B=A 则集合 C={a|a 使得 A U B=A}= ______________ . 5、{0, 1, 2}解析:A={1, 2},由 A U B=A 得 匪 A.••• 1€ A,即得 a=2;或 2€ A,即得 a=1 ;或 B=©,此时 a=0.••• C={0, 1, 2}.A. 3个C. 1个⑴6、非空集合S^{1 ,2,3,4,5},且若a€ S,则6-a€ S,这样的S共有________ 个.6、6解析:S={1, 5}或{2 , 4}或⑶,或{1 , 3, 5},或{2 , 4 , 3},或{1 , 5 , 2 , 4}.三、解答题7、设集合卫={込加7-①,吕―^ —另1—^,9}(1)若■■-丄),求实数a的值.(2)若.''■,求实数a的值.7、解:(1):9 三’1 '',二9 A.则a2=9或.解得a=±3或5.当时,'' ■' ■ ' - '-(舍)当a =—3时,卫={9,一兀一4},£=〔一出4,9〕(符合)当a = 5时,乂={25,9, —= {0,—4,9〕(符合).综上知一 ?或“一-.(2)由(1)知•,一二8已知全集U= R,叮•二•….丄v 0・,_ = “ V呗亠」或x >5 —「一:,,若- J,求实数⑴的取值范围8解:依题设可知全集】=三且打丨■■-0 =0月=缶1一2三工W5),「月=仗冲+1=工w2喘_1},由题设分类如下:①若',贝U m^ 1>2mn 1= mV 2.②若加工0,则m^ i<2mn 1,且I®用一1« 5,解得2< 3.由①②可得:me 3.•••实数m的取值范围为{m|mc 3}.9、已知全集U={|a -1|,(a - 2)(a -1),4,6}.(1)若-八「•求实数a的值;(2)若:4 '求实数a的值.9、解:(1)t L •厂一;' 且多U,•••|a - 1|=0,且(a - 2)(a - 1)=1 ,或|a -1|=1 ,且(a - 2)(a -1)=0 ;第一种情况显然不成立,在第二种情况中由|a -1|=1得a=0或a=2, --a=2.(2)依题意知|a - 1|=3 ,或(a - 2)(a - 1)=3,若|a -1|=3 ,则a=4, 或a=-2;若(a —2)(a —1)=3,贝U -经检验知a=4时,(4 —2)(4 —1)=6,与元素的互异性矛盾.二a=- 2或亠 .10、设集合A ={::广「二1}, B 屮 | ...... - ,*},若A B=B求实数二的值.10、解:先化简集合A=J '.由A】B=B则F A,可知集合B可为二:,或为{0},或{- 4},或".(i) 若B』:,则贝:,解得立<-:;(ii) 若- - B,代入得-- =0=应=1 或:'=一-,当丸=1时,B=A符合题意;当:』=-1时,B={0}二A,也符合题意.(iii)若一4^B,代入得工上L = 口=7或“ =1,当:』=1时,已经讨论,符合题意;当屯=7时,B={- 12,—4},不符合题意.综上可得,^ =1或立€-1.11、已知集合A={x|x —4m灶2计6=0},B={x|x V 0},若A A B M,求实数m的取值范围.= ^ | A = (-4jK)3-4(2^ 4-5)^ 0} = (/w | 或朋11、解:设全集 ' 」m皂U,< 珂4- x- = 4^ 鼻0,若方程X2—4mx+ 2m^ 6=0的两根x’,x?均非负,贝卩山忑八载以―D胆沖一••• {m|- }关于U的补集是{m|m<—1},二实数m的取值范围是{m|m<—1}.1、(全国I,1)设集合A={4,5, 7,9},B={3,4,乙8, 9},全集U=A U B,则集合・⑺厂启)中的元素共有()A. 3个B. 4个C. 5个D. 6个答案:A解析:2、(福建,2)已知全集U=R,集合A={x|x2—2x>0},则干」等于()A. {x|0 < x< 2}B. {x|0<x<2}C. {x|x<0 或x>2} D . {x|x < 0 或x > 2}答案:A解析:■/ x2—2x>0,二x(x —2)>0,得x<0 或x>2,••• A={x|x<0 或x>2},[ 4 ;. ■ i•.3、(山东,1)集合A={0 , 2, a}, B={1 , a2}.若A U B={0, 1, 2, 4, 16},则a 的值为()A. 0B. 1C. 2D. 4答案:D解析:T A U B={0, 1, 2, a, a2},又A U B={0, 1, 2, 4, 16}, • {a , a2}={4 , 16} , • a=4 ,故选D.集合中的交、并、补等运算,可以借助图形进行思考。
集合之间的运算
集合的基本运算:交集、并集、相对补集、绝对补集、子集。
(1)交集:集合论中,设A,B是两个集合,由所有属于集合A且属于集合B的元素所组成的集合,叫做集合A与集合B的交集(intersection),记作A∩B。
(2)并集:给定两个集合A,B,把他们所有的元素合并在一起组成的集合,叫做集合A与集合B的并集,记作A∪B,读作A并B。
(3)相对补集:若A和B 是集合,则A 在B 中的相对补集是这样一个集合:其元素属于B但不属于A,B - A = { x| x∈B且x∉A}。
(4)绝对补集:若给定全集U,有A⊆U,则A在U中的相对补集称为A的绝对补集(或简称补集),写作∁UA。
(5)子集:子集是一个数学概念:如果集合A的任意一个元素都是集合B的元素,那么集合A称为集合B的子集。
符号语言:若∀a ∈A,均有a∈B,则A⊆B。
集合间的基本运算
集合间的基本运算一、知识概述1、交集的定义一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作‘A交B’),即A B={x|x A,且x B}.2、并集的定义一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作‘A并B’),即A B ={x|x A,或x B}.3、补集:一般地,设S是一个集合,A是S的一个子集(即),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集),记作,即=.性质:.全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集,全集通常用S,U表示4、运算性质:(1);(2);(3);(4);(5);(6);.二、例题讲解例1、设集合A={-4,2m-1,m2},B={9,m-5,1-m},又A B={9},求实数m的值.解:∵A B={9},∴2m-1=9或m2=9,解得m=5或m=3或m=-3.若m=5,则A={-4,9,25},B={9,0,-4}与A B={9}矛盾;若m=3,则B中元素m-5=1-m=-2,与B中元素互异矛盾;若m=-3,则A={-4,-7,9},B={9,-8,4}满足A B={9}.∴m=-3.例2、设A={x|x2+ax+b=0},B={x|x2+cx+15=0},又A B={3,5},A∩B={3},求实数a,b,c的值.解:∵A∩B={3},∴3∈B,∴32+3c+15=0,∴c=-8,由方程x2-8x+15=0解得x=3或x=5.∴B={3,5}.由A(A B)={3,5}知,3∈A,5A(否则5∈A∩B,与A∩B={3}矛盾).故必有A={3},∴方程x2+ax+b=0有两相同的根3.由韦达定理得3+3=-a,33=b,即a=-6,b=9,c=-8.例3、已知A={x|x3+3x2+2x>0},B={x|x2+ax+b≤0},且A∩B={x|0<x≤2},A∪B={x|x>-2},求a、b的值.解:A={x|-2<x<-1或x>0},设B=[x1,x2],由A∩B=(0,2]知x2=2,且-1≤x1≤0,①由A∪B=(-2,+∞)知-2≤x1≤-1. ②由①②知x1=-1,x2=2,∴a=-(x1+x2)=-1,b=x1x2=-2.例4、已知A={x|x2-ax+a2-19=0},B={x|x2-5x+8=2},C={x|x2+2x-8=0}.若A∩B,且A∩C=,求a的值.解:∵B={x|(x-3)(x-2)=0}={3,2},C={x|(x+4)(x-2)=0}={-4,2},又∵A∩B,∴A∩B≠.又∵A∩C=,∴可知-4A,2A,3∈A.∴由9-3a+a2-19=0,解得a=5或a=-2.①当a=5时,A={2,3},此时A∩C={2}≠,矛盾,∴a≠5;②当a=-2时,A={-5,3},此时A∩C=,A∩B={3}≠,符合条件.综上①②知a=-2.例5、已知全集U={不大于20的质数},M,N是U的两个子集,且满足M∩()={3,5},()∩N={7,19},()∩()={2,17},求M、N.解:用图示法表示集合U,M,N(如图),将符合条件的元素依次填入图中相应的区域内,由图可知:M={3,5,11,13},N={7,11,13,19}.点评:本题用填图的方法使问题轻松地解决,但要注意的是在填图时,应从已知区域填起,从已知区域推测未知区域的元素.特别提示:下列四个区域:对应的集合分别是:①—;②—;③—;④—.一、选择题1、下列命题中,正确的是()A.若U=R,A U,;B.若U为全集,Φ表示空集,则Φ=Φ;C.若A={1,Φ,{2}},则{2}A;D.若A={1,2,3},B={x|x A},则A∈B.2、设数集且M、N都是集合{x|0≤x≤1}的子集,如果把b-a叫做集合{x|a≤x≤b}的“长度”,那么集合M∩N 的“长度”的最小值是()A. B.C. D.3、设M、N是两个非空集合,定义M与N的差集为M-N={x|x∈M且x N},则M-(M-N)等于()A.N B.M∩NC.M∪N D.M4、已知全集,集合M和的关系的韦恩(Venn)图如下图所示,则阴影部分所示的集合的元素共有()A.3个 B.2个C.1个 D.无穷个1、Φ=U,{2}∈A,{2}单独看是一个集合,但它又是A中的一个元素.2、集合M的“长度”为,集合N的“长度”为,而集合{x|0≤x≤1}的“长度”为1,故M∩N的“长度”最小值为3、M-N={x|x∈M且x N}是指图(1)中的阴影部分.同样M-(M-N)是指图(2)中的阴影部分.4、∵图形中的阴影部分表示的是集合,由解得集合,而N是正奇数的集合,∴,故选B.二、填空题5、已知集合A={x|x2-3x+2=0},集合B={x|ax-2=0}(其中a为实数),且A ∪B=A,则集合C={a|a使得A∪B=A}=_____________.5、{0,1,2}解析:A={1,2},由A∪B=A,得B A.∵1∈A,即得a=2;或2∈A,即得a=1;或B=Φ,此时a=0.∴C={0,1,2}.6、非空集合S{1,2,3,4,5},且若a∈S,则6-a∈S,这样的S共有___________个.6、6解析:S={1,5}或{2,4}或{3},或{1,3,5},或{2,4,3},或{1,5,2,4}.三、解答题7、设集合.(1)若,求实数a的值.(2)若,求实数a的值.7、解:(1)∵9,∴9 A.则a2=9或.解得a=±3或5.当时,(舍);当时,(符合);当时,(符合).综上知或.(2)由(1)知.8、已知全集U=R,<0,<或x>,若,求实数的取值范围8、解:依题设可知全集且≥0≤≤5,≤≤,由题设可知.分类如下:①若,则m+1>2m-1m<2.②若,则m+1≤2m-1,且,解得2≤m≤3.由①②可得:m≤3.∴实数m的取值范围为{m|m≤3}.9、已知全集U={|a-1|,(a-2)(a-1),4,6}.(1)若求实数a的值;(2)若求实数a的值.9、解:(1)∵且B U,∴|a-1|=0,且(a-2)(a-1)=1,或|a-1|=1,且(a-2)(a-1)=0;第一种情况显然不成立,在第二种情况中由|a-1|=1得a=0或a=2,∴a=2.(2)依题意知|a-1|=3,或(a-2)(a-1)=3,若|a-1|=3,则a=4,或a=-2;若(a-2)(a-1)=3,则经检验知a=4时,(4-2)(4-1)=6,与元素的互异性矛盾.∴a=-2或.10、设集合A ={|},B ={|,},若A B=B,求实数的值.10、解:先化简集合A=. 由A B=B,则B A,可知集合B可为,或为{0},或{-4},或.(i)若B=,则,解得<;(ii)若B,代入得=0=1或=,当=1时,B=A,符合题意;当=时,B={0}A,也符合题意.(iii)若-4B,代入得=7或=1,当=1时,已经讨论,符合题意;当=7时,B={-12,-4},不符合题意.综上可得,=1或≤.11、已知集合A={x|x2-4mx+2m+6=0},B={x|x<0},若A∩B≠,求实数m 的取值范围.11、解:设全集.若方程x2-4mx+2m+6=0的两根x1,x2均非负,则解得.∵{m|}关于U的补集是{m|m≤-1},∴实数m的取值范围是{m|m≤-1}.1、(全国I,1)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合中的元素共有()A.3个B.4个C.5个D.6个答案:A解析:2、(福建,2)已知全集U=R,集合A={x|x2-2x>0},则等于()A.{x|0≤x≤2} B.{x|0<x<2}C.{x|x<0或x>2} D.{x|x≤0或x≥2}答案:A解析:∵x2-2x>0,∴x(x-2)>0,得x<0或x>2,∴A={x|x<0或x>2},.3、(山东,1)集合A={0,2,a},B={1,a2}.若A∪B={0,1,2,4,16},则a的值为()A.0 B.1 C.2 D.4答案:D解析:∵A∪B={0,1,2,a,a2},又A∪B={0,1,2,4,16},∴{a,a2}={4,16},∴a=4,故选D.集合中的交、并、补等运算,可以借助图形进行思考。
必修一 1.1.3集合间的基本运算:交集与并集
类型三 并集、交集性质的应用
例4 已知A={x|2a≤x≤a+3},B={x|x<-1或x>5},若A∪B=B, 求a的取值范围.
解 A∪B=B⇔A⊆B. 当2a>a+3,即a>3时,A=∅,满足A⊆B. 当2a=a+3,即a=3时,A={6},满足A⊆B.
当 2a<a+3,即 a<3 时,要使 解得 a<-4 或52<a<3.
0
1
12 3
x
探究点2 交集 观察集合A,B,C元素间的关系:
A={4,3,5};B={2,4,6};C={4}. 集合C的元素既属于A,又属于B,则称C为A与B的交 集.
定义
由属于集合A且属于集合B的所有元素组成的 集合,称为A与B的交集, 记作A∩B,(读作“A交B”)即
A∩B={x|x∈A且x∈B }.
跟踪训练4 若集合A,B,C满足A∩B=A,B∪C=C,则A与C
一定满足
A.A C
B.C A
√C.A⊆C
D.C⊆A
解析 A∩B=A⇔A⊆B,B∪C=C⇔B⊆C, 所以A⊆C.
解析 答案
达标检测
1.已知集合M={-1,0,1},N={0,1,2},则M∪N等于
A.{-1,0,1} C.{-1,0,2}
A⊆B,需aa<+33,<-1
或a2<a>35,,
综上,a 的取值范围是{a|a>3}∪{a|a=3}∪aa<-4或52<a<3
=aa<-4或a>52
.
解答
反思与感悟 解此类题,首先要准确翻译,诸如“A∪B=B” 之类的条件.在翻译成子集关系后,不要忘了空集是任何集 合的子集.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A {2, 4, 5} , B {1, 3, 5, 7} ,求下列集合:
(1)(CU A) (CU B) , (2)CU ( A B) , (3)CU ( A B) , (4)(CU A) (CU B) . 根据所求的结果,你有什么发现?
变式 1:棠湖中学开运动会,设
A { x | x 是棠湖中学高一年级参加百米赛跑的同学}, B { x | x 是棠湖中学高一年级参加跳高比赛的同学},求 A B .
XX分校
互动解疑
A} , 变式 2: 已知集合 A {1, 2, 3} , B { 3, 4} , C { X | X
一般地, 由属于集合
B 的交集,记作 A B (读作“ A 交 B ” ) ,
即 A B { x | x A, 且x B} .用 Venn 图表示.
XX分校
A 且属于集合 B 的所有元素组成的集合, 称为集合 A 与
互动解疑
练习.用适当的符号填空 (1) A (4) ( A B) (7) ( A )
C { x | x 2 mx 2} ,且 A B A , A C C ,求实数 a 及 m 的值或
取值范围.
XX分校
拓展延伸
课堂小结 (1)如何确定两个集合是否具有包含关系? (2)子集与真子集有什么区别?请举例说明.
5、作业布置: 必做题:教材 11 页练习 1、2、3 题 选做题:教材 12 页 A 组第 6、7 、8 、9、10 题
( A B) ;
( B A) ;
(2) A (5) ( A B)
( A A) ;
A;
(3) A (6) A
( A ) ;
( A A) ;
A;
(8) ( A B)
( B A)
XX分校
互动解疑
例 1: A { x | 1 x 2}, B { x | 1 x 3} ,求 A B .
XX分校
性质 (2) CU ( A B) (CU A) (CU B) (3) CU ( A B) (CU A) (CU B)
例 3.已知集合 A {1, 2, 3} ,集合 B 满足 A B {1, 2, 3} ,请列举出所有 满足条件的集合 B .
2 2 A { x | x 3 x 2 } B { x | x ax a 1} , 变式 1. 已知集合 ,
2、全集与补集 一般地,如果一个集合含有我们研究问题中涉及的所有元素,那么 就称这个集合为全集,通常记作 U . 对于一个集合 A , 由全集 U 中不属于 A 的所有元素组成的集合称为集 合 A 相对于全集 U 的补集,简称为集合 A 的补集,记作 CU A . 即 CU A { x | x U , 且x A} .可用 venn 图表示如下:
XX分校
互动解疑
例 2:设 U { x | x 是小于 9 的正整数}, A {1, 2, 3} , B {3, 4, 5, 6} , 求 CU A,
C
U
B.
变式 1:若 U 是全集且 A 是 U 的真子集,请用适当的符号填空 (1) A (CU A) (3) CU (CU A)
U;
(2) A (CU A)
;
XX分校
A;
(4)若 A B ,则 CU B
C
U
A
互动解疑
3、性质 问题 4:若 A B A ,则集合 A, B 之间是什么关系?若 A B A , 则集合 A, B 之间是什么关系?
性质(1) A B A A B A B B
创境设问
问题 1.观察集合 A,B,C,D 的元素之间有什么关系? (1) A {1, 2, 3, 4, 5} , B {2, 4, 6} , C {1, 2, 3, 4, 5, 6} , D { 2, 4}
1.并集、交集的定义 一般地, 由所有属于 A 或者属于 B 的元素组成的集合, 称为集合 A 与 B 的并集,记作 A B (读作“ A 并 B ” ) , 即 A B { x | x A, 或x B} .用 Venn 图表示.
D { X | X B} ,请用列举法表示集合 C 和 D 并求 C D .
问题 2:举出两个集合并指出它们的并集与交集的元素.
XX分校
互动解疑
2 问题 3:若 x Q ,方程 ( x 2)( x 3) 0 的解是什么?若 x R ,方程
( x 2)( x 2 3) 0 的解又是什么?
XX分校
课程标准(1课时) 1.理解两个集合的并集与交集的含义,会求两个简单集合的 并集与交集. 2.理解在给定集合中一个子集的补集的含义,会求给定子集 的补集. 3.能用Venn图表达集合的关系及运算,体会直观图示对理 解抽象概念的作用. 课时目标(1课时) 1.能举例指出两个简单集合个并集、交集的元素,并能用 venn图表示并集 X X 分,交集 校. 2.会求两个简单集合的并集和交集,会求给定子集的补集. 3.能准确使用并集、并集及补集符号,能理解“并”、 “交”、 ”补”是一种关于集合的运算.
XX分校