芳烃
芳香烃
1.Birch还原反应 碱金属(钠、钾或锂)在液氨与醇(乙醇、异丙醇或二级丁醇)的混合液中,与芳香化合物反应,苯环可被还原成1,4-环己二烯类化合物,这种反应叫做Birch(伯奇)还原。例如,苯可被还原成1,4-环己二烯。 Birch还原反应与苯环的催化氢化不同,它可使芳环部分还原生成环己二烯类化合物,因此Birch还原有它的独到之处,在合成上十分有用。 萘同样可以进行Birch还原。萘发生Birch还原时,可以得到1,4二氢化萘和1,4,5,8-四氢化萘。 2.催化氢化反应 苯在催化氢化( catalytic hydrogenation)反应中一步生成环己烷体系。萘在发生催化加氢反应时,使用不同的催化剂和不同的反应条件,可分别得到不同的加氢产物。蒽和菲的9、10位化学活性较高,与氢气加成反应优先在9、10位发生。 3.用金属还原 用醇和钠也可以还原萘,温度稍低时得1,4-二氢化萘,温度高时得1,2,3,4-四氢化萘。[1]
萘、蒽和菲的亲电取代反应
在正常情况下,萘比苯更易发生典型的芳香亲电取代反应,硝化和卤化反应主要发生在α位上。 由于萘十分活泼,溴化反应不用催化剂就可进行,氯化反应也只需在弱催化剂作用下就能发生。 为什么取代反应主要发生在α位上?共振理论认为:取代基进攻α位形成的碳正离子中间体有两个稳定的含有完整苯环结构的极限式,而进攻卢位形成的碳正离子中间体只有一个稳定的含有完整苯环结构的极限式,所以前者比后者稳定。显然,稳定碳正离子相对应的过渡态势能也相对较低,所以进攻α位,反应活化能较小,反应速率快。 在发生可逆的磺化反应时,进入的位置和外界的条件很有关系。低温时,口氢先被取代,当温度升高后,再转移到较稳定的p位上,这结果表明α-萘磺酸的生成是受动力学控制的,而β-萘磺酸的生成是受热力学控制的。 上述现象表明,与萘的硝化、卤化反应一样,生成α-萘磺酸比生成β-萘磺酸活化能低,低温条件下提供能量较少,所以主要生成α-萘磺酸。但磺化反应是可逆的,由于,α-磺基与异环的α-H处于平行位置,空阻较大,不稳定,随着反应温度升高,α-萘磺酸的增多,α-磺化反应的逆向速率将逐渐增加;另外,温度升高也有利于提供β-磺化反应所需的活化能,使其反应速率也加大,β-磺基与邻近的氢距离较大,稳定性好,其逆向反应速率很慢,所以α-萘磺酸逐渐转变成β-萘磺酸。 萘的酰化反应既可以在α位发生,也可以在β位发生,反应产物与温度和溶剂很有关系。 一取代萘进行亲电反应时,第一取代基(G)也有定位效应,卤素以外的邻对位取代基使环活化,因此取代反应主要在同环发生。 如果第一取代基(G)在β位时,有时6位也能发生取代反应,因为6位也可以被认为是G的对位。 间位取代基使环钝化,因此取代反应主要发生在异环的α位。 但是,磺化和傅一克反应常在6,7位发生,生成热力学稳定产物。 蒽比苯、萘更易发生亲电取代反应,除磺化反应在1位发生外,硝化、卤化、酰化时均得9-取代蒽,取代产物中常伴随有加成产物。 菲的9,10的化学活性很高,取代首先在9,10位发生。 此外菲的1,2,3,4,10和5,6,7,8,9是对应的,所以应有五种一元取代产物
第四章 芳香烃
C 2H 5
+ HBr
此反应中应注意以下几点: ① 常用的催化剂是无水AlCl3,此外 FeCl3、BF3、 无水HF、SnCl4、ZnCl2、H3PO4、H2SO4等都有催化 作用。 ② 当引入的烷基为三个碳以上时,引入的烷基 会发生碳链异构现象。例如:
+ CH3CH2CH2Cl
AlCl3
CH3 N O X N CH3 O
O C CH3
=
c. 与苯环直接相连的基团可与苯环的大 π 键发 生σ ,π –超共轭效应或具有碳碳重键。如:
CH3
C6H5
CH=CH2
(2) 第二类定位基(即间位定位基)
―N+(CH3)3 > ―NO2 > ―CN > ―SO3H > ―CHO > ―COOH > ―COOR > ―CONH2 >―+NH3 等.
氯化苄 (苯氯甲烷)
反应条件不同,产物也不同。因两者反应历程不同,光照卤 代为自由基历程,而前者为离子型取代反应。
侧链较长的芳烃光照卤代主要发生在α碳原子上。
CH2CH3
Cl2, 光 91%
CHCH 3 Cl
+ 9%
CH2CH2 Cl
CH2CH3
Br, 光 100%
CHCH 3 Br
CH2CH2-CH-CH 3 CH3
C-H键长都是0.110nm
所有键角都是120°
苯的分子模型
1.杂化轨道理论解释
苯分子中的碳原子都是以sp2杂化轨道成键的, 故键角均为120°,所有原子均在同一平面上。
苯中的p轨道
p轨道的重叠
2.从氢化热看苯的稳定性
H2 2 H2 3 H2 H苯理=3x120=360k J / mol
有机化学第六章芳香烃
Y
可见,凯库勒式并不能确切地反映苯的真实情况
现代物理方法(射线法、光谱法、偶极距的测定)表明,苯分子是 一个平面正六边形构型,键角都是120°,碳碳键长都是0.1397nm。图 示如下:
杂化轨道理论解释
苯分子中的碳原子都是以sp2杂化轨道互相沿对称轴方向重叠形成6个C-Cσ键组成一个 正六边形,每个C各以一个sp2杂化轨道分别与H的1s轨道沿对称的方向重叠,形成六 个C-Hσ键,由于是sp2杂化,所以键角都是120。所有原子均在同一平面上。 每个C还有一个未参与杂化的垂直于与碳环平面σ键的P轨道,彼此侧面重叠,形成一 个封闭的共轭体系,每个P轨道上有一个P电子,组成了π66大π键。由于共轭效应使π 电子高度离域,电子云完全平均化,故无单双键之分。 因此,苯的电子云是一个整体,分布在环的上、下方,并且是完全平均的,所以苯分 子中每个C-C键都有π键的性质,并且是完全相同的,故邻位二元取代物也应当只有一 种。 应当注意且要牢记,苯环中并没有一般的C-C单键和C=C双键。
( 2 )体系能量降低,氢化热(208.5 kJ·mol-1)比环己烯氢 化热的三倍低得多( 3×119.3-208.5 = 149.4 kj·mol-1 ),这 149.4 kj·mol-1即为苯的共轭能。
苯现在的表达方式
价键式
分子轨道离域式
共振式
自旋偶合价键理论 (1986年Copper等提出)
+ Cl2 + Br2
Fe 或 FeCl3 55~60℃
Fe 或 FeBr3 55~60℃
+ 2Cl2 Fe 或 FeCl3
反应历程:
Cl
+ HCl
Br
+ HBr
Cl
+
3.1芳香烃
磺化反应可逆,调节温度得到不同产物
CH3 CH3 CH3 SO3H
+ H2SO4
+
SO3H
反应温度不同 产物比例不同
0℃ 25℃ 100℃
邻甲基苯磺酸 43% 32% 13%
对甲基苯磺酸 53% 62% 79%
30
•
利用磺化的可逆性保护苯环上的某些位置
OH
H2SO4
OH
2molBr2
OH Br Br
•六氯化苯简称六六六, 杀虫剂,已经禁止使用。
44
3.3.2.3 氧化反应
45
46
CH 3
均有,直接 氧化到苯甲酸
CH 2CH 2CH 3
COOH
MnO4-/H2O
47
3.4苯环上亲电取代反应的定位效应
3.4.1 定位基概念
定位基:在进行亲电取代反应时,苯环上原有取代基, 不仅影响着苯环的取代反应活性,同时决定着第二个取代基 进入苯环的位置,即决定取代反应的位置。原有取代基称做 定位基。
54
2.间位定位基定位能力由强到弱的顺序: -NR3 > -NO2 > -CN > -SO3H > -CHO > -COR > -COOH > -COOR > -CONH2
+
55
3.4.3 定位规律的理论解释 (1) 第一类定位基对苯环的影响及其定位效应
3.3.2.1 亲电取代反应—SE
O R
F-C acylation Halogenation
Cl
Br
I
al ky la tio n
na lf o Su
C
(4) b酰基 化反应
芳烃的用途
芳烃的用途
芳烃是一类含有芳香环的有机化合物,具有许多重要的用途。
以下是一些常见的用途:
1. 化学原料:芳烃是许多重要化学品的原材料,如塑料、合成纤维、颜料、染料等。
其中,苯是最常用的芳烃之一,它是许多重要化学品的原材料,如苯乙烯、苯酚、邻苯二甲酸等。
2. 燃料:芳烃也可以用作燃料,如乙苯、二甲苯等作为汽油的添加剂,增加燃烧效率和减少污染。
3. 医药:一些芳烃化合物还有医药作用,如阿司匹林、对乙酰氨基酚等。
4. 香料:许多香料和精油也是由芳烃提炼而来的,如橙花香精、玫瑰油等。
5. 光学材料:一些芳烃化合物具有良好的光学性能,如苯并噻吩等,可以用于制造光学材料。
总之,芳烃具有广泛的用途,是现代化学工业和生活中不可或缺的重要化学品。
- 1 -。
芳香烃
芳香烃芳香烃的定义:芳香烃简称“芳烃”,通常指分子中含有苯环结构的碳氢化合物。
是闭链类的一种。
具有苯环基本结构,历史上早期发现的这类化合物多有芳香味道,所以称这些烃类物质为芳香烃,后来发现的不具有芳香味道的烃类也都统一沿用这种叫法。
例如苯、萘等。
苯的同系物的通式是CnH2n-6(n≥6)。
芳香族化合物在历史上指的是一类从植物胶里取得的具有芳香气味的物质,但目前已知的芳香族化合物中,大多数是没有香味的.因此,芳香这个词已经失去了原有的意义,只是由于习惯而沿用至今.芳香烃的分类:根据结构的不同可分为三类:①单环芳香烃,如苯的同系物②稠环芳香烃,如萘、蒽、菲等;③多环芳香烃,如联苯、三苯甲烷。
主要来源于石油和煤焦油。
芳香烃在有机化学工业里是最基本的原料。
现代用的药物、炸药、染料,绝大多数是由芳香烃合成的。
燃料、塑料、橡胶及糖精也用芳香烃为原料。
芳香烃的来源:芳香烃主要来源于煤、焦油和石油。
芳香烃不溶于水,溶于有机溶剂。
芳香烃一般比水轻;沸点随分子量的增加而升高。
芳香烃易起取代反应,在一定条件下也能起加成反应。
如苯跟氯气在铁催化剂条件下生成氯苯和氯化氢,在光照下则发生加成反应生成六氯化苯(C6H6Cl6)。
芳香烃主要用于制药、染料等工业。
多环芳香烃的简介多环芳香烃(Polycyclic Aromatic Hydrocarbons, PAH),分子中含有两个或两个以上苯环结构的化合物,是最早被认识的化学致癌物。
早在1775年英国外科医生Pott就提出打扫烟囱的童工,成年后多发阴囊癌,其原因就是燃煤烟尘颗粒穿过衣服擦入阴囊皮肤所致,实际上就是煤炱中的多环芳香烃所致。
多环芳香烃也是最早在动物实验中获得成功的化学致癌物。
1915年日本学者Yam agiwa 和Ichikawa,用煤焦油中的多环芳香烃所致。
在五十年代以前多环芳香烃曾被认为是最主要的致癌因素,五十年代后各种不同类型的致癌物中之一类。
但从总的来说,它在致癌物中仍然有很重要的地位,因为至今它仍然是数量最多的一类致癌物,而且分布极广。
芳香烃
CH3 CH3 CH3 连三甲苯
CH3 CH3 CH3
CH3
CH3
CH3
偏三甲苯
均三甲苯
3、苯环上连有多个烷基时,应使最小的基团有最 、苯环上连有多个烷基时, 小的编号。其余规则与脂环烃相似。 小的编号。其余规则与脂环烃相似。如:
CH3 CH2CH3
1-甲基-4-乙基苯 -甲基- -
4、 较复杂的(-NH2、-OH、-CHO、-COOH及C4以 、 较复杂的( 、 、 、 及 以 上R)把苯作为取代基,相应基团做母体。例如: )把苯作为取代基,相应基团做母体。例如:
CH2CH3
CH2CH2CH2CH3
甲苯
CH3 CH3
乙苯
NO2
正丁苯
Br
对二甲苯
硝基苯
溴苯
2、 苯环上连有三个相同基团时,用连、偏、均 苯环上连有三个相同基团时,用连、 来表示相对位置。 来表示相对位置。 注意必须是三个相同基团才能用连、 注意必须是三个相同基团才能用连、偏、 均来表示此三基团的相对位置。 均来表示此三基团的相对位置。
• 注意:当引入的烷基为三个碳以上时,引入的烷基 注意:当引入的烷基为三个碳以上时, 会发生碳链异构现象。 会发生碳链异构现象。
AlCl3
CH3 CH3
+ CH3CH2CH2Cl
CH
+
CH2CH2CH3
) 正丙苯(35~31% 异丙苯(65~69% )
原因:反应中的活性中间体碳正离子发生重排, 原因:反应中的活性中间体碳正离子发生重排,产生更稳定的碳正 离子后,再进攻苯环形成产物。? 离子后,再进攻苯环形成产物。?
亲电取代反应历程( 亲电取代反应历程(以溴代 反应为例) 反应为例)
有机化学 第5章 芳烃
Cl
催化剂: 催化剂:FeCl3 、FeBr3 、AlCl3等 卤素活性: 卤素活性:F > Cl > Br > I 芳烃活性: 芳烃活性:烷基苯 > 苯 > 卤代苯
Cl
Cl Cl2 FeCl3
39% %
Cl Cl
Cl Cl
Cl 55 %
6%
CH3
CH3 Cl
Cl2
CH3 Cl
CH3
FeCl3 ,25℃
H H 120° H o.140nm 120° H H H
0.140nm
价键理论: ② 价键理论:
苯分子的轨道结构
氢化热低(208.5< 119.3),苯具有特殊稳定性。 ),苯具有特殊稳定性 氢化热低(208.5<3×119.3),苯具有特殊稳定性。
苯的结构式: 苯的结构式:
或
或
苯同系物(单环芳烃) 5.2 苯同系物(单环芳烃)异构和命名
Cl Cl Cl Cl Cl Cl
(B)加氯
3 Cl2
紫外光
只有γ异构体有杀虫效果: 六六六有八种异构体,只有γ异构体有杀虫效果:
Cl Cl Cl Cl Cl
Cl
(3)氧化反应
(苯环本身的氧化) 苯环本身的氧化
O
2
空 9 O2(空气)
V2O5 400-500 ℃
2
O 70% O
4 CO2 4 H2O
O , N(CH3)2 ,
R,
NH2 ,
Cl ,
OH ,
Br ,
OCH3 ,
I, C6H5
NHCOCH3
OCOCH3 ,
间位定位基( (2)第二类定位基 间位定位基(间位异构体 )第二类定位基—间位定位基 > 40%) ) 使苯环钝化, 使苯环钝化,并使新引进的取代基主要进入 其间位。例如 例如: 其间位 例如:
有机化学 第五章 芳烃
Ⅰ 贡献大
Ⅱ
Ⅲ
Ⅳ 贡献小 键长、键角不等 的不等价结构
Ⅴ
键长,键角完全 相等的等价结构
H
H
H
H
H
H
苯的结构小结
(1)苯是一个正六边形的平面分子,键长、键角平均化; )苯是一个正六边形的平面分子,键长、键角平均化; (2)电子云分布在苯环的上方和下方; )电子云分布在苯环的上方和下方; 电子高度离域, 个 电子在基态下都在成键轨道 (3)π电子高度离域,6个π电子在基态下都在成键轨道 ) 电子高度离域 内,故体系的能量降低,而使苯环稳定。 故体系的能量降低,而使苯环稳定。
(3)具有平面和接近平面的环状结构。 (3)具有平面和接近平面的环状结构。 具有平面和接近平面的环状结构 (4) 易发生亲电取代反应 不易发生加成反应。 易发生亲电取代反应,不易发生加成反应 不易发生加成反应。
单环芳烃 联苯和联多苯 苯系芳烃 如:
联苯
芳烃
多环芳烃
本文由duan490513584贡献
ppt文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。
第五章
芳烃—— 芳香族碳氢化合物 芳烃
(1)碳氢比高 如: C:H=1:1 C : H = 10 : 8
特点
碳碳键长介于C—C与C=C之间 (2) 碳碳键长介于C—C与C=C之间 如: 0.139nm C— C 0.154nm C=C 0.133nm
三苯甲烷 2,3-二甲基 苯基己烷 二甲基-1-苯基己烷 二甲基
苯基: 苯基: -Ph 、 芳基: -Ar 芳基: R CH2H3C-CH3
m-二甲苯 二甲苯 1,3-二甲苯 二甲苯
04.2 芳香烃
苯分子结构的现代表达:
价键式
分子轨道离域式
共振式
关于苯的认识 1、具有C、H的比例高。 2、具有平面和接近平面的环状结构。 3、π电子高度离域,键长平均化。 4、化学行为:易进行亲电取代而不易发 生加成反应和氧化反应。
HNO3+浓H2SO4 50~60℃
NO2
75~85%
NO2
浓HNO3+浓H2SO4 100~110℃
NO2
NO2
NO2
NO2
+
NO2
+
NO2
6%
1%
93%
CH3
浓HNO3+浓H2SO4
CH3
NO2
CH3
CH3
100~110℃
+
NO2
+
NO2 4%
59%
37%
a. 硝化剂:浓HNO3 + 浓H2SO4(简称混酸) b. 反应物活性:烷基苯>苯>硝基苯
正丙苯 (31~35%)
苯环上已有–NO2、-SO3H、-COOH、-COR等 取代基时,烷基化反应不在发生。因这些取代基都是 强吸电子基,降低了苯环上的电子云密度,使亲电取 代不易发生。
例如,硝基苯就不能起付—克反应,且可用 硝基苯作溶剂来进行烷基化反应。
ii、傅-克酰基化反应
傅-克酰基化反应常用的酰基化试剂为酰氯、酸 酐和羧酸。
4、傅瑞德尔-克拉夫茨(Friedel-Crafts)反应
1877年法国化学家傅瑞德(Friedel)和美国 化学家克拉夫茨(Crafts)发现了在无水三氯化铝 催化下,制备烷基苯和芳酮的反应,简称为傅-克反 应。前者叫傅-克烷基化反应,后者叫傅-克酰基化 反应。
芳烃
芳烃-正文含苯环结构的碳氢化合物的总称,是有机化工的重要原料,包括单环芳烃、多环芳烃及稠环芳烃。
单环芳烃只含一个苯环,如苯、甲苯、乙苯、二甲苯、异丙苯、十二烷基苯等。
多环芳烃是由两个或两个以上苯环(苯环上没有两环共用的碳原子)组成的,它们之间是以单键或通过碳原子相联,如联苯、三苯甲烷等。
稠环芳烃是由两个或两个以上的苯环通过稠合(使两个苯环共用一对碳原子)而成的稠环烃,其中至少一个是苯环,如萘、蒽等。
芳烃中最重要的产品是苯、二甲苯,其次是甲苯、乙苯、苯乙烯、异丙苯。
苯及其分子量较小的同系物是易燃液体,不溶于水,密度比水小;多环芳烃及稠环芳烃多是晶状固体。
芳烃均有毒性,其中以苯对中枢神经及血液的作用最强。
稠环芳烃有致癌作用。
来源芳烃来源于煤和石油,煤干馏过程中能生成多种芳烃。
19世纪初叶至中叶,从煤干馏所得煤焦油中陆续分离出苯、甲苯、萘、蒽等芳烃。
此后,工业用芳烃主要来自煤炼焦副产焦炉煤气及煤焦油。
石油中含多种芳烃,但含量不多,且其组分与含量也因产地而异。
20世纪40年代后实现石脑油的催化重整,将石脑油中的非芳烃转化为芳烃。
从烃类裂解所得的裂解汽油中也可分离出芳烃。
芳烃主要来源已从煤转化为石油。
现在,世界总产量中90%以上来自石油。
不同来源含芳烃馏分的组成不同(见表)。
生产方法重整汽油中芳烃可用萃取法分出。
裂解汽油中的芳烃,也常用萃取法分出,但在萃取前需用催化加氢法除去不稳定的双烯烃、单烯烃和含硫化合物等(见芳烃抽提)。
由于裂解汽油中芳烃含量较高,因此也可用萃取精馏分离出芳烃。
常用的萃取剂有N,N-二甲基甲酰胺、N-甲酰吗啉、Ν-甲基吡咯烷酮、环丁砜等。
在萃取精馏塔中,非芳烃从塔顶蒸出,芳烃与溶剂留在塔底。
此法与萃取法相比,设备简单、操作费用低,但芳烃收率略低。
煤炼焦副产的焦炉煤气,经吸收得吸收液,分离出其中粗苯馏分,内含C8、C9芳烃,可再精馏分离。
煤炼焦副产煤焦油,经分馏可得轻油、酚油、萘油、洗油、蒽油、沥青等馏分,再用精馏、结晶等方法分离得到苯系、萘系、蒽系芳烃。
有机化学--第八章芳烃
课件
20
(I)和(Ⅱ)是键长和键角完全相等的等价结构,贡献大, 故苯的极限结构通常用(I)和(Ⅱ)式表示。共振使苯的能 量比假想的1,3,5-环己三烯低149.4 kJ· mol-1,此即苯 的共振能或离域能,因此苯比较稳定。 由于共振的结果,苯分子中的碳碳键,既不是单键也
不是双键,而是介于两者之间,六个碳碳键完全相等,
课件
29
8.4.1取代反应
1.卤化
在三卤化铁等催化剂作用下,苯与卤素作用生成 卤(代)苯,此反应称为卤化反应。例如:
课件
30
对于不同的卤素,与苯环发生取代反应的活性次序
是:氟>氯>溴>碘。其中氟化反应很猛烈;碘化反应不
仅较慢,同时生成的碘化氢是还原剂,从而使反应成为 可逆反应,且以逆反应为主。因此氟化物和碘化物通常
课件
62
SO3因为极化使硫原子显正性,通过硫原子进攻苯环。磺 化反应是可逆的。在浓硫酸中,磺化反应机理可能如下:
课件
63
4.烷基化和酰基化反应的机理
①烷基化反应的机理 例如,用1-氯丙烷作烷基化试剂时,其反应机理如下:
sp2杂化轨道,分别与一个氢原 子的1s轨道相互交盖,构成六 个相同的碳氢σ 键。
课件
14
这六个碳原子和六个氢
原于是共平面的。每一个碳
原子剩下的一个p轨道,其 对称轴垂直于这个平面,彼
此相互平行,并于两侧相互
交盖,形成一个闭合的π轨 道,如图 (Ⅱ)所示。
课件
15
这样处于该 π 轨道中的 π
电子能够高度离域,使π电子
第八章 芳烃 芳香性
一般把苯及其衍生物总称为芳香族化合物。芳烃是 芳香族碳氢化合物的简称,亦称芳香烃。
有机化学第六章芳烃
第六章芳烃芳烃是芳香族碳氢化合物的简称。
一般情况下,把苯及其衍生物称为芳香族化合物。
其中分子中只含一个苯环的芳烃叫做单环芳烃。
芳香二字的来由最初是指从天然树脂(香精油)中提取而得、具有芳香气的物质。
现代芳烃的概念是指具有芳香性的一类环状化合物,它们不一定具有香味,也不一定含有苯环结构。
芳香烃具有其特征性质——芳香性(易取代,难加成,难氧化)。
第一节单环芳烃的结构、异构和命名一、单环芳烃的结构苯是单环芳烃中最简单最重要的化合物,也是所有芳香族化合物的母体。
1. 凯库勒构造式根据元素分析得知苯的分子式为C6H6。
仅从苯的分子式判断,苯应具有很高的不饱和度,显示不饱和烃的典型反应—加成、氧化、聚合,然而苯却是一个十分稳定的化合物。
通常情况下,苯很难发生加成反应,也难被氧化,在一定条件下,能发生取代反应,称为“芳香性”。
1865年凯库勒从苯的分子式出发,根据苯的一元取代物只有一种,说明六个氢原子是等同的事实,提出了苯的环状结构。
这个式子虽然可以说明苯分子的组成以及原子间连接的次序,但这个式子仍存在着缺点,它不能说明苯既然含有三个双键,为什么苯不起类似烯烃的加成反应?环己烯的氢化热为119.6kJ/mol,如果苯的构造式用凯库勒式表示的话,苯的氢化热为环己烯氢化热的三倍。
119.6×3=358.8KJ/mol 。
实际上苯的氢化热是208.4KJ/mol,比预计的数值低150.4KJ/mol。
2.闭合共轭体系根据现代物理方法(如X射线法,光谱法等)证明了苯分子是一个平面正六边形构型,键角都是120℃ ,碳碳键的键长都是0.1397nm。
按照轨道杂化理论,苯分子中六个碳原子都以sp2杂化轨道互相沿对称轴的方向重叠形成六个C-C σ键,组成一个正六边形。
每个碳原子各以一个sp2杂化轨道分别与氢原子1s轨道沿对称轴方向重叠形成六个C-H σ键。
由于是sp2杂化,所以键角都是120℃,所有碳原子和氢原子都在同一平面上。
芳烃是什么
芳烃是什么跟芳⾹烃有什么区别与联系?近期有投资⼩伙伴看到有的交易所上线了芳烃产品,交易所称跟现货原油是⼀样的⾛势,很多⼈表⽰,只听过芳⾹烃,没听过芳烃呀!那么今天⼩编就来给⼤家稍稍科普⼀下,芳烃到底是个什么东西,跟芳⾹烃是不是⼀样的。
芳烃是什么?芳烃也称芳⾹烃或芳烃油,是指分⼦中含有苯环结构的碳氢化合物,它是⽯油化⼯的基本产品和基础原料之⼀,主要包括苯、甲苯和⼆甲苯、⼄苯等。
芳烃跟芳⾹烃是⼀个意思吗?因为历史上早期发现的这类苯的化合物多有芳⾹味道,所以称这些烃类物质为芳⾹烃,后来发现的不具有芳⾹味道的烃类也都统⼀沿⽤这种叫法。
例如苯、萘等。
苯的同系物的通式是CnH2n-6(n≥6)。
芳烃的提取渠道有哪些?渠道⼀:从煤中提取在煤炼焦过程中⽣成的轻焦油含有⼤量的苯。
这是最初⽣产苯的⽅法。
将⽣成的煤焦油和煤⽓⼀起通过洗涤和吸收设备,⽤⾼沸点的煤焦油作为洗涤和吸收剂回收煤⽓中的煤焦油,蒸馏后得到粗苯和其他⾼沸点馏分。
粗苯经过精制可得到⼯业级苯。
这种⽅法得到的苯纯度⽐较低,⽽且环境污染严重,⼯艺⽐较落后。
渠道⼆:从原油中提取该⽅法为提取芳烃的普遍⽅法。
原油炼油重整这⾥指使脂肪烃成环、脱氢形成芳烃的过程。
这是从第⼆次世界⼤战期间发展形成的⼯艺。
在500-525°C、8-50个⼤⽓压下,各种沸点在60-200°C之间的脂肪烃,经铂-铼催化剂,通过脱氢、环化转化为苯和其他芳烃。
从混合物中萃取出芳烃产物后,再经蒸馏即分出苯。
也可以将这些馏分⽤作⾼⾟烷值汽油。
由此可以看出芳烃是⽯油化⼯的产物,也因此说明芳烃是有⽯油⼀样的⾏情⾛势。
芳烃的主要作⽤有哪些?芳烃能增⼤胶料的粘合性,且能使硫化胶保持较⾼的强度,但对硫化胶的⽣热有⼀定影响,因此,理想的芳烃应具有适宜的化学组成。
粘度、闪点、苯胺点是表征芳烃组成和物理性质的主要质量指标。
物理性质不同的芳烃对硫化胶性能具有不同的影响。
粘度是衡量油和聚合物之间是否适应的⼀个⼤致标准,同时也⽤以反映油品的流动性。
芳烃
芳烃(Aromatic Compounds)第一节芳烃的分类和命名芳烃按其结构分为四类:芳烃单环芳烃多环芳烃CH3CH3非苯芳烃+-一. 芳烃的分类(一)烷基苯的命名1.简单烷基苯以苯为母体命名CH3CH(CH3)2C(CH3)3甲苯异丙苯叔丁苯CH3CH3CH3CH3CH3C(CH3)31,2-二甲苯1,3-二甲苯(邻二甲苯)(间二甲苯)(o-二甲苯)(m二甲苯)4-叔丁基甲苯(对叔丁基甲苯)(P-叔丁基甲苯)二. 芳烃的命名CH 3CH 3CH 3CH 3CH 3CH 3CH 3CH 3CH 3连三甲苯偏三甲苯均三甲苯2.复杂烷基苯常把苯作为取代基CH3CHCHCH2CH3CH3CH3CH 3-甲基-2-邻甲苯基戊烷三苯甲烷常见的含苯烃基:CH3CH3CH3CH2邻甲苯基间甲苯基对甲苯基苄基(苯甲基)3.含多官能团化合物命名按官能团的优先次序,选择主官能团为母体,其他官能团为取代基,官能团优先次序为:-COOH >-CHO >-OH >C=C 2CC >-NH 2(或)>-R >-X >-NO -OR'>含官能团的芳烃命名1.含-X 、-NO 2的芳环,以苯为母体命名2.含其他官能团的芳环,把苯当作取代基ClNO 2ClClNO 2NO 2氯苯硝基苯邻二氯苯间二硝基苯CH=CH 2C CHCOOHOHCHONH 2苯乙烯苯乙炔苯甲酸苯酚苯甲醛苯胺第二节苯的结构及物理性质(一)凯库勒结构式1865年,德国化学家kekule 提出苯的环状结构.Kekule 结构式是有机化学理论研究中的一项重大成就.对芳香有机化合物的合成起重要的指导作用. Kekule 结构式不足:单双键结构不能解释苯的特殊稳定性(难加成,难氧化)及苯只有一种邻二取代物。
H H HHHH或一苯的结构(二)价键理论处理的苯环结构实验发现:苯分子为平面分子,6个C 构成正六边形,C-C 键长140pm,所有键角∠CCH 及∠CCC 均为120°H H H HH H120°120°140pmH H H HH HHHHH HH 大π键高度离域,电子平均分布于每个C-C 键上,因此苯分子中的6个C-C 键键长相等.π电子云离域结构使苯分子能量降低,苯环得到稳定.环状闭合共轭大π键苯的结构(三)分子轨道处理的苯环结构ψ2ψ3ψ4ψ5**ψ6*ψ1无节面一个节面三个节面二个节面反键 轨道成键 轨道++++++++--++----++++---+++-+++--六个p 轨道可线性组合成6个分子轨道:bbbbbbÒÒ±Ò112121Ò×ÒÒìÒ·ÒÒûÒìÒÒÒûÒìÒ2ÒÒ ÒÒ×ÒÒÒÒÒ2p b ÒÒùÒÒ ÒÒ×ÒÒÒp 1bb 6ÒÒ ÒÒ×ÒÒÒÒÒ8p ÒÒùÒÒ ÒÒ×ÒÒÒp 1.333b由以上讨论知:苯的结构很稳定,其π电子高度离域,键长完全平均化(四)共振论对苯环结构的处理共振论认为苯的结构是两个或多个经典结构的共振杂化体.……ⅠⅡⅢⅣⅤ(Ⅰ),(Ⅱ)能量最低,贡献最大,由这两个共振结构式叠加得到的共振杂化体最接近于苯的真实结构.(五)苯环共轭π键的稳定性苯的共轭能或离域能=358.5-208.5=150kJ/mol119.5kJ·molH 2231.8kJ·molH 22208.5kJ·molH 23H 23+119.53=358.5KJ/mol二、单环芳烃的物理性质(一)苯及其同系物相对密度>脂环烷、脂肪烃,但<10.87650.77860.6594(二)苯同系物随碳数增加,沸点升高。
芳 烃
下,与酰卤(RC0-X)作用,生成芳酮。这个 反应是制备芳酮的重要方法之一。
注意:
a.酰基化反应不发生重排,可用克莱门
森法将 -CO- 还原成 -CH2- ,是由苯间
接合成烷基苯的方法。 b.苯环上引入酰基活性下降,不易生成 多酰基化产物。 c.苯环上有吸电子基时,不发生酰基化 反应。
* 加成反应
② 间位定位基(第二类定位基)
这类定位基可使第二个取代基进入它的间 位,常见的有: -N+(CH3)、 -NO2 –CN、 -COOH 、-SO3H 、 -CHO、 -COR 等。 特点:a.与苯环相连的原子,一般都是不饱和的 (-CCI3 除外)。 b.钝化苯环,难发生取代反应 c.为吸电子基,具有很强的吸电子能力
第六章 芳 烃(aromatic
hydrocarbon)
第一节 芳烃的定义及分类 第二节 苯的结构 第三节 单环芳烃 第四节 稠环芳烃 小结
第一节 芳烃的定义及分类
芳烃的是芳香族化合物的母体,主要是指 分子中含有苯环结构的烃。少数非苯芳烃,虽
不含苯环,但却含有结构、性质与苯环相似的
-O-、-NH2、-NHR、-NR2、-OH、-OCH3、 -NHCOCH3、-OCOR、-C6H5、-CH3、-X 等,定位能 力先强后弱。 特点: a.与苯环相连的原子一般都是饱和的(-CH=CH2
除外)
b.可活化苯环,比苯易进行亲电取代反应(卤 素除外) c.大部分是给电子基(具有给电子性能)
正离子在二氧化硫溶液中作用得到。
环庚三烯正离子的6个π电子
离域分布在7个碳原子上,因此是 稳定的,具有芳香性。
●
环辛四烯负离子 环辛四烯的π电子数为8,不符合休克尔规
芳香烃
芳香烃考点热点回顾芳香烃简称芳烃,主要指分子中含有苯环的结构的一类碳氢化合物。
芳烃可以分为苯型芳烃和非苯芳烃。
苯型芳烃按分子中所含苯环数目和是否稠合,又可分为分为单环芳烃、多环芳烃和稠环芳烃。
一、苯型芳烃的命名 1、单环芳烃的命名最简单的单环芳烃是苯。
其它的这类单环芳烃可以看作是苯的一元或多元烃基的取代物。
苯的一元烃基取代物只有一种。
命名的方法有两种,一种是将苯作为母体。
烃基作为取代基,称为××苯。
另一种是将苯作为取代基,称为苯基,它是苯分子减去一个氢原子后剩下的基团,可简写成ph−,苯环以外的部分作为母体,称为苯(基)××。
例如:CH 3CH CH 3CH 3CH C CHCH 2甲苯(methylbenzene)异丙苯(isopropylbenzene)苯乙烯(phenyl ethylene)苯乙炔(phenyl acetylene)(苯为母体)(苯为取代基)苯的二元烃基取代物有三种异构体,它们是由于取代基团在苯环上的相对位置的不同而引起的,命名时用邻、间、对表示两个取代基团处于对角位置,邻、间、对也可用1,2−、1,3−、1,4−表示。
例如:若苯环上有三个相同的取代基,常用“连”为词头,表示三个基团处在1,2,3位。
用“偏”为词头,表示三个基团处在1,2,4位。
用“均”为词头,表示三个基团处在1,3,5位。
当苯环上有两个或多个取代基时,苯环上的编号应符合最低系列原则。
而当应用最低系列原则无法确定那一种编号优先时,与单环烷烃的情况一样,中文命名时应让顺序规则中较小的基团位次尽可能小,英文命名时,应CH CH 3CH 3H 3C CH 3CH 3CH 2CH 3CH 2CH 2CH 3邻甲基乙苯o -methylethylbenzene 间甲基丙苯m -methylpropylbenzene 对甲基异丙苯p -methylisopropylbenzene CH 3CH 3CH 3CH 3H 3C CH 3123456123456123456邻二甲苯(o -二甲苯) 1, 2-二甲苯 o -dimethylbenzene 间二甲苯(m -二甲苯) 1, 3-二甲苯 m -dimethylbenzene 对二甲苯(p -二甲苯) 1, 4-二甲苯 p -dimethylbenzeneCH 3CH 3CH 3CH 3CH 3H 3C CH 3CH 3H 3C 1, 2, 3-三甲苯 (连三甲苯)1, 2, 4-三甲苯 (偏三甲苯)1, 3, 5-三甲苯(均三甲苯)1, 2, 3-或vic1, 2, 4-或unsym 1, 3, 5-或sym trimethylbenzene trimethylbenzene trimethylbenzene按英文字母顺序,让字母排在前面的基团位次尽可能小。
芳香烃
Cl
NO2 CH3
CH3
(2)
+
Cl
NO2 Cl
(3) (4)
Cl C CH3 CH3
OCH3 COCH3 +
(5)
C(CH3)3 COOH
OCH3 COCH3
(6)
COOH COOH
(7)
CH3
CH CH2CH3 +
CH2CH2CH2CH3
(8) HNO3浓 H2SO4浓
CH2CH3
KMnO4 H+
R -OR* -X*(F、Cl、 Br、I) -NO2*
*引用这几个基团时,只能把它们作为前缀,看作是烃链的取代基。
当 环上有多种取代基时,排在前面的取代基与
苯环一起为母体,其他作为取代基,依次编号。
O
Cl
COOH
C Cl
苯甲酰氯
CHO NO 2
邻硝基苯甲醛
OH
对氯苯酚
CHO
NO 2
4-硝基苯甲酸
COOH
OH
NH2 CH3
CHO
NO2
CH3
SO3H
COOH OH
COOH NO2
CH3
NO2
Cl
NO2
C 解释(电子效应) (1)邻对位定位基定位规律的解释 一般而言,邻对位定位基是供电子基团(卤
素除外),它的存在使苯环上的电子密度增高, 且邻对位增高最多,因而总体上发生亲电取代 反应比苯容易,同时,取代的部位主要在邻位 或对位。
0.96
0.88
1、Cl的电负性大于C,表现出强的吸电子的诱导
效应,使苯环上的电子密度普遍降低。
2、Cl原子与苯环形成了P-π 共轭体系,Cl原子