专题17 反比例函数综合问题研究(原卷版)

合集下载

中考数学复习《反比例函数》专项测试卷(带答案)

中考数学复习《反比例函数》专项测试卷(带答案)

中考数学复习《反比例函数》专项测试卷(带答案)学校:___________班级:___________姓名:___________考号:___________一、单选题1.若点()1,2A x ,()2,1B x -和()3,4C x 都在反比例函数8y x=的图像上,则1x ,2x 和3x 的大小关系是( ) A.123x x x <<B.231x x x <<C.132x x x <<D.213x x x <<2.若点()26-,在反比例函数ky x=的图象上,则下列说法正确的是( ) A.该函数的图象经过点()34--,B.该函数的图象位于第一、三象限C.当0x >时,y 的值随x 值的增大而增大D.当1x >-时,4y >3.如图,在同一平面直角坐标系中函数y ax a =+与函数ay x=的图象可能是( ) A. B. C. D.4.如图,点A 是双曲线()160y x x =-<上的一点,点B 是双曲线()60y x x=-<上的一点,AB 所在直线垂直x 轴于点C ,点M 是y 轴上一点,连接MA 、MB ,则MAB △的面积为( )A.5B.6C.10D.165.如图,点A ,B 为反比例函数()0ky x x=>的图象上的两点,且满足45AOB ∠=︒,若点A 的坐标为()3,5,则点B 的坐标是( ).A.15215,2⎛⎫ ⎪ ⎪⎝⎭B.1010,2⎛ ⎝⎭C.()8,2D.()8,36.如图,已知点A 、B 分别在反比例函数y =1x (x >0),y =-4x(x >0)的图象上,且OA⊥OB ,则OBOA的值为( )A.4B.2C.14D.127.如图,在ABC 中2AC BC == 90ACB ∠=︒ AC x ∥轴 点D 是AB 的中点 点C 、D 在(k 0,x 0)ky x=≠>的图象上 则k 的值为( )A.1-B.2-C.1D.28.已知蓄电池的电压为定值(电压三星近总度阻) 使用蓄电池时 电流(单位:A )与电阻尺(单位:Ω)是反比例函数关系 它的图象如图所示 下列说法不正确的是( )A.函数解析式为60I R=B.蓄电池的电压是C.当6ΩR =时 8A I =D.当10A I ≤时 6R ≥Ω9.如图 在平面直角坐标系中直线24y x =-+与x 轴、y 轴分别交于A 、B 两点 以AB 为边在第一象限作正方形ABCD 点D 在双曲线()0ky k x=≠上.将正方形沿x 轴负方向平移a 个单位长度后 点C 恰好落在该双曲线上 则a 的值( )A.1B.2C.3D.410.如图 直线22y x =-与x 轴 y 轴分别交于点A B 与反比例函数()0ky k x=>图像交于点C .点D 为x 轴上一点(点D 在点A 右侧) 连接BD 以BA BD 为边作ABDE E 点刚好在反比例函数图像上 设(),E m n 连接EC DC 若1()2ACED S AD AD n =+四边形 则k 的值为( )A.8B.10C.12D.1611.如图 直线y kx =与双曲线3y x -=在同一坐标系中如图所示 则不等式3x-<的解集为( )A.01x <<B.1x <-C.1x <-或01x <<D.10x -<<或1x >12.智能手机已遍及生活中的各个角落 手机拍照功能也越来越强 高档智能手机还具有调焦(调整镜头和感光芯片的距离)的功能.为了验证手机摄像头的放大率(摄像头的放大率是指成像长度与实物长度的比值 也可计算为像距与物距的比值) 小明用某透镜进行了模拟成像实验 得到如图所示的像距v 随物距u 变化的关系图像 下列说法不正确的是( )A.当物距为45.0cm 时 像距为13.0cmB.当像距为15.0cm 时 透镜的放大率为2C.物距越大 像距越小D.当透镜的放大率为1时 物距和像距均为20cm13.某商家设计了一个水箱水位自动报警仪 其电路图如图1所示 其中定值电阻110ΩR =2R 是一个压敏电阻 用绝缘薄膜包好后放在一个硬质凹形绝缘盒中放入水箱底部 受力面水平 承受水压的面积S 为0.012m 压敏电阻的阻值随所受液体压力F 的变化关系如图2所示(水深h 越深 压力F 越大) 电源电压保持6V 不变 当电路中的电流为0.3A 时 报警器(电阻不计)开始报警 水的压强随深度变化的关系图象如图3所示(参考公式:UI R=1000Pa 1kPa =).则下列说法中不正确的是( )2R F pS =A.当水箱未装水()时 压强p 为0kPaB.当报警器刚好开始报警时 水箱受到的压力F 为40NC.当报警器刚好开始报警时 水箱中水的深度h 是0.8mD.若想使水深1m 时报警 应使定值电阻1R 的阻值为 二、填空题14.一个圆柱形蓄水池的底面半径为x cm 蓄水池的侧面积为40π2cm 则这个蓄水池的高h (cm )与底面半径x (cm )之间的函数关系式为_____.15.在反比例函数12my x-=的图象上的图象在二、四象限 则m 的取值范围是_______. 16.若点()11,A y -、21,4B y ⎛⎫- ⎪⎝⎭、()31,C y 都在反比例函数21x k y +=(k 为常数)的图象上 则1y 、2y 、3y 的大小关系为_____.17.如图 点(3,1)P -是反比例函数m y x =的图象上的一点 设直线y kx =与双曲my x=的两个交点分别为P 和P 当mkx x>时 写出x 的取值范围_____.18.如图 在平面直角坐标系xOy 中正方形OABC 的边OC 、OA 分别在x 轴和y 轴上 OA =10 点D 是边AB 上靠近点A 的三等分点 将⊥OAD 沿直线OD 折叠后得到⊥OA ′D 若反比例函数y kx=(k ≠0)的图象经过A ′点 则k 的值为_____. 0m h =12Ω19.如图 在平面直角坐标系中直线12y k x =+与x 轴交于点A 与y 轴交于点B 与双曲线2(0)k y x x=>交于点C 连接OC .若52,sin 5OBC S BOC =∠=△ 则12k +的值是______.20.如图 点1A 2A 3A …在反比例函数()10y x x=>的图象上 点1B 2B 3B … n B 在y 轴上 且11212323B OA B B A B B A ∠=∠=∠=直线y x =与双曲线1y x=交于点1A 111B A OA ⊥ 2221B A B A ⊥ 3323B A B A ⊥ … 则2023B 的坐标是________.三、解答题21.如图所示 一次函数y kx b =+的图象与反比例函数my x=的图象相交于两点(1),A n (2,1)B -- 与y 轴相交于点C .(1)求反比例函数和一次函数解析式; (2)直接写出:不等式mkx b x+>解集是______; (3)依据相关数据求AOB 的面积.22.如图 菱形OABC 的边OA 在y 轴正半轴上 点B 的坐标为()48,.反比例函数11k y x=的图象经过菱形对角线AC OB ,的交点D 设直线OC 的解析式为22y k x =.(1)求反比例函数的解析式; (2)求菱形OABC 的边长;(3)请结合图象直接写出不等式120k k x x-<的解集. 23.如图▱OABC 的顶点O 与坐标原点重合 边OA 在x 轴正半轴上 60AOC ∠=︒2OC = 反比例函数()0ky x x=>的图像经过顶点C 与边AB 交于点D.(1)求反比例函数的表达式.(2)尺规作图:作OCB ∠的平分线交x 轴于点E.(保留作图痕迹 不写作法) (3)在(2)的条件下 连接DE 若DE CE ⊥ 求证:AD AE =. 24.如图 已知一次函数26y x =+与反比例函数()0ky x x=>的图象交于点()1,A m 与x 轴交于点B .(1)填空:m 的值为______ 反比例函数的解析式为______; (2)直接写出当0x >时 26kx x+<的解集; (3)点P 是线段AB 上一动点(不与A 、B 点重合) 过P 作直线PM x ∥轴交反比例函数的图象于点M 连接BM .若PMB △的面积为S 求S 的取值范围.25.如图 已知抛物线2y x bx =+与x 轴交于O (4,0)A 两点 点B 的坐标为(0,3)-. (1)求抛物线的对称轴;(2)已知点P 在抛物线的对称轴上 连接OP BP .若要使OP BP +的值最小 求出点P 的坐标;(3)将抛物线在x 轴下方的部分沿x 轴翻折 其余部分保持不变 得到一个新的图象.当直线(0)y x m m =+≠与这个新图象有两个公共点时 在反比例函数y mx=的图象中y 的值随x 怎样变化?判断并说明理由.26.如图 在平面直角坐标系中正六边形ABCDEF 的对称中心P 在反比例函数()10,0ky k x x=>>的图象上 边AB 在x 轴上 点F 在y 轴上 已知23AB =.(1)判断点E 是否在该反比例函数的图象上 请说明理由;(2)求出直线EP :()20y ax b a =+≠的解析式 并根据图象直接写出当0x >时 不等式kax b x+>的解集. 27.如图① 有一块边角料ABCDE 其中AB BC DE EA 是线段 曲线CD 可以看成反比例函数图象的一部分.测量发现:90A E ∠=∠=︒ 5AE = 1AB DE == 点C 到AB AE 所在直线的距离分别为2 4.(1)小宁把A B C D E 这5个点先描到平面直角坐标系上 记点A 的坐标为()1,0-;点B 的坐标为()1,1-.请你在图②中补全平面直角坐标系并画出图形ABCDE ; (2)求直线BC 曲线CD 的函数表达式;(3)小宁想利用这块边角料截取一个矩形MNQP 其中M N 在AE 上(点M 在点N 左侧)点P 在线段BC 上 点Q 在曲线CD 上.若矩形的面积是53则=_________.参考答案1.答案:B解析:将三点坐标分别代入函数解析式8y x=得: 182x = 解得14x =; 28-1x =解得28x =-; 384x =解得; 824-<<故选:B. 2.答案:C解析:⊥点()26-,在函数ky x=的图象上 ⊥2(6)120k =⨯-=-< ⊥函数ky x=位于第二、四象限 在每个象限内 y 的值随x 的增大增大 ⊥()341212-⨯-=≠-⊥该函数的图象不经过点()34--,把=1x -代入12y x=求得12y = ⊥当10x -<<时 12y > 综上 只有选项C 说法正确 故选:C. 3.答案:A解析:当0a >时 一次函数图像经过第一、二、三象限 反比例函数图像位于一、三象限 可知A 符合题意;32x =231x x x ∴<<当0a <时 一次函数图像经过第二、三、四象限 反比例函数图像位于二、四象限 可知B C D 不符合题意.故选:A.4.答案:A解析:如图所示 作MN BA ⊥交BA 的延长线于N则12AMB S BA MN =⋅设点A 的坐标为16a a ⎛⎫- ⎪⎝⎭, <0aAB 所在直线垂直x 轴于点CB ∴点坐标为6a a ⎛⎫- ⎪⎝⎭,16610AB a a a ⎛⎫∴=---=- ⎪⎝⎭ MN a =()11101105222ABM S AB MN a a a a ⎛⎫⎛⎫∴=⋅=⨯-⨯=⨯-⨯-= ⎪ ⎪⎝⎭⎝⎭故选:A.5.答案:A解析:将OA 绕O 点顺时针旋转90︒到OC 连接AB 、CB作AM y ⊥轴于MCN x ⊥轴于N点A 的坐标为()3,53AM ∴= 5OM =45AOB ∠=︒45BOC ∠=︒∴在AOB 和COB △中OA OC AOB COBOB OB =⎧⎪∠=∠⎨⎪=⎩(SAS)AOB COB ∴△≌△AB CB ∴=90AOM AON CON AON ∠+∠=︒=∠+∠AOM CON ∴∠=∠ 在AOM 和CON 中AOM CON AMO ONCOA OC ∠=∠⎧⎪∠=∠⎨⎪=⎩ (AAS)AOM CON ∴△≌△3CN AM ∴== 5ON OM == (5,3)C ∴-点A 为反比例函数(0)k y x x=>图象上的点 3515k ∴=⨯= 15y x ∴=设B 点的坐标为15(,)m m AB CB =22221515(3)(5)(5)(3)m m m m ∴-+-=-++解得215m =(负数舍去)15215,B ⎛∴ ⎝⎭故选A.6.答案:B解析:作AC y ⊥轴于C BD y ⊥轴于D 如图点A 、B 分别在反比例函数1(0)y x x => 4(0)y x x=->的图象上 11122OAC S ∆∴=⨯= 1|4|22OBD ∆=⨯-=OA OB ⊥90AOB ∠=︒∴90AOC BOD ∴∠+∠=︒AOC DBO ∴∠=∠Rt AOC Rt OBD ∴∆∆∽ ∴212()2AOC OBD S OA S OB ∆∆== ∴12OA OB =. ∴2OB OA=. 故答案为B. 7.答案:B解析:设(0,)A b 根据题意(2,)C b - (2,2)B b -+点D 是AB 的中点(1,1)D b ∴-+点C 、D 在(k 0,x 0)k y x=≠>的图象上 2(1)k b b ∴=-=-+解得1b =22k b ∴=-=-故选:B.8.答案:C解析:设图象过蓄电池的电压是A 、B 选项正确 不符合题意;当=6ΩR 时 (A 6010)6I ==∴C 选项错误 符合题意;当10I =时 6R =由图象知:当10A I ≤时 6R ≥Ω∴D 选项正确 不符合题意;故选:C.9.答案:B解析:作CE y ⊥轴于点E 交双曲线于点G 作DF x ⊥轴于点F在24y x =-+中令0x = 解得4y =∴B 的坐标是(0,4)令0y = 解得2x =∴A 的坐标是(2,0)kI R =(5,12)60k ∴=60I R ∴=∴60V ∴4OB ∴= 2OA =90BAD ∠=︒90BAO DAF ∴∠+∠=︒直角ABO △中90BAO OBA ∠+∠=︒DAF OBA ∴∠=∠在OAB △和FDA △中DAF OBA BOA AFD AD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩(AAS)OAB FDA ∴≌△△同理 OAB FDA BEC ≌≌△△△ 4AF OB EC ∴=== 2DF OA BE ===∴D 的坐标是(6,2) C 的坐标是(4,6)点D 在双曲线(0)k y k x=≠上 6212k ∴=⨯=∴函数的解析式是:12y x =把6y =代入12y x=得:2x = 422a ∴=-=故选B.10.答案:C解析:直线与x 轴 y 轴分别交于点A B(1,0)A ∴ (0,2)B -作EF x ⊥轴于F 如图所示:22y x =-四边形是平行四边形在和中E 点刚好在反比例函数图像上设C 的纵坐标为hABDE AE BD ∴=//DE AB DAE ADB ∴∠=∠AEF △DBO △EAF BDO AFE DOB AE BD ∠=∠⎧⎪∠=∠⎨⎪=⎩(AAS)AEF DBO ∴≌△△2EF OB ∴==AF OD =1DF OA ∴==(,)E m n 2m AD ∴=+2n =2(2)k mn AD ∴==+122AD k ∴=-//DE BC AED CED S S ∴=△△()11122222ACD CED ACD AED ACED S S S S S AD h AD AD h ∴=+=+=⋅+⋅=+四边形△△△△()12ACED S AD AD n =+四边形122h AD k ∴==-C 的纵坐标为代入得解得反比例函数图像经过点C 解得 20k =(舍去) 12k∴=故选:C.11.答案:D解析:有题意可知 当3y =时 33x= 解得=1x - ∴直线y kx =与双曲线3y x=在第二象限交点的坐标为1,3)- 由中心对称可得 直线y kx =与双曲线3y x=在第四象限交点的坐标为3)- ∴观察图象可得 不等式3kx x<的解集为10x <<或1x >. 故选:D.12.答案:B解析:由函数图象可知:当物距为45.0cm 时 像距为13.0cm 故选项A 说法正确;由函数图象可知:当像距为15.0cm 时 物距为300cm . 放大率为15.00.530.0= 故选项B 说法错误;由函数图象可知:物距越大 像距越小 故选项C 说法正确;由题意可知:当透镜的放大率为1时 物距和像距均为20cm 故选项D 说法正确 故选:B.13.答案:B解析:A.由图3得:当0h =时 0p = 故此项说法正确;122-22y x =-12222x -=-14x k =11(,2)42C k k ∴-(0)k y k x=>11(2)42k k k ∴-=112k =B.当报警器刚好开始报警时 260.310R =+ 解得210R =Ω 由图2可求得:2800R F =80010F∴= 解得80F N = 故此项说法错误; C.当报警器刚好开始报警时 由上得80F N = 则有800.01p =⨯ 8P p k a ∴= 由图3求得10p h = 810h = 解得:0.8h = 故此项说法正确;D.当报警器刚好开始报警时:1260.3R R =+ 1220R R ∴+=Ω 当1h =时 10110kPa p =⨯= 100000.01100F N ∴=⨯= 28008100R ==Ω 120812R ∴=-=Ω 故此项说法正确. 故选:B.14.答案:20h x = 解析:根据题意 得240x h ππ⋅= ⊥20h x=. 故答案为:20h x=. 15.答案:12m > 解析:由题意得 反比例函数12m y x -=的图象在二、四象限内 则120m -< 解得12m >. 故答案为12m >. 16.答案:213y y y << 解析:反比例函数2(1k k y x+=为常数) 210k +> ∴该函数图象在第一、三象限 在每个象限内y 随x 的增大而减小点1(1,)A y -、1(4B 2)y 、3(1,)C y 都在反比例函数2(1k k y x +=为常数)的图象上 114-<- 点A 、B 在第三象限 点C 在第一象限213y y y ∴<<故答案为:213y y y <<.17.答案:-3<x <0或x >3 解析:⊥直线y =kx 与双曲线y =m x的两个交点分别为P 和P ′ P (-3 1) ⊥P ′的坐标为(3 -1)当mx >kx 时 x 的取值范围为-3<x <0或x >3故答案为:-3<x <0或x >3. 18.答案:48解析:如图所示:过A '作EF OC ⊥于F 交AB 于E⊥90OA D '∠=︒90OA F DA E ∴∠'+∠'=︒⊥90A F AOF O ∠'+∠'=︒D AOF AE ∴'=∠'∠D A FO AE '=∠∠'A OF DA E ∴''∠△△设A '(m n )OF m ∴= A F n '=.正方形OABC 的边OC 、OA 分别在x 轴和y 轴上 OA =10点D 是边AB 上靠近点A 的三等分点∴ 103DE m = 10A E n '=-.310103m n m m ==-- 解得:m =6 n =8. ∴A '(6,8) ∴ 反比例函数中k =xy (0k ≠)=48 故答案为:48.19.答案:9解析:据题意可知(0,2)B 设(,)Cx y 52,sin OBC S BOC =∠=△1222x ∴⨯= 52xOC = 解得2,25x OC ==2225OC x y =+=即2425y +=得4y = 故(2,4)C 将(2,4)C 代入直线12y k x =+ 双曲线2(0)k y x x => 得到 121,8k k == 故12189k k +=+= 故答案为:9.20.答案:(0,22023解析:联立1y xy x =⎧⎪⎨=⎪⎩解得1x =由题意可知145AOB ∠=︒111B A OA ⊥11OA B ∴△为等腰直角三角形1122OB OA ∴==过2A 作22A H OB ⊥交y 轴于H 则容易得到21A H B H = 设21A H B H x == 则()2,2A x x +()21x x ∴+=解得121x = 221x =-(舍去)2121A H B H ∴== 1212222B B B H ==2222222OB ∴=+=同理可得323OB =则2n OB n =即(0,2n B n(20230,22023B ∴故答案为:(0,22023. 21.答案:(1)2y x = 1y x =+ (2)1x >或20x -<<(3)32解析:(1)反比例函数m y x =的图象过(2,1)--∴反比例函数的解析式为:2y x = 点(1),A n 在反比例函数图象上∴12n ⨯=∴2n =∴点A 的坐标为(1,2)将点A B 坐标代入一次函数y kx b =+中得221k b k b +=⎧⎨-+=-⎩解得11k b =⎧⎨=⎩∴一次函数的解析式为:1y x =+.(2)根据图象可知 不等式0m kx b x+>>的解集是:1x >或20x -<<. 故答案为:1x >或20x -<<; (3)过点A 作AG y ⊥轴于点G 过点B 作BH y ⊥轴于点H 如下图所示:一次函数1y x =+与y 轴相交于点C∴C 点坐标为(0,1)∴1OC =A 点坐标为(1,2)∴1AG =B 点坐标为(2,1)--∴2BH =∴11123222AOB AOC BOC S S S ⨯⨯=+=+=△△△. 22.答案:(1)18y x = (2)5 (3)463x <或63x << 解析:(1)⊥菱形OABC 的对角线交于点D⊥OD DB =⊥点B 的坐标为()48,⊥点D 的坐标为()24, 又⊥反比例函数11k y x=经过点D ⊥1248k =⨯= ⊥18y x =; (2)过点B 作BE y ⊥轴于点E设OA AB a == 则8AE a =- 4BE =在Rt ABE 中222BE AE AB += 即()22248x x +-= 解得:5x =⊥菱形OABC 的边长为5;(3)⊥点B 的坐标为()48, 5BC =⊥点C 的坐标为()43,代入22y k x =得:234k = 解得:234k =⊥234y x =令1y y = 则834x x = 解得:63x =±结合图象 不等式120k k x x -<的解集为463x <或463x <<.23.答案:(1))30y x =>(2)见解析(3)见解析解析:(1)过点C 作CF OA ⊥于点F 如解图所示.在Rt COF △中2OC = 60COF ∠=︒30sin 6023CF C ∴=⋅==︒1cos60212OF OC =⋅︒=⨯=.(1,3C ∴. 把(3C 代入反比例函数()0ky x x =>中得3k =∴反比例函数的表达式为)30y x =>.(2)如解图所示 所作射线CE 即为所求.(3)证明:在OABC 中//OC AB //CB OA .60AOC ∠=︒120OCB OAB ∴∠=∠=︒. CE 平分OCB ∠60OCE BCE OEC ∴∠=∠=∠=︒.DE CE ⊥90CED ∴∠=︒.180609030AED ∴∠=︒-︒-︒=︒.1801203030ADE ∴∠=︒-︒-︒=︒.AED ADE ∴∠=∠.AD AE ∴=.24.答案:(1)8 8y x= (2)01x << (3)S 的取值范围是2504S <≤ 解析:(1)⊥一次函数26y x =+的图象经过点()1,A m ⊥268m =+=⊥点()18A ,⊥反比例函数()0k y x x =>的图象经过点()18A , ⊥188k =⨯=⊥反比例函数的解析式为8y x=; 故答案为:8 8y x =;(2)观察图象得 26k x x+<的解集为1x <<; (3)设点P 的纵坐标为n ⊥点P 在线段AB 上 点M 在8y x =的图象上 ⊥0n << 点P 的横坐标为62n -⊥PM x ∥轴⊥点M 的坐标为8n n ⎛⎫ ⎪⎝⎭, ⊥862n MP n -=. ⊥()21186125322244PMBn S MP n n n n -⎛⎫=⨯⨯=⨯-⨯=--+ ⎪⎝⎭. ⊥08n << 且104-<⊥当03n <<时 S 随n 的增大而增大 当38n ≤<时 S 随n 的增大而减小. ⊥当3n =时 △的面积最大 最大值为254 ⊥S 的取值范围是2504S <≤. 25.答案:(1)抛物线的对称轴为直线2x =(2)点P 的坐标为32,2⎛⎫- ⎪⎝⎭ (3)y 的值随x 的增大而增大解析:(1)由题意得:2440b +=4b ∴=-∴函数关系式为:24y x x =-∴对称轴为:4222b x a -=-=-=; (2)由题意得:OP PB +的值最小 实际就是在同一直线一旁有两点 在直线上求点只要取O 点关于直线2x =对称的点 过AB 的直线与直线的交点就是点P设过AB 的直线为 由在上()4,0A 2x =3y kx =-()4,0B 3y kx =-得34k =334AB y x =-P 在直线2x =上332342y ∴=⨯-=-32,2P ⎛⎫∴- ⎪⎝⎭; (3)24y x x =-在x 轴下方的部分沿x 轴翻转当直线()0y x m m =+≠有两个不相同的解0∴∆> 2340m -⨯> 得94m <又0> 904m ∴<< 在反比例函数m y x=中 904m k <=< y 随x 的增大而减小. 26.答案:(1)点E 在该反比例函数的图象上 理由见解析(2)39y x =+ 323x <<解析:(1)六边形ABCDEF 为正六边形 23AB =23AB AF ∴== 60FAO =︒cos 603OA AF ∴=⋅︒= sin603AF =⋅︒=()0,3F ∴ )3,0A 连接PF PA六边形ABCDEF 为正六边形PE PF PA PB ∴=== 60EPF FPA APB ∠=∠=∠=︒EFP ∴△ FAP △ ABP △为等边三角形23AF PF ∴==()23,3P ∴ 把()23,3P 代入1k y x =得:23=解得:63k =043k ∴=-∴反比例函数表达式为163y x=. EFP △ FAP △为等边三角形∴点E 和点A 关于PF 对称)3,6E ∴ 把3x =代入163y x =得:13663y == ∴点E 在该反比例函数的图象上; (2)把()3,6E ()23,3P 代入()20y ax b a =+≠得: 6333a b a b ⎧=+⎪⎨=+⎪⎩ 解得:39a b ⎧=-⎪⎨=⎪⎩∴直线EP 的解析式为:39y x =+()3,6E ()23,3P由图可知 当323x <<时 k b x +>. 27.答案:(1)见解析(2)直线BC 的函数表达式3522y x =曲线的函数表达式4y x= (3)72 解析:(1)根据点A 的坐标为()1,0- 点B 的坐标为()1,1- 补全x 轴和y 轴 90A E ∠︒∠== 5AE = 1AB DE == 点C 到AB AE 所在直线的距离分别为2 4 ()1,4C ∴ ()4,1D根据AB BC DE EA 是线段 曲线CD 是反比例函数图象的一部分 画出图形ABCDE如图所示 (2)设线段BC 的解析式为y kx b =+ 把()1,1B - ()1,4C 代入得 14k b k b -+=⎧⎨+=⎩解得 3252k b ⎧=⎪⎪⎨⎪=⎪⎩3522y x ∴=+设曲线CD 的解析式为'k y x =把()1,4C 代入得 '41k = '4= 4y x ∴=; (3)设(),0M m 则35,22P m m ⎛⎫+ ⎪⎝⎭ 435,352222Q m m ⎛⎫ ⎪+ ⎪ ⎪+⎝⎭3522PM m ∴=+ 43522m m =-+354352222PM PQ m m m ⎛⎫ ⎪⎛⎫⋅=+- ⎪ ⎪⎝⎭ ⎪+⎝⎭23554223m m ∴--= 2915140m m ∴+-= 23m ∴= 或73m =-(舍去) 32572322PM ∴=⨯+=. 故答案为:72.。

反比例函数综合习题及答案

反比例函数综合习题及答案

反比例函数综合习题及答案反比例函数测试题姓名___________班级__________学号__________分数___________1.下列函数,①y =2x ,②y =x ,③y =x -1,④y =11x 是反比例函数的个数有( )A .0个B .1个C .2个D .3个2.反比例函数y =2x 的图象位于( )A .第一、二象限B .第一、三象限C .第二、三象限D .第二、四象限3.已知矩形的面积为10,则它的长y 与宽x 之间的关系用图象表示大致为( )4.已知关于x 的函数y =k(x+1)和y =-kx (k ≠0)它们在同一坐标系中的大致图象是(• )5.已知点(3,1)是双曲线y =kx (k ≠0)上一点,则下列各点中在该图象上的点是( )A .(13,-9)B .(3,1)C .(-1,3)D .(6,-12)6.某气球充满一定质量的气体后,当温度不变时,气球内的气体的气压P(kPa)是气体体积V(m 3)的反比例函数,其图象如图所示,当气球内的气压大于140kPa 时,•气球将爆炸,为了安全起见,气体体积应( )A .不大于2435m 3B .不小于2435m 3C .不大于2437m 3D .不小于2437m 37.某闭合电路中,电源电压为定值,电流IA .与电阻R(Ω)成反比例,如右图所表示的是该电路中电流I 与电阻R 之间的函数关系的图象,则用电阻R 表示电流I •的函数解析式为( ).A .I =6RB .I =-6RC .I =3RD .I =2R8.函数y =1x 与函数y =x 的图象在同一平面直角坐标系内的交点个数是( ).A .1个B .2个C .3个D .0个 9.若函数y =(m+2)|m|-3是反比例函数,则m 的值是( ). A .2 B .-2 C .±2 D .×210.已知点A(-3,y 1),B(-2,y 2),C(3,y 3)都在反比例函数y =4x 的图象上,则( ).A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 3<y 1<y 2D .y 2<y 1<y 311.一个反比例函数y =kx (k ≠0)的图象经过点P(-2,-1),则该反比例函数的解析式是________.12.已知关于x 的一次函数y =kx+1和反比例函数y =6x 的图象都经过点(2,m),则一次函数的解析式是________.13.一批零件300个,一个工人每小时做15个,用关系式表示人数x •与完成任务所需的时间y 之间的函数关系式为________.14.正比例函数y =x 与反比例函数y =1x 的图象相交于A 、C 两点,AB ⊥x 轴于B ,CD •⊥x 轴于D ,如图所示,则四边形ABCD 的为_______.15.如图,P 是反比例函数图象在第二象限上的一点,且矩形PEOF 的面积为8,则反比例函数的表达式是_________.16.反比例函数y =21039nn x --的图象每一象限内,y 随x 的增大而增大,则n =_______.17.已知一次函数y =3x+m 与反比例函数y =3m x -的图象有两个交点,当m =_____时,有一个交点的纵坐标为6.18.若一次函数y=x+b与反比例函数y=kx图象,在第二象限内有两个交点,•则k______0,b_______0,(用“>”、“<”、“=”填空)19.两个反比例函数y=3x,y=6x在第一象限内的图象如图所示,点P1,P2,P3……P2005,在反比例函数y=6x的图象上,它们的横坐标分别是x1,x2,x3,…x2005,纵坐标分别是1,3,•5•……,•共2005年连续奇数,过点P1,P2,P3,…,P2005分别作y轴的平行线与y=3x的图象交点依次是Q1(x1,y1),Q2(x2,y2),Q3(x3,y3),…,Q2005(x2005,y2005),则y2005=________.20.当>0时,两个函数值y,一个随x增大而增大,另一个随x的增大而减小的是( •).A.y=3x与y=1x B.y=-3x与y=1xC.y=-2x+6与y=1x D.y=3x-15与y=-1x21.在y=1x的图象中,阴影部分面积为1的有()22.如图,已知一次函数y =kx+b(k ≠0)的图象与x 轴、y 轴分别交于A 、B •两点,且与反比例函数y =mx (m ≠0)的图象在第一象限交于C 点,CD 垂直于x 轴,垂足为D ,•若OA =OB =OD =1.(1)求点A 、B 、D 的坐标;(2)求一次函数和反比例函数的解析式.23.如图,已知点A(4,m),B(-1,n)在反比例函数y =8x 的图象上,直线AB •分别与x 轴,y 轴相交于C 、D 两点,(1)求直线AB 的解析式.(2)C 、D 两点坐标.(3)S △AOC :S △BOD 是多少?24.已知y=y1-y2,y1成正比例,y与x成反比例,且当x=1时,y=-14,x=4时,y=3.求(1)y与x之间的函数关系式.(2)自变量x的取值范围.(3)当x=14时,y的值.25.如图,一次函数y=kx+b的图象与反比例函数y=mx的图象交于A、B两点.(1)利用图中的条件,求反比例函数和一次函数的解析式.(2)根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.26.如图,双曲线y=5x在第一象限的一支上有一点C(1,5),•过点C•的直线y=kx+b(k>0)与x轴交于点A(a,0).(1)求点A的横坐标a与k的函数关系式(不写自变量取值范围).(2)当该直线与双曲线在第一象限的另一个交点D的横坐标是9时,求△COA•的面积.反比例函数测试题(一)答案1.B.;2.D.;3.A.;4.A.;5.B.;6.B.;7.A.;8.B.;9.A.;10.D.;11.y=2 x;12.y=x+1;13.y=20 x;14.2;15.y=-8 x;16.n=-3;17.m=5;18.<,>;19.2004.5;20.A.;B.;;21.A.;C.;D.;22.解:(1)∵OA=OB=OD=1,∴点A、B、D的坐标分别为A(-1,0),B(0,1),D(1,0). (2)∵点AB在一次函数y=kx+b(k≠0)的图象上,∴1k bb-+=⎧⎨=⎩解得11kb=⎧⎨=⎩∴一次函数的解析式为y=x+1,∵点C在一次函数y=x+1的图象上,•且CD⊥x轴,∴C点的坐标为(1,2),又∵点C在反比例函数y=mx(m≠0)的图象上,∴m=2,•∴反比例函数的解析式为y=2 x.;23.(1)y=2x-6;(2)C(3,0),D(0,-6);(3)S△AOC:S△BOD=1:1.;24.(1)y=-216x提示:设y=k22kx,再代入求k1,k2的值.(2)自变量x取值范围是x>0.(3)当x=14时,y=162=255.;25.解:(1)由图中条件可知,双曲线经过点A(2,1)第11页(共11页) ∴1=2m ,∴m =2,∴反比例函数的解析式为y =2x .又点B 也在双曲线上,∴n =21-=-2,∴点B 的坐标为(-1,-2). ∵直线y =kx+b 经过点A 、B .∴122k b k b =+⎧⎨-=-+⎩ 解得11k b =⎧⎨=-⎩ ∴一次函数的解析式为y =x -1.(2)根据图象可知,一次函数的图象在反比例函数的图象的上方时,•一次函数的值大于反比例函数的值,即x >2或-1<x <0.;26.解:(1)∵点C(1,5)在直线y =-kx+b 上,∴5=-k+b ,又∵点A(a ,0)也在直线y =-kx+b 上,∴-ak+b =0,∴b =ak将b =ak 代入5=-k+a 中得5=-k+ak ,∴a =5k +1.(2)由于D 点是反比例函数的图象与直线的交点∴599y y k ak ⎧=⎪⎨⎪=-+⎩ ∵ak =5+k ,∴y =-8k+5 ③将①代入③得:59=-8k+5,∴k =59,a =10.∴A(10,0),又知(1,5),∴S △COA =12×10×5=25.;。

专题17 反比例函数篇(解析版)

专题17 反比例函数篇(解析版)

专题17 反比例函数1. 反比例函数的性质与图像:反比例函数()0≠=k xky k 的符号>k 0<k 所在象限一、三象限二、四象限大致图像增减性在一个支上(每一个象限内),y 随x 的增大而减小。

在一个支上(每一个象限内),y 随x 的增大而增大。

对称性图像关于原点对称2. 反比例函数k 的集合意义:①过反比例函数图像上任意一点作坐标轴的垂线,两垂线与坐标轴构成一个矩形,矩形的面积等于k 。

②过反比例函数图像上任意一点作其中一条坐标轴的垂线,并连接这个点与原点,则构成一个三角形。

这个三角形的面积等于2k 。

3. 待定系数法求反比例函数解析式:在反比例函数中只有一个系数k ,所以只需要在图像上找一个对应的点即可求出k 的值,从而求出反比例函数解析式。

4. 反比例函数与一次函数的不等式问题:若反比例函数()0≠=k x ky 与一次函数()0≠+=k b kx y 有交点,则不等式b kx xk +>的解集取反比例函数图像在一次函数图像上方的部分所对应的自变量取值范围;等式b kx xk<的解集取反比例函数图像在一次函数图像下方的部分所对应的自变量取值范围。

反比例函数与一次函数的交点把自变量分成三部分。

1.(2022•湘西州)如图,一次函数y =ax +1(a ≠0)的图象与x 轴交于点A ,与反比例函数y =xk的图象在第一象限交于点B (1,3),过点B 作BC ⊥x 轴于点C .(1)求一次函数和反比例函数的解析式.(2)求△ABC 的面积.【分析】(1)利用待定系数法解答即可;(2)利用直线的解析式求得点A 坐标,利用坐标表示出线段CA ,BC 的长度,利用三角形的面积公式解答即可.【解答】解:(1)∵一次函数y =ax +1(a ≠0)的图象经过点B (1,3),∴a +1=3,∴a =2.∴一次函数的解析式为y =2x +1,∵反比例函数y =的图象经过点B (1,3),∴k =1×3=3,∴反比例函数的解析式为y =.(2)令y =0,则2x +1=0,∴x =﹣.∴A (﹣,0).∴OA =.∵BC ⊥x 轴于点C ,B (1,3),∴OC =1,BC =3.∴AC =1=.∴△ABC 的面积=×AC •BC =.2.(2022•德州)已知蓄电池的电压为定值,使用该蓄电池时,电流I (单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.(1)请求出这个反比例函数的解析式;(2)蓄电池的电压是多少?(3)如果以此蓄电池为电源的用电器限制电流不能超过10A,那么用电器的可变电阻应控制在什么范围?【分析】(1)先由电流I是电阻R的反比例函数,可设I=,将点(8,6)代入I=,利用待定系数法即可求出这个反比例函数的解析式;(2)根据电压=电流×电阻即可求解;(3)将I≤10代入(1)中所求的函数解析式即可确定电阻的取值范围.【解答】解:(1)电流I是电阻R的反比例函数,设I=,∵图象经过(8,6),∴6=,解得k=6×8=48,∴I=;(2)蓄电池的电压是6×8=48;(3)∵I≤10,I=,∴≤10,∴R≥4.8,即用电器可变电阻应控制在4.8欧以上的范围内.3.(2022•大连)密闭容器内有一定质量的二氧化碳,当容器的体积V(单位:m3)变化时,气体的密度ρ(单位:kg/m3)随之变化.已知密度ρ与体积V是反比例函数关系,它的图象如图所示,当V =5m 3时,ρ=1.98kg /m 3.(1)求密度ρ关于体积V 的函数解析式;(2)若3≤V ≤9,求二氧化碳密度ρ的变化范围.【分析】(1)设密度ρ关于体积V 的函数解析式为ρ=(k ≠0),利用反比例函数图象上点的坐标特征,即可求出k 值,进而可得出密度ρ关于体积V 的函数解析式;(2)由k =9.9>0,利用反比例函数的性质可得出当V >0时ρ随V 的增大而减小,结合V 的取值范围,即可求出二氧化碳密度ρ的变化范围.【解答】解:(1)设密度ρ关于体积V 的函数解析式为ρ=(k ≠0).∵当V =5m 3时,ρ=1.98kg /m 3,∴1.98=,∴k =9.9,∴密度ρ关于体积V 的函数解析式为ρ=(V >0).(2)∵k =9.9>0,∴当V >0时,ρ随V 的增大而减小,∴当3≤V ≤9时,≤ρ≤,即二氧化碳密度ρ的变化范围为1.1≤ρ≤3.3.4.(2022•淄博)如图,直线y =kx +b 与双曲线y =xm相交于A (1,2),B 两点,与x 轴相交于点C (4,0).(1)分别求直线AC 和双曲线对应的函数表达式;(2)连接OA ,OB ,求△AOB 的面积;(3)直接写出当x >0时,关于x 的不等式kx +b >xm的解集.【分析】(1)将已知点坐标代入函数表达式,即可求解;(2)直线AC :y =﹣x +与双曲线:y =(x >0)相交于A (1,2),B 两点,联立方程组,求出点B 的坐标为(3,),根据组合法(即基本图形面积的和差)即可以解决问题;(3)根据图象即可解决问题.【解答】解:(1)将A (1,2),C (4,0)代入y =kx +b ,得,解得:,∴直线AC 的解析式为y =﹣x +,将A (1,2)代入y =(x >0),得m =2,∴双曲线的解析式为y =(x >0);(2)∵直线AC 的解析式为y =﹣x +与y 轴交点D ,∴点D 的坐标为(0,),∵直线AC :y =﹣x +与双曲线:y =(x >0)相交于A (1,2),B 两点,∴,∴,,∴点B 的坐标为(3,),∴△AOB 的面积=4×﹣4×﹣×1=;(3)观察图象,∵A (1,2),B (3,),∴当x >0时,关于x 的不等式kx +b >的解集是1<x <3.5.(2022•镇江)如图,一次函数y =2x +b 与反比例函数y =xk(k ≠0)的图象交于点A (1,4),与y 轴交于点B .(1)k = ,b = ;(2)连接并延长AO ,与反比例函数y =xk(k ≠0)的图象交于点C ,点D 在y 轴上,若以O 、C 、D 为顶点的三角形与△AOB 相似,求点D 的坐标.【分析】(1)将点A (1,4)分别代入反比例函数y =(k ≠0)和一次函数y =2x +b 的解析式中,求解即可;(2)根据题意,需要分类讨论:当点D 落在y 轴的正半轴上,当点D 落在y 轴的负半轴上,△COD ∽△AOB 或△COD ∽△BOA ,依次根据比例关系,求解即可.【解答】解:(1)将点A (1,4)代入反比例函数y =(k ≠0)的解析式中,∴k =1×4=4;将A (1,4)代入一次函数y =2x +b ,∴2×1+b =4,解得b =2.故答案为:4;2.(2)当点D 落在y 轴的正半轴上,则∠COD >∠ABO ,∴△COD 与△ABO 不可能相似.当点D 落在y 轴的负半轴上,若△COD ∽△AOB ,∵CO =AO ,BO =DO =2,∴D (0,﹣2).若△COD ∽△BOA ,则OD :OA =OC :OB ,∵OA =CO =,BO =2,∴DO =,∴D (0,﹣),综上所述:点D 的坐标为(0,﹣2),(0,﹣).6.(2022•宁夏)如图,一次函数y =kx +b (k ≠0)的图象与x 轴、y 轴分别相交于C 、B 两点,与反比例函数y =xm(m ≠0,x >0)的图象相交于点A ,OB =1,tan ∠OBC =2,BC :CA =1:2.(1)求反比例函数的表达式;(2)点D 是线段AB 上任意一点,过点D 作y 轴平行线,交反比例函数的图象于点E ,连接BE .当△BDE 面积最大时,求点D 的坐标.【分析】(1)根据正切函数的定义可得出OC 长,过点A 作AF ⊥x 轴于点F ,则△ACF ∽△BCO ,由相似比可得出CF 和AF 的长,进而可得出点A 的坐标,代入反比例函数可得出m 的值,进而可得结论;(2)由(1)可得直线AB 的解析式.设点D 的横坐标为t ,由此可表达点D ,E 的坐标,根据三角形的面积公式可表达△BDE 的面积,根据二次函数的性质可得结论.【解答】解:(1)如图,过点A 作AF ⊥x 轴于点F ,∴AF ∥y 轴,∴△ACF ∽△BCO ,∴BC :AC =OB :AF =OC :CF =1:2.∵OB =1,tan ∠OBC =2,∴OC =2,∴AF =2,CF =4,∴OF =OC +CF =6,∴A (6,2).∵点A 在反比例函数y =(m ≠0,x >0)的图象上,∴m =2×6=12.∴反比例函数的表达式为:y =(x >0).(2)由题意可知,B (0,﹣1),∴直线AB 的解析式为:y =x ﹣1.设点D 的横坐标为t ,则D (t ,t ﹣1),E (t ,).∴ED =﹣t +1.∴△BDE 的面积为:(t ﹣0)(﹣t +1)=﹣t 2+t +6=﹣(t ﹣1)2+.∵﹣<0,∴t =1时,△BDE 的面积的最大值为,此时D (1,﹣).7.(2022•鞍山)如图,在平面直角坐标系中,一次函数y =x +2的图象与反比例函数y =xk(x >0)的图象交于点A (1,m ),与x 轴交于点C .(1)求点A 的坐标和反比例函数的解析式;(2)点B 是反比例函数图象上一点且纵坐标是1,连接AB ,CB ,求△ACB 的面积.【分析】(1)由一次函数的解析式求得A 的坐标,然后根据待定系数法即可求得反比例函数的解析式;(2)作BD ∥x 轴,交直线AC 于点D ,则D 点的纵坐标为1,利用函数解析式求得B 、D 的坐标,然后根据三角形面积公式即可求得.【解答】解:(1)∵一次函数y =x +2的图象过点A (1,m ),∴m =1+2=3,∴A (1,3),∵点A 在反比例函数y =(x >0)的图象上,∴k =1×3=3,∴反比例函数的解析式为y =;(2)∵点B 是反比例函数图象上一点且纵坐标是1,∴B (3,1),作BD ∥x 轴,交直线AC 于点D ,则D 点的纵坐标为1,代入y =x +2得,1=x +2,解得x =﹣1,∴D (﹣1,1),∴BD =3+1=4,∴S △ABC =×4×3=6.8.(2022•菏泽)如图,在平面直角坐标系xOy 中,一次函数y =ax +b 的图象与反比例函数y =xk的图象都经过A (2,﹣4)、B (﹣4,m )两点.(1)求反比例函数和一次函数的表达式;(2)过O 、A 两点的直线与反比例函数图象交于另一点C ,连接BC ,求△ABC 的面积.【分析】(1)把A ,B 两点的坐标代入y =中可计算k 和m 的值,确定点B 的坐标,根据待定系数法即可求得反比例函数和一次函数的解析式;(2)如图,设AB 与x 轴交于点D ,证明CD ⊥x 轴于D ,根据S △ABC =S △ACD +S △BCD 即可求得.【解答】解:(1)将A (2,﹣4),B (﹣4,m )两点代入y =中,得k =2×(﹣4)=﹣4m ,解得,k =﹣8,m =2,∴反比例函数的表达式为y =﹣;将A (2,﹣4)和B (﹣4,2)代入y =ax +b 中得,解得,∴一次函数的表达式为:y =﹣x ﹣2;(2)如图,设AB 与x 轴交于点D ,连接CD ,由题意可知,点A 与点C 关于原点对称,∴C (﹣2,4).在y =﹣x ﹣2中,当x =﹣2时,y =0,∴D (﹣2,0),∴CD 垂直x 轴于点D ,∴S △ABC =S △ADC +S △BCD =×4×(2+2)+×4×(4﹣2)=8+4=12.9.(2022•安顺)如图,在平面直角坐标系中,菱形ABCD 的顶点D 在y 轴上,A ,C 两点的坐标分别为(4,0),(4,m ),直线CD :y =ax +b (a ≠0)与反比例函数y =xk (k ≠0)的图象交于C ,P (﹣8,﹣2)两点.(1)求该反比例函数的解析式及m 的值;(2)判断点B 是否在该反比例函数的图象上,并说明理由.【分析】(1)把P (﹣8,﹣2)代入y =可得反比例函数的解析式为y =,即得m ==4;(2)连接AC ,BD 交于H ,由C (4,4),P (﹣8,﹣2)得直线CD 的解析式是y =x +2,即得D (0,2),根据四边形ABCD 是菱形,知H 是AC 中点,也是BD 中点,由A (4,0),C (4,4)可得H(4,2),设B (p ,q ),有,可解得B (8,2),从而可知B 在反比例函数y =的图象上.【解答】解:(1)把P (﹣8,﹣2)代入y =得:﹣2=,解得k =16,∴反比例函数的解析式为y =,∵C (4,m )在反比例函数y =的图象上,∴m ==4;∴反比例函数的解析式为y=,m=4;(2)B在反比例函数y=的图象上,理由如下:连接AC,BD交于H,如图:把C(4,4),P(﹣8,﹣2)代入y=ax+b得:,解得,∴直线CD的解析式是y=x+2,在y=x+2中,令x=0得y=2,∴D(0,2),∵四边形ABCD是菱形,∴H是AC中点,也是BD中点,由A(4,0),C(4,4)可得H(4,2),设B(p,q),∵D(0,2),∴,解得,∴B(8,2),在y=中,令x=8得y=2,∴B在反比例函数y=的图象上.10.(2022•绵阳)如图,一次函数y =k 1x +b 与反比例函数y =xk 2在第一象限交于M (2,8)、N 两点,NA垂直x 轴于点A ,O 为坐标原点,四边形OANM 的面积为38.(1)求反比例函数及一次函数的解析式;(2)点P 是反比例函数第三象限内的图象上一动点,请简要描述使△PMN 的面积最小时点P 的位置(不需证明),并求出点P 的坐标和△PMN面积的最小值.【分析】(1)利用待定系数法求得反比例函数的解析式,进而利用四边形的面积得出(8+)•(m ﹣2)=30,解方程即可求得N 的坐标,然后把M 、N 的坐标代入y =k 1x +b ,进一步求得一次函数的解析式;(2)求出与直线MN 平行且在第三象限内与反比例函数y =有唯一公共点的坐标即为点P 的坐标,此时△PMN 面积的最小,利用三角形、梯形面积以及各个部分面积之间的关系进行计算即可.【解答】解:(1)∵反比例函数y =过点M (2,8),∴k 2=2×8=16,∴反比例函数的解析式为y =,设N (m ,),∵M (2,8),∴S △OMB ==8,∵四边形OANM 的面积为38,∴四边形ABMN 的面积为30,∴(8+)•(m ﹣2)=30,解得m 1=8,m 2=﹣(舍去),∴N (8,2),∵一次函数y =k 1x +b 的图象经过点M 、N ,∴,解得,∴一次函数的解析式为y =﹣x +10;(2)与直线MN 平行,且在第三象限与反比例函数y =有唯一公共点P 时,△PMN 的面积最小,设与直线MN 平行的直线的关系式为y =﹣x +n ,当与y =在第三象限有唯一公共点时,有方程﹣x +n =(x <0)唯一解,即x 2﹣nx +16=0有两个相等的实数根,∴n 2﹣4×1×16=0,解得n =﹣8或x =8(舍去),∴与直线MN 平行的直线的关系式为y =﹣x ﹣8,∴方程﹣x ﹣8=的解为x =﹣4,经检验,x =﹣4是原方程的解,当x =﹣4时,y ==﹣4,∴点P (﹣4,﹣4),如图,过点P 作AN 的垂线,交NA 的延长线于点Q ,交y 轴于点D ,延长MB 交PQ 于点C ,由题意得,PD =4,DQ =8,CD =2,MC =8+4=12,NQ =2+4=6,∴S △PMN =S △MPC +S 梯形MCQN ﹣△=×6×12+(12+6)×6﹣×12×6=36+54﹣36=54,答:点P (﹣4,﹣4),△PMN 面积的最小值为54.11.(2022•巴中)如图,在平面直角坐标系中,直线y =21x +b 与x 轴、y 轴分别交于点A (﹣4,0)、B 两点,与双曲线y =xk (k >0)交于点C 、D 两点,AB :BC =2:1.(1)求b ,k 的值;(2)求D 点坐标并直接写出不等式21x +b ﹣x k ≥0的解集;(3)连接CO 并延长交双曲线于点E ,连接OD 、DE ,求△ODE 的面积.【分析】(1)根据点A在直线上,把点A代入,求出b的值;过C作CF⊥x轴于点F,得△AOB∽△AFC,根据AB:BC=2:1,可求出点F的坐标,可得点C的坐标,代入反比例函数,即可求出k的值;(2)根据交点坐标的性质,可求出点D的坐标,根据,得,根据函数图象,即可得到解集;(3)根据同底同高,得S△ODE =S△COD,S△COD=S△COA+S△ADO即可.【解答】解:(1)∵点A在直线上,A(﹣4,0),∴,解得b=2,过C作CF⊥x轴于点F,∴△AOB∽△AFC,∵AB:BC=2:1,∴,∴AF=6,∴OF=2,在中,令x=2,得y=3,∴C(2,3),∴,∴k=6.(2)∵D点是和交点,∴,解得或,∵D点在第三象限,∴D(﹣6,﹣1),由图象得,当﹣6≤x<0或x≥2时,,∴不等式的解集为﹣6≤x <0或x ≥2.(3)∵△ODE 和△OCD 同底同高,∴S △ODE =S △OCD ,∵S △COD =S △COA +S △ADO ,∴.12.(2022•资阳)如图,一次函数y 1=kx +b 的图象与反比例函数y 2=x6的图象交于点A (1,m )和点B (n ,﹣2).(1)求一次函数的表达式;(2)结合图象,写出当x >0时,满足y 1>y 2的x 的取值范围;(3)将一次函数的图象平移,使其经过坐标原点.直接写出一个反比例函数表达式,使它的图象与平移后的一次函数图象无交点.【分析】(1)将A 、B 两点的坐标解出来,然后利用待定系数法求一次函数的解析式;(2)当x >0,求得一次函数的图像在反比例函数的图像上方对应x 的即可;(3)将一次函数平移后即可得到新的一次函数的解析式,根据一次函数图象即可判断反比例函数的系数k ,进而得到反比例函数的解析式.【解答】解:(1)由题意得:,,∴m =6,n =﹣3,∴A (1,6),B (﹣3,﹣2),由题意得:,解得:,∴一次函数的表达式为:y =2x +4;(2)由图象可知,当x >0时,一次函数的图象在反比例函数的图像上方对应x 的值为x >1,当x >0时,满足y 1>y 2的x 的取值范围为x >1;(3)一次函数y =2x +4的图象平移后为y =2x ,函数图象经过第一、三象限,要使正比例函数y =2x 与反比例函数没有交点,则反比例的函数图象经过第二、四象限,则反比例函数的k <0,∴当k =﹣1时,满足条件,∴反比例函数的解析式为(答案不唯一).13.(2022•徐州)如图,一次函数y =kx +b (k >0)的图象与反比例函数y =x8(x >0)的图象交于点A ,与x 轴交于点B ,与y 轴交于点C ,AD ⊥x 轴于点D ,CB =CD ,点C 关于直线AD 的对称点为点E .(1)点E 是否在这个反比例函数的图象上?请说明理由;(2)连接AE 、DE ,若四边形ACDE 为正方形.①求k 、b 的值;②若点P 在y 轴上,当|PE ﹣PB |最大时,求点P 的坐标.【分析】(1)设点A 的坐标为(m ,),根据轴对称的性质得到AD ⊥CE ,AD 平分CE ,如图,连接CE交AD 于H ,得到CH =EH ,求得E (2m ,),于是得到点E 在这个反比例函数的图象上;(2)①根据正方形的性质得到AD =CE ,AD 垂直平分CE ,求得CH =AD ,设点A 的坐标为(m ,),得到m =2(负值舍去),求得A (2,4),C (0,2),把A (2,4),C (0,2)代入y =kx +b 得,解方程组即可得到结论;②延长ED 交y 轴于P ,根据已知条件得到点B 与点D 关于y 轴对称,求得|PE ﹣PD |=|PE ﹣PB |,则点P 即为符合条件的点,求得直线DE 的解析式为y =x ﹣2,于是得到结论.【解答】解:(1)点E 在这个反比例函数的图象上,理由:∵一次函数y =kx +b (k >0)的图象与反比例函数y =(x >0)的图象交于点A ,∴设点A 的坐标为(m ,),∵点C 关于直线AD 的对称点为点E ,∴AD⊥CE,AD平分CE,如图.连接CE交AD于H,∴CH=EH,∵BC=CD,OC⊥BD,∴OB=OD,∴OC=AD,∵AD⊥x轴于D,∴CE∥x轴,∴E(2m,),∵2m×=8,∴点E在这个反比例函数的图象上;(2)①∵四边形ACDE为正方形,∴AD=CE,AD垂直平分CE,∴CH=AD,设点A的坐标为(m,),∴CH=m,AD=,∴m=×,∴m=2(负值舍去),∴A(2,4),C(0,2),把A(2,4),C(0,2)代入y=kx+b得,∴;②延长ED交y轴于P,∵CB=CD,OC⊥BD,∴点B与点D关于y轴对称,∴|PE﹣PD|=|PE﹣PB|,则点P 即为符合条件的点,由①知,A (2,4),C (0,2),∴D (2,0),E (4,2),设直线DE 的解析式为y =ax +n ,∴,∴,∴直线DE 的解析式为y =x ﹣2,当x =0时,y =﹣2,∴P (0,﹣2).故当|PE ﹣PB |最大时,点P 的坐标为(0,﹣2).14.(2022•济南)如图,一次函数y =21x +1的图象与反比例函数y =xk (x >0)的图象交于点A (a ,3),与y 轴交于点B .(1)求a ,k 的值;(2)直线CD 过点A ,与反比例函数图象交于点C ,与x 轴交于点D ,AC =AD ,连接CB .①求△ABC 的面积;②点P 在反比例函数的图象上,点Q 在x 轴上,若以点A ,B ,P ,Q 为顶点的四边形是平行四边形,请求出所有符合条件的点P 坐标.【分析】(1)将点A 的坐标代入y =求得a ,再把点A 坐标代入y =求出k ;(2)先求出A ,B ,C 三点坐标,作CD ⊥x 轴于D ,交AB 于E ,求出点E 坐标,从而求得CE 的长,进而求得三角形ABC的面积;(3)当AB为对角线时,先求出点P的纵坐标,进而代入反比例函数的解析式求得横坐标;当AB为边时,同样先求出点P的纵坐标,再代入y=求得点P的横坐标.【解答】解:(1)把x=a,y=3代入y=x+1得,,∴a=4,把x=4,y=3代入y=得,3=,∴k=12;(2)∵点A(4,3),D点的纵坐标是0,AD=AC,∴点C的纵坐标是3×2﹣0=6,把y=6代入y=得x=2,∴C(2,6),①如图1,作CD⊥x轴于D,交AB于E,当x=2时,y==2,∴E(2,2),∵C(2,6),∴CE=6﹣2=4,∴x A==8;②如图2,当AB是对角线时,即:四边形APBQ是平行四边形,∵A(4,3),B(0,1),点Q的纵坐标为0,∴y P=1+3﹣0=4,当y=4时,4=,∴x=3,∴P(3,4),当AB为边时,即:四边形ABQP是平行四边形(图中的▱ABQ′P′),由y Q′﹣y B=y P′﹣y A得,0﹣1=y P′﹣3,∴y P′=2,当y=2时,x==6,∴P′(6,2),综上所述:P(3,4)或(6,2).15.(2022•枣庄)为加强生态文明建设,某市环保局对一企业排污情况进行检测,结果显示:所排污水中硫化物的浓度超标,即硫化物的浓度超过最高允许的1.0mg/L.环保局要求该企业立即整改,在15天内(含15天)排污达标.整改过程中,所排污水中硫化物的浓度y(mg/L)与时间x(天)的变化规律如图所示,其中线段AC表示前3天的变化规律,第3天时硫化物的浓度降为4.5mg/L.从第3天起,所排污水中硫化物的浓度y与时间x满足下面表格中的关系:时间x(天)3569……硫化物的浓度y(mg/L)4.5 2.7 2.25 1.5……(1)在整改过程中,当0≤x<3时,硫化物的浓度y与时间x的函数表达式;(2)在整改过程中,当x≥3时,硫化物的浓度y与时间x的函数表达式;(3)该企业所排污水中硫化物的浓度能否在15天以内不超过最高允许的1.0mg/L?为什么?【分析】(1)设AC的函数关系式为:y=kx+b,将A和C代入,从而求得k,b,进而求得的结果;(2)可推出x•y=13.5为定值,所以当x≥3时,y是x的反比例函数,进而求得结果;(3)将x=15代入反比例函数关系式,从而求得y的值,进而根据反比例函数图象性质,从而得出结论.【解答】解:(1)设线段AC的函数表达式为:y=kx+b,∴,∴,∴线段AC的函数表达式为:y 2.5x+12(0≤x<3);(2)∵3×4.5=5×2.7=...=13.5,∴y是x的反比例函数,∴y=(x≥3);(3)该企业所排污水中硫化物的浓度可以在15天以内不超过最高允许的1.0mg/L,理由如下:当x=15时,y==0.9,∵13.5>0,∴y随x的增大而减小,∴该企业所排污水中硫化物的浓度可以在15天以内不超过最高允许的1.0mg/L.。

考点11 反比例函数(精练)(原卷版)

考点11 反比例函数(精练)(原卷版)

考点11.反比例函数(精练)限时检测1:最新各地模拟试题(60分钟)A .①②2.(2023·河南信阳·统考一模)....(2023·河南南阳·统考二模)已知双曲线ky x=经过点()1,2-,则下面说法错误的是().该双曲线的解析式为2xB .点)2在该双曲线上.该双曲线在第二、四象限D .当0时,y 随x 增大而减小(2024.湖北校考模拟预测)如图,取一根长100cm 的匀质木杆,用细绳绑在木杆的中点O 并将其吊起来,()25cm 25cm L =处挂一个重()19.8N 9.8N F =的物体,在中点O 的右侧用一个弹A .B .C ..5.(2023·湖北武汉·统考二模)已知()11,A x y ,()22B x ,()33,C x y ,为双曲线6x =-上的三个点,且23x x <<,则以下判断正确的是().若120x x >,则23y y >B .若20x <,则130y y <A .2B .2m -8.(2023·浙江台州·统考一模)若反比例函数A .2k ≤-B .k ≤-9.(2023年湖南省张家界市中考数学真题)如图,矩形A.2B.310.(2023·江苏南通·校考模拟预测)如图,在平面直角坐标系中,点一和第三象限的两支上,连接AB点C落在第四象限中,且BC∥A.2B.311.(2023·北京丰台·二模)在平面直角坐标系所示,k的值可以是.(写出一个即可)12.(2023·山东青岛·统考二模)室内每立方米空气中的含药量13.(2023·四川成都·校考三模)在平面直角坐标系的值都随x 值的增大而增大,则14.(2023·江苏扬州·统考二模)如图,反比例函数15.(2023·湖北随州·统考模拟预测)(4m >,0x >)上,若AC 16.(2022·福建三明·统考模拟预测)反比例函数如图所示,点M 在22y x =的图象上,的图象于点B ,当点M 在2y =ODB OCA S S = ①;②四边形OAMB ④若ODB OCA OAMB S S S =+ 四边形,则四边形17.(2023·广东东莞·校联考一模)已知反比例函数()2,A b 和()6,B n 两点.(1)求k 时,函数值y 的取值范围;(3)18.(2023·山西阳泉·校联考模拟预测)阅读与思考下面是小宇同学的一篇数学日记,请仔细阅读并完成相应的任务.今天是2023年5月8日(星期一)功率P 与电阻R 函数关系的数学活动第一步,我们根据物理知识P UI =功率.第二步,通过换用不同定值电阻,使电路中的总电阻成整数倍的变化.第三步,计算收集数据如下:/R Ω (5101520)(4)请直接写出:若想P大于30W,R的取值范围.(1)求n和k的值;(2)点C是双曲线上介于点(3)过C点作DE OA∥,交x轴于点的等腰直角三角形?若存在,请求出点21.(2023·广东深圳·校考模拟预测)阅读材料:“三等分角”是数学史上一个著名问题.今天人们已经知道,思考问题:(1)设1,P a a ⎛⎫⎪⎝⎭,1,R b b⎛⎫⎪⎝⎭,求直线OM 的函数解析式(用含a ,b 的代数式表示),并说明线OM 上;(2)证明:13MOB AOB ∠=∠.(3)如图2,若直线y x =与反比例函数()40y x x=≠交于点比例函数()40y x x=≠第一象限上的一个动点,使得30COD ∠=︒.求用材料中的方法求出满足条件标.限时检测2:最新各地中考真题(60分钟).B ...(2023年浙江省宁波市中考数学真题)如图,一次函数(111y k x b k =+>的图像与反比例函数()220k k x=>的图像相交于A B ,两点,点A 的横坐标为1,点B 的横坐标为2,当12y y <时,x 的取值范围是()A .<2x -或1x >B .5.(2023年内蒙古通辽市中考数学真题)已知点120x x <<,则下列结论一定正确的是(A .120y y +<B .A.3B.328.(2023年江苏省淮安市中考数学真题)轴、y轴交于A B、两点,且与反比例函数y则k的值是().A.3B.239.(2023年江苏省宿迁市中考数学真题)如图,直线、、、.若四边形ABCD的面积为A B C DA .34B .2210.(2023年浙江省湖州市中考数学真题)已知在平面直角坐标系中,正比例函数反比例函数()220k y k x=>的图象的两个交点中,数1y k x =的图象上(0t ≠且t ≠积为负数时,t 的取值范围是(A .37t -<<-或11t <<B .13.(2023年山东省日照市中考数学真题)已知反比例函数7y x b =-+的图象共有两个交点,14.(2023年河北省中考数学真题)如图,15.(2023年四川省攀枝花市中考数学真题)如图,在直角顺时针旋转105︒至A B ''△为.16.(2023年湖南省益阳市中考数学真题)我们在学习一次函数、二次函数图象的平移时知道:将一次函数2y x =的图象向上平移1个单位得到y ()221y x =++的图象.若将反比例函数数表达式是.17.(2023年浙江省杭州市中考数学真题)在直角坐标系中,已知()2225y k x =-+的图象交于点A (1)求12,k k 的值.(2)过点A 作y 轴的垂线,过点B 作y 轴的垂线,在第四象限交于点20.(2023年山东省济南市中考数学真题)综合与实践如图1,某兴趣小组计划开垦一个面积为8mm a.栏围住,木栏总长为2【问题提出】小组同学提出这样一个问题:若(1)根据小颖的分析思路,完成上面的填空.【类比探究】(2)若6a =,能否围出矩形地块?请仿照小颖的方法,在图由.【问题延伸】当木栏总长为m a 时,小颖建立了一次函数直线2y x =-通过平移得到的,在平移过程中,当过点(2,的图象有唯一交点.(3)请在图2中画出直线2y x a =-+【拓展应用】小颖从以上探究中发现“能否围成矩形地块问题象限内交点的存在问题”.)若要围出满足条件的矩形地块,且AB 和BC 的长均不小于。

反比例函数的综合(含答案)

反比例函数的综合(含答案)

反比例函数的综合要点一、确定反比例函数的关系式确定反比例函数关系式的方法仍是待定系数法,由于反比例函数中y=kx,只有一个待定系数k,因此只需要知道一对x,y的对应值或图象上的一个点的坐标,即可求出k的值,从而确定其解析式.用待定系数法求反比例函数关系式的一般步骤是:(1)设所求的反比例函数为:y=kx(k≠0);(2)把已知条件(自变量与函数的对应值)代入关系式,得到关于待定系数的方程;(3)解方程求出待定系数k的值;(4)把求得的k值代回所设的函数关系式y=kx中.要点二、反比例函数的图象和性质1.反比例函数的图象特征:反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限;反比例函数的图象关于原点对称,永远不会与x轴、y轴相交,只是无限靠近两坐标轴.要点诠释:(1)若点(a,b)在反比例函数y=kx的图象上,则点(-a,-b)也在此图象上,所以反比例函数的图象关于原点对称;(2)在反比例函数y =k x(k 为常数,k ≠0)中,由于x ≠0且y ≠0,所以两个分支都无限接近但永远不能达到x 轴和y 轴.2.反比例函数的性质(1)如图1,当k >0时,双曲线的两个分支分别位于第一、三象限,在每个象限内,y 值随x 值的增大而减小.(2)如图2,当k <0时,双曲线的两个分支分别位于第二、四象限,在每个象限内,y 值随x 值的增大而增大.要点诠释:反比例函数的增减性不是连续的,它的增减性都是在各自的象限内的增减情况,反比例函数的增减性都是由反比例系数k 的符号决定的;反过来,由双曲线所在的位置和函数的增减性,也可以推断出k 的符号.要点三、反比例函数y =k x(k ≠0)中的比例系数k 的几何意义过双曲线y =k x (k ≠0)上任意一点作x 轴、y 轴的垂线,所得矩形的面积为|k|.过双曲线y =k x (k ≠0)上任意一点作一坐标轴的垂线,连接该点和原点,所得三角形的面积为||2k .要点诠释:只要函数式已经确定,不论图象上点的位置如何变化,这一点与两坐标轴的垂线和两坐标轴围成的面积始终是不变的.例1.两个反比例函数y =3x ,y =6x在第一象限内的图象如图所示,点P 1,P 2,P 3……P 2020在反比例函数y =6x 图象上,它们的横坐标分别是x 1,x 2,x 3……x 2020,纵坐标分别是1,3,5,…,共2020个连续奇数,过点P 1,P 2,P 3……P 2020分别作y 轴的平行线,与反比例函数y =3x的图象交点依次是Q 1(x 1,y 1),Q 2(x 2,y 2),Q 3(x 3,y 3)……Q 2020(x 2020,y 2020),则y 2020等于()A .2019.5B .2020.5C .2019D .4039例2.如图,直线y =k 1x +b 与双曲线y =2k x A ,B 两点,其横坐标分别为1和5,则不等式k 1x <2k x +b 的解集是.1.一次函数y 1=k 1x +b 和y 2=2k x (k 2>0)相交于A (1,m ),B (3,n )两点,则不等式k 1x +b >2k x的解集为()A.1<x<3B.x<1或x>3C.x<0或x>3D.1<x<3或x<02.反比例函数y=kx和正比例函数y=mx的图象如图.由此可以得到方程kx=mx的实数根为()A.x=﹣2B.x=1C.x1=2,x2=﹣2D.x1=1,x2=﹣2例3.如图,点A在双曲线y=kx的第一象限的那一支上,AB垂直y轴于点B,点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE的面积为3,则k的值为.1.如图,在反比例函数y=4x的图象上有一点A向x轴作垂线交x轴于点C,B为线段AC的中点,又D点在x轴上,且OD=3OC,则△OBD的面积为.例4.在平面直角坐标系xOy中,反比例函数y=kx(k≠0,x>0)的图象经过点A(1,-4),直线y=-2x+m与x轴交于点B(1,0).(1)求k,m的值;(2)已知点P(n,-2n)(n>0),过点P作平行于x轴的直线,交直线y=-2x+m于点C,过点P作平行于y轴的直线交反比例函数y=kx(k≠0,x>0)的图象于点D,当PD=2PC时,结合函数的图象,求出n的值.1.如图,正比例函数y1=mx,一次函数y2=ax+b和反比例函数y3=kx的图象在同一直角坐标系中,若y3>y2>y1,则自变量x的取值范围是()A.x<﹣1B.﹣1<x<0或x>1.6C.﹣1<x<0D.x<﹣1或0<x<12.设函数y1=kx,y2=kx (k>0),当2≤x≤3时,函数的y1最大值是a,函数y2的最小值是a﹣4,则ak=()A.4B.6C.8D.103.已知反比例函数y=8x和y=3x在第一象限内的图象如图所示,则△AMN的面积为.4.如图,P1是反比例函数y=kx(k>0)图象在第一象限上的一点,点A1的坐标为(2,0).(1)当点P1的横坐标逐渐增大时,△P1OA1的面积将如何变化?逐渐减少.(2)若点P2在反比例函数图象上,点A2在x轴上,△P1OA1与△P2A1A2均为等边三角形,①求次反比例函数的解析式;②求点A2的坐标.5.如图,反比例函数y=kx图象和一次函数y=ax+b经过M(1,6)和N(2,a).(1)求一次函数解析式;(2)一次函数y=ax+b与x轴交于点B,与y轴交于点A,求证:AM=BN.6.已知:A (a ,y 1).B (2a ,y 2)是反比例函数y =k x (k >0)图象上的两点.(1)比较y 1与y 2的大小关系;(2)若A 、B 两点在一次函数y =43x+b 第一象限的图象上(如图所示),分别过A 、B 两点作x 轴的垂线,垂足分别为C 、D ,连接OA 、OB ,且S △OAB =8,求a 的值;(3)在(2)的条件下,如果3m =-4x +24,3n =32x ,求使得m >n 的x 的取值范围.7.如图,在平面直角坐标系xOy 中,函数y =k x(x <0)的图象经过点A (﹣1,6),直线y =mx ﹣2与x 轴交于点B (﹣1,0).(1)求k ,m 的值;(2)过第二象限的点P (n ,﹣2n )作平行于x 轴的直线,交直线y =mx ﹣2于点C ,交函数y =k x(x <0)的图象于点D .①当n =﹣1时,判断线段PD 与PC 的数量关系,并说明理由;②若PD ≥2PC ,结合函数的图象,直接写出n 的取值范围.8.在平面直角坐标系xOy中,函数y=mx(x>0)的图象G与直线l:y=kx-4k+1交于点A(4,1),点B(1,n)(n≥4,n为整数)在直线l上.(1)求m的值;(2)横、纵坐标都是整数的点叫做整点.记图象G与直线l围成的区域(不含边界)为W.①当n=5时,求k的值,并写出区域W内的整点个数;②若区域W内恰有5个整点,结合函数图象,求k的取值范围.【经典例题1】A【解析】解:∵P n 的纵坐标为:2n -1,∴P 2020的纵坐标为2×2020-1=4039.∵y =与y =在横坐标相同时,y =的纵坐标是y =的纵坐标的2倍,∴y 2020=×4039=2019.5.∴A 答案正确.【经典例题2】-5<x <-1或x >0【解析】解:根据一次函数平移和反比例函数的对称性可得,直线y =k 1x -b 与双曲线y =2k x 交于第三象限点的坐标为(-5,-1)和(-1,-5),如下图所示,∴不等式k 1x <2k x +b ,即k 1x -b <2k x 的解集,即当直线y =k 1x -b 的图象在反比例函数y =2k x 图象的下方对应的自变量x 的取值范围为:-5<x <-1或x >0.【举一反三1】D【解析】解:如图,由图象可得:不等式k 1x +b >2k x 的解集是1<x <3或x <0.故选:D .【举一反三2】C【解析】解:如图,反比例函数y =和正比例函数y =mx 相交于点A (﹣2,1),∴另一个交点为:(2,﹣1),∴方程=mx 的实数根为:x 1=2,x 2=﹣2.故选:C .【经典例题3】163【解析】解:连DC ,∵AE =3EC ,S △ADE =3,∴S △CDE =1.∴S △ADC =4.设A (a ,b ),则AB =a ,OC =2AB =2a .∵D 为OB 的中点,∴BD =OD =12b .∵S 梯形OBAC =S △ABD +S △ADC +S △ODC ,12(a +2a )·b =12a ·12b +4+12·2a ·b ,∴ab =163.把A (a ,b )代入y =,得k =ab =163.【举一反三1】3【解析】解:设A (x 、y ),由反比例函数y =4x可知xy =4,BC =AC =y ,OD =3OC =3x ,∴S △OBD =BC ×OD =×y ×3x =xy =×4=3.故答案为:3.【经典例题4】【解析】解:(1)把A(1,-4)代入y=k x,得k=1×(-4)=-4;把B(1,0)代入y=-2x+m,得-2+m=0,解得m=2;(2)反比例函数解析式为y=-(x>0),一次函数解析式为y=-2x+2,如图,当y=-2n时,-2x+2=-2n,解得x=n+1,则C(n+1,-2n),∴PC=n+1-n=1,当y=-2n时,y=-=,∴D(n,-),∴PD=|-2n+|,∵PD=2PC,∴|-2n+|=2,当-2n+=2时,解得n1=-2(舍去),n2=1,当-2n+=-2时,解得n1=-1(舍去),n2=2,综上所述,当PD=2PC时,n=1或n=2.【自我检测1】B【解析】解:由图象可知,当﹣1<x<0或x>1.6时,双曲线y3落在直线y2上方,且直线y2落在直线y1上方,即y3>y2>y1,所以若y3>y2>y1,则自变量x的取值范围是﹣1<x<0或x>1.6.故选:B.【自我检测2】C【解析】解:∵k>0,2≤x≤3,∴y1随x的增大而减小,y2随x的增大而增大,∴当x=2时,y1取最大值,最大值为=a①;当x=2时,y2取最小值,最小值为﹣=a﹣4②;由①②得a=2,k=4,∴ak=8,故选:C.【自我检测3】25 16【解析】解:设A(a,),则M(a,),N(,),∴AN=a﹣=,AM=﹣=,∴△AMN的面积=AN×AM=××=25 16,故答案为:25 16.【自我检测4】【解析】解:(1)△P1OA1的面积逐渐减少;(2)作P1C⊥OA1于C,∵△P1OA1为等边三角形,A1(2,0),∴OC=1,P1C3P1(1,3).∴反比例函数的解析式为y=3 x.(3)作P2D⊥A1A2于D,如上图,设A1D=x,则OD=2+x,P2D3x,∴P2(2+x3x).将点P2代入y=3x,得y332x=+.x2+2x-1=0,解得x1=-2,x2=-12<0(舍).∴x=-2,OA2=2+x+x=2+2x=2+2(-2)=22.∴A2(22,0).【自我检测5】【解析】解:(1)∵点M(1,6)在反比例函数y=图象上,∴k=1×6=6,∴反比例函数的关系式为y=,把N(2,a)代入得,a==3,∴N(2,3).∵点M(1,6)和N(2,3)在一次函数y=ax+b的图象上,∴a+b=6,2a+b=3,解得a=﹣3,b=9,∴一次函数的关系式为y=﹣3x+9;(2)过点M、N分别作MC⊥OA,ND⊥OB,垂足分别为C、D,当x=0时,y=9,当y=0时,x=3,∴一次函数y=﹣3x+9与x轴的交点B(3,0),与y轴的交点A(0,9),由于A(0,9),B(3,0),M(1,6),N(2,3),∴MC=1,AC=9﹣6=3,ND=3,BD=3﹣2=1,∴MC=BD=1,AC=ND=3,又∵∠ACM=∠NDB=90°,∴△ACM≌△NDB(SAS),∴AM=BN.【自我检测6】【解析】解:(1)∵A、B是y=kx(k>0)图象上的两点,∴a≠0.当a>0时,A、B在第一象限,a<2a,∴此时y1>y2,同理,a<0时,y1<y2.(2)∵A(a,y1)、B(2a,y2)在y=kx(k>0)图象上,∴AC=y1=,BD=y2=.∴y1=2y2.又A (a ,y 1)、B (2a ,y 2)在y =a +b 图象上,∴y 1=a +b ,y 2=a +b .∴a +b =2(a +b ),得b =4a .∵S △AOC +S 梯形ACDB =S △AOB +S △BOD ,又S △AOC =S △BOD ,∴S 梯形ACDB =S △AOB ,即[(a +b )+(a +b )]•a =8.∴a 2=4,由a >0,得a =2.(3)由(2)知,一次函数y =x +8,反比例函数y =.∵A 、B 两点的横坐标分别为2,4,且m =x +8,n =,∴使得m >n 的x 的范围,是反比例函数的图象在一次函数图象下方的点的横坐标取值范围.∴由图可知,2<x <4或x <0.【自我检测7】【解析】解:(1)∵函数y =k x (x <0)的图象经过点A (﹣1,6),∴k =﹣6.∵直线y =mx ﹣2与x 轴交于点B (﹣1,0),∴m =﹣2.(2)①判断:PD =2PC .理由如下:当n =﹣1时,点P 的坐标为(﹣1,2),∵y =﹣2x ﹣2交于于点C ,且点P (﹣1,2)作平行于x 轴的直线,∴点C 的坐标为(﹣2,2),∵函数y =k x(x <0)的图象于点D ,且点P (﹣1,2)作平行于x 轴的直线,点D 的坐标为(﹣3,2).∴PC =1,PD =2.∴PD =2PC .②当PD=2PC时,有两种情况,分别为:y=2,或者y=6.若PD≥2PC,0<y≤2,或y≥6即0<﹣2n≤2,或﹣2n≤6解得﹣1≤n<0.或n≤﹣3【自我检测8】【解析】(1)解:把A(4,1)代入y=mx(x>0),得m=4×1=4;(2)①当n=5时,把B(1,5)代入直线l:y=kx-4k+1得,5=k-4k+1,解得k=4 3-,如图所示,区域W内的整点有(2,3),(3,2),有2个;(3)直线l:y=kx-4k+1过(1,6)时,k=53-,区域W内恰有4个整点,直线l:y=kx-4k+1过(1,7)时,k=-2,区域W内恰有5个整点,∴区域W内恰有5个整点时,k的取值范围是-2≤k<5 3-.。

反比例函数问题综合(解析版)-2021-2022学年京改版九年级数学全册期末精选试题汇编(北京专用)

反比例函数问题综合(解析版)-2021-2022学年京改版九年级数学全册期末精选试题汇编(北京专用)

编者的话:北京目前主流的初中数学版本为京改版、人教版、北师大版,本专辑针对京改版进行整理汇编,另外两个版本请参考已经上线的人教版通用版本及北师大版通用版本,本专辑选材于京改版近两年最新月考、期中、期末、一二模、中考真题(已标注出处),包含详细解析、思路点拨等,对于期末考试的复习成系统性,把每个章节重难点考察内容进行总结,分选择题、填空题、解答题三种类型,难度为压轴,欢迎下载使用。

【玩转压轴题】考点3:反比例函数问题综合(解析版)学校:___________姓名:___________班级:___________考号:___________一、单选题1.(2021·北京·临川学校九年级期末)对于函数y=4x,下列说法错误的是()A.点(23,6)在这个函数图象上B.这个函数的图象位于第一、三象限C.这个函数的图象既是轴对称轴图形又是中心对称图形D.当x>0时,y随x的增大而增大【标准答案】D【思路点拨】把23x=代入函数解析式即可判断出A选项正误;根据反比例函数的性质和图象可判断B、C、D选项的正误.【精准解析】A.把23x=代入函数y=4x得6y=,所以点(23,6)在这个函数图象上,故A选项正确;B.函数y=4x的图象位于第一、第三象限,故B选项正确;C.反比例函数图象既是轴对称轴图形又是中心对称图形,故C选项正确;D.对于函数y=4x,0x当时,>在每一个象限内,函数值y随自变量x的增大而减小,故D选项错误.故选D.【名师指导】本题考查了反比例函数的图象和性质.掌握反比例函数的图象和性质是解题的关键. 2.(2021·北京·临川学校九年级期末)若ab<0,则一次函数y=ax﹣b与反比例函数y=bx在同一直角坐标系中的图象大致可能是( )A.B.C.D.【标准答案】B【思路点拨】根据一次函数图象判定a、b的符号,根据ab的符号判定反比例函数图象所在的象限.【精准解析】A、反比例函数中b<0,则a>0,与一次函数中y随x的增大而减小相矛盾,选项错误;B、正确;C、反比例函数在二、四象限,则b<0,则a>0,而一次函数与y轴交于y轴的下方,则-b<0,与前边的b<0相矛盾,故选项错误;D、反比例函数中b>0,则a<0,与一次函数中y随x的增大而减小相矛盾,选项错误.故选B.【名师指导】本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.3.(2021·北京·101中学三模)如图,在平面直角坐标系xOy中,B是反比例函数2y x(0)=>的图象上的一点,则矩形OABC的面积为( )xA.1B.2C.3D.4【标准答案】B【思路点拨】因为过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积S 是个定值,即S=|k|.【精准解析】∵点B 在反比例函数y=2x(x >0)的图象上,∴矩形OABC 的面积S=|k|=2,故选B .【名师指导】本题主要考查了反比例函数y=kx中k 的几何意义,即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为|k|.4.(2021·北京房山·九年级期末)若点1(,1)A x -,2(,2)B x ,3(,3)C x 都在反比例函数6y x=的图象上,则123,,x x x 的大小关系是( )A .123x x x <<B .132x x x <<C .231x x x <<D .312x x x <<【标准答案】B 【思路点拨】根据反比例函数的增减性解答.【精准解析】∵6y x=,k=6>0,∴该反比例函数图象的两个分支在第一、三象限,且在每个象限内y 随x 的增大而减小,∵点1(,1)A x -,2(,2)B x ,3(,3)C x ,∴点A 在第三象限内,且x 1最小,∵2<3,∴x 2>x 3,∴132x x x <<,故选:B .【名师指导】此题考查反比例函数的增减性,掌握反比例函数增减性及判断方法是解题的关键.5.(2021·北京东城·九年级期末)在平面直角坐标系xOy 中,下列函数的图象上存在点(,)(0,0)P m n m n >>的是( )A .2y x=B .1y x =--C .21y x =--D .3y x=-【标准答案】A 【思路点拨】先确定P 点在第一象限,分别画出各个选项的图象判定即可.【精准解析】解:∵(,)(0,0)P m n m n >>,∴点P 在第一象限,如图所示:只有2y x=的图象过第一象限,故选A .【名师指导】本题考查了函数的图象,掌握一次函数,二次函数及反比例函数的图象的特点是解题的关键.6.(2021·北京房山·一模)在平面直角坐标系xOy 中,若函数图象上任意两点()11,P x y ,()22,Q x y 均满足()()12120x x y y -->.下列四个函数图象中,所有正确的函数图象的序号是( )A .①②B .③④C .①③D .②④【标准答案】D 【思路点拨】根据二次函数、一次函数及反比例函数的性质可直接进行排除选项.【精准解析】解:由①的函数图象可得一次函数的k <0,则有y 随x 的增大而减小,当12x x >时,12y y <,所以()()12120x x y y --<,故不符合题意;由②的函数图象可得一次函数的k >0,则有y 随x 的增大而增大,即当12x x >时,12y y >,所以()()12120x x y y -->,故符合题意;由③的函数图象可得二次函数的开口向上,对称轴为y 轴,则有当x ≤0时,y 随x 的增大而减小,当x ≥0时,y 随x 的增大而增大,所以当120x x ³>,12y y <,则()()12120x x y y --<,当120x x >³,12y y >,则()()12120x x y y -->,当120x x >>时,则12y y <或12y y >,则()()12120x x y y --<或()()12120x x y y -->,故不符合题意;由④的图象可得反比例函数的k <0,则有y 随x 的增大而增大,即当12x x >时,12y y >,所以()()12120x x y y -->,故符合题意;∴符合函数图象上任意两点()11,P x y ,()22,Q x y 均满足()()12120x x y y -->的函数图象为②④;故选D .【名师指导】本题主要考查二次函数、一次函数与反比例函数的图象与性质,熟练掌握二次函数、一次函数与反比例函数的图象与性质是解题的关键.7.(2021·北京平谷·一模)学习完函数的有关知识之后,强强对函数产生了浓厚的兴趣,他利用绘图软件画出函数12y x =+的图象并对该函数的性质进行了探究.下面推断正确的是( )①该函数的定义域为2x ¹-; ②该函数与x 轴没有交点; ③该函数与y 轴交于点1(0,2;④若1122(,),(,)x y x y 是该函数上两点,当12x x <时,一定有12y y >.A .①②③④B .①③C .① ②③D .②③④【标准答案】C 【思路点拨】根据函数解析式的特点及函数图象即可判断.【精准解析】12y x =+中分母不为零,故2x ¹-,①正确;由图象可知该函数与x 轴没有交点,②正确;令x =0,y =12,∴该函数与y 轴交于点1(0,2,③正确;当1122(,),(,)x y x y 是该函数上两侧的两点时,12x x <,12y y <,故④错误;故选C .【名师指导】此题主要考查函数与图象判断,解题的关键根据分式及图象得到相关性质进行判断.8.(2021·北京东城·二模)在平面直角坐标系xOy 中,点A ,B 是直线y x =与双曲线4y x=的交点,点B 在第一象限,点C 的坐标为(6,-2).若直线BC 交x 轴于点D ,则点D 的横坐标为( )A .2B .3C .4D .5【标准答案】C 【思路点拨】想根据题意求出点B 坐标,再根据点B 和点C 坐标求出直线BC 函数表达式即可求出与x 轴交点D 横坐标.【精准解析】∵点A ,B 是直线y=x 与双曲线 4y x=的交点,∴联立方程得:4x x=,经检验解得:2x =±,∵点B 在第一象限,∴代入x=2得:点B 坐标为(2,2),设直线BC 解析式为y=kx+b ,代入点B 和点C 坐标,得2262k b k b +=ìí+=-î,解得:14k b =-ìí=î,故直线BC 函数表达式为:y =-x +4,∵y =-x +4与x 轴相交,故y =0,即-x +4=0,解得:x =4,故选:C 【名师指导】此题考查一次函数与反比例函数交点问题,难度一般,注意联立函数表达式解方程即可.9.(2021·北京石景山·九年级期末)已知某函数的图象过(21)A ,,(12)B --,两点,下面有四个推断:①若此函数的图象为直线,则此函数的图象和直线4y x =平行②若此函数的图象为双曲线,则此函数的图象分布在第一、三象限③若此函数的图象为抛物线,且开口向下,则此函数图象一定与y 轴的负半轴相交④若此函数的图象为抛物线,且开口向上,则此函数图象对称轴在直线12x =左侧所有合理推断的序号是( )A .①③B .①④C .②③D .②④【标准答案】D【思路点拨】①利用待定系数法求出一次函数解析式,根据一次函数平移的性质解答;②待定系数法求出函数解析式,根据设反比例函数的图象性质解答;③根据题意画出图象,由此得到结论;④根据二次函数的对称性解答.【精准解析】①设一次函数解析式为:y=kx+b∵一次函数的图像过点A (2,1),B (-1,-2),将两点坐标代入解析式,得:212k b k b +=ìí-+=-î,解得11k b =ìí=-î,所以该一次函数的解析式为:y=x-1,∴此函数的图象和直线4y x =不平行,故①错误;②设反比例函数解析式为ky x=,将点A 坐标代入,得212k =´=,∴反比例函数解析式为2y x=,∵k=2>0,∴函数的图象的两个分子分布在第一、三象限,故②正确;③∵函数的图象为抛物线,且开口向下,过(21)A ,,(12)B --,,当对称轴在直线12x =左侧时,抛物线不与y 轴的负半轴相交,如图1,故③错误;④函数的图象为抛物线,且开口向上,过(21)A ,,(12)B --,,∵点A 在第一象限,点B 在第三象限,∴点A 与点B 不是抛物线上关于对称轴对称的两个点,∴此函数图象对称轴在直线12x =左侧,故④正确;故选:D ..【名师指导】此题考查待定系数法求函数解析式,一次函数图象平移的性质,反比例函数的性质,二次函数的性质,熟记性质是解题的关键.10.(2021·北京房山·九年级期末)如图,A(0,1),B(1,5),曲线BC 是双曲线(0)ky k x=¹的一部分.曲线AB 与BC 组成图形G .由点C 开始不断重复图形G 形成一线“波浪线”.若点P(2020,m) ,Q( x ,n )在该“波浪线”上,则m 的值为 ,n 的最大值为 ()A .m = 1,n = 1B .m = 5,n = 1C .m = 1,n = 5D .m = 1,n = 4【标准答案】C 【思路点拨】根据题意利用点B 的坐标可以求k 的值,然后根据图象可知每5个单位长度为一个循环,从而可以求得m 的值和n 的最大值.【精准解析】解:∵点B (1,5)在双曲线(0)ky k x=¹的图象上,∴k=5,∵A(0,1),曲线AB 与BC 组成图形G .由点C 开始不断重复图形G 形成一线“波浪线”.∴C 的纵坐标为1∵点C 在5(0)y k x=¹的图象上,点C 的纵坐标为1,∴点C 的横坐标是5,∴点C 的坐标为(5,1),∵2020÷5=404,∴P (2020,m )中m=1∵点Q (x ,n )在该“波浪线”上,∴n 的最大值是5.综上所述,m = 1,n = 5.故选C .【名师指导】本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用数形结合的思想解答.二、填空题11.如图,若点A 与点B 是反比例函数(0)ky k x=¹的图象上的两点,过点A 作AM x ^轴于点M ,AN y ^轴于点N ,过点B 作BG x ^轴于点G ,BH y ^轴于点H ,设矩形OMAN 的面积为1S ,矩形BHOG 的面积为2S ,则1S 与2S 的大小关系为:1S __2S (填“>”,“ =”或“<” ).【标准答案】=【思路点拨】根据反比例函数系数k 的几何意义即可得出结论.【精准解析】解:Q 点A 与点B 是反比例函数(0)ky k x=¹的图象上的两点,过点A 作AM x ^轴于点M ,AN y ^轴于点N ,过点B 作BG x ^轴于点G ,BH y ^轴于点H ,1||S k \=,2||S k =,12S S \=,故答案为:=.【名师指导】此题考查了反比例函数系数k 的几何意义,关键是掌握(0)ky k x=¹图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.12.(2021·北京海淀·九年级期末)已知双曲线3y x=-与直线y kx b =+交于点()11,A x y ,()22,B x y .(1)若120x x +=,则12y y +=__________;(2)若120x x +>时,120y y +>,则k __________0,b __________0.(填“>”,“=”或“<”)【标准答案】(1)0 (2)< >【思路点拨】(1)联立两个函数解析式,整理为:()2300,kx bx k ++=¹再由根与系数的关系求解0,b = 从而得到:()11,A x y ,()22,B x y 关于原点对称,从而可得答案;(2)由(1)的结论,结合120x x +>,可得:bk ->0,由1122,,y kx b y kx b =+=+可得()12122,y y k x x b b +=++=结合:120y y +>,可得b >0,从而可得答案.【精准解析】解:(1)由题意得:3y x y kx bì=-ïíï=+î ,且0,k ¹ 3,kx b x\-=+ 230,kx bx \++=Q 两函数的交点为:()11,A x y ,()22,B x y .12,bx x k\+=-Q 120x x +=,0,bk\-= 0,b \=\ ()11,A x y ,()22,B x y 为3y x=-与()0y kx k =¹的交点,由两函数的交点的性质可得:()11,A x y ,()22,B x y 关于原点对称,12,y y \互为相反数,120,y y \+= 故答案为:0.(2)由(1)得:230,kx bx ++=同理可得:12b x x k+=-,1122,,y kx b y kx b =+=+Q()1212222,b y y k x x b k b b b b k æö\+=++=-+=-+=ç÷èøg当120x x +>时,120y y +>,bk\->0且b >0,k \<0.故答案为:<,>.【名师指导】本题考查的是一次函数与反比例函数的交点问题,一次函数与反比例函数的图像与性质,同时考查了一元二次方程的根与系数的关系,不等式的性质,掌握以上知识是解题的关键.13.(2021·北京顺义·九年级期末)在反比例函数ky x=的图象上有两点A (x 1,y 1),B (x 2,y 2),且x 1< x 2<0,y 1> y 2写出一个符合条件的函数表达式________________.【标准答案】2y x=(答案不唯一)【思路点拨】根据反比例函数的性质得出k 的符号,据此解答即可.【精准解析】解:∵x 1<x 2<0,y 1>y 2,∴反比例函数ky x=在其中一分支上呈下降趋势,∴此函数图象的两个分支分别在第一、三象限,∴k >0.∴函数表达式可以是2y x=(答案不唯一).故答案是:2y x=(答案不唯一).【名师指导】本题考查的是反比例函数的增减性,熟知反比例函数性质是解答此题的关键.14.(2021·北京顺义·一模)写出一个反比例函数表达式,使它的图象与直线4y x =+有公共点,这个函数的表达式为_______.【标准答案】3y x-=(符合4k ³-且k ≠0即可)【思路点拨】设这个反比例函数表达式为:ky x=(k ≠0),联立两函数整理为一元二次方程,根据函数有交点可得0D ³,从而求得k 的取值范围,写出符合条件的一个即可(注意k ≠0).【精准解析】解:设这个反比例函数表达式为:ky x=(k ≠0)与4y x =+联立得:4k y x y x ì=ïíï=+î,整理得:240x x k +-=,当224440b ac k D =-=+³时,方程有解,此时两函数图象有公共解,解得4k ³-且k ≠0,故这个函数的表达式为:3y x-=(符合4k ³-且k ≠0即可).【名师指导】本题考查反比例函数与一次函数.理解两函数交点与联立它们所成方程组的解集的个数之间的关系是解题关键.15.(2021·北京·一模)如图,在平面直角坐标系xOy 中,已知直线1:1y x =-,双曲线1y x=-,在l 上取一点1A ,过1A 作x 轴的垂线交双曲线于点1B ,过1B 作y 轴的垂线交l于点2A ,请继续操作并探究:过2A 作x 轴的垂线交双曲线于点2B ,过2B 作y 轴的垂线交l 于点3A ,…,这样依次得到l 上的点1A ,2A ,3A ,…,n A ,…,记点n A 的横坐标为n a ,若1=2a -,则2021=a __________;若要将上述操作无限次地进行下去,则1a 不能取的值是__________.【标准答案】320、1 【思路点拨】求出2a ,3a ,4a ,5a 的值,可发现规律,继而得出2021a 的值,根据题意可得1A 不能在x轴上,也不能在y 轴上,从而可得出1a 不可能取的值.【精准解析】解:当12a =-时,1B 的纵坐标为12,1B 的纵坐标和2A 的纵坐标相同,则2A 的横坐标为232a =,2A 的横坐标和2B 的横坐标相同,则2B 的纵坐标为223b =-,2B 的纵坐标和3A 的纵坐标相同,则3A 的横坐标为313a =,3A 的横坐标和3B 的横坐标相同,则3B 的纵坐标为33b =-,3B 的纵坐标和4A 的纵坐标相同,则4A 的横坐标为42a =-,4A 的横坐标和4B 的横坐标相同,则4B 的纵坐标为412b =,即当12a =-时,232a =,313a =,42a =-,532a =,112b =,223b =-,33b =-,412b =,532b =-,202167323=QLL ,2020232a a \==;点1A 不能在y 轴上(此时找不到1B ),即0x ¹,点1A 不能在x 轴上(此时2A ,在y 轴上,找不到2B ),即10y x =-¹,解得:1x ¹;综上可得1a 不可取0、1.故答案为:32;0、1.【名师指导】本题考查了反比例函数的综合,涉及了点的规律变化,解答此类题目一定要先计算出前面几个点的坐标,由特殊到一般进行规律的总结.16.(2021·北京丰台·一模)在平面直角坐标系xOy 中,直线(0)y kx k =>与双曲线4y x=交于()11,M x y ,()22,N x y 两点,则12x y ×的值为______.【标准答案】4-【思路点拨】根据关于原点对称的点的坐标特点找出M 、N 两点坐标的关系,再根据反比例函数图象上点的坐标特点解答即可.【精准解析】()0y kx k =>Q 图像关于()00,中心对称,0k >Q ,\图像经过一、三象限,4=y x图像也关于()00,中心对称,40>Q ,\图像经过一、三象限,又M Q 、N 为y kx =与4y x=交点,M \、N 也关于原点中心对称,且一个在第三象限,一个在第一象限,114,M x x æö\ç÷èø,114,N x x æö--ç÷èø,121144x y x x \×=×-=-,故答案为4-.【名师指导】本题考查了反比例函数图像的对称性,准确掌握利用过原点的直线与双曲线的两个交点关于原点对称是解答本题的关键.17.(2021·北京石景山·二模)在平面直角坐标系xOy 中,点(),A a b 在双曲线1y x=-上.若0a <,则点A 在第________象限.【标准答案】二【思路点拨】由点A (a ,b )在双曲线1y x=-上,可得ab =-1,由0a <可得到点0b >的坐标,进而得出答案.【精准解析】解:∵点(),A a b 在双曲线1y x=-上,∴ab =-1,∵0a <∴0b >∴点A 在第二象限.故答案为:二.【名师指导】考查反比例函数图象上的点坐标的特征,求出0b >是解答此题的关键.18.(2021·北京房山·二模)设函数1ky x =,2(0)k y k x-=>,当23x ≤≤时,函数1y 的最大值为a ,函数2y 的最小值为4a -,则a =_____.【标准答案】2【思路点拨】首先根据k 与x 的取值分析函数1k y x =,()20ky k x=->的增减性,根据增减性确定最值,进而求解.【精准解析】解:∵k >0,2≤x ≤3,∴y 1 随x 的增大而减小,y 2随x 的增大而增大,∴当x =2时,y 1取最大值,最大值为2k=a ①;当x =2时,y 2 取最小值,最小值为−2k=a −4②;由①②得a =2,k =4,故答案为:2.【名师指导】本题考查了反比例函数的性质,关键是能根据反比例函数的增减性确定最值.19.(2021·北京·101中学三模)“单词的记忆效率”是指复习一定量的单词,一周后能正确默写出的单词个数与复习的单词个数的比值.如图描述了某次单词复习中M ,N ,S ,T 四位同学的单词记忆效率y 与复习的单词个数x 的情况,则这四位同学在这次单词复习中正确默写出的单词个数最多的是 ___.【标准答案】S 【思路点拨】画出过点N 的反比例函数图像,根据题意得到正确默写出的单词个数即为 “单词的记忆效率”对应点所在的矩形的面积大小,通过反比例函数的几何性质即可判断.【精准解析】解:如图,设M ,N ,S ,T 四个同学的“单词的记忆效率”对应点所在的长方形的面积分别记作S M ,S N ,S S ,S T ,则S T <S N <S M <S S ,∴这四位同学在这次单词复习中正确默写出的单词个数最多的是S .故答案为:S .【名师指导】本题考查了反比例函数的几何性质的应用,正确理解题目的意思是解题的关键.20.(2021·北京市京源学校九年级月考)在平面直角坐标系xOy 中,()0,1A ,()1,1B ,有以下4种说法:①一次函数y x =的图象与线段AB 无公共点;②当0b <时,一次函数y x b =+的图象与线段AB 无公共点;③当1k >时,反比例函数ky x=的图象与线段AB 无公共点;④当1b >时,二次函数21y x bx =-+的图象与线段AB 无公共点.上述说法中正确的是__________.【标准答案】②③【思路点拨】根据一次函数、反比例函数、二次函数的性质逐条判断即可.【精准解析】解:一次函数y x =经过点()1,1B ,故①错误;一次函数y x =刚好经过点()1,1B ,向下平移直线y x =,此时0b <,直线y x b =+与线段AB 无公共点,故②正确;反比例函数1y x=的图象刚好经过点()1,1B ,当1k >时,反比例函数ky x=的图象沿着y x =向远离原点的方向平移,与线段AB 无公共点,故③正确;二次函数21y x bx =-+的图象一定经过()0,1A ,故④错误;故答案为:②③.【名师指导】本题考查了一次函数、二次函数、反比例函数的性质,解题关键是熟练掌握相关函数的性质,进行准确推理判断.三、解答题21.(2021·北京·二模)如图,A 、B 两点在函数()0my x x=>的图象上.(1)求m 的值及直线AB 的解析式;(2)如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.请直接写出函数()0my x x=>的图象与直线AB 围出的封闭图形中(不包括边界)所含格点的坐标.【标准答案】(1)m =5,y =-x +6;(2)(2,3),(3,2)【思路点拨】(1)利用待定系数法即可求得答案;(2)分别将x =2或3或4,代入y =-x +6和y =5x两个函数解析式中,求出对应的纵坐标,再根据围出的封闭图形中(不包括边界)所含格点的坐标.【精准解析】解:(1)由图可知,A (1,5),B (5,1),将A (1,5)代入y =mx中,得m =5,∴y =5x,设直线AB 的解析式为y =kx +b ,得:515k bk b=+ìí=+î,解得,16k b =-ìí=î,∴直线AB 的解析式为y =-x +6;(2)由题意,得:1<x <5,∴x =2或3或4,分别代入y =-x +6和y =5x两个函数解析式中,满足条件的格点坐标是(2,3),(3,2).【名师指导】本题考查了待定系数法求一次函数和反比例函数的解析式,横纵坐标都为整数的格点的坐标确定方法,要注意不包括边界的条件.22.(2021·北京顺义·二模)在平面直角坐标系xOy 中,反比例函数my x=与一次函数y kx b =+相交于A (3,2)、B (-2,n )两点.(1)求反比例函数和一次函数的表达式;(2)过P (p ,0)(P ≠0)作垂直于x 轴的直线,与反比例函数my x=交于点C ,与一次函数y kx b =+交于点D ,若3COP DOP S S D D =,直接写出p 的值.【标准答案】(1)6y x=;1y x =-;(2)p =2或-1【思路点拨】(1)把A 点的坐标代入my x=可计算m 的值,然后确定点B 的坐标,再根据待定系数法即可求得一次函数的解析式;(2)通过面积之比与高之比的关系,求得3CP DP =,可得关系式()631x x=-,解出即可得到答案.【精准解析】解:(1)∵反比例函数my x=与一次函数y kx b =+相交于A (3,2)、B (-2,n )两点∴将A (3,2)代入反比例函数my x=中得m =6∴反比例函数的表达式是6y x=将B (-2,n )代入反比例函数6y x=中得n =-3将A (3,2)、B (-2,-3)代入一次函数y kx b =+中得3223k b k b +=ìí-+=-î,解得11k b =ìí=-î∴一次函数的表达式是1y x =-.(2)∵3COP DOP S S D D =,∴3CP DP =,即()631p p=-,解得:12p =,21p =-,经检验,成立,∴p =2或-1.【名师指导】本题考查了反比例函数与一次函数的交点问题,待定系数法求函数的解析式,三角形的面积等,数形结合是解题的关键.23.在平面直角坐标系xOy 中,直线L :y=kx+2k(k>0)与x 轴交于点A ,与y 轴交于点B ,与函数my x=(x>0)的图象的交点P 位于第一象限.(1)若点P 的坐标为(1,6),①求m 的值及点A 的坐标;②PBPA=_________;(2)直线h :y=2kx-2与y 轴交于点C ,与直线L 1交于点Q ,若点P 的横坐标为1,①写出点P 的坐标(用含k 的式子表示);②当PQ≤PA 时,求m 的取值范围.【标准答案】(1)①6;(−2,0)②13;(2)①P (1,3k )②m≥3【思路点拨】(1)①把P (1,6)代入函数my x=(x >0)即可求得m 的值,直线l1:y =kx +2k (k >0)中,令y =0,即可求得x 的值,从而求得A 的坐标;②把P 的坐标代入y =kx +2k 即可求得k 的值,进而求得B 的坐标,然后根据勾股定理求得PB 和PA ,即可求得PBPA的值;(2)①把x =1代入y =kx +2k ,求得y =3k ,即可求得P (1,3k );②分别过点P 、Q 作PM ⊥x 轴于M ,QN ⊥x 轴于N ,则点M 、点N 的横坐标1,2+2k ,若PQ =PA ,则PQ PA =1,根据平行线分线段成比例定理则PQ PA =MN MA=1,得出MN =MA =3,即可得到2+2k −1=3,解得k =1,根据题意即可得到当PQ PA =MN MA ≤1时,k≥1,则m =3k≥3.【精准解析】(1)①令y =0,则kx +2k =0,∵k >0,解得x =−2,∴点A 的坐标为(−2,0),∵点P 的坐标为(1,6),∴m =1×6=6;②∵直线l 1:y =kx +2k (k >0)函数m y x =(x >0)的图象的交点P ,且P (1,6),∴6=k +2k ,解得k =2,∴y =2x +4,令x =0,则y =4,∴B (0,4),∵点A 的坐标为(−2,0),∴PA =PB =∴PB PA 13=,故答案为13;(2)①把x =1代入y =kx +2k 得y =3k ,∴P (1,3k );②由题意得,kx +2k =2kx−2,解得x =2+2k,∴点Q 的横坐标为2+2k ,∵2+2k>1(k >0),∴点Q 在点P 的右侧,如图,分别过点P 、Q 作PM ⊥x 轴于M ,QN ⊥x 轴于N ,则点M 、点N 的横坐标为1,2+2k,若PQ=PA,则PQPA=1,∴PQPA=MNMA=1,∴MN=MA,∴2+2k−1=3,解得k=1,∵MA=3,∴当PQPA=MNMA≤1时,k≥1,∴m=3k≥3,∴当PQ≤PA时,m≥3.【名师指导】本题考查了一次函数与反比例函数的交点问题,待定系数法求解析式,勾股定理的应用,利用函数图象解决问题是本题的关键.24.在平面直角坐标系xOy中,直线x=3与直线y=12x+1交于点A,函数y=kx(k>0,x>0)的图象与直线x=3,直线y=12x+1分别交于点B,C.(1)求点A的坐标.(2)横、纵坐标都是整数的点叫做整点.记函数y=kx(k>0,x>0)的图象在点B,C之间的部分与线段AB,AC围成的区域(不含边界)为W.①当k=1时,结合函数图象,求区域W内整点的个数;②若区域W内恰有1个整点,直接写出k的取值范围.【标准答案】(1)A (3,52);(2)①在W 区域内有1个整数点;②当区域W 内恰有1个整点时,1≤k <2或16<k ≤20【思路点拨】(1)根据题意列方程即可得到结论;(2)①当k =1时,求得B 、C 的坐标,根据图象得到结论;②分两种情况根据图象即可得到结论.【精准解析】解:(1)直线x =3与直线y =12x +1交于点A ,∴3112x y x ìïïïí==+ïïïî ,解得352x y =ìïí=ïî,∴A (3,52);(2)①当k =1时,根据题意B (3,13),C(1-),由图像可得,在W 区域内有1个整数点:(2,1);②若区域W 内恰有1个整点,当C 点在直线x =3的左边时,如图1,在W 区域内有1个整数点:(2,1),∴1≤k <2;当C点在直线x=3的右边时,如图2,在W区域内有1个整数点:(4,4),∴16<k≤20;综上,当区域W内恰有1个整点时,1≤k<2或16<k≤20【名师指导】本题考查了反比例函数与一次函数的交点问题,利用数形结合思想解决问题是本题的关键.25.在平面直角坐标系xOy中,反比例函数y=kx(x>0)的图象G与直线l:y=2x﹣4交于点A(3,a).(1)求k的值;(2)已知点P(0,n)(n>0),过点P作平行于x轴的直线,与图象G交于点B,与直线l交于点C.横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段AC,BC围成的区域(不含边界)为W.①当n=5时,直接写出区域W内的整点个数;②若区域W内的整点恰好为3个,结合函数图象,直接写出n的取值范围.【标准答案】(1)k=6;(2)①有3个整数点:(2,4),(3,3),(3,4);②4<n≤5或0<n<1【思路点拨】(1)把A(3,a)代入y=2x﹣4求得a=2,然后根据待定系数法即可求得k的值;(2)①当n=5时,得到B为(65,5),C(92,5),结合图象于是得到结论;②分两种情况,根据图象即可得到结论.【精准解析】解:(1)反比例函数y=kx(x>0)的图象G与直线l:y=2x﹣4交于点A(3,a).∴a=2×3﹣4=2,∴A(3,2),∵反比例函数y=kx(x>0)的图象G经过A(3,2),∴k=3×2=6;(2)①当n=5时,则B为(65,5),C(92,5),∴在W区域内有3个整数点:(2,4),(3,3),(3,4);②由图1可知,若区域W内的整点恰好为3个,当P点在A点的上方时,则4<n≤5;当P点在A点的下方时,则0<n<1,综上所述,若区域W内恰有3个整点,n的取值范围为:4<n≤5或0<n<1;【名师指导】本题考查了反比例函数与一次函数的交点问题,待定系数法求函数的解析式,数形结合是解题的关键.26.(2021·北京·首都师范大学附属中学模拟预测)在平面直角坐标系xOy 中,直线1l 与y 轴交于点()0,A m ,与反比例函数(40y x x=>)的图象交于点B .过点B 做BH x ^轴于H .()1若()()0,3,,1A B n -,求直线1l 的解析式;()2平移()1中的直线1l ,若1,3AO BH >直接写出m 的取值范围.【标准答案】(1)3y x =-;(2)m >m <【思路点拨】(1)把(,1)B n 代入4(0)y x x =>求出4n =,得出B 的坐标是(4,1),然后根据待定系数法即可求得.(2)若13AO BH =,则3||BH m =,求出两种特殊位置m 的值,可得结论.【精准解析】解:(1)把(,1)B n 代入4(0)y x x=>得:4n =,即(4,1)B ,设直线1l 的解析式为y kx b =+,把A 、B 的坐标代入得:413k b b +=ìí=-î,解得13k b =ìí=-î,\一次函数的解析式是3y x =-.(2)由题意可知直线1l 为y x m =+,由题意,(0,)A m ,(,0)C m -,||OA OC m \==,BCH \D 是等腰直角三角形,若13AO BH =,则3||BH m =,当0m <时,4(3B m -,3)m -,则有443m m -=-,解得m =(舍弃),当0m >时,4(3B m ,3)m ,则有443m m -=-,解得m =观察图象可知,满足条件的m 的值为:m m <【名师指导】本题考查反比例函数的性质,一次函数的性质等知识,解题的关键是学会寻找特殊位置解决问题,属于中考常考题型.27.(2021·北京师范大学三帆中学朝阳学校模拟预测)一次函数y x m =+与反比例函数2y x=-图象交于A ,B 两点(点A 的横坐标小于点B 的横坐标).(1)若点A 的横坐标为2-,求一次函数的表达式,并直接写出点B 的坐标;(2)若直线y x m =+与y 轴交于点C ,与x 轴交于点D ,当12AOB AOC S S £△△时,求m 的取值范围.【标准答案】(1)3y x =+;点B 的坐标为()1,2-;(2)3m £或m £<-【思路点拨】(1)把2x =-代入反比例函数2y x=-图象上可求点A 坐标,再将点A 代入一次函数解。

北师大版九年级上册数学 反比例函数(含中考真题解析)

北师大版九年级上册数学  反比例函数(含中考真题解析)

专题13 反比例函数☞解读考点☞2年中考【2015年题组】1.(2015崇左)若反比例函数kyx=的图象经过点(2,-6),则k的值为()A.-12 B.12 C.-3 D.3 【答案】A.【解析】试题分析:∵反比例函数kyx=的图象经过点(2,﹣6),∴2(6)12k=⨯-=-,解得k=﹣12.故选A.考点:反比例函数图象上点的坐标特征.2.(2015苏州)若点A(a,b)在反比例函数2yx=的图象上,则代数式ab﹣4的值为()A.0 B.﹣2 C.2 D.﹣6 【答案】B.【解析】试题分析:∵点(a,b)反比例函数2yx=上,∴2ba=,即ab=2,∴原式=2﹣4=﹣2.故选B.考点:反比例函数图象上点的坐标特征.3.(2015来宾)已知矩形的面积为10,长和宽分别为x和y,则y关于x的函数图象大致是()A.B.C.D.【答案】C.考点:1.反比例函数的应用;2.反比例函数的图象.4.(2015河池)反比例函数1myx=(0x>)的图象与一次函数2y x b=-+的图象交于A,B两点,其中A(1,2),当21y y>时,x的取值范围是()A.x<1 B.1<x<2 C.x>2 D.x<1或x>2【答案】B.【解析】试题分析:根据双曲线关于直线y=x对称易求B(2,1).依题意得:如图所示,当1<x<2时,21y y>.故选B.考点:反比例函数与一次函数的交点问题.5.(2015贺州)已知120k k <<,则函数1k y x =和21y k x =-的图象大致是( )A .B .C .D .【答案】C .考点:1.反比例函数的图象;2.一次函数的图象. 6.(2015宿迁)在平面直角坐标系中,点A ,B 的坐标分别为(﹣3,0),(3,0),点P 在反比例函数x y 2=的图象上,若△PAB 为直角三角形,则满足条件的点P 的个数为( )A .2个B .4个C .5个D .6个【答案】D . 【解析】试题分析:①当∠PAB=90°时,P 点的横坐标为﹣3,把x=﹣3代入x y 2=得23y =-,所以此时P 点有1个;②当∠APB=90°,设P (x ,2x ),2PA =222(3)()x x ++,2PB =222(3)()x x -+,2AB =2(33)+=36,因为222PA PB AB +=,所以222222(3)()(3)()x x x x +++-+=36,整理得42940x x -+=,所以2x =,或2x =,所以此时P 点有4个;③当∠PBA=90°时,P 点的横坐标为3,把x=3代入x y 2=得23y =,所以此时P 点有1个;综上所述,满足条件的P 点有6个.故选D .考点:1.反比例函数图象上点的坐标特征;2.圆周角定理;3.分类讨论;4.综合题.7.(2015自贡)若点(1x ,1y ),(2x ,2y ),(3x ,3y ),都是反比例函数x y 1-=图象上的点,并且1230y y y <<<,则下列各式中正确的是( )A .123x x x <<B .132x x x <<C .213x x x <<D .231x x x <<【答案】D . 【解析】试题分析:由题意得,点(1x ,1y ),(2x ,2y ),(3x ,3y )都是反比例函数x y 1-=上的点, 且1230y y y <<<,则(2x ,2y ),(3x ,3y )位于第三象限,y 随x 的增大而增大,23x x <,(1x ,1y )位于第一象限,1x 最大,故1x 、2x 、3x 的大小关系是231x x x <<.故选D .考点:反比例函数图象上点的坐标特征.8.(2015凉山州)以正方形ABCD 两条对角线的交点O 为坐标原点,建立如图所示的平面直角坐标系,双曲线3y x =经过点D ,则正方形ABCD 的面积是( )A .10B .11C .12D .13 【答案】C .考点:反比例函数系数k 的几何意义.9.(2015眉山)如图,A 、B 是双曲线x ky =上的两点,过A 点作AC ⊥x 轴,交OB 于D点,垂足为C .若△ADO 的面积为1,D 为OB 的中点,则k 的值为( )A .34B .38C .3D .4【答案】B.考点:1.反比例函数系数k的几何意义;2.相似三角形的判定与性质.10.(2015内江)如图,正方形ABCD位于第一象限,边长为3,点A在直线y=x上,点A的横坐标为1,正方形ABCD的边分别平行于x轴、y轴.若双曲线kyx=与正方形ABCD有公共点,则k的取值范围为()A.1<k<9 B.2≤k≤34 C.1≤k≤16 D.4≤k<16【答案】C.【解析】试题分析:点A在直线y=x上,其中A点的横坐标为1,则把x=1代入y=x解得y=1,则A的坐标是(1,1),∵AB=BC=3,∴C点的坐标是(4,4),∴当双曲线kyx=经过点(1,1)时,k=1;当双曲线kyx=经过点(4,4)时,k=16,因而1≤k≤16.故选C.考点:1.反比例函数与一次函数的交点问题;2.综合题.11.(2015孝感)如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函数1yx=的图象上.若点B在反比例函数kyx=的图象上,则k的值为()A.﹣4 B.4 C.﹣2 D.2【答案】A.考点:1.反比例函数图象上点的坐标特征;2.相似三角形的判定与性质;3.综合题.12.(2015宜昌)如图,市煤气公司计划在地下修建一个容积为410m3的圆柱形煤气储存室,则储存室的底面积S(单位:m2)与其深度d(单位:m)的函数图象大致是()A .B .C .D .【答案】A .考点:1.反比例函数的应用;2.反比例函数的图象.13.(2015三明)如图,已知点A 是双曲线2y x =在第一象限的分支上的一个动点,连接AO 并延长交另一分支于点B ,过点A 作y 轴的垂线,过点B 作x 轴的垂线,两垂线交于点C ,随着点A 的运动,点C 的位置也随之变化.设点C 的坐标为(m ,n ),则m ,n 满足的关系式为( )A .2n m =-B .2n m =-C .4n m =-D .4n m =-【答案】B . 【解析】试题分析:∵点C 的坐标为(m ,n ),∴点A 的纵坐标是n ,横坐标是:2n ,∴点A 的坐标为(2n ,n ),∵点C 的坐标为(m ,n ),∴点B 的横坐标是m ,纵坐标是:2m ,∴点B的坐标为(m ,2m ),又∵22n m mn =,∴22mn m n =⋅,∴224m n =,又∵m <0,n >0,∴2mn=-,∴2nm=-,故选B.考点:反比例函数图象上点的坐标特征.14.(2015株洲)从2,3,4,5中任意选两个数,记作a和b,那么点(a,b)在函数12 yx =图象上的概率是()A.12B.13C.14D.16【答案】D.考点:1.列表法与树状图法;2.反比例函数图象上点的坐标特征.15.(2015乌鲁木齐)如图,在直角坐标系xOy中,点A,B分别在x轴和y轴,3 4OA OB =.∠AOB的角平分线与OA的垂直平分线交于点C,与AB交于点D,反比例函数kyx=的图象过点C.当以CD为边的正方形的面积为27时,k的值是()A.2 B.3 C.5 D.7【答案】D.考点:1.反比例函数综合题;2.综合题;3.压轴题.16.(2015重庆市)如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1.反比例函数3yx=的图象经过A,B两点,则菱形ABCD的面积为()A.2 B.4 C.D.【答案】D.【解析】试题分析:过点A作x轴的垂线,与CB的延长线交于点E,∵A,B两点在反比例函数3 yx =的图象上且纵坐标分别为3,1,∴A,B横坐标分别为1,3,∴AE=2,BE=2,∴AB=,S菱形ABCD=底×高=×2=D.考点:1.菱形的性质;2.反比例函数图象上点的坐标特征;3.综合题.17.(2015临沂)在平面直角坐标系中,直线2y x=-+与反比例函数1yx=的图象有唯一公共点,若直线y x b=-+与反比例函数1yx=的图象有2个公共点,则b的取值范围是()A.b>2 B.﹣2<b<2 C.b>2或b<﹣2 D.b<﹣2【答案】C.考点:反比例函数与一次函数的交点问题.18.(2015滨州)如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转,若∠BOA的两边分别与函数1yx=-、2yx=的图象交于B、A两点,则∠OAB的大小的变化趋势为()A .逐渐变小B .逐渐变大C .时大时小D .保持不变 【答案】D .考点:1.相似三角形的判定与性质;2.反比例函数图象上点的坐标特征;3.综合题. 19.(2015扬州)已知一个正比例函数的图象与一个反比例函数的一个交点坐标为(1,3),则另一个交点坐标是 . 【答案】(﹣1,﹣3). 【解析】 试题分析:∵反比例函数的图象与经过原点的直线的两个交点一定关于原点对称,∴另一个交点的坐标与点(1,3)关于原点对称,∴该点的坐标为(﹣1,﹣3).故答案为:(﹣1,﹣3).考点:反比例函数图象的对称性.20.(2015泰州)点(a ﹣1,1y )、(a+1,2y)在反比例函数()0>=k x ky 的图象上,若21y y <,则a 的范围是 . 【答案】﹣1<a <1.考点:1.反比例函数图象上点的坐标特征;2.分类讨论.21.(2015南宁)如图,点A在双曲线y =0x >)上,点B 在双曲线ky x =(0x >)上(点B 在点A 的右侧),且AB ∥x 轴.若四边形OABC 是菱形,且∠AOC=60°,则k= .【答案】 【解析】试题分析:因为点A在双曲线y =0x >)上,设A 点坐标为(a,因为四边形OABC 是菱形,且∠AOC=60°,所以OA=2a ,可得B 点坐标为(3a),可得:k=3a,故答案为:考点:1.菱形的性质;2.反比例函数图象上点的坐标特征;3.综合题. 22.(2015桂林)如图,以▱ABCO 的顶点O 为原点,边OC 所在直线为x 轴,建立平面直角坐标系,顶点A 、C 的坐标分别是(2,4)、(3,0),过点A 的反比例函数ky x =的图象交BC 于D ,连接AD ,则四边形AOCD 的面积是 .【答案】9.考点:1.平行四边形的性质;2.反比例函数系数k的几何意义;3.综合题;4.压轴题.23.(2015贵港)如图,已知点A1,A2,…,An均在直线1y x=-上,点B1,B2,…,Bn均在双曲线1yx=-上,并且满足:A1B1⊥x轴,B1A2⊥y轴,A2B2⊥x轴,B2A3⊥y轴,…,AnBn⊥x轴,BnAn+1⊥y轴,…,记点An的横坐标为an(n为正整数).若11a=-,则a2015= .【答案】2.考点:1.反比例函数图象上点的坐标特征;2.一次函数图象上点的坐标特征;3.规律型;4.综合题.24.(2015南京)如图,过原点O 的直线与反比例函数1y ,2y 的图象在第一象限内分别交于点A ,B ,且A 为OB 的中点,若函数11y x =,则2y 与x 的函数表达式是 .【答案】24y x =.【解析】试题分析:过A 作AC ⊥x 轴于C ,过B 作BD ⊥x 轴于D ,∵点A 在反比例函数11y x =上,∴设A (a ,1a ),∴OC=a ,AC=1a ,∵AC ⊥x 轴,BD ⊥x 轴,∴AC ∥BD ,∴△OAC ∽△OBD ,∴AC OC OA BD OD OB ==,∵A 为OB 的中点,∴12AC OC OA BD OD OB ===,∴BD=2AC=2a ,OD=2OC=2a ,∴B (2a ,2a ),设2k y x =,∴k=224a a ⋅=,∴2y 与x 的函数表达式是:24y x =.故答案为:24y x =.考点:1.反比例函数与一次函数的交点问题;2.综合题;3.压轴题.25.(2015攀枝花)如图,若双曲线ky x =(0k >)与边长为3的等边△AOB (O 为坐标原点)的边OA 、AB 分别交于C 、D 两点,且OC=2BD ,则k 的值为 ..考点:1.反比例函数图象上点的坐标特征;2.等边三角形的性质;3.综合题.26.(2015荆门)如图,点1A ,2A 依次在0)y x >的图象上,点1B ,2B 依次在x 轴的正半轴上,若11A OB △,212A B B △均为等边三角形,则点2B 的坐标为 .【答案】(,0).考点:1.反比例函数图象上点的坐标特征;2.等边三角形的性质;3.综合题;4.压轴题.27.(2015南平)如图,在平面直角坐标系xOy中,△OAB的顶点A在x轴正半轴上,OC是△OAB的中线,点B,C在反比例函数3yx=(0x>)的图象上,则△OAB的面积等于.【答案】9 2.考点:1.反比例函数系数k的几何意义;2.综合题.28.(2015烟台)如图,矩形OABC的顶点A、C的坐标分别是(4,0)和(0,2),反比例函数kyx=(x>0)的图象过对角线的交点P并且与AB,BC分别交于D,E两点,连接OD,OE,DE,则△ODE的面积为.【答案】15 4.考点:1.反比例函数系数k的几何意义;2.反比例函数综合题;3.综合题.29.(2015玉林防城港)已知:一次函数210y x=-+的图象与反比例函数kyx=(0k>)的图象相交于A,B两点(A在B的右侧).(1)当A(4,2)时,求反比例函数的解析式及B点的坐标;(2)在(1)的条件下,反比例函数图象的另一支上是否存在一点P,使△PAB是以AB为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.(3)当A(a,﹣2a+10),B(b,﹣2b+10)时,直线OA与此反比例函数图象的另一支交于另一点C,连接BC交y轴于点D.若52BCBD=,求△ABC的面积.【答案】(1)8yx=,B(1,8);(2)(﹣4,﹣2)、(﹣16,12-);(3)10.【解析】试题分析:(1)把点A 的坐标代入ky x =,就可求出反比例函数的解析式;解一次函数与反比例函数的解析式组成的方程组,就可得到点B 的坐标;(2)①若∠BAP=90°,过点A 作AH ⊥OE 于H ,设AP 与x 轴的交点为M ,如图1,对于y=﹣2x+10,当y=0时,﹣2x+10=0,解得x=5,∴点E (5,0),OE=5.∵A (4,2),∴OH=4,AH=2,∴HE=5﹣4=1.∵AH ⊥OE ,∴∠AHM=∠AHE=90°.又∵∠BAP=90°,∴∠AME+∠AEM=90°,∠AME+∠MAH=90°,∴∠MAH=∠AEM ,∴△AHM ∽△EHA ,∴AH MH EH AH =,∴212MH=,∴MH=4,∴M (0,0),可设直线AP 的解析式为y mx =,则有42m =,解得m=12,∴直线AP 的解析式为12y x=,解方程组128y x y x ⎧=⎪⎪⎨⎪=⎪⎩,得:42x y =⎧⎨=⎩或42x y =-⎧⎨=-⎩,∴点P 的坐标为(﹣4,﹣2).②若∠ABP=90°,同理可得:点P 的坐标为(﹣16,12-).综上所述:符合条件的点P的坐标为(﹣4,﹣2)、(﹣16,12-);(3)过点B作BS⊥y轴于S,过点C作CT⊥y轴于T,连接OB,如图2,则有BS∥CT,∴△CTD∽△BSD,∴CD CTBD BS=.∵52BCBD=,∴32CT CDBS BD==.∵A(a,﹣2a+10),B(b,﹣2b+10),∴C(﹣a,2a﹣考点:1.反比例函数综合题;2.待定系数法求一次函数解析式;3.反比例函数与一次函数的交点问题;4.相似三角形的判定与性质;5.压轴题.【2014年题组】1. (2014年湖南湘潭)如图,A、B两点在双曲线4yx=上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=()A. 3B. 4C. 5D. 6【答案】D.【解析】试题分析:∵点A、B是双曲线4yx=上的点,分别经过A、B两点向x轴、y轴作垂线段,∴根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,∵S阴影=1,∴S1+S2=4+4﹣1×2=6.故选D.考点:反比例函数系数k的几何意义.2. (2014年吉林长春)如图,在平面直角坐标系中,点A、B均在函数kyx=(k>0,x>0)的图象上,⊙A与x轴相切,⊙B与y轴相切.若点B的坐标为(1,6),⊙A的半径是⊙B的半径的2倍,则点A的坐标为()A. (2,2)B. (2,3)C. (3,2)D.3 4,2⎛⎫ ⎪⎝⎭【答案】C.考点:1.切线的性质;2.曲线上点的坐标与方程的关系.3. (2014年江苏连云港)如图,△ABC的三个顶点分别为A(1,2),B(2,5),C(6,1).若函数ky x =在第一象限内的图像与△ABC 有交点,则k 的取值范围是( )A. 2≤k ≤449B. 6≤k ≤10C. 2≤k ≤6D. 2≤k ≤225【答案】A . .考点:1.反比例函数图象上点的坐标特征;2.待定系数法的应用;23.曲线上点的坐标与方程的关系;一元二次方程根的判别式.4. (2014年江苏盐城)如图,反比例函数ky x =(x <0)的图象经过点A (﹣1,1),过点A 作AB ⊥y 轴,垂足为B ,在y 轴的正半轴上取一点P (0,t ),过点P 作直线OA 的垂线l ,以直线l 为对称轴,点B 经轴对称变换得到的点B′在此反比例函数的图象上,则t 的值是( )B.32C.43 D.【答案】A .【解析】考点:1.反比例函数的综合题;2.曲线上点的坐标与方程的关系;3.等腰直角三角形的性质;4.轴对称的性质;5.方程思想的应用.5. (2014年重庆市B卷)如图,正方形ABCD的顶点B、C在x轴的正半轴上,反比例函数ky(k0)x=≠在第一象限的图象经过顶点A(m,2)和CD边上的点E(n,23),过点E的直线l交x轴于点F,交y轴于点G(0,-2),则点F的坐标是()A、5(,0)4B、7(,0)4C、9(,0)4D、11(,0)4【答案】C.【解析】试题分析:∵A (m ,2),∴正方形ABCD 的边长为2.∵E (n ,23),∴n m 2=+.∵反比例函数ky (k 0)x =≠在第一象限的图象经过A ,E ,∴k 2k 2m 22m m m 12k 3m 23m 2⎧=⇒=⎪⎪−−−−→=⇒=⎨+⎪=⎪+⎩把①代入②① ②.∴n m 23=+=,即点E 的坐标为(3,23).设直线EG 的解析式为y ax b =+,∵G (0,-2),∴283a b a 39b 2b 2⎧⎧+==⎪⎪⇒⎨⎨⎪⎪=-=-⎩⎩.∴直线EG 的解析式为8y x 29=-.令y=0得89x 20x 94-=⇒=.∴点F 的坐标是9,04⎛⎫ ⎪⎝⎭ .故选C . 考点:1.反比例函数和一次函数交点问题;2.待定系数法的应用;3.曲线上点的坐标与方程的关系;4.正方形的性质.6. (2014年广西北海)如图,反比例函数ky x =(x >0)的图象交Rt △OAB 的斜边OA 于点D ,交直角边AB 于点C ,点B 在x 轴上.若△OAC 的面积为5,AD :OD=1:2,则k 的值为【答案】20.考点:1.反比例函数系数k 的几何意义;2.相似三角形的判定和性质. 7. (2014年广西崇左)如图,A (4,0),B (3,3),以AO ,AB 为边作平行四边形OABC ,则经过C 点的反比例函数的解析式为 .【答案】3y x =-.考点:1.平行四边形的性质;2.待定系数法的应用;3.曲线上点的坐标与方程的关系.8. (2014年广西玉林、防城港)如图,OABC 是平行四边形,对角线OB 在轴正半轴上,位于第一象限的点A 和第二象限的点C 分别在双曲线1k y x =和2ky x =的一支上,分别过点A 、C 作x 轴的垂线,垂足分别为M 和N ,则有以下的结论:①12k AM CN k =;②阴影部分面积是()121k k 2+;③当∠AOC=90°时12k k =;④若OABC是菱形,则两双曲线既关于x轴对称,也关于y轴对称.其中正确的结论是(把所有正确的结论的序号都填上).【答案】①④.考点:1.反比例函数综合题;2. 反比例函数的图象和k的几何意义;3.平行四边形、矩形的性质和菱形的性质.9. (2014年湖北荆州)如图,已知点A是双曲线2yx=在第一象限的分支上的一个动点,连结AO并延长交另一分支于点B,以AB为边作等边△ABC,点C在第四象限.随着点A的运动,点C的位置也不断变化,但点C始终在双曲线kyx=(k<0)上运动,则k的值是.【答案】﹣6.考点:1.单动点问题;2.曲线上点的坐标与方程的关系;3. 等边三角形的性质;4.相似三角形的判定和性质;5.锐角三角函数定义;6.特殊角的三角函数值.10. (2014年江苏淮安)如图,点A(1,6)和点M(m,n)都在反比例函数kyx(x>0)的图象上,(1)k的值为;(2)当m=3,求直线AM的解析式;(3)当m>1时,过点M作MP⊥x轴,垂足为P,过点A作AB⊥y轴,垂足为B,试判断直线BP与直线AM的位置关系,并说明理由.【答案】(1)6;(2)y=﹣2x+8;(3)直线BP与直线AM的位置关系为平行,.考点:1.反比例函数综合题;2.待定系数法的应用;3.曲线上点的坐标与方程的关系;4.相似三角形的判定和性质;5.平行的判定.☞考点归纳归纳1:反比例函数的概念基础知识归纳:一般地,函数(k是常数,k0)叫做反比例函数。

2021年中考数学专题-训练:《反比例函数综合》(含答案详解)

2021年中考数学专题-训练:《反比例函数综合》(含答案详解)

2021年九年级中考数学一轮复习专题《反比例函数综合》1.在平面直角坐标系xOy中,直线l:y=ax+b与双曲线y=交于点A(1,m)和B (﹣2,﹣1).点A关于x轴的对称点为点C.(1)①求k的值和点C的坐标;②求直线l的表达式;(2)过点B作y轴的垂线与直线AC交于点D,经过点C的直线与直线BD交于点E.若30°≤∠CED≤45°,直接写出点E的横坐标t的取值范围.2.如图,Rt△ABP的直角顶点P在第四象限,顶点A、B分别落在反比例函数y=图象的两支上,且PB⊥x轴于点C,PA⊥y轴于点D,AB分别与x轴,y轴相交于点F 和E.已知点B的坐标为(1,3).(1)填空:k=;(2)证明:CD∥AB;(3)当四边形ABCD的面积和△PCD的面积相等时,求点P的坐标.3.如图,在平面直角坐标系中,直线y=+n(n<0)与坐标轴交于A、B两点,与y =(x>0)交于点E,过点E作EF⊥x轴,垂足为F,且△OAB∽△FEB,相似比为.(1)若,求m的值;(2)连接OE,试探究m与n的数量关系,并直接写出直线OE的解析式.4.如图,反比例函数y=(k>0)的图象与正比例函数y=x的图象交于A、B两点(点A在第一象限).(1)当点A的横坐标为2时,求k的值;(2)若k=12,点C为y轴正半轴上一点,∠ACB=90°,①求△ACB的面积;②以A、B、C、D为顶点作平行四边形,直接写出第四个顶点D的坐标.5.如图,在平面直角坐标系xOy中,线段AB两个端点的坐标分别为A(1,2),B(4,2),以点O为位似中心,相似比为2,在第一象限内将线段AB放大得到线段CD.已知点B在反比例函数y=(x>0)的图象上.(1)求反比例函数的解析式,并画出图象;(2)判断点C是否在此函数图象上;(3)点M为直线CD上一动点,过M作x轴的垂线,与反比例函数的图象交于点N.若MN≥AB,直接写出点M横坐标m的取值范围.6.如图,一次函数y=kx+1的图象与反比例函数的图象交于点A(2,a),点B为x轴正半轴上一点,过B作x轴的垂线交反比例函数的图象于点C,交一次函数的图象于点D.(1)求a的值及一次函数y=kx+1的表达式;(2)若BD=10,求△ACD的面积.7.如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,点C的坐标为(0,3),点A在x轴的正半轴上,直线y=x﹣1.交边AB、OA于点D、M,反比例函数y=(x>0)的图象经过点D,与BC的交点为N.(1)求BN的长.(2)点P是直线DM上的动点(点P不与点D、点M重合),连接PB、PC、MN,当△BCP的面积等于四边形ABNM的面积时,求点P的坐标.(3)在(2)的条件下,连接CP,以CP为边作矩形CPEF,使矩形的对角线的交点G 落在直线DM上,请直接写出点G的坐标.8.如图,在平面直角坐标系中,OA⊥OB,AB⊥x轴于点C,点A(,1)在反比例函数y=的图象上.(1)求反比例函数y=的表达式;(2)求△AOB的面积;(3)在坐标轴上是否存在一点P,使得以O、B、P三点为顶点的三角形是等腰三角形若存在,请直接写出所有符合条件的点P的坐标;若不存在,简述你的理由.9.在平面直角坐标系xOy中,已知一次函数y=ax+b(a≠0)与反比例函数的图象交于点A(1,m)和B(﹣2,﹣1).点A关于x轴的对称点为点C.(1)求这两个函数的表达式.(2)直接写出关于x的不等式的解.(3)过点B作y轴的垂线与直线AC交于点D,经过点C的直线与直线BD交于点E,且30°≤∠CED≤60°,直接写出点E的横坐标t的取值范围.10.已知,如图,在平面直角坐标系xOy中,双曲线与直线y=2x都经过点A(2,m).(1)求k与m的值;(2)此双曲线又经过点B(n,2),点C是y轴的负半轴上的一点,且点C到x轴的距离是2,联结AB、AC、BC,①求△ABC的面积;②点E在y轴上,△ACE为等腰三角形,请直接写出点E的坐标.参考答案1.解:(1)①∵点B(﹣2,﹣1)在双曲线y=上,∴k=﹣2×(﹣1)=2,∴反比例函数解析式为y=,∵点A(1,m)在双曲线y=上,∴m=2,∴A(1,2),∵点A关于x轴的对称点为点C,∴C(1,﹣2);②∵直线l:y=ax+b经过点A(1,2)和B(﹣2,﹣1),∴,∴,Array∴直线l的解析式为y=x+1;(2)如图,∵点A关于x轴的对称点为点C,∴AC∥y轴,∵BD⊥y轴,∴∠BDC=90°,D(1,﹣1),∵C(1,﹣2),∴CD=1,①当点E在点D左侧时,当∠CED=45°时,DE=CD=1,∴t=0,当∠CE'D=30°时,DE'=CD=,∴t=1﹣,∵30°≤∠CED≤45°,∴1﹣≤t≤0;②当点E在点D右侧时,同①的方法得,2≤t≤1+,即:1﹣≤t≤0或2≤t≤1+.2.(1)解:∵B点(1,3)在反比例函数y=的图象,∴k=1×3=3.故答案为:3.(2)证明:∵反比例函数解析式为,∴设A点坐标为(a,).∵PB⊥x轴于点C,PA⊥y轴于点D,∴D点坐标为(0,),P点坐标为(1,),C点坐标为(1,0),∴PB=3﹣,PC=﹣,PA=1﹣a,PD=1,∴,,∴.又∵∠P=∠P,∴△PDC∽△PAB,∴∠CDP=∠A,∴CD∥AB.(3)解:∵四边形ABCD 的面积和△PCD 的面积相等,∴S△PAB =2S △PCD ,∴×(3﹣)×(1﹣a )=2××1×(﹣),整理得:(a ﹣1)2=2,解得:a 1=1﹣,a 2=1+(舍去),∴P 点坐标为(1,﹣3﹣3).3.解:(1)当时,直线方程是y =﹣,当x =0时,y =﹣,即A (0,﹣),则OA =.当y =0时,x =1,即B (1,0),则OB =1.∵△OAB ∽△FEB ,相似比为,∴EF =2OA =1,BF =2OB =2,OF =OB +BF =1+2=3,∴点E 的坐标为(3,1).∵点E 在反比例函数y =(x >0)的图象上,∴m =3×1=3;(2)∵直线y =+n (n <0)与坐标轴交于A 、B 两点,∴当x =0时,y =n ,即A (0,n ),则OA =﹣n .当y =0时,x =﹣2n ,即B (﹣2n ,0),则OB =﹣2n .∵△OAB ∽△FEB ,相似比为,∴EF =2OA =﹣2n ,BF =2OB =﹣4n ,OF =OB +BF =﹣6n ,∴点E 的坐标为(﹣6n ,﹣2n ).∵点E 在反比例函数y =(x >0)的图象上,∴m =(﹣6n )•(﹣2n )=12n 2;由点E 的坐标为(﹣6n ,﹣2n )得到直线OE 的解析式为:y =x .4.解:(1)当x =2时,y =×2=,∴点A 坐标为(2,),∵点A 在反比例函数y =(k >0)的图象上,∴k =2×=3,(2)①∵k =12,∴反比例函数解析式为y =, 联立方程组可得:,解得:或,∴点A(4,3),点B(﹣4,﹣3),∴AO=BO=5,又∵∠ACB=90°,∴CO=AO=BO=5,∴点C(0,5),∴△ACB的面积=×5×4+×5×4=20;②设点D坐标为(x,y),若AB为对角线,则四边形ACBD是平行四边形,∴AB与CD互相平分,∴,,∴x=0,y=﹣5,∴点D(0,﹣5);若AC为对角线,则四边形ABCD是平行四边形,∴AC与BD互相平分,∴,,∴x=8,y=11,∴点D(8,11);若BC为对角线,则四边形ACDB是平行四边形,∴BC与AD互相平分,∴,=,∴x=﹣8,y=﹣1,∴点D(﹣8,﹣1),综上所述:点D坐标为(0,﹣5)或(8,11)或(﹣8,﹣1).5.解:(1)将点B(4,2)代入反比例函数y=中,得,∴k=8,Array∴反比例函数的解析式为y=,图象如图1所示,(2)∵以点O为位似中心,相似比为2,在第一象限内将线段AB放大得到线段CD,且A(1,2),∴C(1×2,2×2),即C(2,4),由(1)知,反比例函数解析式为y=,当x=2时,y==4,∴点C在反比例函数图象上;(3)∵以点O为位似中心,相似比为2,在第一象限内将线段AB放大得到线段CD,且B(4,2),∴D(4×2,2×2),即D (8,4),由(2)知,C (2,4),∴直线CD 的解析式为y =4,∵点M 的横坐标为m ,则M (m ,4),N (m ,),∴MN =|4﹣|,∵A (1,2),B (4,2),∴AB =3,∵MN ≥AB ,∴|4﹣|≥3,∴m ≥8或m ≤,即0<m ≤或m ≥8.6.解:(1)把点A (2,a )代入反比例函数得,a ==4, ∴点A (2,4),代入y =kx +1得,4=2k +1,解得k =∴一次函数的表达式为; (2)∵BD =10,∴D 的纵坐标为10, 把y =10代入得,x =6,∴OB =6,当x =6代入y =得,y =,即BC =,∴CD =BD ﹣BC =10﹣=,∴S △ACD =×(6﹣2)=.7.解:(1)依题意,得:点A 的坐标为(3,0),点B 的坐标为(3,3). 当x =3时,y =x ﹣1=2,∴点D 的坐标为(3,2).将D (3,2)代入y =,得:2=,解得:m =6,∴反比例函数解析式为y =.当y =3时,=3,解得:x =2,∴点N 的坐标为(2,3),∴BN =3﹣2=1.(2)当y =0时,x ﹣1=0,解得:x =1,∴点M 的坐标为(1,0),∴AM =2,∴S 梯形ABNM =(BD +AM )•AB =.设点P 的坐标为(x ,x ﹣1)(x ≠1,x ≠3),∴S △BCP =BC •|3﹣y P |=|4﹣x |=,解得:x 1=1(舍去),x 2=7,∴点P 的坐标为(7,6).(3)过点C 作CF ⊥CP ,交DM 于点F ,如图2所示.设点F 的坐标为(n ,n ﹣1).∵点C 的坐标为(0,3),点P 的坐标为(7,6),∴PC 2=(0﹣7)2+(3﹣6)2=58,CF 2=(n ﹣0)2+(n ﹣1﹣3)2=2n 2﹣8n +16,PF2=(n ﹣7)2+(n ﹣1﹣6)2=2n 2﹣28n +98.∵∠PCF =90°,∴PF 2=PC 2+CF 2,即2n 2﹣28n +98=58+2n 2﹣8n +16,解得:n =,∴点F 的坐标为(,).又∵点G 为线段PF 的中点,∴点G 的坐标为(,).8.解:(1)将A (,1)代入y =,得:1=, 解得:k =,∴反比例函数的表达式为y =. (2)∵点A 的坐标为(,1),AB ⊥x 轴于点C ,∴OC =,AC =1,∴OA ==2=2AC ,∴∠AOC =30°.∵OA ⊥OB ,∴∠AOB =90°,∴∠B =∠AOC =30°,∴AB =2OA =4,∴S △AOB =AB •OC =×4×=2. (3)在Rt △AOB 中,OA =2,∠AOB =90°,∠ABO =30°,∴OB ==2. 分三种情况考虑:①当OP =OB 时,如图2所示,∵OB =2,∴OP =2,∴点P 的坐标为(﹣2,0),(2,0),(0,﹣2),(0,2);②当BP =BO 时,如图3,过点B 做BD ⊥y 轴于点D ,则OD =BC =AB ﹣AC =3, ∵BP =BO ,∴OP =2OC =2或OP =2OD =6,∴点P 的坐标为(2,0),(0,﹣6);③当PO =PB 时,如图4所示.若点P 在x 轴上,∵PO =PB ,∠BOP =60°,∴△BOP 为等边三角形,∴OP =OB =2,∴点P 的坐标为(2,0);若点P 在y 轴上,设OP =a ,则PD =3﹣a , ∵PO =PB ,∴PB2=PD2+BD2,即a2=(3﹣a)2+12,解得:a=2,∴点P的坐标为(0,﹣2).综上所述:在坐标轴上存在一点P,使得以O、B、P三点为顶点的三角形是等腰三角形,点P的坐标为(﹣2,0),(2,0),(0,﹣2),(0,2),(0,﹣6),(0,﹣2).9.解:(1)∵点B(﹣2,﹣1)在反比例函数y=的图象上,∴k=﹣2×(﹣1)=2,∴反比例函数的表达式为y=;当x=1时,m==2,∴点A的坐标为(1,2).将A(1,2),B(﹣2,﹣1)代入y=ax+b,得:,解得:,∴一次函数的表达式为y=x+1.(2)观察函数图象,可知:当x<﹣2或0<x<1时,一次函数图象在反比例函数图象的下方,∴不等式的解为x≤﹣2或0<x≤1.(3)∵点A的坐标为(1,2),点A,C关于x轴对称,∴点C的坐标为(1,﹣2).∵点B的坐标为(﹣2,﹣1),BD⊥AC,∴点D的坐标为(1,﹣1),∴CD=﹣1﹣(﹣2)=1.在Rt△CDE中,CD=1,∠CDE=90°,30°≤∠CED≤60°,∴cot∠CED=,∴≤DE≤,∴1﹣≤t≤1﹣或1+≤t≤1+.10.解:(1)∵直线y =2x 经过点A (2,m ),∴m =2×2=4,∴点A 的坐标为(2,4).∵双曲线经过点A (2,4), ∴4=,∴k =8.(2)①由(1)得:双曲线的表达式为y =.∵双曲线y =经过点B (n ,2),∴2=,∴n =4,∴点B 的坐标为(4,2).∵点C 是y 轴的负半轴上的一点,且点C 到x 轴的距离是2, ∴点C 的坐标为(0,﹣2),∴AB ==2,BC ==4,AC ==2.∵(2)2+(4)2=(2)2,∴AB 2+BC 2=AC 2,∴∠ABC =90°,∴S △ABC =AB •BC =×2×4=8.②设点E 的坐标为(0,a ),∴AE 2=(0﹣2)2+(a ﹣4)2=a 2﹣8a +20,CE 2=[a ﹣(﹣2)]2=a 2+4a +4,AC 2=40.分三种情况考虑,如图2所示.(i )当AE =AC 时,a 2﹣8a +20=40,解得:a 1=﹣2(舍去),a 2=10,∴点E 1的坐标为(0,10);(ii )当CE =AC 时,a 2+4a +4=40,解得:a 3=﹣2+2,a 4=﹣2﹣2,∴点E 2的坐标为(0,﹣2+2),点E 3的坐标为(0,﹣2﹣2); (iii )当CE =AE 时,a 2+4a +4=a 2﹣8a +20,解得:a =,∴点E 4的坐标为(0,).综上所述:点E 的坐标为(0,10),(0,﹣2+2),(0,﹣2﹣2)或(0,).。

初三数学中考专题复习 反比例函数 综合练习题 含答案

初三数学中考专题复习  反比例函数   综合练习题 含答案

反比例函数综合练习题1.下列函数关系中,不是反比例函数的是( ) A .xy =-5 B .y =-73x C .y =2x y D .=x42.下列各点中,在反比例函数y =8x 的图象上的是( )A .(-1,8)B .(-2,4)C .(1,7)D .(2,4)3.若反比例函数y =2k -1x 的图象经过第二、四象限,则k 的取值范围是( )A .k>12B .k<12C .k =12D .不存在4. 为了更好的保护水资源,造福人类,某工厂计划建一个容积V(m 3)一定的污水处理池,池的底面积S(m 2)与其深度h(m)满足关系式:V =Sh(V≠0),则S 关于h 的函数图象大致是( )5.在反比例函数y =4x的图象上,阴影部分的面积不等于4的是( )6.若在同一坐标系中,直线y =k 1x 与双曲线y =k 2x 有两个交点,则有( )A .k 1+k 2>0B .k 1+k 2<0C .k 1k 2>0D .k 1k 2<07.如图,点A 和点B 都在反比例函数y =4x的图象上,且线段AB 过原点,过点A 作x 轴的垂线段,垂足为点C ,P 是线段OB 上的动点,连接CP.设△ACP 的面积为S ,则下列说法正确的是( )A .S >2B .S >4C .2<S <4D .2≤S ≤48.如图,A ,B 两点在反比例函数y =k 1x 的图象上,C ,D 两点在反比例函数y =k 2x 的图象上,AC ⊥x 轴于点E ,BD ⊥x 轴于点F ,AC =2,BD =3,EF =103,则k 2-k 1=( )A .4 B.143 C.163D .69. 若点A(-5,y 1),B(-3,y 2),C(2,y 3)在反比例函数y =3x 的图象上,则y 1,y 2,y 3的大小关系是( )A .y 1<y 3<y 2B .y 1<y 2<y 3C .y 3<y 2<y 1D .y 2<y 1<y 310. 已知矩形的面积为8,则它的长y 与宽x 之间的函数关系用图象大致可以表示为( )11. 已知反比例函数y =2x ,则自变量x 的取值范围是________.12. 已知y =(m +3)x |m|-4是反比例函数,则m =________.13.已知P 1(x 1,y 1),P 2(x 2,y 2)是同一个反比例函数图象上的两点,若x 2=x 1+2,且1y 2=1y 1+12,则这个反比例函数的表达式为________.14.如图,已知点P(6,3),过点P 作PM⊥x 轴于点M ,PN ⊥y 轴于点N ,反比例函数y =kx 的图象交PM 于点A ,交PN 于点B.若四边形OAPB 的面积为12,则k=________.15.已知直线y =-3x 与双曲线y =m -5x 交于点P (-1,n).(1)求m 的值;(2)若点A (x 1,y 1),B(x 2,y 2)在双曲线y =m -5x 上,且x 1<x 2<0,试比较y 1,y 2的大小.16.如图,一次函数y 1=x +1的图象与反比例函数y 2=kx (k 为常数,且k≠0)的图象都经过点A(m ,2).(1)求点A 的坐标及反比例函数的表达式;(2)结合图象直接比较:当x>0时,y 1与y 2的大小.17.制作一种产品,需先将材料加热达到60 ℃后,再进行操作.设该材料温度为y(℃),从加热开始计算的时间为x(min ).当该材料加热时,温度y 与时间x 成一次函数关系;当停止加热进行操作时,温度y 与时间x 成反比例关系(如图).若该材料在操作加热前的温度为15 ℃,加热5分钟后温度达到60 ℃. (1)分别求出将材料加热和停止加热进行操作时,y 与x 间的函数关系式; (2)根据工艺要求,当材料的温度低于15℃时,停止操作,那么从开始加热到停止操作,共经历了多少时间?18.如图,四边形ABCD为正方形,点A,B的坐标分别为(0,2),(0,-3),反比例函数y=错误!的图象经过点C,一次函数y=ax+b的图象经过点A,C.(1)求反比例函数和一次函数的表达式;(2)若点P是反比例函数图象上的一点,△AOP的面积恰好等于正方形ABCD的面积,求P点的坐标.参考答案:1---10 DDBCB CDADB 11. x ≠0 12. 313. y =4x14. 615.(1)∵点P(-1,n)在直线y =-3x 上,∴n =3,∴点P 的坐标为(-1,3).∵点P(-1,3)在双曲线y =m -5x上,∴m =2.(2)由(1)得,双曲线的表达式为y =-3x.在第二象限内,y 随x 的增大而增大,∴当x 1<x 2<0时,y 1<y 2.16.(1)∵一次函数y 1=x +1的图象经过点A(m ,2),∴2=m +1.解得m =1.∴点A 的坐标为A(1,2).∵反比例函数y 2=k x 的图象经过点A(1,2),∴2=k′1.解得k′=2,∴反比例函数的表达式为y 2=2x.(2)由图象,得当0<x <1时,y 1<y 2;当x =1时,y 1=y 2;当x >1时,y 1>y 2.17.(1)当0≤x<5时,为一次函数,设一次函数关系式为y =kx +b ,由于一次函数图象过点(0,15),(5,60),所以⎩⎨⎧15=b ,60=5k +b ,解得⎩⎨⎧k =9,b =15.所以y =9x +15.当x≥5时,为反比例函数,设函数关系式为y =k′x,由于图象过点(5,60),所以k′=300.综上可知,y 与x 间的函数关系式为y =⎩⎨⎧9x +15(0≤x<5),300x (x≥5).(2)当y =15时,x =30015=20,所以从开始加热到停止操作,共经历了20分钟.18.(1)由题意知,C 点坐标为(5,-3),把C(5,-3)代入y =k x 中,-3=k5,∴k =-15.∴反比例函数的表达式为y =-15x.把A(0,2),C(5,-3)两点坐标分别代入y =ax +b 中,得⎩⎨⎧b =2,5a +b =-3.解得⎩⎨⎧a =-1,b =2.∴一次函数的表达式为y =-x +2. (2)设P 点坐标为(x ,y).∵S △OAP =S 正方形ABCD ,S △OAP =12×OA·|x|,S 正方形ABCD =52=25,∴12×OA·|x|=25,12×2|x|=25,x 1=25,x 2=-25将其分别代入y =-15x 中,得y 1=-35,y 2=35.∴P 点坐标为⎝⎛⎭⎪⎫25,-35或⎝ ⎛⎭⎪⎫-25,35.。

反比例函数专题综合题讲解(含答案)

反比例函数专题综合题讲解(含答案)

学大教育科技(北京)有限公司Beijing XueDa Century Education Technology反比例函数专题综合讲解(解答题)22.(2010 四川成都)如图,已知反比例函数ky x=与一次函数y x b =+的图象在第一象限相交于点(1,4)A k -+.(1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点B 的坐标,并根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.29.(2010江苏徐州)如图,已知A(n ,-2),B(1,4)是一次函数y=kx+b 的图象和反比例函数y=xm的图象的两个交点,直线AB 与y 轴交于点C .(1)求反比例函数和一次函数的关系式; (2)求△AOC 的面积; (3)求不等式kx+b-xm<0的解集(直接写出答案).111.(2010 浙江义乌)如图,一次函数2y kx =+的图象与反比例函数my x=的图象交于点P ,点P 在第一象限.P A ⊥x 轴于点A ,PB ⊥y 轴于点B .一次函数的图象分别交x 轴、y 轴于点C 、D , 且S △PBD =4,12OC OA =.(1)求点D 的坐标;(2)求一次函数与反比例函数的解析式;(3)根据图象写出当0x >时,一次函数的值大于反比例 函数的值的x 的取值范围.17.(2010江苏泰州)保护生态环境,建设绿色社会已经从理念变为人们的行动.某化工厂2009年1 月的利润为200万元.设2009年1 月为第1个月,第x 个月的利润为y 万元.由于排污超标,该厂决定从2009年1 月底起适当限产,并投入资金进行治污改造,导致月利润明显下降,从1月到5月,y 与x 成反比例.到5月底,治污改造工程顺利完工,从这时起,该厂每月的利润比前一个月增加20万元(如图). ⑴分别求该化工厂治污期间及治污改造工程完工后y 与x 之间对应的函数关系式. ⑵治污改造工程完工后经过几个月,该厂月利润才能达到2009年1月的水平? ⑶当月利润少于100万元时为该厂资金紧张期,问该厂资金紧张期共有几个月?16.(2010 山东)如图,已知直线12y x =与双曲线(0)ky k x=>交于A ,B 两点,且点A 的横坐标为4. (1)求k 的值; (2)若双曲线(0)ky k x=>上一点C 的纵坐标为8,求△AOC 的面积; (3)过原点O 的另一条直线l 交双曲线(0)ky k x=>于P ,Q 两点(P 点在第一象限),若由点A ,B ,P ,Q 为顶点组成的四边形面积为24,求点P 的坐标.2 18.(2010 河北)如图13,在直角坐标系中,矩形OABC 的顶点O 与坐标原点重合,顶点A ,C 分别在坐标轴上,顶点B 的坐标为(4,2).过点D (0,3)和E (6,0)的直线分别与AB ,BC 交于点M ,N .(1)求直线DE 的解析式和点M 的坐标;(2)若反比例函数xmy =(x >0)的图象经过点M ,求该反比例函数的解析式,并通过计算判断点N 是否在该函数的图象上; (3)若反比例函数xmy =(x >0)的图象与△MNB 有公共点,请直接..写出m 的取值范围.19.(2010 山东省德州) ●探究 (1) 在图1中,已知线段AB ,CD ,其中点分别为E ,F .①若A (-1,0), B (3,0),则E 点坐标为__________; ②若C (-2,2), D (-2,-1),则F 点坐标为__________;(2)在图2中,已知线段AB 的端点坐标为A (a ,b ) ,B (c ,d ),求出图中AB 中点D 的坐标(用含a ,b ,c ,d 的代数式表示),并给出求解过程.●归纳 无论线段AB 处于直角坐标系中的哪个位置,当其端点坐标为A (a ,b ),B (c ,d ), AB 中点为D (x ,y ) 时,x =_________,y =___________.(不必证明)●运用 在图2中,一次函数2-=x y 与反比例函数xy 3=的图象交点为A ,B .①求出交点A ,B 的坐标;②若以A ,O ,B ,P 为顶点的四边形是平行四边形,请利用上面的结论求出顶点P 的坐标.3xy y =x3 y =x -2A BO第22题图3第22题图126.(2010北京)已知反比例函数y =kx的图像经过点A 1) (1)试确定此反比例函数的解析式.(2)点O 是坐标原点,将线段OA 绕点O 顺时针旋转30°得到线段OB ,判断点B 是否在反比例函数的图像上,并说明理由.(3)已知点P (m m +6)也在此反比例函数的图像上(其中m <0),过p 点作x 轴的的垂线,交x轴于点M ,若线段PM 上存在一点Q ,使得△OQM 的面积是12,设Q 点的纵坐标为n ,求n 2-+9的值.27.(2010河南)如图,直线y=1k x +b 与反比例函数y=2k x等(x >0)的图象交于A(1,6),B(a,3)两点. (1)求1k 、2k 的值; (2)直接写出1k x +6一2k x>0时的取值范围; (3)如图,等腰梯形OBCD 中,BC ∥OD,OB=CD ,OD 边在x 轴上,过点C 作CE ⊥OD 于E ,CE 和反比例函数的图象交于点P.当梯形OBCD 的面积为l2时,请判断PC 和PE 的大小关系,并说明理由.439(2010年福建省泉州))我们容易发现:反比例函数的图象是一个中心对称图形.你 可以利用这一结论解决问题.如图,在同一直角坐标系中,正比例函数的图象可以看作是:将x 轴所在的直线绕着原点O 逆时针旋转α度角后的图形.若它与反比例函数xy 3=的图象分别交于第一、三象限的点B 、D ,已知点)0,(m A -、)0,(m C .(1)直接判断并填写:不论α取何值,四边形ABCD 的形状一定是 ; (2)①当点B 为)1,(p 时,四边形ABCD 是矩形,试求p 、α、和m 有值;②观察猜想:对①中的m 值,能使四边形ABCD 为矩形的点B 共有几个?(不必说理) (3)试探究:四边形ABCD 能不能是菱形?若能, 直接写出B 点的坐标, 若不能, 说明理由.35.(2010湖北十堰)(本小题满分8分)如图所示,直线AB 与反比例函数图像相交于A ,B 两点,已知A (1,4).(1)求反比例函数的解析式; (2)连结OA ,OB ,当△AOB 的面积为15为4毫克。

专题17 反比例函数综合问题研究(解析版)

专题17 反比例函数综合问题研究(解析版)

专题17 反比例函数综合问题研究1.(2019·江苏连云港中考)如图,在平面直角坐标系xOy 中,函数y x b =-+的图像与函数k y x =(x <0)的图像相交于点A (﹣1,6),并与x 轴交于点C .点D 是线段AC 上一点,△ODC 与△OAC 的面积比为2:3.(1)k = ,b = ;(2)求点D 的坐标;(3)若将△ODC 绕点O 逆时针旋转,得到△OD ′C ′,其中点D ′落在x 轴负半轴上,判断点C ′是否落在函数k y x=(x <0)的图像上,并说明理由.【答案】(1)-6,5;(2)见解析.【解析】解:(1)∵函数y x b =-+的图像与函数k y x=的图像相交于点A (﹣1,6), ∴6=1+b ,k =(-1)×6=-6,即k =-6,b =5;(2)过点D 作DM ⊥x 轴于M ,过点A 作AN ⊥x 轴于N ,∵△ODC 与△OAC 的面积比为2:3, ∴122132OC DM OC AN ⋅=⋅,即23DM AN =, ∵A (-1,6),∴AN =6,可得:DM =4,即D 点纵坐标为4,在y =-x +5中,当y =4时,x =1,即D 点坐标为(1,4),(3)由旋转性质及勾股定理得:OD ’=OD ,如下图所示,过C ’作C ’G ⊥x 轴于G ,由S △ODC =S △OD ’C ’,得:12OC ·DM =12OD ’·C ’G ,即OC ·DM =OD ’·C ’G’G ,得:C ’G ,在Rt △OC ’G 中,由勾股定理得:OG =∴点C ’的坐标为⎛ ⎝⎭,∵6≠-,故点C ’不在函数6y x=-的图象上. 2.(2019·山东济宁中考)如图,点A 的坐标是(﹣2,0),点B 的坐标是(0,6),C 为OB 的中点,将△ABC 绕点B 逆时针旋转90°后得到△A ′B ′C ′.若反比例函数y =k x的图象恰好经过A ′B 的中点D ,则k 的值是( )A .9B .12C .15D .18【答案】C .【解析】解:过点A ’作A ′H ⊥y 轴于H ,如下图所示,∵∠AOB =∠A ′HB =∠ABA ′=90°,∴∠ABO +∠A ′BH =90°,∠ABO +∠BAO =90°,即∠BAO =∠A ′BH ,∵BA =BA ′,∴△AOB ≌△BHA ′,∴OA =BH ,OB =A ′H ,∵点A 的坐标是(﹣2,0),点B 的坐标是(0,6),∴OA =2,OB =6,∴BH =OA =2,A ′H =OB =6,OH =4,∴A ′(6,4),∵BD =A ′D ,∴D (3,5),∵反比例函数y =k x 的图象经过点D , ∴k =15,故答案为:C .3.(2019·浙江嘉兴中考)如图,在直角坐标系中,已知点B (4,0),等边三角形OAB 的顶点A 在反比例函数k y x=的图象上 (1)求反比例函数的表达式.(2)把△OAB 向右平移a 个单位长度,对应得到△O A B '''当这个函数图象经过△O A B '''一边的中点时,求a 的值.【答案】见解析.【解析】解:(1)如图,过点A作AC⊥x轴于C,∵△OAB是等边三角形,B(4,0),∴∠AOB=∠BAO=∠ABO=60°,OA=OB=4,OC=BC=2,∴由勾股定理得:AC=即A(2, 代入kyx=中,得:k=即反比例函数解析式为:yx=,(2)①如图,点D是A’B’中点,过D作DE⊥x轴于E,过A’作A’C’⊥x轴于C’,得在△DEB’中,B’D=2,DE,B’E=1,∴O’E=3,y y=得:x=4,即OE=4,∴a=OO’=1,②当点F是A’O’的中点时,过点F作FH⊥x轴于H,如图所示,FH,O’H=1,y y=得:x=4,∴OH=4,即a=OO’=3,综上所述,a=1或3.4.(2019·浙江绍兴中考)如图,矩形ABCD的顶点A,C都在曲线y=kx(k是常数k>0,x>0)上,若顶点D的坐标为(5,3),则直线BD的函数表达式是.【答案】y=35x.【解析】解:∵D(5,3),∴A(3k,3),C(5,5k),∴B(3k,5k),设直线BD的解析式为y=mx+n,把D(5,3),B(3k,5k)代入得:5335m nk km n+=⎧⎪⎨+=⎪⎩,解得:35mn⎧=⎪⎨⎪=⎩,∴直线BD的解析式为:y=35x.故答案为:y=35x.5.(2019·浙江金华中考)如图,在平面直角坐标系中,正六边形ABCDEF的对称中心P在反比例函数y=kx(k>0,x>0)的图象上,边CD在x轴上,点B在y轴上,已知CD=2.(1)点A是否在该反比例函数的图象上?请说明理由;(2)若该反比例函数图象与DE交于点Q,求点Q的横坐标;(3)平移正六边形ABCDEF,使其一边的两个端点恰好都落在该反比例函数的图象上,试描述平移过程.【答案】见解析.【解析】解:(1)过点P作x轴垂线PG,连接BP,∵P是正六边形ABCDEF的对称中心,CD=2,∴BP=2,G是CD的中点,∴PG,即P(2,∵P在反比例函数上,k=∴y=x,由正六边形的性质,A(1,,∴点A在反比例函数图象上;(2)D (3,0),E (4,),设DE 的解析式为y =mx +b ,得:∴304m b m b +=⎧⎪⎨+=⎪⎩m b ⎧=⎪⎨=-⎪⎩ ∴yx ﹣联立方程y x y ⎧=⎪⎨⎪=-⎩解得x,x(舍), ∴Q点横坐标为32; (3)E (4),F (3,),将正六边形向左平移两个单位后,E (2,F (1,),则点E 与F 都在反比例函数图象上;6.(2019·重庆市中考)如图,在平面直角坐标系中,矩形ABCD 的顶点A ,D 分别在x 轴、y 轴上,对角线BD ∥x 轴,反比例函数(0,0)k y k x x=>>的图象经过矩形对角线的交点E .若点A (2,0),D (0,4),则k 的值为( )A .16B .20C .32D .40【答案】B . 【解析】解:如图过点E 作EF ⊥x 轴于F ,设E点坐标为(x,4),∵四边形ABCD是矩形,∴AE=DE=x,由题意知,EF=4,AF=x-2,在Rt△AEF中,由勾股定理得:x2=16+(x-2)2,解得:x=5,即E(5,4),∴k的值为20,故答案为:B.7.(2019·江苏苏州中考)如图,A为反比例函数y=kx(其中x>0)图象上的一点,在x轴正半轴上有一点B,OB=4.连接OA,AB,且OA=AB=(1)求k的值;(2)过点B作BC⊥OB,交反比例函数y=kx(其中x>0)的图象于点C,连接OC交AB于点D,求ADDB的值.【答案】见解析.【解析】解:(1)过点A作AH⊥x轴,垂足为点H,AH交OC于点M,如图所示.∵OA =AB ,AH ⊥OB ,∴OH =BH =12OB =2, ∴由勾股定理得:AH =6,∴点A 的坐标为(2,6).∵A 为反比例函数图象上的一点,∴k =2×6=12.(2)∵BC ⊥x 轴,OB =4,点C 在反比例函数图象上,∴BC =3.∵AH ∥BC ,OH =BH ,∴MH =12BC =32, ∴AM =AH -MH =92. ∵AM ∥BC ,∴△ADM ∽△BDC , ∴3=2AD AM DB BC =. 8.(2019·湖北仙桃中考)如图,在平面直角坐标系中,四边形OABC 的顶点坐标分别为O (0,0),A (12,0),B (8,6),C (0,6).动点P 从点O 出发,以每秒3个单位长度的速度沿边OA 向终点A 运动;动点Q 从点B 同时出发,以每秒2个单位长度的速度沿边BC 向终点C 运动.设运动的时间为t 秒,PQ 2=y .(1)直接写出y 关于t 的函数解析式及t 的取值范围: ;(2)当PQ =t 的值;(3)连接OB 交PQ 于点D ,若双曲线xk y =(k ≠0)经过点D ,问k 的值是否变化?若不变化,请求出k 的值;若变化,请说明理由.【答案】见解析.【解析】解:(1)过点P 作PE ⊥BC 于点E ,如图1所示.当运动时间为t 秒时(0≤t ≤4)时,点P 的坐标为(3t ,0),点Q 的坐标为(8-2t ,6), ∴PE =6,EQ =|8-2t -3t |=|8-5t |,∴PQ 2=PE 2+EQ 2=62+|8-5t |2=25t 2-80t +100,∴y =25t 2-80t +100(0≤t ≤4).故答案为:y =25t 2-80t +100(0≤t ≤4).(2)当PQ =25t 2-80t +100=(2,整理,得:5t 2-16t +11=0,解得:t 1=1,t 2=115. (3)经过点D 的双曲线xk y 的k 值不变. 连接OB ,交PQ 于点D ,过点D 作DF ⊥OA 于点F ,如图2所示.∵OC =6,BC =8,由勾股定理得:OB=10.∵BQ∥OP,∴△BDQ∽△ODP,∴2233 BD BQ tOD OP t===,∴OD=6.∵CB∥OA,∴∠DOF=∠OBC.在Rt△OBC中,sin∠OBC=35OCOB=,cos∠OBC=45BCOB=,∴OF=OD•cos∠OBC=245,DF=OD•sin∠OBC=185,∴点D的坐标为(245,185),∴经过点D的双曲线的k值为245×185=43225.。

中考数学探究性试题精选之反比例函数综合题(含15大题)

中考数学探究性试题精选之反比例函数综合题(含15大题)

中考数学探究性试题精选之反比例函数综合题(含15大题)1.如图1,在平面直角坐标系中,将锐角∠MON 的顶点与原点O 重合,角的一边OM 与x 轴正半轴重合,角的另一边ON 交函数y =kx (k >0,x >0)的图象(记为曲线l )于点A ,在射线ON 的右侧构造矩形ABCD ,对角线AC 和BD 交于点E ,满足AB ∥x 轴,AC =2AO ,作射线OB .(1)若点D (1,√2−1),点E (2+√2,√2),求k 的值; (2)求证:点D 在直线OB 上;(3)如图2,当∠MON =45°时,射线OB 交曲线l 于点F ,以点O 为圆心,12OB 为半径画弧交x 轴于点H ,求证:FH ⊥x 轴.2.如图1,一次函数y =k 1x +b 与反比例函数y =k2x 在第一象限交于M (1,4)、N (4,m )两点,点P 是x 轴负半轴上一动点,连接PM ,PN . (1)求反比例函数及一次函数的表达式; (2)若△PMN 的面积为9,求点P 的坐标;(3)如图2,在(2)的条件下,若点E 为直线PM 上一点,点F 为y 轴上一点,是否存在这样的点E 和点F ,使得以点E 、F 、M 、N 为顶点的四边形是平行四边形?若存在,直接写出点E 的坐标;若不存在,请说明理由.3.如图,直线y=mx+n交x轴于点A,交反比例函数y=kx的图象于C(2,4),D(4,a)两点.(1)求反比例函数的解析式和a的值;(2)根据图象直接写出不等式mx+n>kx的解集;(3)点M为y轴上任意一点,点N为平面内任意一点,若以C,D,M,N为顶点的四边形是菱形,直接写出点N的坐标.4.如图,在平面直角坐标系中,点A在第一象限内,点B(4,0)在x轴上,连接OA、AB,OA=AB,cos∠AOB=√55,反比例函数y=kx(k≠0)的图象经过A点.(1)求k的值;(2)如图,以OA为直角边作等腰直角△AOC,过点C作CD⊥x轴交反比例函数的图象于点E,求E点坐标.5.小明喜欢用几何画板学习研究数学问题.某周末他用几何画板绘制了两个反比例函数y=k1x和y=k2x在第一象限内的图象,分别记为l1和l2,设点E在l1上,EC⊥x轴于点C,交l2于点A,ED⊥y轴于点D,交l2于点B,延长OB交l1于点F,FG⊥y轴于点G.(1)小明利用几何画板的面积测量命令分别测量了四边形EAOB和四边形DBFG的面积,分别记为S1,S2.请推测S1和S2的数量关系并证明;(2)小明连接AB,CD后发现好像是平行关系.请判断AB和CD是否平行并说明理由;(3)若S1=2,DB:BE=1:2,直接写出这两个反比例函数的表达式.6.【定义】在平面内,把一个图形上任意一点与另一个图形上任意一点之间的距离的最小值,称为这两个图形之间的距离,即A,B分别是图形M和图形N上任意一点,当AB的长最小时,称这个最小值为图形M与图形N之间的距离.例如,如图1,AB⊥l1,线段AB的长度称为点A与直线l1之间的距离,当l2∥l1时,线段AB的长度也是l1与l2之间的距离.【应用】(1)如图2,在等腰Rt△BAC中,∠A=90°,AB=AC,点D为AB边上一点,过点D 作DE∥BC交AC于点E.若AB=6,AD=4,则DE与BC之间的距离是;(2)如图3,已知直线l3:y=﹣x+4与双曲线C1:y=kx(x>0)交于A(1,m)与B两点,点A与点B之间的距离是,点O与双曲线C1之间的距离是;【拓展】(3)按规定,住宅小区的外延到高速路的距离不超过80m时,需要在高速路旁修建与高速路相同走向的隔音屏障(如图4).有一条“东南﹣西北”走向的笔直高速路,路旁某住宅小区建筑外延呈双曲线的形状,它们之间的距离小于80m.现以高速路上某一合适位置为坐标原点,建立如图5所示的直角坐标系,此时高速路所在直线l4的函数表达式为y=﹣x,小区外延所在双曲线C2的函数表达式为y=2400x(x>0),那么需要在高速路旁修建隔音屏障的长度是多少?7.一次函数y=12x+2与x轴交于C点,与y轴交于B点,点A(2,a)在直线BC上,过点A做反比例函数y=k x.(1)求出a,k的值;(2)M为线段BC上的点,将点M向右平移4个单位,再向上平移2个单位得到点N,点N恰巧在反比例函数y=kx上,求出点M坐标;(3)在x轴上是否存在点D,使得∠BOA=∠OAD,若存在请直接写出点D坐标,若不存在请说明理由.8.如图,在平面直角坐标系xOy中,四边形ABOC为矩形,点A坐标为(6,3),反比例函数y=3x的图象分别与AB,AC交于点D,E,点F为线段DA上的动点,反比例函数y=kx(k≠0)的图象经过点F,交AC于点G,连接FG.(1)求直线DE的函数表达式;(2)将△AFG沿FG所在直线翻折得到△HFG,当点H恰好落在直线DE上时,求k的值;(3)当点F为线段AD中点时,将△AFG绕点F旋转得到△MFN,其中A,G的对应点分别为M,N,当MN∥DE时,求点N的坐标.9.如图1,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点B在反比例函数y=kx(k>0)的第一象限内的图象上,OA=4,OC=3,动点P在y轴的右侧,且满足S△PCO=3 8S矩形OABC.(1)若点P在这个反比例函数的图象上,求点P的坐标;(2)连接PO、PC,求PO+PC的最小值;(3)若点Q是平面内一点,使得以B、C、P、Q为顶点的四边形是菱形,请你直接写出满足条件的所有点Q的坐标.10.如图,直线AB:y=﹣x+n与坐标轴交于A,B两点,点C为点O关于AB的对称点,连接AC,BC,双曲线y=mx(x>0)的图象经过AC的中点D,S△OAD=2.(1)求双曲线的解析式及n 的值;(2)P (x ,y )为双曲线上任意一点,过P 作y 轴的垂线交直线AB 于点E ,连接PC .求证:PE =PC ;(3)在(2)的条件下,若PC 的延长线交双曲线于另一点Q ,分别过P ,Q 两点作直线AB 的垂线,垂足分别为M ,N ,试判断PQ PM+QN是否为定值,若是,请求出该定值,若不是请说明理由.11.已知一次函数y =−12x +b 的图象与反比例函数y =6x(x >0)的图象交于A 、B 两点,与x 轴、y 轴分别交于C 、D 两点. (1)若A 点的横坐标为32,求b 的值;(2)如图,若AB =2AC ,求A 、B 两点的坐标;(3)在(2)的条件下,将一直角三角板的直角顶点P 放在反比例函数图象的AB 段上滑动,直角边始终与坐标轴平行,且与线段AB 分别交于Q 、R 两点,设点P 的横坐标为x 0,QR 的长为L .问:是否存在点P ,使L 的长为√52,存在请求出符合条件的P 的坐标,不存在请说明理由.12.如图,反比例函数y=kx的图象与正比例函数y=mx的图象交于A,C两点,其中点A的坐标为(2,2√3).(1)求反比例函数及正比例函数的解析式;(2)点E是反比例函数第三象限图象上一点,且EC⊥AC,过点C的直线l1与线段AE 相交,点A,点E到直线l1的距离分别为d1,d2,试求d1+d2的最大值;(3)点B(2,0),在x轴上取一点P(t,0)(t>2),过点P作直线OA的垂线l2,以直线l2为对称轴,线段OB经轴对称变换后得到O′B′,当O′B′与双曲线有交点时,求t的取值范围.13.如图,直线y=32x与双曲线y=k x(k≠0)交于A,B两点,点A的坐标为(m,﹣3),点C是双曲线第一象限分支上的一点,连接BC并延长交x轴于点D,且BC=2CD.(1)求k的值并直接写出点B的坐标;(2)点G是y轴上的动点,连接GB,GC,求GB+GC的最小值;(3)P是坐标轴上的点,Q是平面内一点,是否存在点P,Q,使得四边形ABPQ是矩形?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.14.如图,在平面直角坐标系xOy中,一次函数y=﹣x+7的图象与反比例函数y=kx(x>0)的图象相交于A(1,6),B两点,P(0,﹣1)是y轴上的一个定点.(1)求反比例函数的表达式及点B的坐标;(2)H是线段AB上的一点,当△P AB的面积被线段PH分成面积比为2:3的两部分时,求点H的坐标;(3)在(2)的条件下,请在x轴上找点M,平面内找点N,使得四边形PHMN为矩形,求M,N两点的坐标.(直接写出答案)15.如图1,木匠陈师傅现有一块五边形ABFED木板,它是矩形ABCD木板用去△CEF后的余料,AD=4,AB=5,DE=1,F是BC边上一点.陈师傅打算利用该余料截取一块矩形材料,其中一条边在AD上.[初步探究](1)当BF=2时.①若截取的矩形有一边是DE,则截取的矩形面积的最大值是;②若截取的矩形有一边是BF,则截取的矩形面积的最大值是;[问题解决](2)如图2,陈师傅还有另一块余料,∠BAF=∠AFE=90°,AB=EF=1,CD=3,AF=8,CD∥AF,且CD和AF之间的距离为4,若以AF所在直线为x轴,AF中点为原点构建直角坐标系,则曲线DE是反比例函数y=kx图象的一部分,陈师傅想利用该余料截取一块矩形MNGH材料,其中一条边在AF上,所截矩形MNGH材料面积是736.求GN的长.。

2024中考压轴题02 反比例函数的综合问题(3题型+解题模板+技巧精讲)(原卷版)

2024中考压轴题02 反比例函数的综合问题(3题型+解题模板+技巧精讲)(原卷版)

压轴题解题模板02反比例函数的综合问题目录题型一反比例函数与一次函数交点问题题型二反比例函数与一次函数图像面积问题题型三反比例函数与几何图形结合题型1题型2题型3题型一反比例函数与一次函数交点问题解题模板:技巧精讲:利用函数图象确定不等式的解集:【例1】(2023·四川攀枝花·统考中考真题)如图,点(),6A n 和()3,2B 是一次函数1y kx b =+的图象与反比例x(1)求m 的值和反比例函数解析式; (2)当12y y >时,求x 的取值范围.题型二 反比例函数与一次函数图像面积问题解题模板:x求AOB的面积;请根据图象直接写出不等式【变式2-1】(2023·A B象交于(4,1),若OBD的)0m>的个单位长度后与反比例函数图象,求ACD的面积.题型三反比例函数与几何图形结合解题模板:x轴上,ABP是以x使ABP是以点统考中考真题)如图,在平面直角坐标系的图象的一个交点为x上,且ABC的面积为上一点,连接P A,以,使它与PAB位似,相似比为好都落在反比例函数图象上,求点P的坐标及m的值.一、解答题x轴上一点,若PAB的面积为统考中考真题)恰好落在反比例函数x,使ABP周长的值最小.若存在,求出最小值;若不存在,请说明理由.如图,正比例函数ABC 的面积.6.(2023·tan 2AOB ∠的对称点,OAC 的面积是x(1)m=______,k=______,点C的坐标为______.(2)点P在x轴上,若以B,O,P为顶点的三角形与AOC相似,求点P的坐标.。

(完整版)反比例函数试题及答案(最新整理)

(完整版)反比例函数试题及答案(最新整理)

反比例函数一、选择题1.(2016·黑龙江大庆)已知A(x1,y1)、B(x2,y2)、C(x3,y3)是反比例函数y=上的三点,若x1<x2<x3,y2<y1<y3,则下列关系式不正确的是( )A.x1•x2<0 B.x1•x3<0 C.x2•x3<0 D.x1+x2<0【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数y=和x1<x2<x3,y2<y1<y3,可得点A,B在第三象限,点C在第一象限,得出x1<x2<0<x3,再选择即可.【解答】解:∵反比例函数y=中,2>0,∴在每一象限内,y随x的增大而减小,∵x1<x2<x3,y2<y1<y3,∴点A,B在第三象限,点C在第一象限,∴x1<x2<0<x3,∴x1•x2<0,故选A.【点评】本题考查了反比例函数图象上点的坐标特征,解答此题的关键是熟知反比例函数的增减性,本题是逆用,难度有点大.2.(2016·湖北十堰)如图,将边长为10的正三角形OAB放置于平面直角坐标系xOy中,C 是AB边上的动点(不与端点A,B重合),作CD⊥OB于点D,若点C,D都在双曲线y=上(k>0,x>0),则k的值为( )A.25B.18C.9D.9【考点】反比例函数图象上点的坐标特征;平行线的性质;等边三角形的性质.【分析】过点A作AE⊥OB于点E,根据正三角形的性质以及三角形的边长可找出点A、B、E 的坐标,再由CD⊥OB,AE⊥OB可找出CD∥AE,即得出,令该比例=n,根据比例关系找出点D、C的坐标,利用反比例函数图象上点的坐标特征即可得出关于k、n的二元一次方程组,解方程组即可得出结论.【解答】解:过点A作AE⊥OB于点E,如图所示.∵△OAB为边长为10的正三角形,∴点A的坐标为(10,0)、点B的坐标为(5,5),点E的坐标为(,).∵CD⊥OB,AE⊥OB,∴CD∥AE,∴.设=n(0<n<1),∴点D的坐标为(,),点C的坐标为(5+5n,5﹣5n).∵点C、D均在反比例函数y=图象上,∴,解得:.故选C.【点评】本题考查了反比例函数图象上点的坐标特征、平行线的性质以及等边三角形的性质,解题的关键是找出点D、C的坐标.本题属于中档题,稍显繁琐,解决该题型题目时,巧妙的借助了比例来表示点的坐标,根据反比例函数图象上点的坐标特征找出方程组是关键.3. (2016·新疆)已知A(x1,y1),B(x2,y2)是反比例函数y=(k≠0)图象上的两个点,当x1<x2<0时,y1>y2,那么一次函数y=kx﹣k的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限【考点】反比例函数图象上点的坐标特征;一次函数图象与系数的关系.【分析】首先根据x1<x2<0时,y1>y2,确定反比例函数y=(k≠0)中k的符号,然后再确定一次函数y=kx﹣k的图象所在象限.【解答】解:∵当x1<x2<0时,y1>y2,∴k>0,∴﹣k<0,∴一次函数y=kx﹣k的图象经过第一、三、四象限,∴不经过第二象限,故选:B.【点评】此题主要考查了反比例函数图象上点的坐标特征以及一次函数图象与系数的关系,解决此题的关键是确定k的符号.4. (2016·云南)位于第一象限的点E在反比例函数y=的图象上,点F在x轴的正半轴上,O是坐标原点.若EO=EF,△EOF的面积等于2,则k=( )A.4 B.2 C.1 D.﹣2【考点】反比例函数系数k的几何意义.【分析】此题应先由三角形的面积公式,再求解k即可.【解答】解:因为位于第一象限的点E在反比例函数y=的图象上,点F在x轴的正半轴上,O 是坐标原点.若EO=EF,△EOF的面积等于2,所以,解得:xy=2,所以:k=2,故选:B【点评】主要考查了反比例函数系数k的几何意义问题,关键是由三角形的面积公式,再求解k.5. (2016·四川达州·3分)下列说法中不正确的是( )A.函数y=2x的图象经过原点B.函数y=的图象位于第一、三象限C .函数y=3x ﹣1的图象不经过第二象限D .函数y=﹣的值随x 的值的增大而增大【考点】正比例函数的性质;一次函数的性质;反比例函数的性质.【分析】分别利用正比例函数以及反比例函数的定义分析得出答案.【解答】解:A 、函数y=2x 的图象经过原点,正确,不合题意;B 、函数y=的图象位于第一、三象限,正确,不合题意;C 、函数y=3x ﹣1的图象不经过第二象限,正确,不合题意;D 、函数y=﹣的值,在每个象限内,y 随x 的值的增大而增大,故错误,符合题意.故选:D .6. (2016·四川乐山·3动时,点C 图象上运动,若tan ()A 2()C 6答案:D解析:连结CO 所以,CO ⊥AB ,因为tan 作AE ⊥x 轴,CD ⊥x 轴于则有△OCD ∽△OEA 设C (m ,n ),则有A 所以,k n m =解①②得:k =87. (2016·四川凉山州·4分)二次函数y=ax2+bx+c(a≠0)的图象如图,则反比例函数与一次函数y=bx﹣c在同一坐标系内的图象大致是( )A.B.C.D.【考点】反比例函数的图象;一次函数的图象;二次函数的图象.【分析】根据二次函数的图象找出a、b、c的正负,再结合反比例函数、一次函数系数与图象的关系即可得出结论.【解答】解:观察二次函数图象可知:开口向上,a>0;对称轴大于0,﹣>0,b<0;二次函数图象与y轴交点在y轴的正半轴,c >0.∵反比例函数中k=﹣a<0,∴反比例函数图象在第二、四象限内;∵一次函数y=bx﹣c中,b<0,﹣c<0,∴一次函数图象经过第二、三、四象限.故选C.8. (2016,湖北宜昌,15,3分)函数y=的图象可能是( )A.B.C.D.【考点】反比例函数的图象.【分析】函数y=是反比例y=的图象向左移动一个单位,根据反比例函数的图象特点判断即可.【解答】解:函数y=是反比例y=的图象向左移动一个单位,即函数y=是图象是反比例y=的图象双曲线向左移动一个单位.故选C【点评】此题是反比例函数的图象,主要考查了反比例函数的图象是双曲线,掌握函数图象的平移是解本题的关键.9. (2016吉林长春,8,3分)如图,在平面直角坐标系中,点P(1,4)、Q(m,n)在函数y=(x>0)的图象上,当m>1时,过点P分别作x轴、y轴的垂线,垂足为点A,B;过点Q分别作x轴、y轴的垂线,垂足为点C、D.QD交PA于点E,随着m的增大,四边形ACQE的面积( )A.减小B.增大C.先减小后增大D.先增大后减小【考点】反比例函数系数k的几何意义.【分析】首先利用m和n表示出AC和AQ的长,则四边形ACQE的面积即可利用m、n表示,然后根据函数的性质判断.【解答】解:AC=m﹣1,CQ=n,则S四边形ACQE=AC•CQ=(m﹣1)n=mn﹣n.∵P (1,4)、Q (m ,n )在函数y=(x >0)的图象上,∴mn=k=4(常数).∴S 四边形ACQE =AC •CQ=4﹣n ,∵当m >1时,n 随m 的增大而减小,∴S 四边形ACQE =4﹣n 随m 的增大而增大.故选B .【点评】本题考查了二次函数的性质以及矩形的面积的计算,利用n 表示出四边形ACQE 的面积是关键.10. (2016兰州,2,4分)反比例函数的图像在()。

(完整版)反比例函数练习题集锦(含答案)

(完整版)反比例函数练习题集锦(含答案)

反比例函数练习题集锦(含答案)1、综合题1、如图,已知直线与双曲线交于两点,且点的横坐标为.(1)求的值;(2)若双曲线上一点的纵坐标为8,求的面积;(3)过原点的另一条直线交双曲线于两点(点在第一象限),若由点为顶点组成的四边形面积为,求点的坐标.2、已知一次函数与双曲线在第一象限交于A、B两点,A点横坐标为1.B点横坐标为4(1)求一次函数的解析式;(2)根据图象指出不等式的解集;(2) 点P是x轴正半轴上一个动点,过P点作x轴的垂线分别交直线和双曲线于M、N,设P点的横坐标是t(t>0),△OMN的面积为S,求S和t的函数关系式,并指出t的取值范围。

二、简答题3、.已知:如图,在平面直角坐标系中,直线AB 分别与轴交于点B、A,与反比例函数的图象分别交(1)求该反比例函数的解析式;(2)求直线AB的解析式.4、如图,已知正比例函数与反比例函数的图象交于两点.(1)求出两点的坐标;的范围;(2)根据图象求使正比例函数值大于反比例函数值的三、计算题5、为了预防流感,某学校在休息天用药熏消毒法对教室进行消毒。

已知药物释放过程中,室内每立方米空气中含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t 的函数关系为(为常数)。

如下图所示,据图中提供的信息,解答下列问题:(1)写出从药物释放开始,y与t之间的两个函数关系式及相应的自变量取值范围;(2)据测定,当空气中每立方米和含药量降低到0.25毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多少小时后,学生才能进入教室?6、如图,在直角坐标系xOy中,一次函数y=k1x+b 的图象与反比例函数的图象交于A(1,4).B(3,m)两点。

(1)求一次函数的解析式;的面积。

(2)求△AOB7、如图,一次函数y=kx+b的图象与反比例函数y=图象交于A(-2,1)、B(1,n)两点.(1) 求反比例函数和一次函数的解析式.(2)根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.(1)试确定上述反比例函数和一次函数的表达式;(2)求△AOB的面积。

(完整版)反比例函数综合测试题(含答案)

(完整版)反比例函数综合测试题(含答案)

反比例函数综合测试题一、选择题(每小题3分,共24分)1.已知点M (- 2,3 )在反比例函数xky=的图象上,下列各点也在该函数图象上的是( ).AA. (3,- 2)B. (- 2,- 3)C. (2,3)D. (3,2)2. 反比例函数(0)ky kx=≠的图象经过点(- 4,5),则该反比例函数的图象位于( ).BA. 第一、三象限B. 第二、四象限C. 第二、三象限D. 第一、二象限3. 在同一平面直角坐标系中,函数xy2-=与xy2=的图象的交点个数为( ). DA. 3个B. 2个C. 1个D. 0个4. 如图1,点A是y轴正半轴上的一个定点,点B是反比例函数y = 2 x(x> 0)图象上的一个动点,当点B的纵坐标逐渐减小时,△OAB的面积将( ). AA.逐渐增大B.逐渐减小C.不变D.先增大后减小5. (2009年恩施市)如图2,一张正方形的纸片,剪去两个一样的小矩形得到一个“E”图案,设小矩形的长和宽分别为x,y,剪去部分的面积为20,若2 ≤x≤ 10,则y与x的函数图象是( ). A6. 已知点A(x1,y1),B(x2,y2)是反比例函数xky=(k > 0)的图象上的两点,若x1 < 0 < x2,则( ).AA. y1 < 0 < y2B. y2 < 0 < y1C. y1 < y2 < 0D. y2 < y1 < 07. 如图3,反比例函数3yx=的图象与一次函数y = x + 2的图象交于A,B两点,那么△AOB 的面积是( ).CA. 2B. 3C. 4D. 68. 如图4,等腰直角三角形ABC位于第一象限,AB= AC = 2,直角顶点A在直线y = x上,1212图2图4A B C Dy xOP 1P 2P 3P 4 P 5A 1 A 2 A 3 A 4 A 5 图7其中点A 的横坐标为1,且两条直角边AB ,AC 分别平行于x 轴、y 轴,若反比例函数k y x=的图象与△ABC 有交点,则k 的取值范围是( ). C A.1 < k < 2B.1 ≤ k ≤ 3C.1 ≤ k ≤ 4D.1≤ k < 4二、填空题(每小题4分,共24分) 9. 已知反比例函数k y x =的图象经过点(23),,则此函数的关系式是 .6y x= 10. 在对物体做功一定的情况下,力F (N)与此物体在 力的方向上移动的距离s (m)成反比例函数关系,其图 象如图5所示,点P (5,1)在图象上,则当力达到10 N 时,物体在力的方向上移动的距离是 m. 0. 511. 反比例函数xky =)0(<k 的图象与经过原点的直线l 相交于A ,B 两点,若点A 坐标为(-2,1),则点B 的坐标为 . (2,-1).12.一次函数y = x + 1与反比例函数ky x=的图象都经过点(1,m ),则使这两个函数值都小于0时x 的取值范围是___________. x < - 113. (2009年兰州市)如图6,若正方形OABC 的顶点B 和正方形ADEF 的顶点E 都在函数 反比例函数1y x=(x > 0)的图象上,则点E 的坐标是_________. (215+,215-)14. (2009年莆田市)如图7,在x 轴的正半轴上依次截取OA 1 = A 1A 2 = A 2A 3 = A 3A 4 = A 4A 5,过点A 1,A 2,A 3,A 4,A 5,分别作x 轴的垂线与反比例函数()20y x x=≠的图象相交于点P 1,P 2,P 3,P 4,P 5,得直角三角形OP 1A 1,A 1P 2A 2,A 1P 2A 2,A 2P 3A 3,A 3P 4A 4,A 4P 5A 5,并设其面积分别为S 1,S 2,S 3,S 4,S 5,则S 5的值为 . 三、解答题(共30分)15.(6分) 已知点P (2,2)在反比例函数xky =(k ≠ 0)的图象上. (1)当x = - 3时,求y 的值; (2)当1 < x < 3时,求y 的取值范围.F / N图5s / mO图616.(8分)已知图8中的曲线是反比例函数5myx-=(m为常数)图象的一支. 若该函数的图象与正比例函数y = 2x的图象在第一象内限的交于点A,过点A作x轴的垂线,垂足为点B,当△OAB的面积为4时,求点A的坐标及反比例函数的解析式.17.(8分)如图9,点P的坐标为322⎛⎫⎪⎝⎭,,过点P作x轴的平行线交y轴于点A,交反比例函数kyx=(x > 0)于点点N,作PM ⊥AN交反比例函数kyx=(x > 0)的图象于点M,连接AM.若PN = 4,求:(1)k的值.(2)△APM的面积.18.(8分)为预防“手足口病”,某校对教室进行“药熏消毒”. 已知药物燃烧阶段,室内每立方米空气中的含药量y(mg)与燃烧时间x(min)成正比例;燃烧后,y与x成反比例(如图10所示). 现测得药物10 min燃烧完,此时教室内每立方米空气含药量为8 mg. 根据以上信息,解答下列问题:(1)求药物燃烧时y与x的函数关系式;(2)求药物燃烧后y与x的函数关系式;(3)当每立方米空气中含药量低于1.6 mg时,对人体无毒害作用. 那么从消毒开始,经多长时间学生才可以返回教室?四、探究题(共22分)19.(10分) 我们学习了利用函数图象求方程的近似解,例如,把方程2x – 1 = 3 - x 的解看成函数y = 2 x - 1的图象与函数y = 3 - x 的图象交点的横坐标. 如图11,已画出反比例函数1y x=在第一象限内的图象,请你按照上述方法,利用此图象求方程x 2 – x – 1 = 0的正数解(要求画出相应函数的图象,求出的解精确到0.1).20.(12分)一次函数y = ax + b 的图象分别与x 轴、y 轴交于点M ,N ,与反比例函数k y x=的图象相交于点A ,B .过点A 分别作AC ⊥x 轴,AE ⊥y 轴,垂足分别为点C ,E ;过点B 分别作BF ⊥x 轴,BD ⊥y 轴,垂足分别为点F ,D ,AC 与BC 相交于点K ,连接CD . (1)如图12,若点A ,B 在反比例函数ky x=的图象的同一分支上,试证明: ①A E D K C F B K S S =四边形四边形;②A N B M =. (2)若点AB ,分别在反比例函数ky x=的图象的不同分支上,如图13,则AN 与BM 还相等吗?试证明你的结论.反比例函数综合测试题参考答案一、选择题 1. A. 2. B. 3. D.4. A.5. A.6. A.7. C.8. C.二、填空题 9. 6y x=. 10. 0. 5. 11. (2,-1).12. x < - 1. 13. (215+,215-). 14.15. 三、解答题 15.(1)34-=y ;(2)y 的取值范围为434<<y . 16.∵第一象限内的点A 在正比例函数y = 2x 的图象上,∴设点A 的坐标为(m ,2m )(m > 0),则点B 的坐标为(m ,0). ∵S △OAB = 4,∴12m • 2m = 4. 解得m 1 = 2,m 2 = - 2(不符合题意,舍去).∴点A 的坐标为(2,4).又∵点A 在反比例函数5m y x -=的图象上,∴542m -=,即m – 5 = 8. ∴反比例函数的解析式为8y x=.17.(1)∵点P 的坐标为322⎛⎫ ⎪⎝⎭,,∴AP = 2,OA =32. ∵PN = 4,∴AN = 6. ∴点N 的坐标为362⎛⎫ ⎪⎝⎭,. 把点362N ⎛⎫ ⎪⎝⎭,代入ky x=中,得k = 9. (2)由(1)知k = 9,∴9y x =. 当x = 2时,92y =. ∴93322M P =-=. ∴12332A P MS =⨯⨯=△. 18.(1)设药物燃烧阶段函数关系式为y = k 1x (k 1 ≠ 0).根据题意,得8 = 10k 1,k 1 = 45. ∴此阶段函数关系式为45y x =(0 ≤ x < 10).(2)设药物燃烧结束后函数关系式为22(0)ky k x=≠.根据题意,得2810k=,280k =. ∴此阶段函数关系式为80y x=(x ≥ 10).(3)当y < 1.6时,801.6x<. ∵0x >,∴1.680x >,50x >. ∴从消毒开始经过50 min 学生才返可回教室. 四、探究题19. 方程x 2 – x – 1 = 0的正数解约为1.6.提示:∵x ≠ 0,将x 2 – x – 1 = 0两边同除以x ,得110x x --=.即11x x=-. 把x 2 – x – 1 = 0的正根视为由函数1y x=与函数y = x - 1的图象在第一象限交点的横坐标. 20.(1)①A C x ⊥轴,A E y ⊥轴,∴四边形AE O C 为矩形. BF x ⊥轴,B D y ⊥轴,∴四边形BD O F 为矩形.A C x ⊥轴,B D y ⊥轴,∴四边形A E D K D OC K C F B K ,,均为矩形.1111O C x A C y x y k ===,,,∴11A E O CS O C A C x y k ===矩形2222O F x F B y x yk ===,,,∴22B D O F S O F F B x y k ===矩形.∴A E O C B D O F S S =矩形矩形.A E D K A E O C D O C K S S S =-矩形矩形矩形,C FB K B D O F D OC K S S S =-矩形矩形矩形,∴A ED K C F B K S S =矩形矩形. ②由(1)知,AE D K CF B KS S =矩形矩形.∴A K D K B K C K =.∴AK BKCK DK=. 90A K B C K D ∠=∠=°,∴A K B C K D △∽△.∴C D K A B K ∠=∠.∴A B C D∥.A C y ∥轴,∴四边形AC D N 是平行四边形.∴A N C D =.同理可得B M C D =.A N B M∴=. (2)AN 与BM 仍然相等.A E D K A E O C O D K C S S S =+矩形矩形矩形,B KC F BD O F O D K CS S S =+矩形矩形矩形, 又A E O CB D O F S S k ==矩形矩形,∴A E D K B KC FS S =矩形矩形. ∴A K D K B K C K=.∴CK DKAK BK=. K K ∠=∠,∴C D K A B K △∽△.∴C D K A B K ∠=∠.∴A B C D∥.A C y ∥轴,∴四边形AN D C 是平行四边形.∴A N C D =.同理B M C D =.∴A N B M =【教学标题】反比例函数 【教学目标】1、 提高学生对反比例函数的学习兴趣2、 使学生掌握反比例函数基础知识3、让学生熟练地运用反比例知识【重点难点】图像及性质 【教学内容】反比例函数一、基础知识1. 定义:一般地,形如xk y =(k 为常数,o k ≠)的函数称为反比例函数。

中考数学反比例函数综合题及答案解析.doc

中考数学反比例函数综合题及答案解析.doc

中考数学反比例函数综合题及答案解析一、反比例函数1.已知反比例函数y=的图象经过点A(﹣,1).(1)试确定此反比例函数的解析式;(2)点 O 是坐标原点,将线段 OA 绕 O 点顺时针旋转 30°得到线段 OB.判断点 B 是否在此反比例函数的图象上,并说明理由;(3)已知点P(m,m+6)也在此反比例函数的图象上(其中m< 0),过P 点作 x 轴的垂线,交x 轴于点 M .若线段PM 上存在一点Q,使得△ OQM 的面积是,设Q点的纵坐标为 n,求 n2﹣ 2n+9 的值.【答案】(1)解:由题意得1=,解得k=﹣,∴反比例函数的解析式为y=﹣(2)解:过点 A 作 x 轴的垂线交x 轴于点 C.在 Rt△ AOC中, OC=,AC=1,∴OA==2,∠ AOC=30 ,°∵将线段 OA 绕 O 点顺时针旋转30 °得到线段OB,∴∠ AOB=30 ,°OB=OA=2,∴∠ BOC=60 .°过点 B 作 x 轴的垂线交x 轴于点 D.在 Rt△ BOD 中, BD=OB?sin∠ BOD=,OD=OB=1,∴B 点坐标为(﹣ 1 ,),将 x=﹣ 1 代入 y=﹣中,得y=,∴点 B(﹣ 1,)在反比例函数y=﹣的图象上(3)解:由y=﹣得xy=﹣,∵点 P( m,m+6)在反比例函数y=﹣的图象上,其中m< 0,∴m(m+6) =﹣∴m2+2m+1=0,,∵PQ⊥ x 轴,∴ Q 点的坐标为( m, n).∵△ OQM 的面积是,∴OM?QM= ,∵m< 0,∴ mn=﹣ 1,∴m2n2 +2mn2 +n2=0,∴n 2﹣ 2 n=﹣1,∴n 2﹣ 2 n+9=8.【解析】【分析】( 1)由于反比例函数y= 的图象经过点 A(﹣, 1),运用待定系数法即可求出此反比例函数的解析式;(2)首先由点 A 的坐标,可求出OA 的长度,∠AOC 的大小,然后根据旋转的性质得出∠AOB=30 ,°OB=OA,再求出点B 的坐标,进而判断点 B 是否在此反比例函数的图象上;(3)把点 P( m,m+6)代入反比例函数的解析式,得到关于m 的一元二次方程;根据题意,可得Q 点的坐标为( m, n ),再由△OQM 的面积是,根据三角形的面积公式及式变形,把mn 的值代入,即可求出n2﹣2m< 0,得出n+9 的值.mn 的值,最后将所求的代数2.如图, P1、 P2( P2在P1的右侧)是y= ( k> 0)在第一象限上的两点,点A1的坐标为(2, 0).( 1)填空:当点 P1的横坐标逐渐增大时,11 的面积将 ________(减小、不变、增△ P OA大)(2)若△ P1OA1与△ P2A1A2均为等边三角形,① 求反比例函数的解析式;②求出点P2的坐标,并根据图象直接写在第一象限内,当x 满足什么条件时,经过点P 、 P 的一次函数的函数值大于反比例函数y= 的函数值.1 2【答案】(1)减小(2)解:①如图所示,作 P1 1于点 B,B⊥ OA∵A1的坐标为( 2, 0),∴OA1=2,∵△ P1 OA1是等边三角形,∴∠ P1 OA1=60 °,又∵ P1 B⊥ OA1,∴OB=BA1=1,∴P1B=,∴P1的坐标为( 1,),代入反比例函数解析式可得k= ,∴反比例函数的解析式为y=;②如图所示,过P2作 P2C⊥ A1A2于点 C,∵△ P2 A1A2为等边三角形,∴∠ P2 A1A2=60 °,设A1C=x,则 P2C=x,∴点 P2的坐标为(2+x,x),代入反比例函数解析式可得(2+x)x=,解得 x1= ﹣ 1, x2=﹣﹣ 1(舍去),∴OC=2+ ﹣ 1= +1, P2C= (﹣ 1)=﹣,∴点 P 的坐标为(+1,﹣),2∴当 1< x<+1 时,经过点 P1 2的一次函数的函数值大于反比例函数y= 的函数值、 P【解析】【解答】解:( 1)当点 P1的横坐标逐渐增大时,点1P 离 x 轴的距离变小,而1OA 的长度不变,故△ P1 OA1的面积将减小,故答案为:减小;【分析】( 1)当点 P1的横坐标逐渐增大时,点P1离 x 轴的距离变小,而OA1的长度不变,故△ P1OA1的面积将减小;(2)①由 A1的坐标为( 2, 0),△P1 OA1是等边三角形,求出 P1的坐标,代入反比例函数解析式即可;②由△ P2A1A2为等边三角形,求出点P2的坐标,得出结论 .3.抛物线y=+x+m 的顶点在直线y=x+3 上,过点F(﹣ 2,2)的直线交该抛物线于点M、 N 两点(点M 在点 N 的左边), MA ⊥x 轴于点 A, NB⊥ x 轴于点 B.(1)先通过配方求抛物线的顶点坐标(坐标可用含m 的代数式表示),再求m 的值;(2)设点 N 的横坐标为a,试用含 a 的代数式表示点N 的纵坐标,并说明NF=NB;(3)若射线NM 交 x 轴于点 P,且 PA?PB=,求点M的坐标.【答案】(1)解: y= x2+x+m=(x+2)2+(m﹣1)∴顶点坐标为(﹣2, m﹣ 1)∵顶点在直线y=x+3 上,∴﹣ 2+3=m﹣ 1,得m=2;(2)解:过点 F 作 FC⊥ NB 于点 C,∵点 N 在抛物线上,∴点 N 的纵坐标为:a2 +a+2,即点 N( a,a2+a+2)在Rt△ FCN中, FC=a+2, NC=NB﹣ CB= a2+a,∴NF2=NC2+FC2=( a2+a)2+( a+2)2,=(a2+a)2 +( a2+4a) +4,而NB2=( a2+a+2)2,=(a2+a)2 +( a2+4a) +4∴N F2=NB2,NF=NB(3)解:连接AF、 BF,由NF=NB,得∠ NFB=∠ NBF,由( 2)的思路知, MF=MA ,∴∠ MAF=∠ MFA,∵MA ⊥ x 轴, NB⊥ x 轴,∴MA ∥ NB,∴∠ AMF+∠BNF=180 °∵△ MAF 和△ NFB 的内角总和为360 ,°∴2∠ MAF+2∠ NBF=180 ,°∠ MAF+∠NBF=90 ,°∵∠ MAB+∠ NBA=180 ,°∴∠ FBA+∠ FAB=90 ,°又∵∠ FAB+∠ MAF=90°,∴∠ FBA=∠ MAF=∠ MFA,又∵∠ FPA=∠ BPF,∴△ PFA∽△ PBF,∴=,PF2=PA×PB=,过点 F 作 FG⊥ x 轴于点 G,在 Rt△ PFG中,PG==,∴PO=PG+GO=,∴P(﹣设直线解得 k= ∴直线, 0)PF: y=kx+b,把点, b=,PF: y= x+,F(﹣ 2, 2)、点P(﹣, 0)代入y=kx+b,解方程x2+x+2= x+,得 x=﹣ 3 或 x=2(不合题意,舍去),当 x=﹣ 3 时, y=,∴M (﹣ 3,).【解析】【分析】( 1)利用配方法将二次函数化成顶点式,写出顶点坐标,由顶点再直线y=x+3 上,建立方程求出m 的值。

反比例函数的综合题与探究

反比例函数的综合题与探究

反比例函数的综合题与探究1.(2010泉州市)我们容易发现:反比例函数的图象是一个中心对称图形.你可以利用这一结论解决问题.如图,在同一直角坐标系中,正比例函数的图象可以看作是:将x 轴所在的直线绕着原点O 逆时针旋转α度角后的图形.若它与反比例函数xy 3=的图象分别交于第一、三象限的点B 、D ,已知点)0,(m A -、)0,(m C .(1)直接判断并填写:不论α取何值,四边形ABCD 的形状一定是 ; (2)①当点B 为)1,(p 时,四边形ABCD 是矩形,试求p 、α、和m 有值;②观察猜想:对①中的m 值,能使四边形ABCD 为矩形的点B 共有几个?(不必说理) (3)探究:四边形ABCD 能不能是菱形?若能, 直接写出B 点的坐标, 若不能, 说明理由. 解:(1)平行四边形(2)①∵点)1,(p B 在xy 3=的图象上, ∴p31=∴3=p 过B 作E x BE 轴于⊥,则13==,BE OE在BOE Rt ∆中,3331tan ===OE BE α α=30° ∴2=OB又∵点B 、D 是正比例函数与反比例函数图象的交点, ∴点B 、D 关于原点O 成中心对称 ∴OB=OD=2 ∵四边形ABCD 为矩形,且)0,(m A -)0,(m C∴2====OD OC OB OA ∴2=m ; ②能使四边形ABCD 为矩形的点B 共有2个; (3)四边形ABCD 不能是菱形.法一:∵点A 、C 坐标分别为)0,(m -、)0,(m ∴四边形ABCD 的对角线AC 在x 轴上. 又∵点B 、D 分别是正比例函数与反比例函数在第一、三象限的交点. ∴对角线AC 与BD 不可能垂直. ∴四边形ABCD 不能是菱形法二:若四边形ABCD 为菱形,则对角线AC ⊥BD ,且AC 与BD 互相平分, ∵A (-m ,0)、C (m ,0)∴点A 、C 关于原点O 对称,且AC 在x 轴上.∴BD 应在y 轴上,与“点B 、D 分别在第一、三象限”矛盾,∴四边形ABCD 不可能为菱形. 2.(2008湖州市) 已知:在矩形AOBC 中,4OB =,3OA =.分别以OB OA ,所在直线为x 轴和y 轴,建立如图所示的平面直角坐标系.F 是边BC 上的一个动点(不与B C ,重合),过F 点的反比例函数(0)ky k x=>的图象与AC 边交于点E . (1)求证:AOE △与BOF △的面积相等;(2)记OEF ECF S S S =-△△,求当k 为何值时,S 有最大值,最大值为多少?(3)请探索:是否存在这样的点F ,使得将CEF △沿EF 对折后,C 点恰好落在OB 上?若存在,求出点F 的坐标;若不存在,请说明理由. (1)证明:设11()E x y ,,22()F x y ,, (2)AOE △与FOB △的面积分别为1S ,2S , 由题意得11k y x =,22ky x =. 1111122S x y k ∴==,2221122S x y k ==.12S S ∴=,即AOE △与FOB △的面积相等. (2)由题意知:E F ,两点坐标分别为33k E ⎛⎫⎪⎝⎭,,44k F ⎛⎫ ⎪⎝⎭,,1111432234ECF S EC CF k k ⎛⎫⎛⎫∴==-- ⎪⎪⎝⎭⎝⎭△, 11121222EOF AOE BOF ECF ECF ECF AOBC S S S S S k k S k S ∴=---=---=--△△△△△△矩形11112212243234OEF ECF ECF S S S k S k k k ⎛⎫⎛⎫∴=-=--=--⨯-- ⎪⎪⎝⎭⎝⎭△△△2112S k k ∴=-+. 当161212k =-=⎛⎫⨯- ⎪⎝⎭时,131412S -==⎛⎫⨯- ⎪⎝⎭最大值. (3)解:设存在这样的点F ,将CEF △沿EF 对折后,C 点恰好落在OB 边上的M 点,过点E 作EN OB ⊥,垂足为N .由题意得:3EN AO ==,143EM EC k ==-,134MF CF k ==-, 90EMN FMB FMB MFB ∠+∠=∠+∠= ,EMN MFB ∴∠=∠.又90ENM MBF ∠=∠=,ENM MBF ∴△∽△.EN EM MB MF ∴=,11414312311331412k k MB k k ⎛⎫-- ⎪⎝⎭∴==⎛⎫-- ⎪⎝⎭,94MB ∴=. 222MB BF MF += ,222913444k k ⎛⎫⎛⎫⎛⎫∴+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得218k =.21432k BF ∴==.∴存在符合条件的点F ,它的坐标为21432⎛⎫⎪⎝⎭,. 3.(2009孝感市)如图,点P 是双曲线11(00)k y k x x=<<,上一动点,过点P 作x 轴、y轴的垂线,分别交x 轴、y 轴于A 、B 两点,交双曲线y =xk 2(0<k 2<|k 1|)于E 、F 两点. (1)图1中,四边形PEOF 的面积S 1= (用含k 1、k 2的式子表示); (2)图2中,设P 点坐标为(-4,3).①判断EF 与AB 的位置关系,并证明你的结论; ②记2PEF OEF S S S ∆∆=-,S 2是否有最小值?若有,求出其最小值;若没有,请说明理由. 解:(1)21k k -;(2)①EF ∥AB .证明:如图,由题意可得A (–4,0),B (0,3),2(4,)4k E --,2(,3)3k F .∴PA =3,PE =234k +,PB =4,PF =243k +. ∴223121234PA k PEk ==++,224121243PB k PFk ==++∴PA PBPE PF=. 又∵∠APB =∠EPF .∴△APB ∽△EPF ,∴∠PAB =∠PEF .∴EF ∥AB .②S 2没有最小值,理由如下:过E 作EM ⊥y 轴于点M ,过F 作FN ⊥x 轴于点N ,两线交于点Q .由上知M (0,24k -),N (23k ,0),Q (23k ,24k-). 而S △EFQ = S △PEF ,∴S 2=S △PEF -S △OEF =S △EFQ -S △OEF =S △EOM +S △FON +S 矩形OMQN=4321212222kk k k ⋅++=222112k k +=221(6)312k +-. 当26k >-时,S 2的值随k 2的增大而增大,而0<k 2<12. ∴0<S 2<24,s 2没有最小值. 说明:1.证明AB ∥EF 时,还可利用以下三种方法.方法一:分别求出经过A 、B 两点和经过E 、F 两点的直线解析式,利用这两个解析式中x 的系数相等来证明AB ∥EF;方法二:利用tan PAB ∠=tan PEF ∠来证明AB ∥EF ;方法三:连接AF 、BE ,利用S △AEF =S △BFE 得到点A 、点B 到直线EF 的距离相等,再由A 、B 两点在直线EF 同侧可得到AB ∥EF . 2.求S 2的值时,还可进行如下变形:S 2= S △PEF -S △OEF =S △PEF -(S 四边形PEOF -S △PEF )=2 S △PEF -S 四边形PEOF ,再用(1)题中的结论.4.(2009杭州市)已知平行于x 轴的直线)0(≠=a a y 与函数x y =和函数xy 1=的图象分别交于点A 和点B ,又有定点P (2,0)。

初中反比例函数专题研究

初中反比例函数专题研究

反比例函数专题研究反比例函数问题是中考中的重点问题之一,作为填空题的压轴题,它具有一定的区分度。

这类问题考查的重点包括反比例函数的概念、性质以及确定反比例函数的解析式等。

其考查方式主要分为两类:(1)确定反比例系数k 的值;(2)依据双曲线上点的性质探究线段关系式。

一、解题的基本方法:对反比例函数问题的分析中,核心是要抓住图象上点的代数意义和几何意义,借助图象上的点的代数、几何性质,建立方程求解;有时要适当设双曲线上点的坐标(双元或单元),用坐标转化题中的几何条件信息,利用双曲线上的点的代数、几何性质,再建立方程求解。

具体来说,抓住以下关键:(1)应用好双曲线上的点和反比例函数式的关系:点在双曲线上⇔点的坐标满足其解析式;(2)灵活运用一个顶点在双曲线上的三角形或矩形的面积关系(即k 的几何意义);(3)正确处理好顶点在双曲线上的图形中的整体和局部的关系;(4)灵活运用数形结合思想、方程思想;(5)恰当地设元表示点的坐标,进行线段长与点的坐标的转化,借助几何关系(如线段关系)来转化坐标。

二、基本图形和结论:1.如图1,点C (x,y )是反比例函数xk y =上任意一点,结论:①xy =k ;②S ⊿AOC =S ⊿BOC =k 21,S 矩形OACB=k2.如图2,矩形OABC 交反比例函数xky =于E 、F 两点,则有:①E F F E y y x x =;②FB CF EB AE =;③EF ∥AC3.如图3,直线CD 交反比例函数ky =于A 、B 两点,则有:AC=BD . D 、E 、F , 5.如图5,矩形OABC 交反比例函数xky =于E 、F 两点,EM ⊥OA ,FN ⊥OC ,EM 、FN 交于点D ,则有: ①S 矩形OMDN •S 矩形DFBE =S 矩形MAFD •S 矩形NDEC ;②EM •FN =OMDNS k 矩形2(或S 矩形OABC •S 矩形OMDN =k 2)6.如图,矩形矩形ABCD 的对角线BD 经过原点, AB ∥x 轴,点C 在反比例函数xky =上,则有:①S 矩形ANOE =S 矩形OFCM (或OE •ON=OM •OF=A A y x ∙=k )三、典型例题:[]1例(09年武汉中考题)如图,直线43y x =与双曲线k y x=(0x >)交于点A .将直线43y x =向右平移92个单位后,与双曲线k y x =(0x >)交于点B ,与x 轴交于点C ,若2AOBC=,则k = . 解:分别过A 、B 作AM ⊥x 轴,BN ⊥x 轴,垂足为M 、N ,易证⊿AOM ∽⊿BCN ,所以2===CNOM BNAM BCAO 又因为A 在y =x34上,所以设A 为(3a,4a ),则BN =2a ,CN =1.5a ,所以B 的坐标为(29+1.5a ,2a ),根据A 、B 在双曲线的代数意义,得:3a •4a =(29+1.5a )•2a ,解得:a 1=1,a 2=0(舍去),所以P 的坐标为(3,4),所以k =12[]2例(09年武汉4月调考)如图,直线y=x 向右平移b 个单位后得直线l ,l 与函数y=6(x>0)相交于点A ,与x 轴相交于点B ,则OA 2-OB 2=________解:过A 作AC ⊥x 轴于C ,设A 的坐标是(a,b ),则ab =6,因为直线是一、三象限的角平分线,所以平移后的直线与x 轴所夹的锐角是所以⊿ABC 是等腰直角三角形,AC=BC=b, OA 2-OB 2=(a 2+b 2 )-(a-b)2(注:本题也可以用特殊值法解决)四、实战演练:1.如图,直线3+=x y 与x 轴、y 轴分别交于A 、B 点,与)0(<=x xky 的图象交于C 、D 点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题17 反比例函数综合问题研究
1.(2019·江苏连云港中考)如图,在平面直角坐标系xOy 中,函数y x b =-+的图像与函数k y x =(x <0)的图像相交于点A (﹣1,6),并与x 轴交于点C .点D 是线段AC 上一点,△ODC 与△OAC 的面积比为2:3.
(1)k = ,b = ;
(2)求点D 的坐标;
(3)若将△ODC 绕点O 逆时针旋转,得到△OD ′C ′,其中点D ′落在x 轴负半轴上,判断点C ′是否落在函数k y x
=(x <0)的图像上,并说明理由.
2.(2019·山东济宁中考)如图,点A 的坐标是(﹣2,0),点B 的坐标是(0,6),C 为OB 的中点,将△ABC 绕点B 逆时针旋转90°后得到△A ′B ′C ′.若反比例函数y =
k x
的图象恰好经过A ′B 的中点D ,则k 的值是( )
A .9
B .12
C .15
D .18
3.(2019·浙江嘉兴中考)如图,在直角坐标系中,已知点B (4,0),等边三角形OAB 的顶点A 在反比
例函数k y x
=的图象上 (1)求反比例函数的表达式.
(2)把△OAB 向右平移a 个单位长度,对应得到△O A B '''当这个函数图象经过△O A B '''一边的中点时,求a 的值.
4.(2019·浙江绍兴中考)如图,矩形ABCD 的顶点A ,C 都在曲线y =
k x
(k 是常数k >0,x >0)上,若顶点D 的坐标为(5,3),则直线BD 的函数表达式是 .
5.(2019·浙江金华中考)如图,在平面直角坐标系中,正六边形ABCDEF 的对称中心P 在反比例函数y =k x
(k >0,x >0)的图象上,边CD 在x 轴上,点B 在y 轴上,已知CD =2. (1)点A 是否在该反比例函数的图象上?请说明理由;
(2)若该反比例函数图象与DE 交于点Q ,求点Q 的横坐标;
(3)平移正六边形ABCDEF ,使其一边的两个端点恰好都落在该反比例函数的图象上,试描述平移过程.
6.(2019·重庆市中考)如图,在平面直角坐标系中,矩形ABCD 的顶点A ,D 分别在x 轴、y 轴上,对角线BD ∥x 轴,反比例函数(0,0)k y k x x
=
>>的图象经过矩形对角线的交点E .若点A (2,0),D (0,4),则k 的值为( )
A .16
B .20
C .32
D .40
7.(2019·江苏苏州中考)如图,A 为反比例函数y =
k x (其中x >0)图象上的一点,在x 轴正半轴上有
一点B ,OB =4.连接OA ,AB ,且OA =AB =
(1)求k 的值;
(2)过点B 作BC ⊥OB ,交反比例函数y =k x
(其中x >0)的图象于点C ,连接OC 交AB 于点D ,求AD DB
的值.
8.(2019·湖北仙桃中考)如图,在平面直角坐标系中,四边形OABC 的顶点坐标分别为O (0,0),A (12,0),B (8,6),C (0,6).动点P 从点O 出发,以每秒3个单位长度的速度沿边OA 向终点A 运动;动点Q 从点B 同时出发,以每秒2个单位长度的速度沿边BC 向终点C 运动.设运动的时间为t 秒,PQ 2=y .
(1)直接写出y 关于t 的函数解析式及t 的取值范围: ;
(2)当PQ =t 的值;
(3)连接OB 交PQ 于点D ,若双曲线x
k y
(k ≠0)经过点D ,问k 的值是否变化?若不变化,请求出k 的值;若变化,请说明理由.。

相关文档
最新文档