振动测试和分析技术综述
振动测试理论和方法综述
振动测试理论和方法综述摘要:振动是工程技术和日常生活中常见的物理现象。
在长期的科学研究和工程实践中,已逐步形成了一门较完整的振动工程学科,可供进行理论计算和分析。
随着现代工业和现代科学技术的发展,对各种仪器设备提出了低振级和低噪声的要求,以及对主要生产过程或重要设备进行监测、诊断,对工作环境进行控制等等。
这些都离不开振动的测量。
振动测试技术在工业生产中起着十分重要的作用,为此设计和制造高效的振动测试系统便成为测试技术的重要内容。
本文概述了振动测试的发展历程,总结和分析了振动测试系统的基本组成和应用理论,列举了几种机械振动测试系统的类型。
最后分析了振动测试系统的几个发展趋势。
关键词:振动测试;振动测试系统;测试技术;激振测试系统1.引言振动问题广泛存在于生活和生产当中。
建筑物、机器等在内界或者外界的激励下就会产生振动。
而机械振动常常会破坏机械的正常工作,甚至会降低机械的使用寿命并对机器造成不可逆的损坏。
多数的机械振动是有害的。
因而对振动的研究不仅有利于改善人们的生活环境和生活水平,也有助于提高机械设备的使用寿命,提高人们的生产效率。
正因如此振动测试在生产和科研等多方面都有着十分重要的地位[1]。
为了控制振动,将振动给人们带来的危害降至最低,就需要我们了解振动的特性和规律,对振动进行测试和研究。
振动测试应运而生。
振动测试有着较为长久的发展历史,是与人类社会的发展有着紧密的联系。
随着计算机技术和相关高科技技术的问世和发展,振动测试系统也有了飞跃性的发展。
振动测试系统从最早的简单机械设备的应用到如今的先进的计算机技术和设备的应用。
从刚开始的检测人员的耳朵来进行测量、判断和计算出大概的故障点的原始方法到现在的计算机控制、存储、处理数据的处理[2],无不体现出振动测试系统的长足发展和飞跃式的进步。
与此同时,振动测试在理论方面也有了长足的发展,1656 年惠更斯首次提出物理摆的理论并且创造出了单摆机械钟到现今的自动控制原理和计算机的日趋完善,人们对机械振动分析的研究已日趋成熟。
振动测试理论和方法综述
振动测试理论和方法综述振动测试是一种通过测量结构物或系统的振动特性来评估其性能和健康状况的测试方法。
它在许多领域中都具有重要的应用,包括机械工程、航空航天、汽车工程、建筑工程等。
本文将对振动测试的理论和方法进行综述,以便读者了解振动测试的基本原理和常用技术。
首先,我们来了解一下振动测试的基本原理。
振动是物体或系统在其平衡位置附近发生的周期性运动。
通过测量物体或系统的振动特性,我们可以获取到其振动频率、振动模态、振动幅值等信息。
这些信息可以用于评估结构物或系统的稳定性、动态特性、故障诊断等。
在振动测试中,常用的方法包括模态测试、频率响应测试和振动传感器测试。
模态测试是一种通过激励结构物的振动来确定其固有频率和振型的方法。
它通常使用冲击激励或激励信号来激发结构物的振动,并通过加速度传感器或位移传感器来测量振动响应。
频率响应测试是一种通过将一系列频率变化的激励信号输入到结构物中,并测量响应信号来获取频率响应函数的方法。
振动传感器测试是一种通过安装振动传感器来测量结构物的振动响应的方法。
振动传感器可以是加速度传感器、位移传感器或速度传感器,它们将结构物的振动转换为电信号,然后通过电子设备进行信号处理和分析。
除了传统的测试方法,近年来还出现了一些新的技术和方法,如滑动激励测试、光纤传感器测试和无损检测测试。
滑动激励测试是一种通过激发结构物的滑动振动来测量其动态特性的方法。
光纤传感器测试是一种使用光纤传感器来测量结构物或系统的振动的方法。
它的优点是具有高灵敏度、宽频率范围和免受电磁干扰的特点。
无损检测测试是一种通过使用非接触式技术来评估结构物或系统的健康状况的方法。
它可以检测和诊断结构物中的缺陷、损伤和故障,如裂纹、松动等。
在进行振动测试时,需要注意一些技术和方法的选择和应用。
首先,需要选择合适的激励方式和信号处理方法。
对于不同的结构物或系统,选择适当的激励方式和信号处理方法可以提高测试效果和数据质量。
其次,需要进行合理的实验设计和数据分析。
振动测试与分析报告
振动测试与分析报告摘要:振动测试与分析是一种重要的技术手段,可以用于评估和优化机械设备的性能和可靠性。
本报告通过对某台机械设备的振动测试与分析,探讨其振动特性、故障诊断以及优化方案,为设备运营和维护提供科学依据。
一、引言振动测试与分析在现代机械设备的研发、生产和维护中起着至关重要的作用。
通过监测机械设备的振动信号,可以有效评估其工作状态和性能,并提前发现潜在的故障。
本次振动测试与分析的目的是对某台机械设备的振动特性进行深入研究,以提供相关的优化方案和建议。
二、实验装置及方法本次实验选取了一台工业用离心泵作为研究对象。
实验装置主要由振动传感器、数据采集设备和分析软件组成。
在进行振动测试之前,首先对设备进行了详细的检查和维护,确保设备正常运行。
然后,将振动传感器安装在设备的关键位置,并通过数据采集设备将振动信号采集下来。
三、振动特性分析通过对振动信号进行频域分析和时域分析,可以获得机械设备的振动特性。
频域分析可以将振动信号转换为频谱图,从而确定振动信号的主要频率成分。
时域分析可以获得振动信号的时间变化特征,包括振动的幅值、相位等。
通过对实验数据的分析,我们得到了离心泵在不同工况下的振动特性,并与设备的设计参数进行对比。
四、故障诊断分析振动信号中的异常振动往往与设备的故障有关。
根据振动信号的频谱图和时域特征,可以判断设备是否存在故障,并定位具体的故障位置。
本次实验中,经过振动信号的分析,我们发现离心泵在高速运行时出现了明显的振动异常。
进一步的故障诊断分析表明,该异常是由设备轴承的磨损引起的。
五、优化方案与建议针对离心泵存在的振动问题,我们提出了几种优化方案和建议。
首先,应对设备轴承进行维护和更换,以避免由于磨损而引起的振动问题。
其次,可以通过增加附加的减振装置来减少设备的振动。
此外,优化设备的结构设计和制造工艺也是减少振动的有效手段。
六、结论通过振动测试与分析,我们深入研究了某台离心泵的振动特性以及故障诊断。
振动测试技术分析报告
文件编码:版本:密级:生效日期:页数:页振动测试技术分析报告拟制:__ ___ __ ___ 日期:_ 审核:___________________ 日期:__________ 批准:__ ___ __ ___ 日期:_目录1、目的 (3)2、参考标准 (3)3、术语解释 (4)4、振动测试简介 (9)4.1.振动测试必要性 (9)4.2.振动引起失效模式 (10)5、振动测试项目 (11)6、正弦振动试验 (11)6.1.正弦振动试验目的 (11)6.2.正弦振动应力参数 (11)6.3.正弦振动试验条件 (12)6.4.正弦振动试验标准 (13)7、随机振动试验 (16)7.1.随机振动试验目的 (16)7.2.随机振动应力参数 (16)7.3.随机振动试验条件 (21)7.4.随机振动试验标准 (21)8、振动台简介 (23)8.1.机械式振动台 (23)8.2.电磁式振动台 (24)8.3.液压式振动台 (26)8.4.振动台选取 (28)振动测试技术分析报告1、目的分析振动对产品可靠性的影响,评估导入振动测试的必要性;介绍振动测试的定义、测试方法以及相关标准;为环境可靠性测试体系中振动测试规范的制订提供依据;2、参考标准GB10593.3-90电工电子产品环境参数测量方法振动数据处理和归纳GB10593.1-89电工电子产品环境参数测量方法振动GB05170.14-1985电工电子产品环境试验设备基本参数检定方法振动(正弦)试验用电动振动台GB05170.15-2005-T 电工电子产品环境试验设备基本参数检定方法振动(正弦)试验用液压振动台GB05170.13-2005-T 电工电子产品环境试验设备基本参数检定方法振动(正弦)试验用机械振动台GB02423.56-2006-T 电工电子产品环境试验第2部分:试验方法试验Fh:宽带随机振动(数字控制)和导则GB02423.49-1997-T 电工电子产品环境试验第2部分:试验方法试验Fe:振动-正弦拍频法GB02423.48-1997-T 电工电子产品环境试验第2部分:试验方法试验Ff:振动-时间历程法GB02423.11-1997-T 电工电子产品环境试验第2部分:试验方法试验Fd:宽频带随机振动一般要求GB02423.10-1995-T 电工电子产品环境试验第2部分:试验方法试验Fc和导则:振动(正弦)3、术语解释3.1.通用术语●位移displacement:表征物体或质点相对于某参考系位置变化的矢量。
振动测试和分析技术综述分析解析
振动测试和分析技术综述黄盼(西华大学,成都四川 610039)摘要:振动测试和分析对结构和系统动态特性分析及其故障诊断是一种有效的手段。
综述了当前振动测试和分析技术,包括振动测试与信号分析的国内外发展概况、振动信号数据采集技术、振动测试技术、以及振动测试与信号分析的工程应用,最后对振动测试与分析技术的未来发展方向进行了展望。
关键词:振动测试; 信号分析; 动态特性; 综述Summary of Vibration Testing and AnalysisHuangPan( Xihua University,Chengdu 610039,China)Abstract: Vibration testing and analysis is an effective tool in analyzing structure and system dynamic characteristic and detecting the failures of structures,systems and facilities. The present paper reviews the current vibration testing and analysis techniques,including the development of vibration measurement and analysis of domestic and foreign,vibration signal data acquisition,vibration testing technology ,vibration measurement and analysis in engineering application. Finally,the future development in the field of vibration testing and analysis is predicted.Key words: vibration testing; signal analysis; dynamic characteristic;overview0 引言随着科学技术的发展,振动及设备动态特性引起的问题受到各行各业的高度关注。
振动测试与分析
振动测试与分析引言:在各行各业中,振动测试与分析是一项重要的技术,它可以帮助我们了解各种物体和系统的振动特性,以及找出潜在的问题并提供解决方案。
本文将介绍振动测试与分析的基本原理和方法,以及其在不同领域的应用。
一、振动测试的原理振动测试是通过将传感器安装在被测试物体上,测量物体在振动过程中产生的加速度或速度来获取振动信号。
传感器将振动信号转换为电信号,再经过信号放大和采样,最终得到振动波形。
常用的传感器包括加速度计、速度计和位移传感器。
二、振动测试的方法1.自由激振法:在物体上施加外力进行振动,然后测量物体的振动响应。
这种方法适用于研究物体的振动特性和固有频率。
2.强迫激振法:通过施加特定的激励信号,使物体以特定频率和幅度振动。
这种方法常用于测试物体的耐振性和振动特性。
3.模态分析法:通过激励物体的不同模态形式,测量物体不同模态的振动响应,从而研究物体的模态特性和阻尼特性。
三、振动测试与分析的应用1.机械工程领域:振动测试与分析在机械工程中有广泛的应用。
例如,在汽车工业中,振动测试可以用于测试汽车零件的耐用性和可靠性,预测零件的寿命。
在航空航天领域,振动测试可以用于测试航天器的结构强度和振动特性,以提高飞行安全性。
2.电子工程领域:振动测试与分析在电子工程领域也有重要的应用。
例如,在手机制造业中,振动测试可以用于测试手机零件的质量,确保手机在使用过程中的稳定性和可靠性。
另外,在电子设备的设计中,振动测试可以用于优化电路板的设计,减少振动对电子元器件的损坏。
3.土木工程领域:振动测试与分析在土木工程领域有助于评估建筑物和结构的安全性。
例如,在地震工程中,振动测试可以用于评估建筑物的抗震性能,预测地震情况下的结构变形和破坏程度。
此外,振动测试还可以用于监测桥梁、隧道等工程结构的安全状况。
4.生物医学领域:振动测试与分析在生物医学领域中也有应用。
例如,医学领域中常用的超声波检测技术,就是利用振动信号来获取人体组织和器官的内部信息。
振动诊断技术综述
振动诊断技术综述振动诊断技术可以追溯到19世纪初期的机械故障排除。
随着科学技术的不断发展,振动诊断技术也得到了迅速发展。
振动诊断技术是利用机械振动信号分析技术,对机器设备的故障状态进行判别和诊断的一种方法。
它是一种非常常见的无损检测方法,可以帮助工程师及时发现机器设备的故障,回避严重的后果。
振动诊断技术可以根据不同的应用和场合,分成不同的分类。
第一种分类是定期振动检测。
这种检测方法是针对机器设备定期进行振动检测,来确定它们的运行状态。
这种方法通常可以通过记录并分析机器设备的振动信号来识别故障信息。
如果振动信号发生了变化,就可以通过分析变化的振动信息来诊断出设备的故障。
第二种分类是故障诊断。
这种方法主要是针对机械故障诊断做出的。
它可以通过分析机械振动信号来判断机械设备是否发生故障,故障类型以及故障严重程度。
通过对振动信号的分析,我们可以确定故障的类型,然后根据类型来采取针对性的措施。
第三种分类是状态监测。
这种方法可以说是振动诊断技术中最重要的一种应用。
它可以检测设备的运行状态,预测故障的发生以及判断是否需要进行保养维护。
通过状态监测,设备的寿命可以被大大延长,同时节省了维护成本。
振动诊断技术是复杂的技术系统,其中包括了很多不同的技术方法。
它涉及到机械振动、材料力学、信号处理、人工智能等多个领域知识。
从振动检测、故障诊断到状态监测,振动诊断技术依赖于多种技术手段支持,必须在实践中尝试和实施。
总之,振动诊断技术在现代工程中发挥着至关重要的作用。
它可以保障设备的安全可靠,提高生产效率和质量,减少维护成本以及环保化产业。
因此,振动诊断技术将会越来越普及和深入到现代工程中。
振动测试理论和方法综述
振动测试理论和方法综述摘要:振动是工程技术和日常生活中常见的物理现象。
在长期的科学研究和工程实践中,已逐步形成了一门较完整的振动工程学科,可供进行理论计算和分析。
随着现代工业和现代科学技术的发展,对各种仪器设备提出了低振级和低噪声的要求,以及对主要生产过程或重要设备进行监测、诊断,对工作环境进行控制等等。
这些都离不开振动的测量。
振动测试技术在工业生产中起着十分重要的作用,为此设计和制造高效的振动测试系统便成为测试技术的重要内容。
本文概述了振动测试的发展历程,总结和分析了振动测试系统的基本组成和应用理论,列举了几种机械振动测试系统的类型。
最后分析了振动测试系统的几个发展趋势。
关键词:振动测试;振动测试系统;测试技术;激振测试系统1.引言振动问题广泛存在于生活和生产当中。
建筑物、机器等在内界或者外界的激励下就会产生振动。
而机械振动常常会破坏机械的正常工作,甚至会降低机械的使用寿命并对机器造成不可逆的损坏。
多数的机械振动是有害的。
因而对振动的研究不仅有利于改善人们的生活环境和生活水平,也有助于提高机械设备的使用寿命,提高人们的生产效率。
正因如此振动测试在生产和科研等多方面都有着十分重要的地位[1]。
为了控制振动,将振动给人们带来的危害降至最低,就需要我们了解振动的特性和规律,对振动进行测试和研究。
振动测试应运而生。
振动测试有着较为长久的发展历史,是与人类社会的发展有着紧密的了解。
随着计算机技术和相关高科技技术的问世和发展,振动测试系统也有了飞跃性的发展。
振动测试系统从最早的简单机械设备的应用到如今的先进的计算机技术和设备的应用。
从刚开始的检测人员的耳朵来进行测量、判断和计算出大概的故障点的原始方法到现在的计算机控制、存储、处理数据的处理[2],无不体现出振动测试系统的长足发展和飞跃式的进步。
与此同时,振动测试在理论方面也有了长足的发展,1656 年惠更斯首次提出物理摆的理论并且创造出了单摆机械钟到现今的自动控制原理和计算机的日趋完善,人们对机械振动分析的研究已日趋成熟。
无损检测技术中的振动测试与分析方法详解
无损检测技术中的振动测试与分析方法详解无损检测技术被广泛应用于机械设备、航空航天、汽车工业等领域,其中振动测试与分析方法是无损检测技术的重要组成部分之一。
振动测试与分析方法的目标是通过对被测物体振动信号的采集和分析,来判断其结构可靠性、研究其工作原理、预测其故障状态等。
本文将详细介绍振动测试与分析方法的原理、应用以及常用的测试设备。
振动测试与分析方法常用于故障诊断和结构动力学分析。
通过检测被测物体振动信号的频率、振幅和相位等参数,可以确定其是否存在异常振动、磨损、脱落等问题。
同时,振动信号的频谱分析和频域分析可以获取系统的动态特性,如共振频率、固有频率等信息,为结构设计和动态优化提供参考依据。
振动测试首先需要对被测物体进行传感器的安装。
常用的传感器包括加速度传感器、速度传感器和位移传感器。
加速度传感器通过测量物体在特定点上的加速度来获取振动信号;速度传感器通过测量物体在特定点上的速度来获取振动信号;位移传感器通过测量物体在特定点上的位移来获取振动信号。
在振动测试过程中,需要注意传感器的选择和位置的确定。
传感器选择要考虑被测物体的特点以及测试需求。
位置的确定则需考虑传感器的灵敏度、测量范围和安全因素等因素。
振动测试完成后,需要进行信号处理和分析。
常用的信号处理方法包括傅里叶变换、小波变换和相关分析等。
傅里叶变换可以将时域信号转换为频域信号,通过分析频谱可以获取振动信号的频率成分。
小波变换可以将信号分解为不同频率成分的小波系数,通过对小波系数的分析可以对不同频率成分的振动信号进行识别和分析。
相关分析可以用于判断振动信号与特定事件之间的关系,如判断振动信号是否与某个故障事件有关联。
振动测试与分析方法在工程实践中有着广泛的应用。
在机械设备维护中,通过对振动信号的监测和分析,可以对设备的故障状态进行诊断和预测,提前采取维修措施,避免设备故障带来的不必要损失。
在航空航天领域,振动测试与分析方法被用于研究飞机、火箭等飞行器的动力学特性,优化设计和提高性能。
物理实验技术中的振动测量与解析方法
物理实验技术中的振动测量与解析方法振动作为物体的一种运动形式,广泛存在于各个领域。
在物理实验中,准确测量和分析振动现象是十分重要的。
本文将探讨物理实验技术中的振动测量与解析方法。
一、振动测量技术1.光电测振法光电测振法是一种通过光电测量来估测物体振动状态的方法。
它通过将物体固定在光电测振仪上,利用光电测振仪中的激光器和光敏位置传感器来测量物体的振动位移。
该方法具有高分辨率和高灵敏度的特点,适用于精确测量微小振动。
2.电容传感器测振法电容传感器测振法利用电容传感器来测量物体振动的方法。
当物体振动时,导致电容传感器的容量发生改变,通过测量电容传感器的电容变化来计算出物体的振动位移。
电容传感器测振法具有快速响应和较高的精度,常用于测量中等振幅的振动。
3.激光干涉测振法激光干涉测振法是一种利用激光干涉原理来测量物体振动的方法。
该方法利用激光束照射到物体上,并通过测量激光光束在物体表面反射出的干涉光信号的变化来计算物体的振动位移。
激光干涉测振法具有非接触性、高精度和灵敏度高的特点,适用于测量微小振动。
二、振动解析方法1.频谱分析法频谱分析法是一种将振动信号分解为不同频率分量的方法。
它可以将复杂的振动信号分解为一系列单一频率的分量,用于分析物体振动的频率特性。
常用的频谱分析方法包括傅里叶变换和小波变换。
频谱分析法可以帮助我们了解物体的共振频率以及受力后的振动特性。
2.模态分析法模态分析法是一种研究物体振动模态的方法。
它通过对物体进行激励,并测量物体在不同模态下的振动响应,从而确定物体的各个振动模态及其特征参数。
常用的模态分析方法包括振型测试和响应谱法。
模态分析法对于研究物体的振动特性和结构动力学具有重要意义。
3.相位空间分析法相位空间分析法是一种通过分析物体在相位空间中的轨迹来研究振动特性的方法。
它可以将多维振动信号映射到相位空间中,从而形成轨迹。
通过观察轨迹的形状和演化规律,可以揭示物体的非线性振动特性,并推断物体的非线性动力学行为。
工程振动测试与分析
工程振动测试与分析1. 引言工程振动是指在各种工程实际操作中,由于机械、电气等设备的运行或外界因素的干扰,导致工程结构或设备发生振动的现象。
振动现象的产生和传播对于工程结构的设计和运行具有重要意义。
为了保证工程结构和设备的安全和稳定运行,需要进行工程振动测试和分析。
本文将介绍工程振动测试与分析的基本概念、测试方法和常见分析技术,并通过实际案例分析,讨论工程振动的影响因素、振动测试的步骤和参数分析等内容。
2. 工程振动测试方法2.1 传感器选择2.1.1 加速度传感器加速度传感器是测量振动的常用传感器之一。
它能够测量物体在单位时间内的速度变化率,通常用于测量物体的加速度。
在工程振动测试中,加速度传感器能够直接测量物体的振动加速度,并将其转化为电信号输出。
2.1.2 速度传感器速度传感器用于测量物体的速度变化。
它通过测量单位时间内物体的位移变化,计算出物体的速度。
速度传感器的测量原理和加速度传感器类似,但对于低频振动测试更加适用。
2.1.3 位移传感器位移传感器用于测量物体的位移变化。
它通过测量物体的位置变化,计算出其位移值。
位移传感器适用于测量低频振动和大振幅振动。
2.2 测试步骤2.2.1 确定测试点位在进行工程振动测试之前,需要确定测试点位。
测试点位的选择应该考虑到工程结构的特点,以及可能产生振动的位置。
2.2.2 安装传感器确定测试点位后,需要安装相应的传感器。
根据测试要求,选择适当的传感器类型,并按照传感器的安装要求进行安装。
在安装过程中,要注意传感器的位置和方向,确保测量结果的准确性。
2.2.3 进行振动测试安装完成后,可以进行振动测试。
根据测试目的和要求,在合适的时间段内进行振动测试,并记录相应的振动数据。
2.3 振动参数分析2.3.1 振幅振幅是指振动物体在振动过程中的最大位移量。
它是描述振动强度的重要参数之一。
根据振动的不同方向,可以分为垂直振幅和水平振幅。
2.3.2 频率频率是指振动物体振动的次数。
机械振动测量与分析技术研究
机械振动测量与分析技术研究引言:机械振动是指机械设备在运行过程中产生的以时间为变量的物体相对于平衡位置的周期性位移。
振动是机械设备故障的主要表现形式之一,也是导致机械设备损坏的重要因素之一。
因此,机械振动的测量与分析对于确保机械设备的正常运行和改善其维护管理具有重要意义。
一、机械振动测量技术1. 传统测振方法传统的机械振动测量方法包括冲击法和综合法。
冲击法通过施加冲击力,测量振动响应,从而得到机械设备的振动水平。
综合法则是利用速度传感器、位移传感器和加速度传感器等多种传感器对机械设备进行全面测量,并综合分析得到振动特征。
传统测振方法的优点是技术成熟,成本较低,但仪器设备复杂,测量精度有限。
2. 先进测振方法随着科技的发展,先进的机械振动测量技术逐渐应用于实际工程中。
其中,使用激光干涉仪进行振动测量是一种较为先进的方法。
激光干涉仪通过测量光束的相位差,可以精确测量出机械设备的振动位移,具有高测量精度和范围广的优点。
二、机械振动分析技术1. 频谱分析法频谱分析法是机械振动分析中一种常用的方法。
它基于傅立叶变换原理,将时域信号转换为频域信号,得到振动信号的频谱图。
通过分析频谱图,可以确定机械设备振动的主要频率分量,从而判断是否存在故障。
2. 多变量分析法多变量分析法是一种综合运用多种技术方法的机械振动分析方法。
它通过采集多种传感器的信号,如振动信号、温度信号、压力信号等,进行实时监测和分析。
通过分析多种信号之间的相互关系,可以更准确地判断机械设备是否存在异常。
三、机械振动测量与分析技术在实际应用中的意义机械振动测量与分析技术在工程实践中具有重要的应用价值。
1. 故障预警与诊断通过对机械设备振动的实时监测与分析,可以提前发现设备的故障迹象,预警并进行及时维护,避免设备发生严重故障,降低故障造成的损失。
同时,准确诊断故障原因,有助于对设备进行精确维护,提升设备的可靠性和寿命。
2. 振动信号与产品质量关系研究振动信号与机械设备的产品质量具有一定的关联性,通过测量和分析机械设备的振动信号,可以研究振动信号与产品质量之间的关系,并进一步优化产品设计和加工工艺,提高产品质量和竞争力。
振动测试与分析技术的发展
振动测试与分析技术的发展引言:振动是机械工程中一个重要的研究领域,它涉及到机械系统的稳定性、可靠性以及性能优化等方面。
振动测试与分析技术作为振动研究的重要手段,经过多年的发展和创新,已经成为机械工程领域中不可或缺的一部分。
本文将探讨振动测试与分析技术的发展历程以及其在制造过程中的应用。
一、振动测试技术的发展振动测试技术起源于上世纪初,最初主要应用于航空航天领域。
随着工业技术的进步和需求的增加,振动测试技术逐渐扩展到了其他领域,如汽车、电子设备、船舶等。
在早期,振动测试主要依靠人工测量和简单的仪器设备,测试结果的准确性和可靠性受到了很大的限制。
随着科技的进步,计算机技术的应用为振动测试带来了巨大的突破。
计算机辅助测试系统的出现使得振动测试能够更加自动化、精确化和高效化。
传感器技术的发展也为振动测试提供了更多的选择,如加速度传感器、速度传感器和位移传感器等。
同时,数据采集与处理技术的提升使得振动测试数据的获取和分析更加方便和快捷,大大提高了测试的效率和准确性。
二、振动分析技术的发展振动分析技术是振动测试的重要组成部分,它通过对振动信号的处理和分析,可以获取到机械系统的振动特性和故障信息。
随着振动测试技术的发展,振动分析技术也得到了广泛的应用和研究。
最早的振动分析方法主要依靠频谱分析技术,通过将时域信号转换为频域信号,可以获取到系统的频率响应和共振特性。
然而,频谱分析方法只能提供静态的频率信息,对于动态的振动问题并不适用。
随着时间域分析方法的发展,如包络分析、瞬时频率分析和小波分析等,振动分析技术的应用范围得到了进一步扩展。
这些方法能够提供更多的振动特征信息,如冲击信号、共振频率变化和瞬态振动等,对于故障诊断和预测具有重要意义。
三、振动测试与分析技术在制造中的应用振动测试与分析技术在制造过程中的应用主要体现在以下几个方面:1. 产品设计与改进:通过振动测试与分析技术,可以评估产品的振动性能和可靠性,为产品的设计和改进提供依据。
振动测试与分析技术在机械工程中的应用研究
振动测试与分析技术在机械工程中的应用研究引言:振动测试与分析技术是现代机械工程中非常重要的一项技术,它可以帮助工程师了解机械设备的振动特性,从而提高机械设备的工作稳定性和寿命。
本文将探讨振动测试与分析技术在机械工程中的应用研究,并分析其在不同领域中的具体应用和效果。
1. 振动测试技术的原理振动测试技术是通过激励机械设备,测量振动信号的幅值、频率和相位,以分析机械设备的振动特性。
振动信号可以分为时间域信号和频域信号两种类型。
时间域信号用来分析振动信号的幅值和相位信息,频域信号则用来分析振动信号的频率特性。
2. 振动测试技术的应用范围振动测试技术广泛应用于机械工程中的各个领域,包括航空航天、电力、交通运输、制造业等。
以航空航天领域为例,振动测试技术可以用于检测飞机结构的振动特性,以确保飞机在高速飞行时的稳定性和安全性。
3. 振动测试技术在机械故障诊断中的应用振动测试技术在机械故障诊断中具有重要的应用价值。
通过对机械设备的振动信号进行分析,可以检测到机械设备中存在的故障,并且可以通过振动信号的特征参数来识别具体的故障类型,从而及时修复设备,避免进一步损坏。
例如,在制造业中,通过振动测试技术可以检测到机床的刀具磨损情况,从而及时更换刀具,保证加工质量和效率。
4. 振动测试技术在结构优化中的应用振动测试技术还可以在机械结构优化方面发挥作用。
通过对机械结构的振动特性进行测试和分析,可以找出机械结构中存在的共振点和振动源,进而改善结构设计,减少结构的共振现象,提高机械设备的工作稳定性和寿命。
例如,在汽车工程中,可以利用振动测试技术来检测汽车车身的共振点,从而调整车身结构,减少共振现象,提高行车的平稳性和舒适性。
5. 振动测试技术在产品可靠性设计中的应用振动测试技术在产品可靠性设计中也有重要的应用价值。
通过对产品在振动条件下的耐久性测试,可以评估产品的寿命和可靠性,为产品的设计和制造提供依据。
例如,在电子产品领域,可以利用振动测试技术来测试手机在跌落环境下的可靠性,以保证手机在正常使用过程中不会发生损坏或故障。
振动分析总结报告
振动分析总结报告振动分析总结报告振动分析是一种对物体在振动作用下的响应进行分析和研究的方法。
通过振动分析可以得到物体的振动模态、频率响应以及频率响应函数等重要参数,对物体的设计、制造和运行都具有重要意义。
在振动分析过程中,需要进行实验测量和数值模拟两种方法的结合,以获得准确的结果。
本次振动分析的实验对象是一台电动机,旨在研究其在运行过程中的振动情况,并寻找振动的来源和原因。
实验采用传感器在电动机不同位置处的布置来获取振动信号,再通过信号处理和数据分析得到相应的振动特征参数。
通过实验得到的结果与理论计算和相关指标进行对比和评估,以确定电动机的振动是否正常。
在振动分析的测量过程中,我们发现电动机在运行时产生了较大的振动,振动主要集中在转子轴的两端。
通过分析振动信号的频谱和振动幅值,我们发现电动机存在不平衡的问题。
不平衡可以导致转子轴产生离心力,使其在运动过程中引起振动。
根据实验结果和目标要求,我们对电动机进行了重新调整和平衡处理,从而有效减小了振动的幅值。
然而,实验中我们也遇到了一些挑战。
首先,由于电动机受限于装置结构和使用条件,使用传统的振动传感器进行振动测量并不方便,我们需要寻找到适用的传感器和布置方式。
其次,振动信号的处理和分析也面临一定的困难,我们需要在噪声干扰下提取出有效的振动信号,并进行相应的数据处理以获得准确的振动特征参数。
最后,在振动分析的过程中,我们需要结合相关理论和经验知识,进行数据分析和结果评估,以确保分析结果的可靠性和准确性。
在本次振动分析过程中,我们收集到了丰富的数据和有意义的结果。
通过对电动机的振动特征进行分析,我们确定了振动来源和原因,并针对问题进行了相应的处理和优化。
通过实验和分析,我们得出了以下几点结论和总结:首先,电动机存在不平衡问题,导致了振动的产生。
不平衡可以通过重新调整和平衡来减小振动的幅值。
其次,振动信号的处理和分析是振动分析的关键步骤,需要结合理论和实际经验进行综合分析和评估。
振动试验技术资料和数据处理和分析方法
振动试验技术和数据处理和分析方法振动试验是指评定产品在预期的使用环境中抗振力量而对受振动的实物或模型进展的试验。
依据施加的振动载荷的类型把振动试验分为正弦振动试验和随机振动试验两种。
正弦振动试验包括定额振动试验和扫描正弦振动试验。
扫描振动试验要求振动频率按肯定规律变化,如线性变化或指数规律变化。
振动试验主要是环境模拟,试验参数为频率范围、振动幅值和试验持续时间。
振动对产品的影响有:构造损坏,如构造变形、产品裂纹或断裂;产品功能失效或性能超差,如接触不良、继电器误动作等,这种破坏不属于永久性破坏,由于一旦振动减小或停顿,工作就能恢复正常;工艺性破坏,如螺钉或连接件松动、脱焊。
从振动试验技术进展趋势看,将承受多点掌握技术、多台联合感动技术。
简介振动试验是仿真产品在运输、安装及使用环境中所患病到的各种振动环境影响,本试验是模拟产品在运输、安装及使用环境下所患病到的各种振动环境影响,用来确定产品是否能承受各种环境振动的力量。
振动试验是评定元器件、零部件及整机在预期的运输及使用环境中的抵抗力量。
最常使用振动方式可分为正弦振动及随机振动两种。
正弦振动是试验室中常常承受的试验方法,以模拟旋转、脉动、震荡(在船舶、飞机、车辆、空间飞行器上所消灭的)所产生的振动以及产品构造共振频率分析和共振点驻留验证为主,其又分为扫频振动和定频振动两种,其严苛程度取决于频率范围、振幅值、试验持续时间。
随机振动则以模拟产品整体性构造耐震强度评估以及在包装状态下的运送环境,其严苛程度取决于频率范围、GRMS、试验持续时间和轴向。
振动又分为正弦振动、随机振动、复合振动、扫描振动、定频振动。
描述振动的主要参数有:振幅、速度、加速度。
振动试验包括响应测量、动态特性参量测定、载荷识别以及振动环境试验等内容。
响应测量主要是振级的测量。
为了检验机器、构造或其零部件的运行品质、安全牢靠性以及确定环境振动条件,必需在各种实际工况下,对振动系统的各个选定点和选定方向进展振动量级的测定,并记录振动量值同时间变化的关系(称为时间历程)。
振动测量技术综述
振动测量技术综述摘要振动分析和振动设计已成为产品设计中的一个关键环节,对振动的研究意义非常重大。
通过掌握振动的基本理论和分析方法,用以确定和限制振动时工程结构和机械产品的性能、寿命及安全的有害影响;或者运用振动理论去创造和设计新型振动设备、仪表及自动化装置。
依据测振传感器与被测物接触与否,振动的测量可以分为接触测量和非接触测量,本文从这两个方面分别对振动测量领域的主要方法、优缺点、原理及应用做了详细阐述。
关键词综述;振动;振动测量;接触测量;非接触测量AbstractVibration analysis and vibration design product design has become a critical part of the vibration of great significance. Through the grasp of basic theory and analysis of vibration, to make sure and limit vibration of engineering structures and mechanical performance, life and harmful effects on security; or the use of vibration theory to create and design new and automatic vibration instruments. Vibration sensor based on contacts with the measured object or not, vibration measurement can be divided into contact measurement and non-contact measurement, the paper describes separately from two main methods of vibration measurement, advantages and disadvantages, applications and the theory in detail .Key words summarize vibration vibration measurement contact measurement non-contact measurement目录摘要 (1)Abstract (2)第1章绪论 (4)1.1 总述 (4)1.2 振动测量分类 (4)1.2.1 振动测量一般分类 (4)1.2.2 接触式振动测量 (4)1.2.3 非接触式振动测量 (3)第2章接触式振动测量技术 (5)2.1 压电式加速度传感器振动测量技术 (7)2.2 电阻应变式振动测量技术 (8)第3章非接触振动测量技术 (9)3.1 声发射多普勒振动测量技术 (9)3.2 电涡流式振动测量技术 (9)3.3 光电测振技术 (11)3.3.1 光电测振基础实验 (11)3.3.2 外差式激光干涉技术 (12)3.4 相移法散斑振动测量技术 (12)3.5 基于光纤的振动测量技术 (14)3.6 基于成像的振动测量技术 (14)第4章后级信号处理技术 (16)结论 (21)参考文献 (23)1.绪论1.1 总述从广义上说振动是指描述系统状态的参量(如位移、电压)在其基准值上下交替变化的过程。
振动测量综述
II
第1章 绪论
1.1 什么是振动
振动是指一个状态改变的过程。即物体的往复运动。 从广义上说振动是指描述系统状态的参量在其基准值上下交替变化的过程。 狭义的指机械振动,即力学系统中的振动。电磁振动习惯上称为振荡。力学系统 能维持振动,必须具有弹性和惯性。由于弹性,系统偏离其平衡位置时,会产生 回复力,促使系统返回原来位置;由于惯性,系统在返回平衡位置的过程中积累 了动能,从而使系统越过平衡位置向另一侧运动。正是由于弹性和惯性的相互影 响,才造成系统的振动。按系统运动自由度分,有单自由度系统振动和多自由度 系统振动。有限多自由度系统与离散系统相对应,其振动由常微分方程描述;无 限多自由度系统与连续系统相对应,其振动由偏微分方程描述。方程中不显含时 间的系统称自治系统;显含时间的称非自治系统。按系统受力情况分,有自由振 动、衰减振动和受迫振动。按弹性力和阻尼力性质分,有线性振动和非线性振动。 振动又可分为确定性振动和随机振动,后者无确定性规律,如车辆行进中的颠簸。 振动是自然界和工程界常见的现象。振动的消极方面是:影响仪器设备功能,降 低机械设备的工作精度,加剧构件磨损,甚至引起结构疲劳破坏;振动的积极方 面是:有许多需利用振动的设备和工艺。振动分析的基本任务是讨论系统的激励、 响应和系统动态特性三者之间的关系。20 世纪 60 年代以后,计算机和振动测试 技术的重大进展,为综合利用分析、实验和计算方法解决振动问题开拓了广阔的 前景。
振动研究总结报告范文(3篇)
第1篇一、引言振动现象广泛存在于自然界和工程实践中,对于振动的研究对于提高工程结构的安全性、提高设备的使用寿命、优化设计参数等方面具有重要意义。
本报告针对振动研究进行了总结,主要包括成果内容、研究方法、特色和创新等方面。
二、成果内容1. 振动理论研究在振动理论研究方面,本报告主要研究了以下内容:(1)振动的基本理论:介绍了振动的基本概念、振动类型、振动方程、振动特性等。
(2)振动控制理论:研究了振动控制的基本方法,如被动控制、主动控制、半主动控制等,并对各种控制方法进行了比较分析。
(3)振动分析理论:研究了振动分析的常用方法,如有限元法、频域分析法、时域分析法等,并对各种方法进行了比较分析。
2. 振动实验研究在振动实验研究方面,本报告主要研究了以下内容:(1)振动测试技术:介绍了振动测试的基本原理、测试设备、测试方法等。
(2)振动实验平台:建立了振动实验平台,包括激振器、传感器、数据采集系统等,用于模拟和研究各种振动现象。
(3)振动实验结果分析:对振动实验数据进行处理和分析,得到了振动特性、振动响应等关键参数。
3. 振动应用研究在振动应用研究方面,本报告主要研究了以下内容:(1)工程结构振动:研究了工程结构在地震、风荷载等作用下的振动特性,为工程结构的抗震设计提供了理论依据。
(2)机械设备振动:研究了机械设备在运行过程中的振动特性,为提高设备的使用寿命和降低故障率提供了技术支持。
(3)振动控制应用:研究了振动控制技术在工程实践中的应用,如振动隔离、振动抑制等。
三、研究方法1. 文献综述法:通过对国内外振动研究文献的查阅和整理,对振动研究现状、发展趋势进行了分析。
2. 理论分析法:运用振动理论对振动现象进行定性和定量分析,为实验研究提供理论指导。
3. 实验研究法:通过搭建振动实验平台,对振动现象进行模拟和研究,获取实验数据。
4. 数据分析法:运用数据统计、数据处理、数据分析等方法对振动实验数据进行处理和分析。
振动测试和分析技术综述
作者简介:赵淳生(1938—),男,湖南衡山人,中科院院士,长期从事振动测试和分析、结构模态分析、激振器、设备故障诊断与状态监测和超声电机等领域的研究,获得多项国家级和部省级发明奖和科技进步奖。
纪国宜(1963—),男,安徽和县人,硕士,副研究员,长期从事振动测试与信号分析、结构模态分析技术、结构自动测频技术和设备故障诊断与状态监测等方面的研究,获得过多项部省级科技进步奖。
振动测试和分析技术综述纪国宜a ,赵淳生b(南京航空航天大学a.精密驱动研究所;b.振动工程研究所,江苏南京210016)摘要:振动测试和分析对结构和系统动态特性分析及其故障诊断是一种有效的手段。
综述了当前振动测试和分析技术,包括振动信号数据采集技术、系统动力学特性测试方法、振动信号的分析和处理技术及设备故障诊断技术,简述了各种方法的优缺点及适用范围,最后对振动测试与分析技术的未来发展方向进行了展望。
关键词:振动测试;信号分析;动态特性;故障诊断中图分类号:TH13文献标志码:A 文章编号:1671-5276(2010)03-0001-05Summary of Vibration Testing and AnalysisJI Guo-yi a ,ZHAO Chun-sheng b(University of Aeronautics and Astronautics ,a.Institute of Vibration Engineering ;b.Precision Driving Laboratory ,Nanjing 210016,China )Abstract :Vibration testing and analysis is an effective tool in analyzing structure and system dynamic characteristic and detecting thefailures of structures ,systems and facilities.The present paper reviews the current vibration testing and analysis techniques ,including vibration signal data acquisition ,the system dynamics testing ,vibration signal analysis and processing and equipment fault diagnosis ,outlines the advantages and disadvantages of each method and their applications.Finally ,the future development in the field of vibra-tion testing and analysis is predicted.Key words :vibration testing ;signal analysis ;dynamic characteristic ;fault diagnosis0引言随着科学技术的发展,振动及设备动态特性引起的问题受到各行各业的高度关注。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
振动测试和分析技术综述黄盼(西华大学,成都四川 610039)摘要:振动测试和分析对结构和系统动态特性分析及其故障诊断是一种有效的手段。
综述了当前振动测试和分析技术,包括振动测试与信号分析的国内外发展概况、振动信号数据采集技术、振动测试技术、以及振动测试与信号分析的工程应用,最后对振动测试与分析技术的未来发展方向进行了展望。
关键词:振动测试; 信号分析; 动态特性; 综述Summary of Vibration Testing and AnalysisHuangPan( Xihua University,Chengdu 610039,China)Abstract: Vibration testing and analysis is an effective tool in analyzing structure and system dynamic characteristic and detecting the failures of structures,systems and facilities. The present paper reviews the current vibration testing and analysis techniques,including the development of vibration measurement and analysis of domestic and foreign,vibration signal data acquisition,vibration testing technology ,vibration measurement and analysis in engineering application. Finally,the future development in the field of vibration testing and analysis is predicted.Key words: vibration testing; signal analysis; dynamic characteristic;overview0 引言随着科学技术的发展,振动及设备动态特性引起的问题受到各行各业的高度关注。
例如: 导弹、飞机和火箭在飞行中,由于发动机和气流扰动及结构动态特性所造成的振动直接影响到飞行安全和控制精度; 车辆在凹凸不平的路面上行驶时的振动直接关系到驾驶性能与乘坐的舒适性; 机械加工设备的振动直接影响到加工的精度和有效性; 大型旋转机械的振动信号直接反映了设备运转的主要信息; 高层建筑、桥梁由于风载和地震所产生的振动直接关系到这些结构的安全。
要解决各种各样的振动及动态特性问题,研究系统的动力学特性,分析产生振动的原因,考核设备适应振动与环境的关系,除了理论分析外,对结构、系统和设备进行振动测试与信号分析是必不可少的重要手段。
振动测试与信号分析技术是机械动力学学科的重要分支之一,是机械动力学工程应用的一个极为普遍的方面。
随着设备朝着大型化、高速化的发展,振动引起的问题更为突出,需要解决的问题更为迫切,也对振动测试与振动信号分析技术的研究提出了越来越高的要求[1],对于航空航天、动力机械、交通运输、军械兵器、能源工业、土木建筑、电子工业以及环境保护等尤为重要。
可以说,振动测试与分析技术已广泛应用在产品研究、设计、生产和运行的全过程。
1 振动测试与信号分析的国内外发展概况1.1 信号测试与分析技术发展概述信号分析技术已经被广泛地应用于许多学科与领域[4],诸如:通信、雷达、声纳、地震、遥感、生物医学、机械振动等。
特别是近代电子技术、数字计算机及微型机的发展和应用,使信号分析技术得到了迅速的发展,目前,它已成为信息科学技术中一种必不可少的手段。
50 年代以前,信号分析技术主要使模拟分析方法。
进入50 年代,大型通用数字计算机在信号分析中有了实际的应用,当时曾经争论过模拟与数字分析方法的优缺点,争论的焦点是运算速度,精度与经济性。
进入 60 年代,人造卫星、宇航探测以及通信、雷达技术的发展,对信号分析的速度,分辨能力提出了更高的要求,1965 年,美国库列[5](J.W.Cooley)和图基(J.W.Tukey)提出了快速傅立叶变换(FFT)的计算方法,使计算离散傅立叶变化(DFT)的复数乘法次数从N2减少到Nlog2N 次,从而大大节省了计算量。
这一方法大大促进了数字信号处理的发展,使其获得了更广泛的应用。
因为卷积可以利用DFT 来计算,故FFT 算法也可以用正比于Nlog2N 的运算次数来计算卷积,而卷积运算在计算机科学和其他领域有广泛的应用。
70 年代以后,大规模集成电路的发展以及微型计算机的应用,使信号分析技术具备了广阔的发展远景,许多新的算法不断出现。
例如,1968 年美国C.M.Rrader提出的 NFFT 算法,DFT 可用循环卷积算法;1976 年美国S.winograd 提出了WFTA算法,用它计算DFT 所需要的乘法次数仅为FFT 算法乘法次数的1/3;1977 年法国H.J.Nussbaumer 提出了PFTA 算法,结合使用FFT 和WFTA 方法,在采样点数较大时,较之FFT 算法快3 倍左右。
上许几种方法与DFT 方法比较;当采样点N=1000时,DFT 算法为200 万次;FFT 为1.4 万次;NFFT 为0.8 次;WFTA 为0.3 万次;PFTA 为0.3 万次。
此外,信号处理芯片是近年来出现的一种用于快速处理信号的器件,它的出现,对简化信号处理系统的接受,提高运算精度,加快信号处理的实时能力等有很大作用。
例如TMS320C25 芯片,运算速度达1000 万次每妙,用其进行1024 复数点FFT运算,只需14ms 便可完成。
这一进展,在图像处理、语言处理、谱分析、振动噪声和生物医学信息处理方面,展示了宽阔的应用前景。
目前信号分析技术的发展目标是:①在线实时能力的进一步提高;②分辨能力和精度的进一步提高;③扩大和发展新的专用功能;④专用机结构小型化,性能标准化,价格低廉。
1.2 模态分析与试验技术的发展概况由于信号测试技术的发展,促进了机械振动研究领域的一些新技术和新学科的诞生和发展,如机械阻抗与导纳[6],模态分析与参数识别,结构的动态修改与动态设计,旋转机械的转速跟踪分析,机械的动态监测与控制,振动诊断,故障预报等。
在振动领域中,测试技术、分析技术以及计算机技术的逐步完善,加之先进的电子数字计算机的发展,使人们对于振动的测试和分析进入了一个全新的使用阶段。
特别是试验模态分析技术,作为振动分析的一个分支,尤其得到了发展。
试验模态分析技术是人们为了了解和寻求产品的最佳性能而找到的另一种更经济、更有效的方法。
它通过对样机或结构形式相同的原准样机的测试,将采集的测试数据应用于相应的识别技术,识别系统模态参数。
具体如下:首先,根据已有的经验和知识,在老产品的基础上试制一台新的样机;其次,对样机做全面的测试和分析并获得产品的动态特性,由此识别出系统的模态参数,建立数学模型,进而了解产品在使用中的振动、噪声、疲劳等问题;再次,在计算机上改变产品的结构参数,了解动态性能可能获得的改善程度,或者反过来,设计者事先指定好动态特性,由计算机来回答所需的结构参数(质量、刚度、阻尼)的改变量。
另外,设计者也可以在计算机上模拟各种实际的外部激励,求得参数改变前后的任何部位的响应。
随着电子计算机朝着大容量、高速度和小型廉价化的方向飞速发展,和试验技术也得到了快速的发展。
特别是近十余年来,模态分析吸取了振动理论、信号分析、数据处理、数理统计以及自动控制理论中的有关营养,结合自身内容的发展,形成了一套独特的理论基础。
2 振动数据采集技术测量振动信号的物理量常有: 位移、速度、加速度、应变和力。
与之对应的传感器分别为: 位移传感器、速度传感器、加速度传感器、动态应变仪和力传感器。
振动数据采集设备将传感器拾取的模拟信号转换为数字信号。
经过多年的发展,振动数据采集设备形成了现在高中低端各种数据采集设备都有的格局。
从模数转化精度来说,已经由早期的12 bit 发展到现在的16 bit 和24bit,动态范围从70 dB 左右到110 dB 左右。
国外现在的主流数据采集设备几乎都是24 bitAD 精度了。
采样频率从几十ks /s 到几百ks /s,甚至高达几MS /s。
一般结构振动测量用的采样频率最高到256 ks /s 就足够了,但有些特殊场合需要更高的采样频率,比如高采样频率在石油勘探研究等领域有着特殊的应用。
Delta - Sigma 模数转换技术是近年来国外著名厂家广泛使用的一种高精度高速数据采集技术。
该技术的工作原理思路是在数据采集中对应最高采样频率设计一固定截止频率的抗混滤波器,采用高采样频率加数字滤波实现高速高精度数据采集。
采集通道数从单通道到上千个通道并行采集都有。
数据采集设备的总线类型有: PCI,VXI,PXI 和其他总线类型。
PCI 是由英特尔( Intel) 公司1991 年推出的用于定义局部总线的标准。
此标准允许在计算机内安装多达10 个遵从PCI 标准的扩展卡。
VXI 总线规范是一个开放的体系结构标准,其主要目标是使VXI 总线器件之间、VXI 总线器件与其他标准的器件( 计算机) 之间能够以明确的方式开放地通信; 使系统体积更小; 通过使用高带宽的吞吐量,为开发者提供高性能的测试设备; 采用通用的接口来实现相似的仪器功能,使系统集成软件成本进一步降低。
PXI 是一种由美国NI 公司发布的基于PC 的测量和自动化平台。
PXI 结合了PCI 的电气总线特性与CompactPCI的坚固性、模块化及Eurocard 机械封装的特性发展成适合于试验、测量与数据采集场合应用的机械、电气和软件规范。
制订PXI 规范的目的是为了将台式PC 的性能价格比优势与PCI 总线面向仪器领域的必要扩展完美地结合起来,形成一种主流的虚拟仪器测试平台。
这使它成为测量和自动化系统的高性能、低成本运载平台。
PXI 是以PCI ( peripheral component interconnect) 及CompactPCI为基础再加上一些PXI 特有的信号组合而成的一个架构。
PXI 继承了PCI 的电气信号,使得PXI 拥有如PCI bus 的极高传输数据的能力,因此能够有高达132Mbyte /s 到528 Mbyte /s 的传输性能,在软件上是完全兼容的。
另一方面,PXI 采用和CompactPCI 一样的机械外型结构,因此也能同样享有高密度、坚固外壳及高性能连接器的特性。