可靠性理论_可靠性理论

合集下载

可靠性理论教材-汽车

可靠性理论教材-汽车

D(ln t )

方差:
D(T ) E (t 2 ) [ E (t )]
E (T ) E (e ) e x f (t )dt 1 1 ln t 2 x e exp[ ( ) ] 2 t 2 1 2 exp( ) 2 2
• 不可靠度和可靠度的关系:
F (t ) R(t ) 1
• 4、故障密度
• 由概率论知:若故障分布函数 F (t ) 连续可导,则 故障密度函数 f (t ) 可由 F (t ) 求导得出:
dF (t ) f (t ) dt
• 上式表示产品出现故障的概率随时间变化的规律。 即反映了单位时间的失效概率。
现将带入上式,并考虑,则得对数函数正态分布的概率密度函数及其分布函数如下: 分布函数:
F (t ) 1 1 ln t 2 ln t exp[ ( ) ]dt ( ) 0 2 t 2
t
1 1 ln t 2 exp[ ( ) ] 密度函数: f (t ) 2 t 2
• 5、故障率 (t )
• 定义:工作到某时刻未失效的产品,在该时刻后 单位时间内发生故障的概率,称为该产品在 t 时 刻的故障率。
例题2-1
• 在同一批汽车零件中,随机抽样试验,其抽样 数为n=70,使其在规定的条件下工作,记录的 抽样零件数的失效时间分布如图所示,试求可 靠性函数。
2个 20 30 11个 40 16个 50 20个 60 14个 70 6个 80 1个 90 失效时间
第二节 可靠性理论分布
汽车可靠性研究中所用的理论分布类型很多,常用的分布有: 正态分布、对数正态分布、指数分布、威布尔分布。
• 一、正态分布 • 其特征为: • a.

汽车可靠性理论

汽车可靠性理论
B:偶然失效期:
基本特征:失效率近似等于常数,失效率低且性能 稳定,失效偶然发生。原因是各种失效因素或承受应 力的随机性,由于操作疏忽、润滑不良、维护欠佳等。
C:耗损失效期:
基本特征:随时间延长,失效率急剧加大。原因是 汽车产品老化而衰竭引起。
第一节:汽车可靠性概述
5、平均寿命与可靠寿命 (1)平均寿命:标志产品平均能工作多长时间,对整批
长而逐渐加剧。 (2)按《汽车产品质量检查评定办法》蓝皮书规定分: 致命故障:危及人身安全,引起主要总成件报废。 严重故障:引起主要部件、总成损坏或影响行车安全,不能短时
间排除。 一般故障:不影响行车安全的非主要零部件故障,短时间能排除。 轻微故障:对汽车正常运行基本没有影响,不需要更换零部件,
随车工具就能排除。
第一节:汽车可靠性概述
(3)故障率函数曲线:寿命曲线或浴盆曲线,描 述失效率随时间而变化的规律。
失效率 早期失效率A
耗损失效率C
偶然失效期B
经维修下降的故障
0
有效寿命t
T
第一节:汽车可靠性概述
A:早期失效期:
基本特征:开始失效率较高,随时间推移,逐渐降 低,原因是设计、制造、管理、检验及装配差错引起。
1、可靠度R(t):汽车在规定条件、规定时间 内
完成规定功能的概率。
R(t)=P(A) 0≦P(A)≦1
2、失效度F(t)(累积故障概率、不可靠度): 汽车在规定条件、规定时间内丧失规定功能的 概率。
R(t) +F(t)=1
三:可靠性衡量指标
F(t)
R(t)
1 1
0
t
0
ห้องสมุดไป่ตู้
t
第一节:汽车可靠性概述

可靠性工程基本理论

可靠性工程基本理论

可靠性工程基本理论1可靠性(Reliability)可靠性理论是从电子技术领域发展起来,近年发展到机械技术及现代工程管理领域,成为一门新兴的边缘学科。

可靠性与安全性有密切的关系,是系统的两大主要特性,它的很多理论已应用于安全管理。

可靠性的理论基础是概率论和数理统计,其任务是研究系统或产品的可靠程度,提高质量和经济效益,提高生产的安全性。

产品的可靠性是指产品在规定的条件下,在规定的时间内完成规定功能的能力。

产品可以是一个零件也可以是一个系统。

规定的条件包括使用条件、应力条件、环境条件和贮存条件。

可靠性与时间也有密切联系,随时间的延续,产品的可靠程度就会下降。

可靠性技术及其概念与系统工程、安全工程、质量管理、价值工程学、工程心理学、环境工程等都有十分密切的关系。

所以,可靠性工程学是一门综合性较强的工作技术。

2可靠度(Reliablity)是指产品在规定条件下,在规定时间内,完成规定功能的概率。

可靠度用字母R表示,它的取值范围为0≤R≤1。

因此,常用百分数表示。

若将产品在规定的条件下,在规定时间内丧失规定功能的概率记为F,则R=1-F。

其中F称为失效概率,亦称不可靠度。

设有N个产品,在规定的条件下,在规定的时间内,有n个产品失效,则F=n/NR=(N-n)/N=1-F可靠度与时间有关,如100个日光灯管,使用一年和使用两年,其损坏的数量是不同的,失效率和可靠度也都不同。

所以可靠度是时间的函数,记成R(t),称为可靠度函数。

图5-1是可靠度函数R(t)和失效概率F(t)变化曲线。

图5-1可靠度3失效率(Failurerate)失效率是指工作到某一时刻尚未失效的产品,在该时该后,单位时间内发生失效的概率。

在极值理论中,失效率称为“强度函数”;在经济学中,称它的倒数为“密尔(Mill)率”;在人寿保险事故中,称它为“死亡率强度”。

失效率是衡量产品在单位时间内失效次数的数量指标;它也是描述产品在单位时间内失效的可能性。

(安全管理理论)可靠性工程基本理论

(安全管理理论)可靠性工程基本理论

可靠性工程基本理论1可靠性(Reliability)可靠性理论是从电子技术领域发展起来,近年发展到机械技术及现代工程管理领域,成为一门新兴的边缘学科。

可靠性与安全性有密切的关系,是系统的两大主要特性,它的很多理论已应用于安全管理。

可靠性的理论基础是概率论和数理统计,其任务是研究系统或产品的可靠程度,提高质量和经济效益,提高生产的安全性。

产品的可靠性是指产品在规定的条件下,在规定的时间内完成规定功能的能力。

产品可以是一个零件也可以是一个系统。

规定的条件包括使用条件、应力条件、环境条件和贮存条件。

可靠性与时间也有密切联系,随时间的延续,产品的可靠程度就会下降。

可靠性技术及其概念与系统工程、安全工程、质量管理、价值工程学、工程心理学、环境工程等都有十分密切的关系。

所以,可靠性工程学是一门综合性较强的工作技术。

2可靠度(Reliablity)是指产品在规定条件下,在规定时间内,完成规定功能的概率。

可靠度用字母R表示,它的取值范围为0≤R≤1。

因此,常用百分数表示。

若将产品在规定的条件下,在规定时间内丧失规定功能的概率记为F,则R=1-F。

其中F称为失效概率,亦称不可靠度。

设有N个产品,在规定的条件下,在规定的时间内,有n个产品失效,则F=n/NR=(N-n)/N=1-F可靠度与时间有关,如100个日光灯管,使用一年和使用两年,其损坏的数量是不同的,失效率和可靠度也都不同。

所以可靠度是时间的函数,记成R(t),称为可靠度函数。

图5-1是可靠度函数R(t)和失效概率F(t)变化曲线。

图5-1可靠度3失效率(Failurerate)失效率是指工作到某一时刻尚未失效的产品,在该时该后,单位时间内发生失效的概率。

在极值理论中,失效率称为“强度函数”;在经济学中,称它的倒数为“密尔(Mill)率”;在人寿保险事故中,称它为“死亡率强度”。

失效率是衡量产品在单位时间内失效次数的数量指标;它也是描述产品在单位时间内失效的可能性。

可靠性理论、案例及应用

可靠性理论、案例及应用

8
案例
长征系列火箭的可靠性(三)
对无法采取冗余 措施的系统,如液体 火箭发动机进行了以 提高可靠性为目的的 改进设计,箭体结构 提高了剩余强度系数, 特别是针对历史上火 箭飞行试验中出现的 问题和薄弱环节,重 点解决了防多余物、 防虚焊、防断压线、 防松动、防漏电、防 电磁干扰、防过负荷、 防不相容、防漏液漏 气、防局部环境放大、 防装配应力、防应力 集中等问题。
3
一、 可靠性概念(二)
可靠性的重要性
对可靠性的重视度,与地区的经济发达程度成正比。例如,英国电讯(BT)关于可靠性管理/指 标要求有产品寿命、MTBF报告、可靠性框图、失效树分析(FTA)、可靠性测试计划和测试报告等; 泰国只有MTBF和MTTF的要求;而厄瓜多尔则未提到,只是提出环境适应性和安全性的要求。 产品的可靠性很重要,它不仅影响生产公司的前途,而且影响到使用者的安全(前苏联的“联盟 11号”宇宙飞船返回时,因压力阀门提前打开而造成三名宇航员全部死亡)。可靠性好的产品,不但 可以减少公司的维修费用,而且可以很快就打出品牌,大幅度提升公司形象,增加公司收入。 随着市场经济的发展,竞争日趋激烈,人们不仅要求产品物美价廉,而且十分重视产品的可靠性 和安全性。日本的汽车、家用电器等产品能够占领美国以及国际市场。主要的原因就是日本的产品可 靠性胜过我国一筹。美国的康明斯、卡勃彼特柴油机,大修期为12000小时,而我国柴油机不过1000 小时,有的甚至几十小时、几百小时就出现故障。我国生产的电梯,平均使用寿命(指两次大修期的 间隔时期)为3年左右,而国外的电梯平均寿命在10年以上,是我们的3倍;故障率,国外平均为0.05 次,而我国为1次以上,高出20倍,这样的产品怎么有竞争力呢!因此要想在竞争中立于不败之地, 就要狠抓产品质量,特别是产品可靠性,没有可靠性就没有质量,企业就无法在激烈的竞争中生存和 发展。因此,可靠性问题必须引起政府和企业的高度重视,抓好可靠性工作,不仅是关系到企业生存 和发展的大问题,也是关系到国家经济兴衰的大问题。

可靠性基本理论model

可靠性基本理论model
• 特征寿命:满足R(te-1 )=e-1=0.368 旳te-1称为 特征寿命
可靠性指标及其内在关系
故障分布密度函数 f (t)
f (t)
1
F (t )
f (t) F (t)
R(t)
f (t) R(t)
(t )
f
(t)
(t )

e
t 0பைடு நூலகம்
( x)dx
累积故障概率 F (t)
F (t )
t 0
f (t ) dF (t ) F ' (t ) dt
瞬时失效率 λ(t),(简称失效率)
定义:是在t时刻,还未失效旳产品,在 该时刻后旳单位时间内发生失效旳概率。
(t) lim F(t t) F(t) dF(t) 1
t0 R(t)t
dt R(t)
中位寿命和特征寿命
• 中位寿命:满足R(t0.5)=0.5旳t0.5称为中位寿 命,即寿命比它长和比它短旳产品各占二 分之一
元器件质量与可靠性旳表征
军用电子元器件原则和规范中要求旳可 靠性确保要求有两种表征方式,即失效率 等级和产品确保等级。前者用于大多数 (并非全部)电子元件可靠性水平旳评估, 后者则用来评价电子器件(涉及部分电子 元件)旳可靠性确保水平。
1 失效率等级
毋庸多言,失效率是量化表征产品可靠性水平旳 一种特征数,在以其为可靠性表征方式旳原则和规 范中要求有关从10-5/h和10-8/h旳四个等级。
维修性指标
对可维修产品还有平均维修时间,它是设备处 于故障状态时间旳平均值,或设备修复时间旳 平均值。记以MTTR,它是英文(Mean Time To Repair)旳缩写。
MTTR 0 t.m(t)dt 0 (1 M (t))dt

可靠性理论案例及应用

可靠性理论案例及应用
内容提要
1 2
可靠性概念及意义 可靠性案例
3
滚动轴承的可靠性设计
1
一、 可靠性概念(一)
产品的可靠性是指:产品在规定的条件下、在规定的时间内完成规定的功 能的能力。 对产品而言,可靠性越高就越好。可靠性高的产品,可以长时间正 常工作(这正是所有消费者需要得到的);从专业术语上来说,就是产品的可 靠性越高,产品可以无故障工作的时间就越长。
5
案例 长征系列火箭的可靠性(一)
“神舟”号载人飞船的胜利飞天,托 举“神舟”号飞船胜利飞天的运载火箭是 号称“中华神箭”的“长征”-2号F型运载 火箭,其简写形式为“长征”-2F(CZ-2F) 运载火箭。 CZ-2F火箭由芯级、二级和4 个助推器、整流罩、逃逸塔等组成的火箭 全长58.34m,起飞质量479.8吨,芯级直 径3.35m,助推器直径2.25m,整流罩最大 直径3.8m,火箭的芯级和助推器发动机均 使用四氧化二氮和偏二甲肼作为推进剂, 它可把8t重的有效载荷送入近地点高度 200km,远地点高度350km的轨道。它由 箭体结构系统、动力装置系统、控制系统、 推进剂利用系统、故障检测系统、逃逸系 统、遥测系统、外测安全系统、附加系统、 地面设备系统共十个大小系统组成。
产品的可靠性很重要,它不仅影响生产公司的前途,而且影响到使用者的安全(前苏联的“联盟 11号”宇宙飞船返回时,因压力阀门提前打开而造成三名宇航员全部死亡)。可靠性好的产品,不但 可以减少公司的维修费用,而且可以很快就打出品牌,大幅度提升公司形象,增加公司收入。
随着市场经济的发展,竞争日趋激烈,人们不仅要求产品物美价廉,而且十分重视产品的可靠性 和安全性。日本的汽车、家用电器等产品能够占领美国以及国际市场。主要的原因就是日本的产品可 靠性胜过我国一筹。美国的康明斯、卡勃彼特柴油机,大修期为12000小时,而我国柴油机不过1000 小时,有的甚至几十小时、几百小时就出现故障。我国生产的电梯,平均使用寿命(指两次大修期的 间隔时期)为3年左右,而国外的电梯平均寿命在10年以上,是我们的3倍;故障率,国外平均为0.05 次,而我国为1次以上,高出20倍,这样的产品怎么有竞争力呢!因此要想在竞争中立于不败之地, 就要狠抓产品质量,特别是产品可靠性,没有可靠性就没有质量,企业就无法在激烈的竞争中生存和 发展。因此,可靠性问题必须引起政府和企业的高度重视,抓好可靠性工作,不仅是关系到企业生存 和发展的大问题,也是关系到国家经济兴衰的大问题。

可靠性基本理论

可靠性基本理论

论证产品的可靠性指标
• 不能或难以维修产品例如:卫星、导弹和海缆等, 不言而喻,维修性方面的指标是无需考虑的,关键 是系统在规定工作期间的可靠度指标。平均工作时 间或平均寿命也不宜用作此类系统的可靠性指标, 除非有附加说明,因为具有相同平均工作时间指标 的系统,其实际可靠度可能差异很大。例如一套寿 命为复合指数分布的并联冗余双工系统与一套寿命 为指数分布的系统,假设具有相同的平均寿命,当 系统规定的工作时间为系统平均寿命的十分之一时, 后者的失效机会约比前者增大七倍多。
第一篇 可靠性基本理论
主要内容
1 概论 2 产品可靠性模型 3 可靠性指标论证 4 可靠性分配
产品的寿命特性
早期失效 失 效 率
使用寿命期
损耗失效期
寿命时间
产品的可靠性定义
• 产品的可靠性就是在规定的条件下,在规定的 时间内、产品完成规定功能的能力。
• 产品可靠性定义包括下列四要素: (1) 规定的时间;
(2) 规定的环境和使用条件; (3) 规定的任务和功能; (4) 具体的可靠性指标值。
• 对于一个具体的产品,应按上述各点分别给予 具体的明确的定义。
可靠性的特征量
• 可靠度
• 定义:是指产品在规定的条件下,在规定的时 间内、产品完成规定功能的概率。它是时间的 函数,记作R(t),也称为可靠度函数。
A MTBF MTBF MTTR
可靠性、维修性指标的论证和确定
可靠性是定量的概率统计指标 • 在设计中它必须是可预计的,在试验中它必须
是可测量的,在生产中它必须是可保证的及在 现场使用中它必须是可保持的。
系统可靠性与维修性指标可以从两方面论证: 一是研究被论证系统应该具有或侧重于哪些可 靠性和维修性指标;二是决定这些指标水平的 高低。

可靠性基础理论

可靠性基础理论

任务可靠性的定义:“产品在规定的任务剖面内完 成规定功能的能力”。它反映了产品的执行任务成 功的概率,它只统计危及任务成功的致命故障。常 见的任务可靠性参数有任务可靠性,( ,完成任
务的成功概率,其度量方法为:在规定的条件下和 规定的时间内系统完成规定任务的概率),( ,
致命故障间的任务时间,其度量方法为:在规定的 一系列任务剖面中,产品任务总时间与致命性故障 数之比)等。
、可靠性常用参数
产品一般都有多个可靠性参数描述。衡量产品 可靠性水平有好几种标准,有定量的,也有 定性的,有时要用几种标准(指标)去度量 一种产品的可靠性, 下面根据和有关(国际 电工委员会)标准,介绍最基本、最常用的 几个可靠性特征量。
个人简介
博士、教授,曾留学瑞士;从事锅炉节能与 优化、燃烧技术、新能源利用研究;
华北电力大学新能源教研室主任; 著作《火电厂锅炉系统及优化运行》、《燃
烧理论与技术》、《可再生能源》、《电站 锅炉空气预热器》等部; 《发电设备》杂志编委; 发表论文多篇,专利项。
目录
可靠性基本概念 以可靠性为中心的检修技术 可靠性技术 故障诊断技术
在实际应用中人们逐步感到了传统的可靠性定义的 局限性,因为它只反映了任务成功的能力。在进行 可靠性设计时需要综合权衡完成规定功能和减少用 户费用两个方面的需求,于是美国于年颁发的-- 按照指令(国防重要武器系统采办指令)将可靠性 分为基本可靠性和任务可靠性。把可靠性概念分为 两种不同用途的可靠性概念,是美国国防部对可靠 性工作实践经验总结和对这一问题认识的深化。这 无疑是一个新的重要发展。我国年颁布的军标-就 引用这两种新的可靠性定义。
管理 13%
产品的故障
制造 10%
其它 7%
据美国空军可靠性分析中心()的可靠性数 据库,造成产品故障的因素分布为:

可靠性理论-第6章 可靠性试验方法

可靠性理论-第6章 可靠性试验方法

d) 加速寿命试验的方法
①加大应力法 就是试验应力,包括工作应力和环境应力。 ②提高频率法 就是提高施加应力的频率。 ③判定加速法 加严失效判据,就是提前判定失效。例如原定 特性值变化10%作为失效,现在以5%就算失效。 ④替代试验法 利用易发生失效的试制品代替实际产品进行寿 命试验,或者将己经使用到某种程度的样品进行寿命试验, 例如,对车门撞击试验就不必油漆等等。 ⑤截尾试验法 这种方法又称为统计加速,是利用统计学的原 理,将尚未失效而已经达到某种寿命指标的试验样品停止试 验,依照统计原理判断寿命。 ⑥浓缩应力法 去除小应力幅值,使试验时间缩短。
可靠性理论-第6章 可靠 性试验方法
本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢!
第6章 汽车可靠性试验
为了分析、评价、验证和提高产品的可靠性而进行的试验,统 称为可靠性试验。广义地说,任何与产品失效效应有关的试验, 都可以认为是可靠性试验。狭义的可靠性试验,往往是指寿命 试验。
实践证明,当应力值低于某一数值时,寿命趋于无穷大。据此,需要 对应力的分布状况做人为处理,把应力低于疲劳极限的工作时间剔除,使 试验时间缩短。
(3)强制老化试验 在室温、高温、低温、潮湿、腐蚀、紫外线辐射等环境下,
将处于非工作状态的汽车或零部件作搁置试验,使之在短时 间里加速老化。这种试验类似于加速寿命试验,所不同的是 设置了特殊的试验环境。
实验室试验-台架试验
所谓台架试验,就是在实验室使用专门的试验装置,模拟 实际工作状态,完成总成或零部件的试验。它是实际工作状 态在实验室再现的一种方法。尤其在新产品开发阶段,耗时、 耗资最多的是可靠性评价试验,为缩短时间、节约经费,采 用台架模拟试验。

可靠性基础理论

可靠性基础理论

有效性 availability-可以维修的产品在某时刻 具有或维持规定功能的能力。
耐久性 durability-产品在规定的使用和维修条 件下,达到某种技术或经济指标极限时,完 成规定功能的能力。
失效(故障) failure-产品丧失规定的功能。 对可修复产品通常也称故障。
失效模式 failure mode-失效的表现形式。
品寿命单位总数与该产品计划和非计划维修时间总 数之比)。
任务可靠性的定义:“产品在规定的任务剖面内完 成规定功能的能力”。它反映了产品的执行任务成 功的概率,它只统计危及任务成功的致命故障。常 见的任务可靠性参数有任务可靠性,MCSP (Mission Completion Success Probability,完成任 务的成功概率,其度量方法为:在规定的条件下和 规定的时间内系统完成规定任务的概率),MTBCF (Mission Time Between Critical Failure,致命故障 间的任务时间,其度量方法为:在规定的一系列任 务剖面中,产品任务总时间与致命性故障数之比) 等。
任何产品只要有可靠性要求就必须有故障判 据。故障判据需要根据下面的依据进行确定。 1)研制任务书;2)技术要求说明书;3)由 可靠性人员制定。
(2)可靠度
可靠度就是在规定的时间内和规定的条件下 系统完成规定功能的成功概率。一般记为R。 它是时间的函数,故也记为 R(t),称为可靠性 函数。
如果用随机变量 t 表示产品从开始工作到发生 失效或故障的时间,其概率密度为 f(t) 如下图 所示:
② 偶然失效期,也称随机失效期 (Random Failures) 。失效率曲线为恒定型,即t0到t1间 的失效率近似为常数。失效主要由非预期的
过载、误操作、意外的天灾以及一些尚不清

2 可靠性的基本理论讲解

2 可靠性的基本理论讲解

特征寿命:当R (t) =e-1 =0.37 时对应的 Te1 寿命称特征寿命。
F
1000
nf
1000
53
/110
48.18%
n
三、失效概率密度f(t) 1、失效概率密度 2、失效概率密度的估计值
1、失效概率密度f(t)
失效概率密度是累积失效概率对时间的变化 率,记作f(t)。它表示产品寿命落在包含t的 单位时间内的概率,即产品在单位时间内失效的 概率。其表示式为:
f (t)=dF (t)/ dt =F′(t)
六、可靠寿命、特征寿命和中位寿命
前面已经提到可靠度函数R(t)是产品工作 时间t的函数,在t= 0 时,R(0)= 1,当工作 时间增加,R(t)逐渐减小。可靠度与工作时间 有一一对应的关系。有时需要知道可靠度等于给 定值r 时,产品的寿命是多少?
可靠寿命TR,就是给定可靠度R 时对应的TR寿命。即 R (TR)= R

F
t
t
0
f
t
dt
Rt
t
f
t dt
2、失效概率密度的估计值
f t
F t
t
t
F t
1 t
nf
t
n
t
n
f t
n
n f t
nt
式中Δn f (t) 在(t,t+Δt) 时间间隔内失效的产品数。
当产品的失效概率密度f(t)已确定时,由前 述可知,f(t)、F(t)、R (t)之间的关 系可用下图所示。
R
ns
t
n
nf
t
1
nf
t
n
n
n
n f t 为在规定时间区间内未完成规定功能的

可靠性理论及其发展

可靠性理论及其发展

1、可靠性理论的发展历程•可靠性的准备及萌芽期–上世纪30~40 年代期间开始形成可靠性概念,这一阶段的活动主要集中在德国和美国•可靠性理论的兴起及形成–20 世纪50 年代初,美国在朝鲜战争中发现不可靠的电子设备不仅影响战争的进行,而且需要大量的维修费用。

以1957 年发表了第一份可靠性研究报告《军用电子设备可靠性》为标志•可靠性理论迅速发展阶段–上世纪60 年代是美国航空及航天工业迅速发展的年代,故被称为“宇航年代”。

以《电子设备可靠性预计手册》的颁布为标志•可靠性工程深入发展的阶段–航空、航天及军事装备的需求•技术的深入发展•广泛的工程应用4、目前可靠性工作的反思•难以制定有效维修保障方案–由于可靠性工作结果的输出对故障的预计或分析的故障信息不准确,使得难以制定有效的维修和保障计划,比如会出现“维修过剩”或“维修不足”的情况,保障资源的配备也困难。

•仅根据内外场故障数据的统计推断是不够的。

•必须在可靠性数学基础上,强调对可靠性故障物理学的研究,发展基于故障物理的可靠性技术,以充分了解产品的故障模式、故障机理和故障位置等信息,才能采取适当措施防止这些潜在故障的发生,并对产品可靠性进行有效设计和正确评价。

器件对电子设备,其故障可能发生在器件内部元器件-PCB的互连位置等处。

ACEL ACEL ACEL ACEL ACEL ACEL ACEL ACEL ACEL ACEL故障模型模型基本输入:产品设计信息、局部位置的应力历程ACEL ACEL ACEL ACEL ACEL1、基于故障物理的可靠性理论基础•产品强度分布-双峰模型使用初期:早期故障率较高稳定期:故障率最低,随机性;寿命后期:故障率也会高,故障主要是由疲劳导致;早期故障不能用传统的晚期故障可靠性模型来解释。

解释早期故障的强度分布也不能解释晚期故障特性;一种简单统计分布不能完全解释浴盆曲线。

ACEL ACEL ACEL ACEL ACEL ACEL ACEL ACEL ACEL ACEL障机理。

系统工程之系统可靠性理论与工程实践讲义

系统工程之系统可靠性理论与工程实践讲义

系统工程之系统可靠性理论与工程实践讲义系统可靠性是系统工程中的重要概念,它是指系统在特定条件下保持正常运行的能力。

在实际工程中,系统可靠性的理论和工程实践是不可或缺的。

本讲义将介绍系统可靠性的基本理论和实践方法,并结合实例介绍如何应用于实际工程中。

一、系统可靠性的基本理论1. 可靠性概念可靠性是指系统在规定时间和规定使用条件下能够完成规定功能的概率。

可靠性可以用失效概率(failure probability)来度量,即系统在规定时间内失效的概率。

2. 失效模式与失效率失效模式是指系统失效的原因和方式,常见的失效模式有硬件失效、软件失效和人为失误等。

失效率是系统失效的频率,可以用失效率函数(failure rate function)表示,常用的失效率函数有指数分布、伽马分布和韦伯分布等。

3. 可靠性评估指标评估系统可靠性常用的指标有可用性和维护性。

可用性是指系统在规定时间内处于正常工作状态的时间比例。

维护性是指系统出现故障后恢复正常工作所需的时间。

4. 可靠性增长和可靠性增长率可靠性增长是指系统在运行一段时间后逐渐提高其可靠性。

可靠性增长可以通过故障数据进行可靠性增长率的计算,可靠性增长率是指单位时间内系统可靠性增加的速率。

二、系统可靠性的工程实践方法1. 可靠性要求的确定在系统设计初期,需要明确系统的可靠性要求。

可靠性要求的确定需要考虑系统的功能、使用条件和用户要求等因素,并依据相关标准和规范进行确定。

2. 可靠性设计的考虑在系统设计过程中,需要考虑如何增强系统的可靠性。

可靠性设计的主要方法有冗余设计、容错设计和检测与诊断设计。

冗余设计是指在系统中增加冗余部件来增加系统的可靠性。

容错设计是指设计系统能够自动检测和纠正错误的能力。

检测与诊断设计是指设计系统能够及时检测故障并对故障进行诊断。

3. 可靠性测试与验证在系统开发过程中,需要进行可靠性测试与验证。

可靠性测试是指通过实际测试来验证系统的可靠性,并对系统进行改进。

可靠性数学理论

可靠性数学理论

可靠性数学理论运用概率统计和运筹学的理论和方法对产品(单元或系统)的可靠性作定量研究。

它是可靠性理论的基础之一。

可靠性是指产品在一定条件下完成其预定功能的能力,丧失功能称为失效。

可靠性理论是以产品的寿命特征为研究对象的。

目录1简介2可靠性的数量指标3寿命数据统计分析4寿命分布及分布类5结构函数1简介运用概率统计和运筹学的理论和方法,对单元或系统的可靠性作定量研究。

它是可靠性理论的基础之一。

所谓可靠性,是指单元或由单元组成的系统在一定条件下完成其预定功能的能力。

单元是元件、器件、部件、设备等的泛称。

单元或系统的功能丧失,无论其能否修复,都称之为失效。

可靠性理论即以失效现象为其研究对象,因而涉及工程设计、失效机理的物理和化学分析、失效数据的收集和处理、可靠性的定量评定以及使用、维修和管理等范围。

可靠性问题的提出,是由于大工业生产及第二次世界大战中研制和使用复杂的军事装备的需要。

虽然单元的可靠性不断有很大的提高,但是由于大型系统的结构越来越复杂,要求其完成的功能也越来越广泛,因此定量评定和改善系统可靠性已成为一个重要课题。

通过数学模型定量研究系统的可靠性,并探讨它与系统性能、经济效益之间的关系,是可靠性数学理论的主要方法之一。

2可靠性的数量指标假定系统只有正常和失效两种状态。

系统在失效前的一段正常工作时间称为寿命。

由于失效是随机现象,因此,寿命可用非负随机变量X及其分布函数F(t)=P{X≤t}(见概率分布)来描述。

对失效后不加修复的单元,其可靠性用可靠度来刻画。

单元在时刻t的可靠度R(t)定义为:在一定的工作条件下在规定的时间【0,t】中完成其预定功能的概率。

因此,若单元的寿命为X,相应的寿命(或失效)分布函数为F(t),则R(t)=P{x>t}=1-F(t),其中t≥0。

根据上式的概率含义,可靠度R(t)又称为生存函数。

一个生存到时刻t的单元,称之为有年龄t。

在其后长度为x的区间中失效的条件概率为1若2存在,则r(t)称为时刻t的(条件)失效率。

可靠性理论 第二章

可靠性理论 第二章
R(1000) R(1000)

95 0.95 100
F (1000) F (1000)
f (1000 ) f (1000 )


5 0.05 100
1 5 10 5 / h 100 200
(1000 ) (1000 )


1 5.26 10 5 / h 95 200

(2-1-22)
式中的 R(t )1 (r ) 是R(t)的反函数。 当R=0.5时产品的寿命称为中位寿命,即:
t (0.5) R 5 (0.5)

(2-1-23)
当只0.368时产品的寿命称为特征寿命,即:
t (0.368) R 1 (0.368)

(2-1-24)
从定义可看出,产品工作到可靠寿命t(r),大约有100(1—r)%的产品 失效;产品工作到中位寿命t(0.5),大约有一半失效;产品工作到特 征寿命,大约有63.2%的产品失效,对于失效规律服从指数分布的一 批产品而言,其特征寿命就是平均寿命,因此约有63.2%的产品将在 达到平均寿命前失效,就是说,能够工作到平均寿命的产品仅占36.8 %左右。
对某不可修设备,投人100台进行试验,试验到1000h有5台 失效,继续试验到1200h,又有1台失效,至试验结束时所有 设备失效,总的工作时间为106h,试求R(1000),F(1000), 1000),f(1000)以及设备的平均寿命。 解:由题意知:N=100, n(1000)=5,t =1200—1000=200h, n(1000)=1,T=106h。 根据前面所讲的公式得:
dt
0

F(t)的估计值
到t时刻失效的产品数 n(t) F = 试验的产品总数 N

Reliability 可靠性基本理论

Reliability 可靠性基本理论

可靠性与质量 (4)可靠性阶段: 由于产品复杂程度的提高,产品的可靠 性问题十分突出,因此,美国国防部坚决支持可靠性与质 量管理并行,以可靠性为重点进行管理。 (5)质量保证阶段:20世纪70年代后,国外把可靠性与质 量管理结合在一起,建立质量保证体系。所谓质量保证, 主要有法律、行政、经济和技术四个方面的保证。 (6)产品责任阶段:所谓产品责任,即生产产品的厂家应 对产品的质量负法律责任。国外都颁布有产品责任法。 上述6个阶段是相互交叠的,只不过在特定的阶段,某一 个方面变得突出而已。
其组成在无故障、无退化或对保障系统无要求的情况 下执行其任务的能力
可靠性与质量
从国外情况看,产品的质量发展大致经历了以下六个阶段:
(1)早期阶段:20世纪30年代以前,电子产品处于早期阶 段,品种少、结构简单,可靠性与质量管理尚未进行。 (2)标准化阶段:30年代后,无线电产品有了较大发展, 为统一规格、型号及实验方法,有必要使产品标准化,因 此开展了标准化管理工作。 (3)质量管理阶段:第二次世界大战期间,出现了雷达等 复杂的装备,且由于制造期短,新工人多,军工产品出现 了无法控制的局面。为了对产品质量进行控制,国外颁布 了质量管理指南,质量管理图进行控制,实验中采用了抽 样方法。
可靠性与质量 传统的质量观主要是指系统的性能特性,这导致了传统 质量管理基本职能是在制造阶段,保证工艺技术条件可 以达到;并进行工序检验、供应检验、最后检验和产品 检验。 现代质量观念认为,质量包含了系统的性能特性、专门 特性、经济性、时间性、适应性等方面,是系统满足使 用要求的特性总和 。
可靠性与质量
谁更保守?
可靠性分类(2)
固有可靠性 产品在设计、制造过程中赋予的固有属性。 产品的开发者可以控制。 使用可靠性 产品在实际使用过程中表现出的可靠性。 除固有可靠性的影响因素外,还要考虑安装、操作使用、 维修保障等方面因素的影响。

可靠性理论-第1章绪论

可靠性理论-第1章绪论
规定失效率
• “浴盆曲线”
• (a)早期故障期:产品早期故障反映了设计、制 造、加工、装配等质量薄弱环节。早期故障期又 称调整期或锻炼期,此种故障可用厂内试验的办 法来消除。
(b)正常工作期:在此期间产品故障率低而且稳 定,是设备工作的最好时期。在这期间内产品 发生故障大多出于偶然因素,如突然过载、碰 撞等,因此这个时期又叫偶然失效期。
பைடு நூலகம்可靠性理论
第1章 概论
一、可靠性工程的发展
• 1、起步阶段,1939~1949年,40年代 • 2、发展阶段,上世纪50年代 • 3、普及阶段,上世纪60年代 • 4、成熟阶段,上世纪70年代
二、提高产品可靠性的意义:
是用户的需要、企业生存的需要、产品发展的需要。
三、可靠性的基本概念
1、可靠性研究的内容
0.0202
3 3 6 94 0.03 0.06 0.94 0.031
4 5 11 89 5 7 18 82 6 9 27 73 7 12 …… … … 14 3 99 1 15 1 100 0
0.05 0.07 0.09
… 0.03 0.01
0.11 0.18 0.27
0.89 0.82 0.73
对于不可修复的产品,可靠度的观测值是指直到规定的时间区间 终了为止,能完成规定功能的产品数与在该区间开始时投入工作产品 数之比,即
式中:N——开始投入工作产品数,(R是当N趋于无穷大时的值) Ns(t)——到t时刻完成规定功能产品数,即残存数 Nf(t)——到t时刻未完成规定功能产品数,即失效数。目录
… 0.99 1.0
… 0.01
0
0.053 0.079 0.1100
… / 100
f (t), F(t)和R(t)之间的关系
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二节 布尔代数,容斥原理和不交 型算法
三 不交型算法 1不交型布尔代数及其运算规则 2直接不交化算法 3不交最小路法的有关公式
第三节 串联系统的可靠性模型
了解串联系统的定义,特点。掌握串联系 统可靠度等相关可靠性特征量的算法。提 高串联系统可靠性的方法和途径
第四节 并联系统的可靠性模型
第二节 可靠性特征量
一 可靠度 1可靠度的定义 2可靠度估计值 二 累积失效概率 1累积失效概率的定义 2累积失效概率的估计值 三 失效概率密度 1失效概率密度的定义 2失效概率密度的估计值
第二节 可靠性特征量
四 失效率 1失效率的定义 2失效率的估计值 3平均失效率 4失效率单位 5失效率等级
及失效概率
第八节 一般网络的可靠性模型
二状态枚举法 三概率图法 四全概率分解法 五不交最小路法
第三章 可靠性预计和分配(了解)
第一节 可靠性预计概述 第二节 元器件失效率的预计 第三节 系统的可靠性预计 第四节 可靠性分配
第一节 可靠性预计概述
一 可靠性预计问题的提出及意义 二 可靠性预计的分类
方法 三 FMEA的用途 1在设计管理上FMEA的用途 2在其他方面FMEA的用途
第三节 失效严重度分析
一 定性分析 二 定量分析 1失效后果概率 2失效模式严重度数字 3产品严重数字 三 严重度矩阵 四 严重分析的用途
第五章 故障树分析(重点)
第一节 建立故障树 第二节 故障树的定性分析 第三节 故障树的定量分析
第四节 系统可靠性评定的一般步骤
1明确系统的结构,功能与失效的定义 2FMEA与特征量选取 3子样数据选取与分布规律检验 4确定数学模型 5分析薄弱环节,提出改进措施
第十一章 维修性设计(了解)
第一节 维修性基本概念 第二节 维修性设计 第三节 维修策略
第二节 维修性设计
可靠性工程
元器件失效率预计和系统可靠性预计的方法,串 联系统可靠性分配的常用方法,如何对有并联冗 余系统进行可靠性分配的问题,失效模式,后果 和严重度分析方法(FMECA),系统地讨论了对单 调系统进行故障树的定性和定量分析方法(FTA), 电子线路和机械结构可靠性的设计方法,为评价 和提高产品可靠性而进行的可靠性试验,包括筛 选,老炼和环境适应性试验的基本知识,寿命试 验和加速寿命试验的常用基本设计方法,如何运 用试验数据对单元产品(整机进行可靠性试验的产 品)和系统(复杂产品)
第四节 可靠性分配
二 并联冗余单元系统的可靠性分配 稍为了解一下即可
第四章 失效模式,后果与严重度分 析(重点)
第一节 概述 第二节 失效模式与后果分析 第三节 失效严重度分析
第一节 概述
了解产品,失效,失效后果等相关定义, 知道失效后果的严重性的分级。什么是 FMECA
可靠性工程
可靠性工程技术是在第二次世界大战后从航空工 业和电子工业领域发展起来的,后来广泛用于宇 航,化工,机电等其他领域。
本书公分12章,主要内容包括:可靠性的三大指 标,主要特征量及其常用失效分布等基本概念, 逻辑代数的基本概念和运算,传联系统,并联系 统,混联系统,n中取k表决系统,贮备系统的可 靠性模型,最小路集,最小割集的概念及其运用 分析计算一般网络系统可靠性的基本方法
第二节 故障树的定性分析
一 求故障树最小割集的方法 1下行法 2上行法 二 应用最小割集对故障树进行定性评价 三 故障树的定性分析示例 学习书中的例题
第三节 故障树的定量分析
一 由各单元的失效概率求系统的失效概率 二 求系统各单元的重要度 1单元的结构重要度 2单元的关键重要度 3单元的概率重要度 三 故障树的定量分析示例 学习书中例题
一 维修性设计 二 修复时间的分布 三 维修度 四 修复率 五 平均备件数
第一节 维修的基本概念
一 维修性定义和特征量(6个) 二 维修性的重要性及经济效益 三 维修的分类
第二节 可靠性特征量
五 产品的寿命特征 1平均寿命 2可靠寿命,特征寿命和中位寿命
第三节 常用失效分布
一指数分布 1失效概率密度函数 2累积失效概率函数 3可靠度函数 4失效率函数 5平均寿命 6可靠寿命 7中位寿命
第三节 常用失效分布
二 威布尔分布 1失效概率密度函数 2累积失效概率函数 3可靠度函数 4失效率函数 5三个参数的意义
第一节 系统可靠性综合的金字塔模 型
一系统可靠性综合金字塔模型 二金字塔式可靠性综合评估方法 三金字塔式可靠性综合评估应解决的问题
第二节 系统可靠性的经典精确置信 限
本节了解
第三节 系统可靠性的经典近似置信 限
一修正极大似然法 二修正极大似然和序贯压缩的相结合的方
法 三指数寿命型串联系统的CMSR法
一单元产品可靠性评估的含义 二 进行单元产品可靠性评估的前提条件和
评估的一般程序 三单元产品的可靠性评估方法
第二节 成败型单元产品可靠性评估
一产品可靠性的点估计 二产品可靠性的区间估计
第三节 单元产品性能可靠性评估
一 单元产品性能指标的评估 二 单元产品的结构可靠性评估
第一节 产品定义和可靠性框图的建 立
一 规定产品定义 二 可靠性框图的建立
第二节 布尔代数,容斥原理和不交 型算法
一布尔代数 1集合的并,交和补运算 2集合代数的基本规律 3布尔代数的基本定理
第二节 布尔代数,容斥原理和不交 型算法
二容斥原理 1集合相容和不相容 2容斥原理公式
第二节 失效模式与后果分析
一FMEA 1功能FMEA和硬件FMEA 2FMEA程序 3系统功能框图与可靠性框图 4失效模式分析 5失效原因 6失效后果 7失效检测方法 8补救措施 9已采取的措施或建议
第二节 失效模式与后果分析
二 FMEA实例。 学习书中给出的例题,掌握基本的FMEA
第三节 寿命试验和加速寿命试验
三 指数分布条件下的寿命试验设计 四 加速寿命试验的设计问题
第九章 单元产品的可靠性评估(了 解)
第一节 单元产品可靠性评估的基本概念 第二节 成败型单元产品可靠性评估 第三节 单元产品性能可靠性评估 第四节 单元产品平均寿命评估
第一节 单元产品可靠性评估的基本 概念
第四节 疲劳强度可靠性设计
一概述 二材料疲劳强度的概率分布曲线 三疲劳强度与工作应力相结合的可靠性分
析方法
第八章 可靠性试验(了解)
第一节 可靠性筛选和电子元器件老炼 第二节 环境适应性试验 第三节 寿命试验和加速寿命试验
第一节 可靠性筛选和电子元器件老 炼
一可靠性筛选的特点和效果评价 特点,效果评价 二常用的可靠性筛选方法 包括5个类别 三 筛选方案设计 应该注意的原则 四 电子元器件老炼
了解并联系统的定义和特点,掌握并联系 统的可靠度相关特征量的算法,知道提高 并联系统可靠性的途径和方法。
第五节 混联系统的可靠性模型
了解什么是混联系统,以及常见的两种混 联系统的种类。即串并联和并串联
第六节 n中取k的表决系统的可靠性 模型
一 2/3[G]系统 二(n-1)/n[G]系统 三k/n[G]系统
一三次设计概述 二质量损失函数概念 三三次设计的示例
第七章 机械结构可靠性设计(了解)
第一节 应力与强度的分布 第二节 安全系数与可靠性 第三节 可靠性设计计算 第四节 疲劳强度可靠性设计
第一节 应力与强度的分布
一应力与强度的基本概念 二常见的应力和强度的概率分布
第二节 安全系数与可靠性
一传统安全系数 含义,特点 二应力强度干涉理论 三基于统计分析的安全系数 1以“强度均值/应力均值”为定义的统计
安全系数的计算 2以“最小强度/最大载荷”为定义的统计
安全系数的计算
第三节 可靠性设计计算
一随机变量的基本数学运算规则 二机械零件的可靠性设计计算
第二节 元器件失效率的预计
一 收集数据预计法 二 经验公式预计法 三 元器件计数可靠性预计法 四 元器件应力分析可靠性预计法
第三节 系统的可靠性预计
一上下限法的基本思想 二 上下限法的计算方法
第四节 可靠性分配
一 串联系统的可靠性分配 1等分配法 2利用预计值的分配法 3阿林斯分配法 4代数分配法 5“努力最小算法”分配法
第七节 贮备系统的可靠性模型
了解贮备系统的分类和相关定义 一冷贮备系统 二热贮备系统 三温贮备系统
第八节 一般网络的可靠性模型
一 结构函数 1最小割集和最小路集 2用最小割集和最小路集表示结构函数 3结构函数的对偶函数及补函数 4用最小路集和最小割集求系统的可靠度
第二节 环境适应性试验
一 环境条件的分类及其对产品的影响 二 环境试验的方法(3类)
第三节 寿命试验和加速寿命试验
一寿命试验的分类(2类) 二寿命试验的设计问题 1试验目的 2试验对象 3试验条件 4试验截止时间 5测试周期 6失效判据 7数据记录和处理
第四节 单元产品平均寿命评估
一用完全寿命试验数据进行单元产品的平 均寿命评估
二用截尾寿命试验数据进行单元产品的平 均寿命评估
第十章 复杂产品(系统)的可靠性评 估(了解)
第一节 系统可靠性综合的金字塔模型 第二节 系统可靠性的经典精确置信限 第三节 系统可靠性的经典近似置信限 第四节 系统可靠性评定的一般步骤
可靠性工程
进行可靠性评估的常用方法,维修性设计, 书中还介绍了可靠性管理方面的基本知识, 以促进可靠性技术在工程的广泛应用。
相关文档
最新文档