自动控制原理电子教案李洪波

合集下载

自动控制原理电子教案-第二章

自动控制原理电子教案-第二章
第二章 自动控制系统的数学描述
第一节 概论 第二节 机理分析建模方法 第三节 拉氏变换和传递函数 第四节 典型环节的动态特性 第五节 系统方框图等效变换和信号流图 第六节 实验建模方法 第七节 PID 控制器
第一节
控制系统数学模型的定义
概论
揭示系统各变量内在联系的数学表达式和关系图表
数学模型的类型
2 M d y f dy f dx 2 y x K dt K dt K dt
y
2.2.2.1 建模举例---机械系统
4). 机械转动系统
已知: 转动惯量 J , 转矩 T , 摩擦系数 f , 转角 . 求: 系统动态方程式. 解: T 根据牛顿第二定律 J
(2)
解: 根据物质守恒定律 和流量近似公式
Q2 K1 H1 H 2
(3)
Q3 K 2 H 2
中间变量为 Q2, Q3, H1, 由(2),(4) dH 2 1 Q2 K 2 H 2 dt F2 dH 2 K 2 H 2 Q2 或 F2 dt
(4)
(5)
2.2.2.3 建模举例---液力系统
Le
1

at

0
e e dt e
at st 0

a s t
1 dt sa
1 L e at s a
2.3.1.2 典型函数的拉氏变换(续)
4)正弦函数的拉氏变换
x(t ) sin t
0
t0
Lx(t ) sin t e st dt 1 jt e e jt e st dt 0 2j 1 1 1 s j s j s 2 2 2j

自动控制原理(经典部分)课程教案

自动控制原理(经典部分)课程教案

xx科技大学《自动控制原理》(经典部分)课程教案授课时间:适用专业、班级:编写人:编写时间:)())()m n s z s p --221)(1)21)(1)i j s s T s T s ζττζ++++++ 极点形成系统的模态,授课学时:2学时章节名称第二章第三节控制系统的结构图与信号流图(1)备注教学目的和要求1、会绘制结构图。

2、会由结构图等效变换求传递函数。

重点难点重点:结构图的绘制;由结构图等效变换求传递函数。

难点:复杂结构图的等效变换。

教学方法教学手段1、教学方法:课堂讲授法为主;用精讲多练的方法突出重点,用分析举例的方法突破难点。

2、教学手段:以传统的口述、粉笔加黑板的手段为主。

教学进程设计(含教学内容、教学设计、时间分配等)一、引入(约3min)从“用数学图形描述系统的优点”引入新课。

二、教学进程设计(一)结构图的组成(约7min)1、信号线:表示信号的传递方向。

2、方框:表示输入和输出的运算关系,即C(S)=R(S)*G(S)。

3、比较点:表示两个以上信号进行代数运算。

4、引出点:一个信号引出两个或以上分支。

(二)结构图的绘制(约40min)绘制:列写微分方程组,并列写拉氏变换后的子方程;绘制各子方程的结构图,然后根据变量关系将各子结构图依次连接起来,得到系统的结构图。

例题讲解。

(二)结构图的简化(约46min)任何复杂的系统结构图,各方框之间的基本连接方式只有串联、并联和反馈连接三种。

方框结构图的简化是通过移动引出点、比较点、交换比较点,进行方框运算后,将串联、并联和反馈连接的方框合并,求出系统传递函数。

1、串联的简化:12()()()G s G s G s=2、并联的简化:12()()()G s G s G s=±3、反馈连接方框的简化:11()()1()()G ssG s H sΦ=4、比较点的移动:移动前后保持信号的等效性。

比较点前移比较点后移5、引出点的移动:移动前后保持信号的等效性。

自动控制原理电子教案

自动控制原理电子教案

一、教案基本信息自动控制原理电子教案课时安排:45分钟教学目标:1. 理解自动控制的基本概念和原理。

2. 掌握自动控制系统的分类和特点。

3. 了解常用自动控制器的原理和应用。

教学方法:1. 讲授:讲解自动控制的基本概念、原理和特点。

2. 互动:提问和回答,让学生积极参与课堂讨论。

3. 案例分析:分析实际应用中的自动控制系统,加深学生对知识的理解。

教学工具:1. 投影仪:用于展示PPT和视频资料。

2. 计算机:用于播放教学视频和演示软件。

二、教学内容和步骤1. 自动控制的基本概念(5分钟)讲解自动控制系统的定义、作用和基本组成。

通过举例说明自动控制系统在实际中的应用,如温度控制、速度控制等。

2. 自动控制系统的分类和特点(10分钟)讲解自动控制系统的分类,包括线性系统和非线性系统、连续系统和离散系统、开环系统和闭环系统等。

介绍各种系统的特点和应用场景。

3. 常用自动控制器原理和应用(15分钟)介绍常用的自动控制器,如PID控制器、模糊控制器、神经网络控制器等。

讲解其原理和结构,并通过实际案例分析其应用。

4. 课堂互动(5分钟)提问和回答环节,让学生积极参与课堂讨论,巩固所学知识。

可以设置一些选择题或简答题,检查学生对自动控制原理的理解。

三、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问和回答问题的积极性等。

2. 作业完成情况:检查学生作业的完成质量,包括答案的正确性、解题思路的清晰性等。

3. 课程测试:在课程结束后进行一次测试,检验学生对自动控制原理的掌握程度。

四、教学资源1.PPT:制作精美的PPT,用于展示教学内容和实例。

2. 视频资料:收集相关自动控制原理的教学视频,用于辅助讲解和演示。

3. 案例分析:挑选一些实际应用中的自动控制系统案例,用于分析和学习。

五、教学拓展1. 开展课后讨论:鼓励学生在课后组成学习小组,针对课堂所学内容进行讨论和交流。

2. 参观实验室:组织学生参观自动控制实验室,实地了解自动控制系统的原理和应用。

《自动控制原理》电子教案

《自动控制原理》电子教案

《自动控制原理》电子教案自动控制原理是一门应用于工程系统中的基础课程,主要教授控制系统的基本原理、方法和技术。

本教案分为导入、教学过程、课堂活动、作业布置和教学总结五个部分。

一、导入控制系统是现代工程中不可或缺的部分,它在各个领域中都有着广泛的应用,如机械、电子、航空航天、化工等。

本课程将重点介绍控制系统的基本原理和常用的控制方法,通过理论与实践相结合的方式,让学生对自动控制有一个全面的了解。

二、教学过程1.引入控制系统的概念和意义-通过举例说明控制系统在日常生活中的应用,如电梯、温度调节器等。

-引导学生思考控制系统的目的是什么,如稳定性、精确度、鲁棒性等。

2.基本概念和术语-介绍控制系统的基本构成要素,如输入、输出、传感器、执行器等。

-解释控制系统的基本术语,如开环控制、闭环控制、反馈、控制器等。

3.数学模型建立与分析-介绍控制系统的数学建模方法,如微分方程、状态空间等。

-通过实例演示如何建立系统的数学模型,如电机控制系统、液位控制系统等。

-分析系统的稳定性和动态响应,引入根轨迹和频率响应的概念。

4.控制方法与技术-介绍常见的控制方法,如比例、积分、微分控制器,PID控制器等。

-讲解先进的控制技术,如自适应控制、鲁棒控制、优化控制等。

-针对不同的控制任务,介绍相应的控制算法和调参方法。

5.实验与仿真-安排实验课程,让学生通过实际操作来深入理解控制系统的原理和方法。

-使用仿真软件进行虚拟实验,提供学生自主学习和实践的机会。

三、课堂活动1.小组讨论:请学生分小组讨论不同控制系统的应用,并分享自己的观点和想法。

2.解答问题:教师提供一些与课程内容相关的问题,鼓励学生积极参与回答,加深对知识的理解。

3.实例分析:教师提供一些典型的控制系统实例,让学生逐步分析其数学模型和控制方法。

四、作业布置1.阅读相关文献资料,进一步了解控制系统的发展和应用。

2.完成课后习题,加强对知识的巩固。

3.准备下一堂课的报告,选择一个感兴趣的控制系统进行介绍。

《自动控制原理》电子教案(共8章)

《自动控制原理》电子教案(共8章)

第一章自动控制的一般概念第一节控制理论的发展自动控制的萌芽:自动化技术学科萌芽于18世纪,由于工业革命的发展,如何进一步降低人的劳动强度和提高设备的可靠性被提到了议程。

特点:简单的单一对象控制。

1. 经典控制理论分类线性控制理论,非线性控制理论,采样控制理论2.现代控制理论ﻫ3.大系统理论ﻫ4. 智能控制理论发展历程:1. 经典控制理论时期(1940-1960)研究单变量的系统,如:调节电压改变电机的速度;调整方向盘改变汽车的运动轨迹等。

⏹1945年美国人Bode出版了《网络分析与放大器的设计》,奠定了控制理论的基础;⏹1942年哈里斯引入传递函数;⏹1948年伊万恩提出了根轨迹法;⏹1949年维纳关于经典控制的专著。

特点:以传递函数为数学工具,采用频率域法,研究“单输入—单输出”线性定常控制系统的分析和设计,而对复杂多变量系统、时变和非线性系统无能为力。

2.现代控制理论时期(20世纪50年代末-60年代初)研究多变量的系统,如,汽车看成是一个具有两个输入(驾驶盘和加速踏板)和两个输出(方向和速度)的控制系统。

空间技术的发展提出了许多复杂的控制问题,用于导弹、人造卫星和宇宙飞船上,对自动控制的精密性和经济性指标提出了极严格的要求。

并推动了控制理论的发展。

⏹Kalman的能控性观测性和最优滤波理论;⏹庞特里亚金的极大值原理;⏹贝尔曼的动态规划。

特点:采用状态空间法(时域法),研究“对输入-多输出”、时变、非线性系统等高精度和高复杂度的控制问题。

3.大系统控制时期(1970s-)各学科相互渗透,要分析的系统越来越大,越来越复杂。

大系统控制理论是一种过程控制与信息处理相结合的动态系统工程理论,研究的对象具有规模庞大、结构复杂、功能综合、目标多样、因素众多等特点。

它是一个多输入、多输出、多干扰、多变量的系统。

如:人体,我们就可以看作为一个大系统,其中有体温的控制、情感的控制、人体血液中各种成分的控制等等。

《自动控制原理》电子教案

《自动控制原理》电子教案
大纲制订人:杨志超 大纲审定人:李先允 制订日期:2005 年 6 月
5
《自动控制原理》电子教案
《自动控制原理》课程实验教学大纲
一、实验教学目标与基本要求
《自动控制原理》课程实验通过上机使用 MATLAB 软件,使学生初步掌握 MATLAB 软件在控制理论中的 基本应用,学会利用 MATLAB 软件分析控制系统,从而加深对自动控制系统的认识,帮助理解经典自动控 制的相关理论和分析方法。通过本课程上机实验,要求学生对 MATLAB 软件有一个基本的了解,掌握 MATLAB 软件中基本数组和矩阵的表示方法,掌握 MATLAB 软件的基本绘图功能,学会 MATLAB 软件中自动控制理论 常用函数的使用,学会在 MATLAB 软件工作窗口进行交互式仿真和使用 M_File 格式的基本编程方法,初步
制系统的性能。了解开环零、极点对系统性能的影响。
5.熟悉频率分析法分析控制系统性能的方法 熟悉典型环节频率特性的求取以及频率特性曲线,掌握系统开环对数频率特性曲线、极坐标曲线绘制 的基本方法。了解根据开环对数频率特性曲线分析闭环系统性能的方法。熟悉用奈奎斯特稳定判据判断系
1
《自动控制原理》电子教案
4.频率法反馈校正的基本原理和方法(选讲)
(七)非线性控制系统 了解非线性系统与线性系统的区别,了解非线性特性和非线性系统的主要特征,学会非线性系统的描 述函数分析方法,了解非线性系统的相平面分析法(选讲)。
3
《自动控制原理》电子教案
1. 非线性系统的基本概念
2. 典型非线性特性、非线性系统的主要特征
三、实验方法、特点与基本要求
本课程实验采用计算机 MATLAB 软件仿真方法,其特点是利用 MATLAB 软件丰富的功能函数、灵活的编 程和调试手段以及强大的人机交互和图形输出功能,可以实现对控制系统直观和方便的分析和设计。

《自动控制原理》电子教案

《自动控制原理》电子教案

自动控制原理电子教案第 1 次课授课时间2学时授课题目(章、节)第一章绪论(1-3节)主要内容1.自动控制在各领域的应用2.自动控制的作用3.自动控制定义:自动控制就是在没有人直接参与的情况下,利用控制器使被控对象(或过程)的某些物理量自动地按预先给定的规律去运行。

4.自动控制系统的基本职能元件及基本框图等5.开环控制与闭环控制目的与要求了解自动控制系统的基本职能元件、基本术语及方框图掌握自动控制定义掌握开环、闭环控制的定义、基本框图重点与难点重点:自动控制的定义、开环控制与闭环控制的定义及框图教学手段授课、例题讲解思考题或作业题1-21.1 引言 无论是人们的日常生活、工业生产,还是空间探索、导弹制导等尖端科技领域中,自动控制技术无所不在、无所不能。

自动控制理论和技术已经渗透到社会、经济和科学研究的各个方面。

 自动控制技术是建立在控制论基础上的,而控制论研究的是控制的一般性理论,它不具体面对某一类控制系统的,因此它是一门以理论为主的课程。

 自动控制理论是一门理论性和工程性的综合科学。

 1.控制理论的基础观念 控制理论是建立在有可能发展一种方法来研究各式各样系统中控制过程这一基础上的理论(也即,它是研究系统共性的控制过程的理论,可以把实际对象的物理涵义抽象出来,因此,它一定是以数学工具作为主要研究手段的)。

 2.控制理论的研究对象 控制论的研究是面向系统的。

 广义地讲:控制论是研究信息的产生、转换、传递、控制和预报的科学; 狭义地讲:根据期望的输出来改变控制输入,使系统的输出能达到某中预期的效果。

 3.控制论与数学及自动化技术的关系 控制论是应用数学的一个分支,它的某些理论的研究还要借助于抽象数学。

而控制论的研究成果若要应用于实际工程中,就必须在理论概念与用来解决这些实际问题的实用方法之间架起一座桥梁。

 1.2 自动控制和自动控制系统 1.2.1自动控制问题的提出 人们存在着一种普遍的要求或希望,即要求某些物理量维持在某种特定的(如恒定不变或按某种规律变化或跟踪某个变化的量等等)标准上。

《自动控制原理》课程教案

《自动控制原理》课程教案

《自动控制原理》课程教案前言一、重要性1、自动控制原理是自动化专业主干课程,是最重要的专业基础课,该课程涉及到电路、电机拖动、电子技术等方面的知识,为学好专业课打下良好的基础。

2、自动控制原理课不仅是高校控制类专业必修课程,而且越来越多的非控制专业也列入必修课,也各高校研究生入学考试的课程。

3、自动化的核心是控制技术,控制技术的的基础是控制理论,没有先进的控制理论就没有先进的控制技术。

二、本课主要内容自动控制系统的基本概念、控制系统的数学模型建立、介绍线性系统的时域分析、根轨迹分析、频域分析三大分析设计方法,并介绍校正的相关概念与系统校正的设计方法。

三、如何学好该课程要学好这门课程主要把握几个环节:1、知识的连续性,一环扣一环,及时消化理解;2、要掌握好电路、电机拖动及模拟电子技术方面的知识;3、加强作业练习,作好课堂笔记;4、利用好答疑时间,发现问题及时解决;5、加强实践环节,上好实验课。

四、参考书1、卢京潮编著,自动控制原理,西北工业大学出版社,2004年9月2、蒋大明等编著,自动控制原理,清华大学出版社,2003年3月3、谢克明等编著,自动控制原理,电子工业出版社,2004年4月4、杨自厚编著,自动控制原理,冶金工业出版社,2002年5月卢京潮编著:主要特点:(1)内容较丰富;(2)有系统仿真分析;(3)第一章有相关新知识。

蒋大明等编著:主要特点:(1)系统实例较多,具有一定的实用性。

(2)主要参考第二章和第五章内容。

杨自厚编著主要特点:(1)系统设计方面讲述全面、系统。

(3)主要参考第三章、第五章和第六章内容。

五、学时分配(80学时)六、本课程自学内容1、动态误差系数(2学时)提纲:广义误差系数:动态位置误差系数、动态速度误差系数、动态加速度误差系数等。

要求:能求系统的动态误差。

所需知识:传递函数、稳态误差2、高阶系统(2学时)提纲:(1)高阶系统的单位阶跃响应。

(2)高阶系统的动态性能估算。

开环幅相曲线

开环幅相曲线

G K ( jω ) =
由开环频率特性可知,系统为 0 型,即ν = 0 。
0
k 1 1 T1T2 ( jω + )( jω + ) T1 T2
0
幅相曲线的起点为: GK ( j 0) = k∠0 ,幅相曲线的终点为: GK ( j∞) = 0∠ − 180 。 粗略画出幅相曲线如下:
1 ,试绘制系统幅相曲线。 s ( s + 1) 1 1 1 解:统的开环频率特性: GK ( jω ) = =− −j 2 ω (1 + ω 2 ) jω ( jω + 1) 1+ ω 由开环频率特性可知,系统为 I 型,即ν = 1 。 于是幅相曲线的起点为: GK ( j 0) = ∞∠ − 90 0 ,当 ω = 0 时,实部函数有渐近线-1。
2
k ( j 2ω + 1) ( jω ) ( j 0.5ω + 1)( jω + 1) 由开环频率特性可知,系统为 2 型,即ν = 2 。 0 于是幅相曲线的起点为: GK ( j 0) = ∞∠ − 180 0 幅相曲线的终点为: GK ( j∞) = 0∠ − 270 GK ( jω ) =
5.3 系统开环频率特性的绘制 一、 开环及坐标图 将开环传递函数表示为时间常数表达形式
G (s) =
b0 s m + b1s m-1 + a0 s n + a1s n-1 +
+ பைடு நூலகம்m-1s + bm =K + an -1s + an
∏ (τ k s + 1)∏ (τ l2 s 2 + 2τ lς l s + 1)
Gk ( j 0+ ) =

自动控制原理讲义

自动控制原理讲义

4.自动控制系统的基本职能元件及基本框图等
5.开环控制与闭环控制
目的与要 求
了解自动控制系统的基本职能元件、基本术语及方框图 掌握自动控制定义 掌握开环、闭环控制的定义、基本框图
重 点 与 难 重点:自动控制的定义、开环控制与闭环控制的定义及框图 点
教学手段 授课、例题讲解
思考题或 作业题 1-2
1.1 引言 无论是人们的日常生活、工业生产,还是空间探索、导弹制导等尖端科技领域中,自动控制技术 无所不在、无所不能。自动控制理论和技术已经渗透到社会、经济和科学研究的各个方面。 自动控制技术是建立在控制论基础上的,而控制论研究的是控制的一般性理论,它不具体面对某 一类控制系统的,因此它是一门以理论为主的课程。 自动控制理论是一门理论性和工程性的综合科学。 1.控制理论的基础观念 控制理论是建立在有可能发展一种方法来研究各式各样系统中控制过程这一基础上的理论(也即, 它是研究系统共性的控制过程的理论,可以把实际对象的物理涵义抽象出来,因此,它一定是以数学 工具作为主要研究手段的)。 2.控制理论的研究对象 控制论的研究是面向系统的。 广义地讲:控制论是研究信息的产生、转换、传递、控制和预报的科学; 狭义地讲:根据期望的输出来改变控制输入,使系统的输出能达到某中预期的效果。 3.控制论与数学及自动化技术的关系 控制论是应用数学的一个分支,它的某些理论的研究还要借助于抽象数学。而控制论的研究成果 若要应用于实际工程中,就必须在理论概念与用来解决这些实际问题的实用方法之间架起一座桥梁。 1.2 自动控制和自动控制系统 1.2.1 自动控制问题的提出 人们存在着一种普遍的要求或希望,即要求某些物理量维持在某种特定的(如恒定不变或按某种 规律变化或跟踪某个变化的量等等)标准上。
课外作业

自动控制原理电子教案

自动控制原理电子教案

自动控制原理电子教案第一章:绪论1.1 自动控制的概念介绍自动控制的定义和意义解释自动控制系统的组成和功能1.2 自动控制系统的分类介绍连续控制系统和离散控制系统的区别介绍开环控制系统和闭环控制系统的区别1.3 自动控制的发展历程介绍自动控制的发展历程和重要里程碑介绍自动控制在我国的发展状况第二章:自动控制系统的数学模型2.1 数学模型的概念介绍数学模型的定义和作用解释数学模型在自动控制系统中的应用2.2 连续系统的数学模型介绍连续系统的微分方程表示法介绍连续系统的传递函数表示法2.3 离散系统的数学模型介绍离散系统的差分方程表示法介绍离散系统的Z域表示法第三章:自动控制系统的稳定性分析3.1 稳定性概念介绍系统稳定性的定义和重要性解释稳定性的判定标准3.2 连续系统的稳定性分析介绍劳斯-赫尔维茨稳定性判据介绍尼科尔斯-李雅普诺夫稳定性判据3.3 离散系统的稳定性分析介绍离散系统的稳定性判定方法介绍离散系统的劳斯-赫尔维茨判据第四章:自动控制系统的控制器设计4.1 控制器设计概述介绍控制器设计的意义和目标解释控制器设计的基本方法4.2 连续系统的PID控制器设计介绍PID控制器的原理和结构介绍PID控制器的参数调整方法4.3 离散系统的控制器设计介绍离散PID控制器的设计方法介绍离散控制器的实现和优化方法第五章:自动控制系统的仿真与实验5.1 自动控制系统仿真概述介绍自动控制系统仿真的意义和目的解释仿真软件的选择和使用方法5.2 连续系统的仿真实验介绍连续系统的仿真实验方法和步骤分析实验结果和性能指标5.3 离散系统的仿真实验介绍离散系统的仿真实验方法和步骤分析实验结果和性能指标第六章:线性系统的状态空间分析6.1 状态空间的概念介绍状态空间及其在自动控制系统中的应用解释状态向量和状态方程的含义6.2 状态空间表示法介绍状态空间表示法的基本原理解释状态转移矩阵和系统矩阵的概念6.3 状态空间分析法介绍状态空间分析法在系统稳定性、可控性和可观测性方面的应用解释李雅普诺夫理论在状态空间分析中的应用第七章:非线性系统的分析与控制7.1 非线性系统概述介绍非线性系统的定义和特点解释非线性系统分析的重要性7.2 非线性系统的数学模型介绍非线性系统的常见数学模型解释非线性方程和方程组的求解方法7.3 非线性控制策略介绍非线性控制的基本策略和方法分析非线性控制系统的性能和稳定性第八章:现代控制理论及其应用8.1 现代控制理论概述介绍现代控制理论的定义和发展历程解释现代控制理论在自动控制系统中的应用8.2 鲁棒控制介绍鲁棒控制的定义和目标解释鲁棒控制在自动控制系统中的应用和优势8.3 自适应控制介绍自适应控制的定义和原理解释自适应控制在自动控制系统中的应用和效果第九章:自动控制系统的实现与优化9.1 系统实现概述介绍自动控制系统实现的意义和目标解释系统实现的方法和技术9.2 数字控制器的实现介绍数字控制器的实现方法和步骤解释数字控制器实现中的主要技术问题9.3 系统优化方法介绍系统优化方法的定义和目标解释系统优化方法在自动控制系统中的应用和效果第十章:自动控制技术的应用案例分析10.1 工业自动化控制系统案例分析工业自动化控制系统的组成和功能解释工业自动化控制系统在工业生产中的应用案例10.2 控制系统案例分析控制系统的组成和功能解释控制系统在现代工业和生活中的应用案例10.3 航空航天控制系统案例分析航空航天控制系统的组成和功能解释航空航天控制系统在航空航天领域的应用案例重点和难点解析重点环节1:自动控制的概念与系统组成自动控制系统的定义和功能是理解自动控制理论的基础,需要重点关注。

超前校正

超前校正
用计算的方法求解如下:
96
《自动控制原理》电子教案
′ ′ ′ 20 lg 1000 − 20 lg ωc − 20 lg 0.1ωc = 20 lg 103 − 20 lg 0.1ωc2 = −8.75 ′ ′ 求得校正后的截止频率 ω c : ωc = 164.19( rad / s ) (6)求校正装置传递函数 确定转折频率 ω1 , ω 2 。 ω 164.5 ω1 = c = = 60(rad / s ) α 7.5 ω 2 = α ωc = 7.5 × 164.5 = 450(rad / s ) 1 + s ω1 1 + 0.0167 s = 校正装置传递函数为: Gc ( s) = 1 + s ω2 1 + 0.00222s (7)校验结果 校正后系统的开环传递函数为: 1 + 0.0167 s 1000 1000(1 + 0.0167 s ) × = G ′( s ) = Gc ( s )G ( s ) = 1 + 0.00222 s s (0.1s + 1)(0.001s + 1) s (1 + 0.00222 s )(0.1s + 1)(0.001s + 1) 校验: ①校正系统的开环放大倍数 K = 1000 = K v ,满足系统的稳态性能要求;
⎧未校正γ < 期望的γ ′ ⎪ ′ ⎨未校正ωc < 期望的ωc ⎪未校正系统过 0dB线的斜率小于或等于 − 40dB dec ⎩
③计算需要补偿的超前相位角 ϕ m : 具体做法:令 ϕ m = γ ′ − γ + (5~12 0 ) 。式中 ∆γ = γ ′ − γ 为需要补偿的相位角, (5~12 ) 为增加
0

根轨迹的基本条件和规则

根轨迹的基本条件和规则
《自动控制原理》电子教案
第 15
次课
授课时间
2 学时
授课题目(章、节) 主要内容 根轨迹法的基本概念 绘制 180°根轨迹的基本法则
第四章 根轨迹法(1、2 节)
目的与要 求
了解根轨迹法、根轨迹的定义 掌握根轨迹方程(幅值方程和相角方程) 掌握绘制 180°根轨迹的基本法则(起点和终点、连续性和对称性、分支数、渐近线、实 轴上的根轨迹分布) 重点:根轨迹的定义、根轨迹方程、绘制 180°根轨迹的基本法则 难点:根轨迹方程、绘制根轨迹的基本法则 授课、例题讲解
E( s)
G (s)
C( s )
H (s)
Kg
∏ (s − z )
i
m
∏ (s − p )
j =1 j
i =1 n
= Kg
∏s−z
i =1 n j =1
m
i
∏ s− p
m
e
j
n ⎤ ⎡ m j ⎢ ( s − zi )− ( s − p j ) ⎥ ⎥ ⎢ i =1 j =1 ⎦ ⎣


= −1 = e j ( 2 k +1)π
n
= 0,±1,±2,
另外, 0 ≤ K g < +∞ 时,负反馈系统的根轨迹称为 180 0 根轨迹,正反馈系统的根轨迹就称为 0 0 根 轨迹。 4.2 绘制根轨迹的基本法则 1. 180 0 根轨迹作图法则 法则 1:根轨迹的起点和终点 根轨迹的起点是指根轨迹 增 益 K g = 0 时,闭环极点在 S 平面上的位置,而根轨迹的终点则是指
于是,根轨迹方程又可以分解为幅值方程和相角方程如下
幅值方程: K g
∏ s − zi ∏ s− p

电子教案-自动控制原理及其应用电子教案-2.4

电子教案-自动控制原理及其应用电子教案-2.4

R(s) E(s)
_ G1(s)
B(s)
+
C(s) G2(s)
H(s)
=Ф典 前反Ф=1可d1(馈型向+(s变s+)G通)结通G=G换=1道((构道Gs(s为sDR):)2H)G图:((s:s2())(ss))H(s)R(sD) (s)
E(s)
_ G1(s) G2(Gs)2(s)
B(s) G1(sH) (s)H(s)
C(s)
前向通道: 反馈通道:
返回
D(s)
EE((ss))
+ G2(s) -H(s)
G1(s)
+
C(s) G2(s)
H(s)
开环传递函数:
系统反馈量与误差信号的比值
Gk(s) =
B(s) E(s) = G1(s) G2(s)
H (s) =
G (s) H (s)
第四节 反馈控制系统的传递函数
二、系统的闭环传递函数
21.扰给动定信号DR(s)作用 R (s) = 0
D(s)
动系系闭态统统环结的的传构闭典递图环型 传转函递结换数函构成为数:: :: D (s) =C0(s)
前向通道: 反馈通道:
R(s)
_
EE(s(s))
H(s) G2(s) G1(s)
第四节 反馈控制系统的传递函数
2.扰动信号D(s)作用 R (s) = 0
D(s)
R(s)作用下误
差输Ф出e的d(s动) =态
结构图:
DE((ss))R(=s)1EB_+((ss)G)G11((Gss))2G(Байду номын сангаасH2)((+ss))HG2((ss))
CC((ss))

开环伯德图绘制

开环伯德图绘制

⎧ L (ω ) = −20 lg 1 + ω 2 − 20 lg lg 1 + 4ω 2 ⎧ϕ (ω ) = arctgω − arctg 2ω ⎪ 1 1 ,⎨ ⎨ 2 2 ⎩ϕ 2 (ω ) = −arctgω − arctg 2ω ⎪ L2 (ω ) = −20 lg 1 + ω − 20 lg lg 1 + 4ω ⎩
由上述比较,可以得出如下结论 (1) ω = 0 → ∞ 变化时, 当 最小相位系统的相角变化最小, 而非最小相位系统的相角变化一般较大; (2)最小相位系统的对数幅频 L(ω ) 的斜率变化趋势与对数相频 ϕ (ω ) 的变化趋势一致,而非最小相 位系统则不然。 由于最小相位系统的幅频与相频的一一对应关系,因此可以仅由系统的开环幅频特性来确定系统的 频率特性(或传递函数) ,而不会引起奇异。 例:已知系统的开环对数幅频特性如下,试确定系统的开环传递函数。
《自动控制原理》电子教案
第 21
次课
授课时间
2 学时
授课题目(章、节) 主要内容 目的与要 求 重点与难 点 教学手段 思考题或 作业题 控制系统的开环频率特性 掌握开环 Bode 图的绘制
第五章 线性系统的频域分析方法(3 节)
掌握根据 Bode 图确定最小相位系统的传递函数 重点:开环 Bode 图的绘制、根据 Bode 图确定最小相位系统的传递函数 难点:同上 授课、例题讲解
三、最小相位系统 最小相位系统定义:系统开环传递函数的零点、极点全部位于 S 左半平面,同时又无纯滞后环节的 系统称为最小相位系统。否则就是非最小相位系统。
76
《自动控制原理》电子教案
试绘制 G1 ( s ) =
1− s 1+ s 和 G2 ( s ) = 的对数频率特性如下并比较如下 1 + 2s 1 + 2s
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、课题:&1.1自动控制理论的发展史及内容二、教学目的知识:掌握什么是自动控制,自动控制控制原理的发展史和主要内容技能:通过学习自动控制原理的发展进程了解本课程主要的任务三、教学重点自动控制原理的主要内容四、教学难点本课程的任务五、教学方法:讲授法六、教具教案、粉笔等七、时间分配课题引入 10分钟讲授 85分钟作业布置 5分钟八、作业布置九、审批十、教学内容1、组织教学2、导入新课3、疑点讲解&1.1自动控制理论的发展史及内容一提到自动化很多人就会问自动化是什么?所谓自动化就是指机器或装置在无人干预的情况下按规定的程序或指令自动地进行操作或运行。

广义的讲,自动化还包括模拟或再现人的自能活动。

自动化技术广泛用于工业、农业、国防、科学研究、交通运输、商业、医疗、服务以及家庭等各方面。

采用自动化技术不仅可以把人从繁重的体力劳动、部分脑力劳动以及恶劣、危险的工作环境中解放出来,而且能扩展、放大人的功能和创新的功能,极大地提高劳动生产率,增强人类认识世界和改造世界的能力。

因此自动化是一个国家或社会现代化水平的重要标志。

在我国的古代,很多的能工巧匠就发明了许多原始的自动装置,以满足生产、生活和作战的需要。

其中比较著名的就有以下几种:(1)指南车指南车是中国古代用来指示方向的一种具有能自动离合齿轮系装置的车辆。

指南车是一种马拉的双轮独辕车,车箱上立一个伸臂的木人。

《宋史·舆服志》中对指南车的构造和各齿轮大小和齿轮数都有详细的记载。

(2)铜壶滴漏即漏壶,中国古代的自动计时装置,又称刻漏或漏刻。

漏壶的最早记载见于《周记》。

这种计时装置最初只有两个壶,由壶上滴水到下面的受水壶,液面使浮箭升起以示刻度(时间)。

(3)饮酒速度的自动调节宋朝仇士良著的《岭外代答》(公元1178)蹭记载中国南方和西南方部落村民的一种习俗,就是常用长0.6米以上的饮酒管饮酒。

在这种竹制饮酒管中有一条银制小鱼,作为可动的开关(即浮子式阀门)。

这种阀门可用来保持均匀的饮酒速度。

(4)记里鼓车中国古代有能自报行车里程的车制,是东汉以后出现的,由汉代改装而成,车中装设具有减速作用的传动齿轮和凸轮、杠杆等机构。

车行一里,车上木人受凸轮牵动,由绳索拉起木人右臂击鼓一次,以表示车的里程。

(5)漏水转浑天仪公元2世纪,中国东汉的天文学家张衡创制的一种天文表演仪器。

它是一种用漏水推动的水运浑象,和现在的天球仪相似,可以用来实现天体运行的自动仿真。

(6)候风地动仪公元132年东汉张衡发明的一种观察地震的自动检测仪器,它的工作原理涉及到检测地震信号的大小和方向。

(7)水运仪象台北宋哲宗元祐三年,苏颂、韩公廉等人制成的水力天文装置。

它既能演示或能观测天象,又能计时及报时。

中国古代人民在原始的自动装置的创造和发明上作出了辉煌的成就,也为后来自动化的发展奠定了基础。

自动化的发展在世界的其他地方也有很大的发展。

公元一世纪古埃及和希腊的发明家页创造了教堂庙门自动开启、铜祭司自动洒圣水、投币式圣水箱等自动装置。

17世纪以来,随着生产的发展,在欧洲的一些国家相继出现了多种自动装置,其中比较典型的有:法国物理学家B.帕斯卡在公元1642年发明的加法器;荷兰机械师C.惠更斯于公元1657年发明的钟表;英国机械师E.李在公元1745年发明带有风向控制的风磨;俄国机械师H.波尔祖诺夫于公元1765年发明了蒸气锅炉水位保持恒定用的浮子式阀门水位调节器。

18世纪末至20世纪30年代自动化技术形成,由于第一次工业革命的需要,自动化调节有了更广泛的应用。

公元1968年法国工程师J.法尔科发明反馈调节器;到了20世纪20~30年代,美国开始采用PID调节器。

这是一种模拟式调节器,现在还在许多工厂中采用。

随着自动化装置的广泛应用,就暴露了许许多多的问题,许多人就对自动调节系统的稳定性提出了质疑。

自动调节器和控制对象组成自动调节系统。

有许多科学家对自动调节系统从理论上加以研究。

公元1868年英国物理学家J.麦克斯韦尔用微分方程描述并总结了调节器的理论。

公元1876年俄国机械学家H.A.维什捏格拉茨基进一步总结了调节其理论,归结为只要研究描述自动调节系统的线性其次微分方程的通解。

公元1877年英国数学家E.劳思、1895年德国数学家A.胡尔维茨提出代数稳定判据,沿用到现在。

公元1892年俄国数学家A.李雅普诺夫提出稳定性的严格数学定义并发表了专著。

他的稳定性理论至今还是研究分析线性和非线性系统稳定性的重要方法。

20世纪40~50年代局部自动化时期,第二次世界大战期间,为了防空火力控制系统和飞机自动导航系统等军事技术问题,各国科学家设计出各种精密的制动调节装置开创可防空火力系统和控制这一新的科学领域。

与此同时,在工业上已广泛应用PID调节器,并用电子模拟计算机来设计自动控制系统。

20世纪50年代研制出了电动单元组合仪表,这些为工业自动化提供了必不可少的技术工具,并使得构成和设计自动控制系统更简便、更工程化了,我国也能生产系列化得国产气动单元组合仪表QDZ型和电动单元组合仪表DDZ型,在国内使用很广。

1943~1946年,美国电气工程师J.埃克托和物理学家J.莫奇利为美国陆军研制成世界上第一台基于电子管电子数字计算机——电子数字积分和自动计数器。

1950年美国宾夕法尼亚大学莫尔小组研制成世界上第二台存储程序式电子数字计算机——离散变量电子自动计算机。

电子数字计算机的发明为20世纪60~70年代开始的再控制系统广泛应用程序控制和逻辑控制以及应用数字计算机直接控制生产过程奠定了基础。

我国也在20世纪50年代中叶开始研制大型电子数字计算机,并研制出了“银河Ⅲ”电子数字计算机。

20世纪50年代末起至今进入综合自动化时期。

复杂工业、复杂工业过程和航天技术的自动控制问题,都是多变量控制系统的分析和综合问题,迫切需要加以解决。

单经典的控制理论的直接应用遇到了困难。

20世纪70年代微处理器的出现对实现各种复杂的控制任务起了重大的推动作用。

20世纪50年代末到60年代初,开始出现电子数字计算机控制化的化工厂,20世纪60年代末在制造工业中出现了许多自动生产线,工业生产开始由局部自动化想综合自动化方向发展。

20世纪70年代出现专用机床组成的无人工厂,20世纪80年代初出现用柔性制造系统组成的无人工厂。

20世纪60年代末至70年代初,美、英等国的科学家们注意到人工智能的所有技术和机器人结合起来,研制出只能机器人。

智能机器人会在工业生产、核电站设备检查及维修、海洋调查、水下石油开采、宇宙探测等方面大显身手。

从古到今,自动化技术有了很大的发展。

自动化是新的技术革命的一个重要方面。

自动化技术的研究、应用和推广,对人类的生产、生活的方式将产生深远影响。

自控原理课程的特点和要求《自动控制原理》是自动化、电气工程与自动化等专业的专业基础课。

该课程需要一定的工程背景,利用数学知识较多。

它主要研究自动控制系统的基本概念、数学模型的建立及方块图等效变换。

针对控制系统的基本要求,利用时域分析法、根轨迹法和频域法分析和设计控制系统。

通过该课程的学习,要求学生系统地掌握自动控制系统的基本理论和基本方法,培养学生理论联系实际的能力,为专业课和工程实践打下坚实的基础十一、小结1.什么是自动控制。

2.自动控制理论的发展史及内容3自动控制原理课程的特点和要求十二、后记一、课题&1.2自动控制的基本原理和方式二、教学目的知识:1.自动控制的技术及其应用2.掌握开环控制系统和闭环控制系统的原理和结构三、教学重点自控技术的应用四、教学难点自控技术的基本控制方式和结构五、教学方法:讲授法六、教具教案、粉笔等七、时间分配课题引入 10分钟讲授 85分钟作业布置 5分钟八、作业布置九、审批十、教学内容1、组织教学2、导入新课3、疑点讲解&1.2自动控制的基本原理和方式1、自动控制技术及应用(1)什么是自动控制无人直接参与利用外加设备或装置(控制器)使机器、设备或生产过程(被控对象)的某个工作状态或参数(被控量)自动按预定的规律运行(2)自动控制技术的应用工业、农业、导航、核动力生物、医学、环境、经济管理和其它许多社会生活领域2、自动控制理论自动控制理论是研究自动控制共同规律的技术科学(1)经典控制理论(以反馈理论为基础)(军事)以传递函数为基础研究单输入-单输出(SISO)线性定常系统的分析和设计(2)现代控制理论(宇航)以状态空间描述为基础具有高性能、高精度的多变量变参数系统的最优控制问题(3)智能控制理论(发展方向)论、信息论、仿生学为基础3、反馈控制理论(闭环控制理论)(1)自动控制系统被控对象、控制器按一定的方式连接所组成的系统最基本的连接方式是反馈方式,按该方式连接的系统称为反馈控制系统(2)反馈控制原理控制器对被控对象施加的控制作用取自被控量的反馈信息,用来不断修正被控量与输入量之间的偏差,从而对被控对象进行控制。

例1 人取物反馈控制原理就是偏差控制原理通常,我们把取出输出量送回到输入端,并与输入信号相比较产生偏差的过程,称为反馈。

在工程实践中,为实现反馈控制,必须配有以下设备:测量元件、比较元件、执行元件统称为控制装置4、反馈控制系统的基本组成(1)外作用有用输入:决定系统被控量的变化规律扰动:破坏有用输入对系统的控制。

如:电源电压的波动、飞行中的气流、航海中的波浪等(2)给定元件给出与期望的被控量相对应的系统输入量(参据量)如书的位置(3)校正元件(补偿元件)结构和参数便于调整的元部件,以串联或反馈方式连接在系统中1、开环控制方式不存在输出到输入的反馈,输出量不参与控制(1)按给定值进行控制(2)按干扰进行控制(即前馈控制,对干扰进行补偿)十一、小结1.自控系统的基本原理是什么2.自控系统控制的基本控制方式及机构有哪些十二、后记一、课题:&1.3控制系统的分类&1.4 对自动控制系统性能的基本要求二、教学目的知识:1.掌握控制系统的简单分类2.自动控制系统性能的基本要求有哪些三、教学重点控制系统的简单分类四、教学难点自动控制系统的稳、准、快的要求五、教学方法:讲授法六、教具教案、粉笔等七、时间分配课题引入 10分钟讲授 85分钟作业布置 5分钟八、作业布置九、审批十、教学内容1、组织教学2、导入新课3、疑点讲解&1.3控制系统的分类&1.4 对自动控制系统性能的基本要求1 稳定性(最基本要求)稳定性:系统在扰动消失后,由初始偏差状态恢复到平衡状态的能力1、稳定2、不稳定稳定性:(1) 对恒值系统,要求当系统受到扰动后,经过一定时间的调整能够回到原来的期望值。

(2) 对随动系统,被控制量始终跟踪参据量的变化。

稳定性是对系统的基本要求,不稳定的系统不能实现预定任务。

线性系统稳定性,通常由系统的结构决定与外界因素无关。

相关文档
最新文档