2015年甘肃省定西市中考数学试题(含答案)

合集下载

定西市中考数学试卷

定西市中考数学试卷

定西市中考数学试卷一、选择题:本大题共10小题.每小题3分.共30定西市中考数学试卷1.(3分)﹣2018的相反数是()A.﹣2018 B.2018 C.﹣D.【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣2018的相反数是:2018.故选:B.【点评】此题主要考查了相反数.正确把握相反数的定义是解题关键.2.(3分)下列计算结果等于x3的是()A.x6÷x2B.x4﹣x C.x+x2D.x2•x【分析】根据同底数幂的除法、乘法及同类项的定义逐一计算即可得.【解答】解:A、x6÷x2=x4.不符合题意;B、x4﹣x不能再计算.不符合题意;C、x+x2不能再计算.不符合题意;D、x2•x=x3.符合题意;故选:D.【点评】本题主要考查整式的运算.解题的关键是掌握同底数幂的除法、乘法及同类项的定义.3.(3分)若一个角为65°.则它的补角的度数为()A.25°B.35°C.115°D.125°【分析】根据互为补角的两个角的和等于180°列式进行计算即可得解.【解答】解:180°﹣65°=115°.故它的补角的度数为115°.故选:C.【点评】本题考查了余角和补角.解决本题的关键是熟记互为补角的和等于180°.4.(3分)已知=(a≠0.b≠0).下列变形错误的是()A.=B.2a=3b C.=D.3a=2b【分析】根据两内项之积等于两外项之积对各选项分析判断即可得解.【解答】解:由=得.3a=2b.A、由原式可得:3a=2b.正确;B、由原式可得2a=3b.错误;C、由原式可得:3a=2b.正确;D、由原式可得:3a=2b.正确;故选:B.【点评】本题考查了比例的性质.主要利用了两内项之积等于两外项之积.5.(3分)若分式的值为0.则x的值是()A.2或﹣2 B.2 C.﹣2 D.0【分析】直接利用分式的值为零则分子为零进而得出答案.【解答】解:∵分式的值为0.∴x2﹣4=0.解得:x=2或﹣2.故选:A.【点评】此题主要考查了分式的值为零的条件.正确把握定义是解题关键.6.(3分)甲、乙、丙、丁四名同学在一次投掷实心球训练中.在相同条件下各投掷10次.他们成绩的平均数与方差s2如下表:甲乙丙丁平均数(环)11.1 11.1 10.9 10.9方差s2 1.1 1.2 1.3 1.4若要选一名成绩好且发挥稳定的同学参加比赛.则应该选择()A.甲B.乙C.丙D.丁【分析】根据平均数和方差的意义解答.【解答】解:从平均数看.成绩好的同学有甲、乙.从方差看甲、乙两人中.甲方差小.即甲发挥稳定.故选:A.【点评】本题考查了平均数和方差.熟悉它们的意义是解题的关键.7.(3分)关于x的一元二次方程x2+4x+k=0有两个实数根.则k的取值范围是()A.k≤﹣4 B.k<﹣4 C.k≤4D.k<4【分析】根据判别式的意义得△=42﹣4k≥0.然后解不等式即可.【解答】解:根据题意得△=42﹣4k≥0.解得k≤4.故选:C.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时.方程有两个不相等的实数根;当△=0时.方程有两个相等的实数根;当△<0时.方程无实数根.8.(3分)如图.点E是正方形ABCD的边DC上一点.把△ADE绕点A顺时针旋转90°到△ABF 的位置.若四边形AECF的面积为25.DE=2.则AE的长为()A.5 B. C.7 D.【分析】利用旋转的性质得出四边形AECF的面积等于正方形ABCD的面积.进而可求出正方形的边长.再利用勾股定理得出答案.【解答】解:∵把△ADE顺时针旋转△ABF的位置.∴四边形AECF的面积等于正方形ABCD的面积等于25.∴AD=DC=5.∵DE=2.∴Rt△ADE中.AE==.故选:D.【点评】此题主要考查了旋转的性质以及正方形的性质.正确利用旋转的性质得出对应边关系是解题关键.9.(3分)如图.⊙A过点O(0.0).C(.0).D(0.1).点B是x轴下方⊙A上的一点.连接BO.BD.则∠OBD的度数是()A.15°B.30°C.45°D.60°【分析】连接DC.利用三角函数得出∠DCO=30°.进而利用圆周角定理得出∠DBO=30°即可.【解答】解:连接DC.∵C(.0).D(0.1).∴∠DOC=90°.OD=1.OC=.∴∠DCO=30°.∴∠OBD=30°.故选:B.【点评】此题考查圆周角定理.关键是利用三角函数得出∠DCO=30°.10.(3分)如图是二次函数y=ax2+bx+c(a.b.c是常数.a≠0)图象的一部分.与x轴的交点A 在点(2.0)和(3.0)之间.对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时.y>0.其中正确的是()A.①②④B.①②⑤C.②③④D.③④⑤【分析】由抛物线的开口方向判断a与0的关系.由抛物线与y轴的交点判断c与0的关系.然后根据对称轴判定b与0的关系以及2a+b=0;当x=﹣1时.y=a﹣b+c;然后由图象确定当x取何值时.y>0.【解答】解:①∵对称轴在y轴右侧.∴a、b异号.∴ab<0.故正确;②∵对称轴x=﹣=1.∴2a+b=0;故正确;③∵2a+b=0.∴b=﹣2a.∵当x=﹣1时.y=a﹣b+c<0.∴a﹣(﹣2a)+c=3a+c<0.故错误;④根据图示知.当m=1时.有最大值;当m≠1时.有am2+bm+c≤a+b+c.所以a+b≥m(am+b)(m为实数).故正确.⑤如图.当﹣1<x<3时.y不只是大于0.故错误.故选:A.【点评】本题主要考查了二次函数图象与系数的关系.关键是熟练掌握①二次项系数a决定抛物线的开口方向.当a>0时.抛物线向上开口;当a<0时.抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0).对称轴在y轴左;当a与b异号时(即ab<0).对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y 轴交点.抛物线与y轴交于(0.c).二、填空题:本大题共8小题.每小题4分.共32分11.(4分)计算:2sin30°+(﹣1)2018﹣()﹣1=0.【分析】根据特殊角的三角函数值、幂的乘方和负整数指数幂可以解答本题.【解答】解:2sin30°+(﹣1)2018﹣()﹣1=2×+1﹣2=1+1﹣2=0.故答案为:0.【点评】本题考查实数的运算、负整数指数幂、特殊角的三角函数值.解答本题的关键是明确它们各自的计算方法.12.(4分)使得代数式有意义的x的取值范围是x>3.【分析】二次根式中被开方数的取值范围:二次根式中的被开方数是非负数.【解答】解:∵代数式有意义.∴x﹣3>0.∴x>3.∴x的取值范围是x>3.故答案为:x>3.【点评】本题主要考查了二次根式有意义的条件.如果所给式子中含有分母.则除了保证被开方数为非负数外.还必须保证分母不为零.13.(4分)若正多边形的内角和是1080°.则该正多边形的边数是8.【分析】n边形的内角和是(n﹣2)•180°.如果已知多边形的边数.就可以得到一个关于边数的方程.解方程就可以求出多边形的边数.【解答】解:根据n边形的内角和公式.得(n﹣2)•180=1080.解得n=8.∴这个多边形的边数是8.故答案为:8.【点评】本题考查了多边形的内角与外角.熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理.求边数的问题就可以转化为解方程的问题来解决.14.(4分)已知某几何体的三视图如图所示.其中俯视图为正六边形.则该几何体的侧面积为108.【分析】观察该几何体的三视图发现该几何体为正六棱柱.然后根据提供的尺寸求得其侧面积即可.【解答】解:观察该几何体的三视图发现该几何体为正六棱柱.其底面边长为3.高为6.所以其侧面积为3×6×6=108.故答案为:108.【点评】本题考查了由三视图判断几何体的知识.解题的关键是能够根据三视图判断几何体的形状及各部分的尺寸.难度不大.15.(4分)已知a.b.c是△ABC的三边长.a.b满足|a﹣7|+(b﹣1)2=0.c为奇数.则c=7.【分析】根据非负数的性质列式求出a、b的值.再根据三角形的任意两边之和大于第三边.两边之差小于第三边求出c的取值范围.再根据c是奇数求出c的值.【解答】解:∵a.b满足|a﹣7|+(b﹣1)2=0.∴a﹣7=0.b﹣1=0.解得a=7.b=1.∵7﹣1=6.7+1=8.∴6<c<8.又∵c为奇数.∴c=7.故答案是:7.【点评】本题考查配方法的应用、非负数的性质:偶次方.解题的关键是明确题意.明确配方法和三角形三边的关系.16.(4分)如图.一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n.﹣4).则关于x的不等式组的解集为﹣2<x<2.【分析】先将点P(n.﹣4)代入y=﹣x﹣2.求出n的值.再找出直线y=2x+m落在y=﹣x﹣2的下方且都在x轴下方的部分对应的自变量的取值范围即可.【解答】解:∵一次函数y=﹣x﹣2的图象过点P(n.﹣4).∴﹣4=﹣n﹣2.解得n=2.∴P(2.﹣4).又∵y=﹣x﹣2与x轴的交点是(﹣2.0).∴关于x的不等式2x+m<﹣x﹣2<0的解集为﹣2<x<2.故答案为﹣2<x<2.【点评】本题考查了一次函数与一元一次不等式.体现了数形结合的思想方法.准确确定出n 的值.是解答本题的关键.17.(4分)如图.分别以等边三角形的每个顶点为圆心、以边长为半径在另两个顶点间作一段圆弧.三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为a.则勒洛三角形的周长为πa.【分析】首先根据等边三角形的性质得出∠A=∠B=∠C=60°.AB=BC=CA=a.再利用弧长公式求出的长=的长=的长==.那么勒洛三角形的周长为×3=πa.【解答】解:如图.∵△ABC是等边三角形.∴∠A=∠B=∠C=60°.AB=BC=CA=a.∴的长=的长=的长==.∴勒洛三角形的周长为×3=πa.故答案为πa.【点评】本题考查了弧长公式:l=(弧长为l.圆心角度数为n.圆的半径为R).也考查了等边三角形的性质.18.(4分)如图.是一个运算程序的示意图.若开始输入x的值为625.则第2018次输出的结果为1.【分析】依次求出每次输出的结果.根据结果得出规律.即可得出答案.【解答】解:当x=625时.x=125.当x=125时.x=25.当x=25时.x=5.当x=5时.x=1.当x=1时.x+4=5.当x=5时.x=1.当x=1时.x+4=5.当x=5时.x=1.…(2018﹣3)÷2=1007.5.即输出的结果是1.故答案为:1【点评】本题考查了求代数式的值.能根据求出的结果得出规律是解此题的关键.三、解答题(一);本大题共5小题.共38分.解答应写出必要的文字说明.证明过程或演算步骤19.(6分)计算:÷(﹣1)【分析】先计算括号内分式的减法.再计算除法即可得.【解答】解:原式=÷(﹣)=÷=•=.【点评】本题主要考查分式的混合运算.解题的关键是掌握分式混合运算顺序和运算法则.20.(6分)如图.在△ABC中.∠ABC=90°.(1)作∠ACB的平分线交AB边于点O.再以点O为圆心.OB的长为半径作⊙O;(要求:不写做法.保留作图痕迹)(2)判断(1)中AC与⊙O的位置关系.直接写出结果.【分析】(1)首先利用角平分线的作法得出CO.进而以点O为圆心.OB为半径作⊙O即可;(2)利用角平分线的性质以及直线与圆的位置关系进而求出即可.【解答】解:(1)如图所示:;(2)相切;过O点作OD⊥AC于D点.∵CO平分∠ACB.∴OB=OD.即d=r.∴⊙O与直线AC相切.【点评】此题主要考查了复杂作图以及角平分线的性质与作法和直线与圆的位置关系.正确利用角平分线的性质求出是解题关键.21.(8分)《九章算术》是中国古代数学专著.在数学上有其独到的成就.不仅最早提到了分数问题.也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题.原文如下:今有共买鸡.人出九.盈十一;人出六.不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡.如果每人出9文钱.就会多11文钱;如果每人出6文钱.又会缺16文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.【分析】设合伙买鸡者有x人.鸡的价格为y文钱.根据“如果每人出9文钱.就会多11文钱;如果每人出6文钱.又会缺16文钱”.即可得出关于x、y的二元一次方程组.解之即可得出结论.【解答】解:设合伙买鸡者有x人.鸡的价格为y文钱.根据题意得:.解得:.答:合伙买鸡者有9人.鸡的价格为70文钱.【点评】本题考查了二元一次方程组的应用.找准等量关系.正确列出二元一次方程组是解题的关键.22.(8分)随着中国经济的快速发展以及科技水平的飞速提高.中国高铁正迅速崛起.高铁大大缩短了时空距离.改变了人们的出行方式.如图.A.B两地被大山阻隔.由A地到B地需要绕行C地.若打通穿山隧道.建成A.B两地的直达高铁可以缩短从A地到B地的路程.已知:∠CAB=30°.∠CBA=45°.AC=640公里.求隧道打通后与打通前相比.从A地到B地的路程将约缩短多少公里?(参考数据:≈1.7.≈1.4)【分析】过点C作CD⊥AB于点D.利用锐角三角函数的定义求出CD及AD的长.进而可得出结论.【解答】解:过点C作CD⊥AB于点D.在Rt△ADC和Rt△BCD中.∵∠CAB=30°.∠CBA=45°.AC=640.∴CD=320.AD=320.∴BD=CD=320.不吃20.∴AC+BC=640+320≈1088.∴AB=AD+BD=320+320≈864.∴1088﹣864=224(公里).答:隧道打通后与打通前相比.从A地到B地的路程将约缩短224公里.【点评】本题考查的是解直角三角形的应用﹣方向角问题.解题的关键是学会添加常用辅助线.构造直角三角形解决问题.需要熟记锐角三角函数的定义.23.(10分)如图.在正方形方格中.阴影部分是涂黑3个小正方形所形成的图案.(1)如果将一粒米随机地抛在这个正方形方格上.那么米粒落在阴影部分的概率是多少?(2)现将方格内空白的小正方形(A.B.C.D.E.F)中任取2个涂黑.得到新图案.请用列表或画树状图的方法求新图案是轴对称图形的概率.【分析】(1)直接利用概率公式计算可得;(2)列表得出所有等可能结果.从中找到新图案是轴对称图形的结果数.利用概率公式计算可得.【解答】解:(1)∵正方形网格被等分成9等份.其中阴影部分面积占其中的3份.∴米粒落在阴影部分的概率是=;(2)列表如下:A B C D E FA (B.A)(C.A)(D.A)(E.A)(F.A)B (A.B)(C.B)(D.B)(E.B)(F.B)C (A.C)(B.C)(D.C)(E.C)(F.C)D (A.D)(B.D)(C.D)(E.D)(F.D)E (A.E)(B.E)(C.E)(D.E)(F.E)F (A.F)(B.F)(C.F)(D.F)(E.F)由表可知.共有30种等可能结果.其中是轴对称图形的有10种.故新图案是轴对称图形的概率为=.【点评】此题考查了列表法与树状图法.用到的知识点为:概率=所求情况数与总情况数之比.四、解答题(二):本大题共5小题.共50分。

甘肃省定西市数学中考试题及答案

甘肃省定西市数学中考试题及答案

2009年甘肃省定西市中考数学试卷友情提示:1.抛物线2y ax bx c =++的顶点坐标是2424b ac b a a ⎛⎫-- ⎪⎝⎭,.2.弧长公式:π180n Rl =弧长;其中,n 为弧所对圆心角的度数,R 为圆的半径. 本试卷满分为150分,考试时间为120分钟.一、选择题:本大题共10小题,每小题3分,共30分.每小题给出的四个选项中,只有一项是符合题目要求的,将此选项的代号填入题后的括号内. 1.4的相反数是( ) A .4B .4-C .14D .14-2.图1所示的物体的左视图(从左面看得到的视图)是( )图1 A . B . C . D . 3.计算:a b a b b a a -⎛⎫-÷= ⎪⎝⎭( )A .a bb +B .a bb- C .a ba- D .a ba+ 4.在一个不透明的布袋中装有红色、白色玻璃球共40个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在15%左右,则口袋中红色球可能有( ) A .4个 B .6个 C .34个 D .36个5.下列图形中,既是轴对称图形,又是中心对称图形的是( ) A .等腰梯形 B .平行四边形 C .正三角形 D .矩形6.有19位同学参加歌咏比赛,所得的分数互不相同,取得分前10位同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这19位同学成绩的( ) A .平均数 B .中位数 C .众数 D .方差7.某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于60°,否则就有危险,那么梯子的长至少为( )A .8米B .C 米D 米 8.如图2,⊙O 的弦AB =6,M 是AB 上任意一点,且OM 最小值为4,则⊙O 的半径为( ) A .5 B .4 C .3 D .29.如图3,小东用长为3.2m 的竹竿做测量工具测量学校旗杆的高度,移动竹竿,使竹竿、旗杆顶端的影子恰好落在地面的同一点.此时,竹竿与这一点相距8m 、与旗杆相距22m ,则旗杆的高为( ) A .12m B .10mC .8mD .7m图2 图3 图410.如图4,四边形ABCD 中,AB =BC ,∠ABC =∠CDA =90°,BE ⊥AD 于点E ,且四边形ABCD 的面积为8,则BE =( ) A .2B .3C.D.二、填空题:本大题共8小题,每小题4分,共32分.把答案写在题中的横线上. 11.当31x y ==、时,代数式2()()x y x y y +-+的值是 . 12.方程组25211x y x y -=-⎧⎨+=⎩,的解是 .13.如图5,Rt △ACB 中,∠ACB =90°,DE ∥AB ,若∠BCE =30°,则∠A = . 14.反比例函数的图象经过点P (2-,1),则这个函数的图象位于第 象限. 15.不等式组103x x +>⎧⎨>-⎩,的解集是 .16.如图6,四边形ABCD 是平行四边形,使它为矩形的条件可以是 .图6 图7 图817.如图7,在△ABC 中,5cm AB AC ==,cos B 35=.如果⊙O,且经过点B 、C ,那么线段AO = cm .18.抛物线2y x bx c =-++的部分图象如图8所示,请写出与其关系式、图象相关的2个正确结论: , .(对称轴方程,图象与x 正半轴、y 轴交点坐标例外)三、解答题(一):本大题共5小题,共38分.解答时,应写出必要的文字说明、证明过程或演算步骤. 19.(6分)若20072008a =,20082009b =,试不用..将分数化小数的方法比较a 、b 的大小.20.(6分)在实数范围内定义运算“⊕”,其法则为:22a b a b ⊕=-,求方程(4⊕3)⊕24x =的解.21.(8分)如图9,随机闭合开关S 1、S 2、S 3中的两个,求能让灯泡⊗发光的概率.22.(8分)图10(1)是一扇半开着的办公室门的照片,门框镶嵌在墙体中间,门是向室内开的.图10(2)画的是它的一个横断面.虚线表示门完全关好和开到最大限度(由于受到墙角的阻碍,再也开不动了)时的两种情形,这时二者的夹角为120°,从室内看门框露在外面部分的宽为4cm ,求室内露出的墙的厚度a 的值.(假设该门无论开到什么角度,门和门框之间基本都是无缝的.精确到0.1cm1.73)23.(10分)鞋子的“鞋码”和鞋长(cm )存在一种换算关系,下表是几组“鞋码”与鞋长换算的对应数值:[注:“鞋码”是表示鞋子大小的一种号码]鞋长(cm ) 16 19 21 24 鞋码(号)22283238(1)设鞋长为x ,“鞋码”为y ,试判断点(x ,y )在你学过的哪种函数的图象上? (2)求x 、y 之间的函数关系式;(3)如果某人穿44号“鞋码”的鞋,那么他的鞋长是多少?图9 图10(1) 图10(2)四、解答题(二):本大题共5小题,共50分(不含附加4分).解答时,应写出必要的文字说明、证明过程或演算步骤. 24.(8分)为响应国家要求中小学生每天锻炼1小时的号召,某校开展了形式多样的体育运动活动,小明对某班同学参加锻炼的情况进行了统计,并绘制了下面的统计图11(1)和图11(2).(1)请在图11(1)中将表示“乒乓球”项目的图形补充完整; (2)求扇形统计图11(2)中表示“足球”项目扇形圆心角的度数.25.(10分)去年5月12日,四川省汶川县发生了里氏8.0级大地震,兰州某中学师生自愿捐款,已知第一天捐款4800元,第二天捐款6000元,第二天捐款人数比第一天捐款人数多50人,且两天人均捐款数相等,那么两天共参加捐款的人数是多少?人均捐款多少元? 26.(10分)图12中的粗线CD 表示某条公路的一段,其中AmB 是一段圆弧,AC 、BD 是线段,且AC 、BD 分别与圆弧AmB 相切于点A 、B ,线段AB =180m ,∠ABD =150°. (1)画出圆弧AmB 的圆心O ; (2)求A 到B 这段弧形公路的长.图11(1) 图11(2)图1227.(10分)如图13,△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90°,D 为AB 边上一点,求证:(1)ACE BCD △≌△;(2)222AD DB DE +=.28.[12分+附加4分]如图14(1),抛物线22y x x k =-+与x 轴交于A 、B 两点,与y 轴交于点C (0,3-).[图14(2)、图14(3)为解答备用图](1)k = ,点A 的坐标为 ,点B 的坐标为 ; (2)设抛物线22y x x k =-+的顶点为M ,求四边形ABMC 的面积;(3)在x 轴下方的抛物线上是否存在一点D ,使四边形ABDC 的面积最大?若存在,请求出点D 的坐标;若不存在,请说明理由;(4)在抛物线22y x x k =-+上求点Q ,使△BCQ 是以BC 为直角边的直角三角形.附加题:如果你的全卷得分不足150分,则本题与28题附加的4分的得分将记入总分,但记入总分后全卷得分不得超过150分,超过按150分算. 29.(7分)本试卷第19题为:若20072008a =,20082009b =,试不用..将分数化小数的方法比较a 、b 的大小.观察本题中数a 、b 的特征,以及你比较大小的过程,直接写出你发现的一个一般结论.图13图14(1) 图14(2) 图14(3)武威、金昌、定西、白银、酒泉、嘉峪关 武威市2009年初中毕业、高中招生考试数学试卷参考答案与评分标准一、选择题:本大题共10小题,每小题3分,共30分.题号1 2 3 4 5 6 7 8 9 10 答案B D A B D B CAAC二、填空题:本大题共8小题,每小题4分,共32分. 11.9 12. 34x y =⎧⎨=⎩,13.60o 14.二、四15.1->x 16.答案不唯一,如AC =BD ,∠BAD =90o ,等 17. 518.答案不唯一.如:①c =3;②b +c =1;③c -3b =9;④b =-2;⑤抛物线的顶点为(-1,4),或二次函数的最大值为4;⑥方程-x 2+bx +c =0的两个根为-3,1;⑦y >0时,-3<x <1;或y <0时,x <-3或x >1;⑧当x >-1时,y 随x 的增大而减小;或当x <-1时,y 随x 的增大而增大.等等 三、解答题(一):本大题共5小题,共38分. 19. 本小题满分6分解:∵ a =2007200920082009⨯⨯(20081)(20081)20082009-⨯+=⨯222008120082009-=⨯, ··························· 3分 b 2200820082009=⨯, ··············································································· 4分222200812008-<, ··········································································· 5分∴ a <b . ································································································· 6分 说明:求差通分作,参考此标准给分.若只写结论a <b ,给1分.20. 本小题满分6分解:∵ 22a b a b ⊕=- , ∴ 2222(43)(43)77x x x x ⊕⊕=-⊕=⊕=-. ·········· 3分 ∴ 22724x -=. ∴ 225x =. ······························································· 4分∴ 5x =±. ··························································································· 6分 21. 本小题满分8分解:∵ 随机闭合开关1S 、2S 、3S 中的两个,共有3种情况:12S S ,13S S ,23S S . 能让灯泡发光的有13S S 、23S S 两种情况. ··························································· 4分 ∴ 能让灯泡发光的概率为23. ··································································· 8分 22. 本小题满分8分解:从图中可以看出,在室内厚为a cm 的墙面、宽为4cm 的门框及开成120°的门之间构成了一 个直角三角形,且其中有一个角为60°. ········ 3分 从而 a =4×tan60° ······································· 6分.9(cm). ····························· 8分即室内露出的墙的厚度约为6.9cm . 23. 本小题满分10分 解:(1)一次函数. ······················································································· 2分 (2)设y kx b =+. ·················································································· 3分由题意,得22162819k b k b =+⎧⎨=+⎩,.········································································· 5分解得210k b =⎧⎨=-⎩,. ······················································································· 7分∴210y x =-.(x 是一些不连续的值.一般情况下,x 取16、16.5、17、17.5、 (26)26.5、27等) ······················································································· 8分 说明:只要求对k 、b 的值,不写最后一步不扣分.(3)44y =时,27x =. 答:此人的鞋长为27cm . ········································································ 10分 说明:只要求对x =27cm ,不答不扣分. 四、解答题(二):本大题共5小题,共50分 (不含附加4分) . 24. 本小题满分8分 解:(1)如图:···················· 4分(2)∵ 参加足球运动项目的学生占所有运动项目学生的比例为15=1050, ··········· 6分 ∴ 扇形统计图中表示“足球”项目扇形圆心角的度数为1360725⨯=. ··············· 8分 25. 本小题满分10分解法1:设第一天捐款x 人,则第二天捐款(x +50)人, ········································ 1分由题意列方程x4800=506000+x .······························································· 5分 解得 x =200. ·························································································· 7分检验:当x =200时,x (x +50)≠0, ∴ x =200是原方程的解. ··········································································· 8分 两天捐款人数x +(x +50)=450, 人均捐款x4800=24(元). 答:两天共参加捐款的有450人,人均捐款24元. ······································· 10分 说明:只要求对两天捐款人数为450, 人均捐款为24元,不答不扣分. 解法2:设人均捐款x 元, ··············································································· 1分由题意列方程6000x -4800x=50 . ························································· 5分 解得 x =24. ···························································································· 7分以下略.26. 本小题满分10分解:(1)如图,过A 作AO ⊥AC ,过B 作BO ⊥BD ,AO 与BO 相交于O ,O 即圆心. ··················································· 3分说明:若不写作法,必须保留作图痕迹.其它作法略. (2)∵ AO 、BO 都是圆弧AmB 的半径,O 是其圆心, ∴ ∠OBA =∠OAB =150°-90°=60°. ······························· 5分 ∴ △AOB 为等边三角形.∴ AO =BO =AB =180. ·············· 7分 ∴ π6018060π180AB ⨯⨯== (m).O∴ A 到B 这段弧形公路的长为60πm . ························································· 10分 27. 本小题满分10分证明:(1) ∵ ACB ECD ∠=∠,∴ ACE ACD BCD ACD ∠+∠=∠+∠.即 ACE BCD ∠=∠. ········································ 2分∵ EC DC AC BC ==,, ∴ △ACE ≌△BCD . ··········································· 4分 (2)∵ ACB ∆是等腰直角三角形,∴ ︒=∠=∠45BAC B . ······································ 5分 ∵ △ACE ≌△BCD , ∴ ︒=∠=∠45CAE B . ······· 6分 ∴ ︒=︒+︒=∠+∠=∠904545BAC CAE DAE . ····································· 7分 ∴ 222DE AE AD =+. ······································································ 9分 由(1)知AE =DB ,∴ 222AD DB DE +=. ····································································· 10分 28.本小题满分16分(含附加4分) 解:(1)3k =-, ························································· 1分A (-1,0), ····················································· 2分B (3,0). ······················································ 3分 (2)如图14(1),抛物线的顶点为M (1,-4),连结OM . ····························································· 4分则 △AOC 的面积=23,△MOC 的面积=23, △MOB 的面积=6,·············································· 5分 ∴ 四边形 ABMC 的面积=△AOC 的面积+△MOC 的面积+△MOB 的面积=9. ··································· 6分 说明:也可过点M 作抛物线的对称轴,将四边形ABMC 的面积转化为求1个梯形与2个直角三角形面积的和.(3)如图14(2),设D (m ,322--m m ),连结OD . 则 0<m <3,322--m m <0. 且 △AOC 的面积=23,△DOC 的面积=m 23, △DOB 的面积=-23(322--m m ), ···················································· 8分∴ 四边形 ABDC 的面积=△AOC 的面积+△DOC 的面积+△DOB 的面积=629232++-m m =875)23(232+--m .········································································ 9分∴ 存在点D 315()24-,,使四边形ABDC 的面积最大为875. ························· 10分 (4)有两种情况:图14(1)图14(2)图14(3) 图14(4)A DB CE如图14(3),过点B 作BQ 1⊥BC ,交抛物线于点Q 1、交y 轴于点E ,连接Q 1C . ∵ ∠CBO =45°,∴∠EBO =45°,BO =OE =3. ∴ 点E 的坐标为(0,3).∴ 直线BE 的解析式为3y x =-+. ·························································· 12分由2323y x y x x =-+⎧⎨=--⎩, 解得1125x y ,;ì=-ïïíï=ïî 2230.x y ,ì=ïïíï=ïî ∴ 点Q 1的坐标为(-2,5). ··································································· 13分如图14(4),过点C 作CF ⊥CB ,交抛物线于点Q 2、交x 轴于点F ,连接BQ 2. ∵ ∠CBO =45°,∴∠CFB =45°,OF =OC =3. ∴ 点F 的坐标为(-3,0).∴ 直线CF 的解析式为3y x =--. ·························································· 14分由2323y x y x x =--⎧⎨=--⎩, 解得1103x y ,;ì=ïïíï=-ïî 2214x y ,.ì=ïïíï=-ïî ∴点Q 2的坐标为(1,-4). ····································································· 15分 综上,在抛物线上存在点Q 1(-2,5)、Q 2(1,-4),使△BCQ 1、△BCQ 2是以BC 为直角边的直角三角形. ··············································································· 16分 说明:如图14(4),点Q 2即抛物线顶点M ,直接证明△BCM 为直角三角形同样得2分.附加题:如果你的全卷得分不足150分,则本题与28题附加的4分的得分将记入总分,但记入总分后全卷得分不得超过150分,超过按150分算. 29. 本小题满分7分解:学生可能写出不同程度的一般的结论,由一般化程度不同得不同分.若m 、n 是任意正整数,且m >n ,则11n n m m +<+. ·········································· 4分 若m 、n 是任意正实数,且m >n ,则11n n m m +<+. ·········································· 5分若m 、n 、r 是任意正整数,且m >n ;或m 、n 是任意正整数,r 是任意正实数,且m >n ,则n n rm m r+<+. ······················································································· 6分 若m 、n 是任意正实数,r 是任意正整数,且m >n ;或m 、n 、r 是任意正实数,且m >n ,则n n rm m r+<+. ·············································································· 7分。

甘肃省定西市中考数学试卷

甘肃省定西市中考数学试卷

甘肃省定西市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题: (共10题;共20分)1. (2分)下列平面图形,既是中心对称图形,又是轴对称图形的是()A . 等腰三角形B . 正五边形C . 平行四边形D . 矩形2. (2分)(2016·天津) 2016年5月24日《天津日报》报道,2015年天津外环线内新栽植树木6120000株,将6120000用科学记数法表示应为()A . 0.612×107B . 6.12×106C . 61.2×105D . 612×1043. (2分) (2019七下·白城期中) 下列运算中正确是()A . ± =5B . ﹣=±5C . =2D . =24. (2分)(2017·襄阳) 如图所示的几何体是由6个大小完全一样的正方体组合而成的,它的俯视图是()A .B .C .D .5. (2分) (2016九下·黑龙江开学考) 下列运算正确的是()A . 2x2•x3=2x5B . (x﹣2)2=x2﹣4C . x2+x3=x5D . (x3)4=x76. (2分)如图,AB∥CD,∠A=50°,则∠1的大小是()A . 50°B . 120°C . 130°D . 150°7. (2分) (2019八上·牡丹期中) 已知P1(﹣2,y1),P2(1,y2)是函数y=﹣2x+1图象上的两个点,则y1与y2的大小关系是()A . y1>y2B . y1<y2C . y1=y2D . 无法确定8. (2分)在以下长度的四根木棒中,能与4cm和 9cm长的木棒钉成一个三角形的是()A . 4cmB . 5cmC . 9cmD . 13cm9. (2分)某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是()A . 560(1+x)2=315B . 560(1﹣x)2=315C . 560(1﹣2x)2=315D . 560(1﹣x2)=31510. (2分)小明的父母出去散步.从家走了20分钟到一个离家900米的报亭,母亲随即按原速度返回家,父亲在报亭看了10分钟报纸后用15分钟返回家,则表示父亲、母亲离家距离与时间的关系是()A . ④②B . ①②C . ①③D . ④③二、填空题: (共8题;共10分)11. (1分)(2017·南安模拟) 因式分解:m2+6m+9=________.12. (1分) (2020八下·鼓楼期末) 比较大小:4- ________ .(填“>”、“<”或“=”)13. (1分) (2018七上·鼎城期中) 定义为二阶行列式,规定它的运算法则为,那么当时,二阶行列式的值为________.14. (1分)如图,AB=BC=CD,∠BAD=80°,∠AED=________.15. (2分)不解方程,判断下列方程实数根的情况:①方程有________个实数根;②方程有________个实数根.16. (1分) (2019七下·覃塘期末) 如图,把长方形ABCD沿EF按图那样折叠后,点A,B分别落在G,H点处,若∠1=50°,则∠AEF的度数是 ________17. (1分) (2019八上·确山期中) 如图,已知中,,点是线段上的一动点,过点作交于点,并使得,则长度的取值范围是________.18. (2分) (2017七上·柯桥期中) 如图,给正五边形的顶点依次编号为1,2,3,4,5.若从某一顶点开始,沿正五边形的边顺时针方向行走,顶点编号的数字是几,就走几个边长,则称这种走法为一次“移位”.如:小宇在编号为3的顶点上时,那么他应走3个边长,即从3→4→5→1为第一次“移位”,这时他到达编号为1的顶点;然后从1→2为第二次“移位”.若小宇从编号为2的顶点开始,那么第二次“移位”后他所处的顶点的编号为________. 第181次“移位”后,则他所处顶点的编号是________.三、解答题(一): (共5题;共26分)19. (5分)(2019·梧州模拟) (﹣2)2+ ﹣4sin45°.20. (5分)(2019·朝阳模拟) 解不等式组并写出它的所有整数解.21. (5分)(2020·台州模拟) 高淳固城湖大桥采用H型塔型斜拉桥结构(如甲图),图乙是从图甲抽象出的平面图.测得拉索AB与水平桥面的夹角是45°,拉索CD与水平桥面的夹角是65°,两拉索顶端的距离AC为2米,两拉索底端距离BD为10米,请求出立柱AH的长(结果精确到0.1米).(参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)22. (6分)(2012·扬州) 一个不透明的布袋里装有4个大小,质地都相同的乒乓球,球面上分别标有数字1,﹣2,3,﹣4,小明先从布袋中随机摸出一个球(不放回去),再从剩下的3个球中随机摸出第二个乒乓球.(1)共有________种可能的结果.(2)请用画树状图或列表的方法求两次摸出的乒乓球的数字之积为偶数的概率.23. (5分)(2017·白银) 如图,已知△ABC,请用圆规和直尺作出△ABC的一条中位线EF(不写作法,保留作图痕迹).四、解答题(二): (共5题;共50分)24. (13分)东营市某中学校团委开展“关爱残疾儿童”爱心捐书活动,全校师生踊跃捐赠各类书籍共3000本.为了了解各类书籍的分布情况,从中随机抽取了部分书籍分四类进行统计:A.艺术类;B.文学类;C.科普类;D.其他,并将统计结果绘制成如图所示的两幅不完整的统计图.(1)这次统计共抽取了________本书籍,扇形统计图中的m=________,∠α的度数是________(2)请将条形统计图补充完整;(3)估计全校师生共捐赠了多少本文学类书籍.25. (9分) (2019九上·越城月考) 在平面直角坐标系中,规定:抛物线的伴随直线为.例如:抛物线的伴随直线为,即y=2x﹣1.(1)在上面规定下,抛物线的顶点坐标为________,伴随直线为________,抛物线与其伴随直线的交点坐标为________和________;(2)如图,顶点在第一象限的抛物线与其伴随直线相交于点A,B(点A在点B的左侧),与x轴交于点C,D.①若∠CAB=90°,求m的值;②如果点P(x,y)是直线BC上方抛物线上的一个动点,△PBC的面积记为S,当S取得最大值时,求m 的值.26. (10分)已知菱形ABCD的两条对角线分别为6和8,M、N分别是边BC、CD的中点,P是对角线BD上一点.(1)求菱形ABCD的面积.(2)求PM+PN的最小值.27. (11分) (2019八下·东阳期末) 如图,在平面直角坐标系中,四边形为正方形,已知点、,点B、C在第二象限内.(1)点B的坐标________;(2)将正方形以每秒2个单位的速度沿轴向右平移t秒,若存在某一时刻t,使在第一象限内点B、D两点的对应点、正好落在某反比例函数的图象上,请求出此时t的值以及这个反比例函数的解析式;(3)在(2)的情况下,问是否存在轴上的点和反比例函数图象上的点,使得以、、、四个点为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点、的坐标;若不存在,请说明理由.28. (7分)(2018·铜仁模拟) 如图,O是平面直角坐标系的原点.在四边形OABC中,AB∥OC,BC⊥x轴于C,A(1,1),B(3,1),动点P从O点出发,沿x轴正方向以2个单位/秒的速度运动.设P点运动的时间为t秒(0<t<2).(1)求经过O、A、B三点的抛物线的解析式;(2)过P作PD⊥OA于D,以点P为圆心,PD为半径作⊙P,⊙P在点P的右侧与x轴交于点Q.①则P点的坐标为________,Q点的坐标为________;(用含t的代数式表示)参考答案一、选择题: (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题: (共8题;共10分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题(一): (共5题;共26分)19-1、20-1、21-1、22-1、22-2、23-1、四、解答题(二): (共5题;共50分)24-1、24-2、24-3、25-1、25-2、26-1、26-2、27-1、27-2、27-3、28-1、28-2、。

定西市中考数学试卷

定西市中考数学试卷

定西市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) 3的倒数是()A . 3B . -3C .D .2. (2分) (2016七下·蒙阴期中) 下列实数中,是无理数的为()A . ﹣3.567B . 0.101001C .D .3. (2分)如图,AB//CD ,EF⊥AB于E , EF交CD于F ,已知∠1=63°,则∠2=()A . 63°B . 53°C . 37°D . 27°4. (2分)下列运算正确的是()A .B .C .D .5. (2分) (2017八下·青龙期末) 下列调查中,最适合采用普查方式的是()A . 对我县青龙河流城水质情况的调查B . 对乘坐飞机的旅客是否携带违禁物品的调查C . 对一批节能灯管使用寿命的调查D . 对全县八年级学生视力情况的调查6. (2分) (2016七上·连州期末) 如图,由两块长方体叠成的几何体,从正面看它所得到的平面图形是()A .B .C .D .7. (2分)(2019·海珠模拟) 下列图形中是中心对称图形的是()A .B .C .D .8. (2分)(2020·新乡模拟) 若将函数y=2x2的图象向右平行移动1个单位,再向上平移3个单位,得到的抛物线是()A . y=2(x+5)2﹣1B . y=2(x+5)2+1C . y=2(x﹣1)2+3D . y=2(x+1)2﹣39. (2分) (2019八上·梅里斯达斡尔族月考) 如图,在△ABC,∠C=90°,按以下步骤作图:①以点A为圆心,小于AC的长为半径画弧,分别交AB,AC于点E、F;②分别以点E,F为圆心,大于 EF的长为半径画弧,两弧相交于点G;③作射线AG交BC边于点D,若CD=6, AB=15则△ABD的面积为()A . 45B . 30C . 15D . 6010. (2分)如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到如图2所示的“数学风车”,则这个风车的外围周长是()A . 76B . 72C . 68D . 52二、填空题 (共6题;共6分)11. (1分) (2018七上·翁牛特旗期末) 光年是天文学中的距离单位,1光年大约是95000亿 km,这个数据用科学记数法表示是________km12. (1分) (2019七上·潮安期末) 方程的解是________.13. (1分)若关于x的不等式组有解,且关于x的方程有非负整数解,则符合条件的所有整数k的积为________.14. (1分)一个口袋里放有三枚除颜色外都相同的棋子,其中有两枚是白色的,一枚是红色的.从中随机摸出一枚记下颜色,放回口袋搅匀,再从中随机摸出一枚记下颜色,两次摸出棋子颜色不同的概率是________ .15. (1分) (2020九下·哈尔滨月考) 如图,在菱形ABCD中,BD为对角线,点N为BC边上一点,连接AN,交BD于点L,点R为CD边上一点,连接AR、LR,若tan∠BLN=2,∠ARL=45°,AR=10 ,CR=10,则AL=________ 。

2015年中考数学试题及答案(Word版)

2015年中考数学试题及答案(Word版)

2015年初中毕业暨升学考试试卷数学本试卷由选择题、填空题和解答题三大题组成,共28小题,满分130分,考试时间120分钟.注意事项:1.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符;2.答选择题必须用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B铅笔涂在答题卡相应位置上.........1.2的相反数是A.2 B.12C.-2 D.-122.有一组数据:3,5,5,6,7,这组数据的众数为A.3 B.5 C.6 D.73.月球的半径约为1 738 000m,1 738 000这个数用科学记数法可表示为A.1.738×106B.1.738×107C.0.1738×107D.17.38×1054.若()2m=-,则有A.0<m<1 B.-1<m<0 C.-2<m<-1 D.-3<m<-2 5.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:则通话时间不超过15min的频率为A.0.1 B.0.4 C.0.5 D.0.96.若点A(a,b)在反比例函数2yx=的图像上,则代数式ab-4的值为A.0 B.-2 C.2 D.-67.如图,在△ABC 中,AB =AC ,D 为BC 中点,∠BAD =35°,则∠C 的度数为 A .35° B .45°C .55°D .60°8.若二次函数y =x 2+bx 的图像的对称轴是经过点(2,0)且平行于y 轴的直线,则关于x的方程x 2+bx =5的解为 A .120,4x x ==B .121,5x x ==C .121,5x x ==-D .121,5x x =-=9.如图,AB 为⊙O 的切线,切点为B ,连接AO ,AO 与⊙O 交于点C ,BD 为⊙O 的直径,连接CD .若∠A =30°,⊙O 的半径为2,则图中阴影部分的面积为 A.43πB.43π-C.πD.23π10.如图,在一笔直的海岸线l 上有A 、B 两个观测站,AB =2km ,从A 测得船C 在北偏东45°的方向,从B 测得船C 在北偏东22.5°的方向,则船C 离海岸线l 的距离(即CD 的长)为 A .4kmB.(2kmC.D.(4-km二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上......... 11.计算:2a a ⋅= ▲ .12.如图,直线a ∥b ,∠1=125°,则∠2的度数为 ▲ °.DCB A(第7题)(第9题)(第10题)l13.某学校在“你最喜爱的球类运动”调查中,随机调查了若干名学生(每名学生分别选了一项球类运动),并根据调查结果绘制了如图所示的扇形统计图.已知其中最喜欢羽毛球的人数比最喜欢乒乓球的人数少6人,则该校被调查的学生总人数为 ▲ 名. 14.因式分解:224a b -= ▲ .15.如图,转盘中8个扇形的面积都相等.任意转动转盘1次,当转盘停止转动时,指针指向大于6的数的概率为 ▲ .16.若23a b -=,则924a b -+的值为 ▲ .17.如图,在△ABC 中,CD 是高,CE 是中线,CE =CB ,点A 、D 关于点F 对称,过点F作FG ∥CD ,交AC 边于点G ,连接GE .若AC =18,BC =12,则△CEG 的周长为 ▲ .18.如图,四边形ABCD 为矩形,过点D 作对角线BD 的垂线,交BC 的延长线于点E ,取BE 的中点F ,连接DF ,DF =4.设AB =x ,AD =y ,则()224x y +-的值为 ▲ . 三、解答题:本大题共10小题,共76分.把解答过程写在答题卡相应位置上........,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.(第17题)GF E D CBA F EDC B A (第18题)ba(第13题)20%10%30%40%其他乒乓球篮球羽毛球(第15题)19.(本题满分5分)(052--. 20.(本题满分5分)解不等式组:()12,31 5.x x x +≥⎧⎪⎨-+⎪⎩>21.(本题满分6分)先化简,再求值:2121122x x x x ++⎛⎫-÷⎪++⎝⎭,其中1x .22.(本题满分6分)甲、乙两位同学同时为校文化艺术节制作彩旗.已知甲每小时比乙多做5面彩旗,甲做60面彩旗与乙做50面彩旗所用时间相等,问甲、乙每小时各做多少面彩旗?23.(本题满分8分)一个不透明的口袋中装有2个红球(记为红球1、红球2)、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.(1)从中任意摸出1个球,恰好摸到红球的概率是 ▲ ;(2)先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率.24.(本题满分8分)如图,在△ABC中,AB=AC.分别以B、C为圆心,BC长为半径在BC下方画弧,设两弧交于点D,与AB、AC的延长线分别交于点E、F,连接AD、BD、CD.(1)求证:AD平分∠BAC;(2)若BC=6,∠BAC=50︒,求 DE、 DF的长度之和(结果保留π).25.(本题满分8分)如图,已知函数kyx=(x>0)的图像经过点A、B,点B的坐标为(2,2).过点A作AC⊥x轴,垂足为C,过点B作BD⊥y轴,垂足为D,AC与BD交于点F.一次函数y=ax+b的图像经过点A、D,与x轴的负半轴交于点E.(1)若AC=32OD,求a、b的值;(2)若BC∥AE,求BC的长.(第24题)F EDCBA26.(本题满分10分)如图,已知AD 是△ABC 的角平分线,⊙O 经过A 、B 、D 三点,过点B 作BE ∥AD ,交⊙O 于点E ,连接ED . (1)求证:ED ∥AC ;(2)若BD =2CD ,设△EBD 的面积为1S ,△ADC 的面积为2S ,且2121640S S -+=,求△ABC 的面积.27.(本题满分10分)如图,已知二次函数()21y x m x m =+--(其中0<m <1)的图像与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,对称轴为直线l .设P 为对称轴l 上的点,连接P A 、PC ,P A =PC . (1)∠ABC 的度数为 ▲ °;(2)求P 点坐标(用含m 的代数式表示);(3)在坐标轴上是否存在点Q (与原点O 不重合),使得以Q 、B 、C 为顶点的三角形与△P AC 相似,且线段PQ 的长度最小?如果存在,求出所有满足条件的点Q 的坐标;如果不存在,请说明理由.(第26题)28.(本题满分10分)如图,在矩形ABCD 中,AD =a cm ,AB =b cm (a >b >4),半径为2cm的⊙O 在矩形内且与AB 、AD 均相切.现有动点P 从A 点出发,在矩形边上沿着A →B →C →D 的方向匀速移动,当点P 到达D 点时停止移动;⊙O 在矩形内部沿AD 向右匀速平移,移动到与CD 相切时立即沿原路按原速返回,当⊙O 回到出发时的位置(即再次与AB 相切)时停止移动.已知点P 与⊙O 同时开始移动,同时停止移动(即同时到达各自的终止位置).(1)如图①,点P 从A →B →C →D ,全程共移动了 ▲ cm (用含a 、b 的代数式表示); (2)如图①,已知点P 从A 点出发,移动2s 到达B 点,继续移动3s ,到达BC 的中点.若点P 与⊙O 的移动速度相等,求在这5s 时间内圆心O 移动的距离;(3)如图②,已知a =20,b =10.是否存在如下情形:当⊙O 到达⊙O 1的位置时(此时圆心O 1在矩形对角线BD 上),DP 与⊙O 1恰好相切?请说明理由.(第28题)(图②)(图①)2015年苏州市初中毕业暨升学考试数学试题答案一、选择题1.C 2.B 3.A 4.C 5.D6.B 7.C 8.D 9.A 10.B二、填空题11.3a12.55 13.60 14.()()22a b a b+-15.1416.3 17.27 18.16三、解答题19.解:原式=3+5-1 =7.20.解:由12x+≥,解得1x≥,由()315x x-+>,解得4x>,∴不等式组的解集是4x>.21.解:原式=()21122xxx x++÷++=()2121211x xx xx++⨯=+++.当1x===.22.解:设乙每小时做x面彩旗,则甲每小时做(x+5)面彩旗.根据题意,得60505x x=+.解这个方程,得x=25.经检验,x=25是所列方程的解.∴x+5=30.答:甲每小时做30面彩旗,乙每小时做25面彩旗.23.解:(1)1.(2)用表格列出所有可能的结果:由表格可知,共有12种可能出现的结果,并且它们都是等可能的,其中“两次都摸到红球”有2种可能.∴P(两次都摸到红球)=212=16.24.证明:(1)由作图可知BD =CD .在△ABD 和△ACD 中,,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩∴△ABD ≌△ACD (SSS ).∴∠BAD =∠CAD ,即AD 平分∠BAC .解:(2)∵AB =AC ,∠BAC =50°,∴∠ABC =∠ACB=65°.∵BD = CD = BC ,∴△BDC 为等边三角形. ∴∠DBC =∠DCB=60°. ∴∠DBE =∠DCF=55°. ∵BC =6,∴BD = CD =6.∴ DE的长度= DF 的长度=556111806ππ⨯⨯=. ∴ DE、 DF 的长度之和为111111663πππ+=. 25.解:(1)∵点B (2,2)在ky x=的图像上,∴k =4,4y x=. ∵BD ⊥y 轴,∴D 点的坐标为(0,2),OD =2. ∵AC ⊥x 轴,AC =32OD ,∴AC =3,即A 点的纵坐标为3. ∵点A 在4y x=的图像上,∴A 点的坐标为(43,3).∵一次函数y =ax +b 的图像经过点A 、D , ∴43,3 2.a b b ⎧+=⎪⎨⎪=⎩ 解得3,42.a b ⎧=⎪⎨⎪=⎩ (2)设A 点的坐标为(m ,4m),则C 点的坐标为(m ,0). ∵BD ∥CE ,且BC ∥DE ,∴四边形BCED 为平行四边形. ∴CE = BD =2.∵BD ∥CE ,∴∠ADF =∠AEC .∴在Rt △AFD 中,tan ∠ADF =42AF mDF m -=, 在Rt △ACE 中,tan ∠AEC =42AC mEC =, ∴4422m m m -=,解得m =1.∴C 点的坐标为(1,0),BC26.证明:(1)∵AD 是△ABC 的角平分线, ∴∠BAD =∠DAC .∵∠E=∠BAD ,∴∠E =∠DAC . ∵BE ∥AD ,∴∠E =∠EDA . ∴∠EDA =∠DA C . ∴ED ∥AC .解:(2)∵BE ∥AD ,∴∠EBD =∠ADC .∵∠E =∠DAC ,∴△EBD ∽△ADC ,且相似比2BDk DC==. ··················· ∴2124S k S ==,即124S S =. ∵2121640S S -+=,∴222161640S S -+=,即()22420S -=.∴212S =. ∵233ABC S BC BD CD CD S CD CD CD +==== ,∴32ABC S = . 27.解:(1)45.理由如下:令x =0,则y =-m ,C 点坐标为(0,-m ).令y =0,则()210x m x m +--=,解得11x =-,2x m =.∵0<m <1,点A 在点B 的左侧,∴B 点坐标为(m ,0).∴OB =OC =m .∵∠BOC =90°,∴△BOC 是等腰直角三角形,∠OBC =45°. (2)解法一:如图①,作PD ⊥y 轴,垂足为D ,设l 与x 轴交于点E ,由题意得,抛物线的对称轴为12mx -+=. 设点P 坐标为(12m-+,n ). ∵P A = PC , ∴P A 2= PC 2,即AE 2+ PE 2=CD 2+ PD 2.∴()222211122m m n n m -+-⎛⎫⎛⎫++=++ ⎪ ⎪⎝⎭⎝⎭.解得12m n -=.∴P 点的坐标为11,22m m -+-⎛⎫⎪⎝⎭. 解法二:连接PB .由题意得,抛物线的对称轴为12m x -+=. ∵P 在对称轴l 上,∴P A =PB . ∵P A =PC ,∴PB =PC .∵△BOC 是等腰直角三角形,且OB =OC ,∴P 在BC 的垂直平分线y x =-上.∴P 点即为对称轴12mx -+=与直线y x =-的交点. ∴P 点的坐标为11,22m m -+-⎛⎫⎪⎝⎭.图①图②(3)解法一:存在点Q 满足题意.∵P 点的坐标为11,22m m -+-⎛⎫⎪⎝⎭, ∴P A 2+ PC 2=AE 2+ PE 2+CD 2+ PD 2=222221111112222m m m m m m -+---⎛⎫⎛⎫⎛⎫⎛⎫+++++=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. ∵AC 2=21m +,∴P A 2+ PC 2=AC 2.∴∠APC =90°. ∴△P AC 是等腰直角三角形.∵以Q 、B 、C 为顶点的三角形与△P AC 相似, ∴△QBC 是等腰直角三角形.∴由题意知满足条件的点Q 的坐标为(-m ,0)或(0,m ). ①如图①,当Q 点的坐标为(-m ,0)时,若PQ 与x 轴垂直,则12m m -+=-,解得13m =,PQ =13. 若PQ 与x 轴不垂直, 则22222221151521222222510m m PQ PE EQ m m m m --+⎛⎫⎛⎫⎛⎫=+=++=-+=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. ∵0<m <1,∴当25m =时,2PQ 取得最小值110,PQ .<13, ∴当25m =,即Q 点的坐标为(25-,0)时, PQ 的长度最小.②如图②,当Q 点的坐标为(0,m )时,若PQ 与y 轴垂直,则12m m -=,解得13m =,PQ =13. 若PQ 与y 轴不垂直, 则22222221151521222222510m m PQ PD DQ m m m m --⎛⎫⎛⎫⎛⎫=+=+-=-+=-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭. ∵0<m <1,∴当25m =时,2PQ 取得最小值110,PQ.<13, ∴当25m =,即Q 点的坐标为(0,25)时, PQ 的长度最小.综上:当Q 点坐标为(25-,0)或(0,25)时,PQ 的长度最小.解法二: 如图①,由(2)知P 为△ABC 的外接圆的圆心. ∵∠APC 与∠ABC 对应同一条弧AC ,且∠ABC =45°, ∴∠APC =2∠ABC =90°.下面解题步骤同解法一.28.解:(1)a +2b .(2)∵在整个运动过程中,点P 移动的距离为()2a b +cm ,圆心O 移动的距离为()24a -cm , 由题意,得()224a b a +=-. ①∵点P 移动2s 到达B 点,即点P 用2s 移动了b cm ,点P 继续移动3s ,到达BC 的中点,即点P 用3s 移动了12a cm .∴1223a b =. ② 由①②解得24,8.a b =⎧⎨=⎩∵点P 移动的速度与⊙O 移动的速度相等,∴⊙O 移动的速度为42b=(cm/s ). ∴这5s 时间内圆心O 移动的距离为5×4=20(cm ). (3)存在这种情形.解法一:设点P 移动的速度为v 1cm/s ,⊙O 移动的速度为v 2cm/s ,由题意,得()()1222021052422044v a b v a ++⨯===--.FE如图,设直线OO 1与AB 交于点E ,与CD 交于点F ,⊙O 1与AD 相切于点G . 若PD 与⊙O 1相切,切点为H ,则O 1G =O 1H . 易得△DO 1G ≌△DO 1H ,∴∠ADB =∠BDP . ∵BC ∥AD ,∴∠ADB =∠CBD . ∴∠BDP =∠CBD .∴BP =DP .设BP =x cm ,则DP =x cm ,PC =(20-x )cm ,在Rt △PCD 中,由勾股定理,可得222PC CD PD +=,即()2222010x x -+=,解得252x =.∴此时点P 移动的距离为25451022+=(cm ). ∵EF ∥AD ,∴△BEO 1∽△BAD . ∴1EO BE AD BA =,即182010EO =. ∴EO 1=16cm .∴OO 1=14cm .①当⊙O 首次到达⊙O 1的位置时,⊙O 移动的距离为14cm , ∴此时点P 与⊙O 移动的速度比为454521428=.∵455284≠, ∴此时PD 与⊙O 1不可能相切.②当⊙O 在返回途中到达⊙O 1的位置时,⊙O 移动的距离为2×(20-4)-14=18(cm ), ∴此时点P 与⊙O 移动的速度比为45455218364==. ∴此时PD 与⊙O 1恰好相切. 解法二:∵点P 移动的距离为452cm (见解法一), OO 1=14cm (见解法一),1254v v =,∴⊙O 应该移动的距离为4541825⨯=(cm ). ①当⊙O 首次到达⊙O 1的位置时,⊙O 移动的距离为14cm ≠18 cm , ∴此时PD 与⊙O 1不可能相切.②当⊙O 在返回途中到达⊙O 1的位置时,⊙O 移动的距离为2×(20-4)-14=18(cm ),∴此时PD 与⊙O 1恰好相切.解法三:点P 移动的距离为452cm ,(见解法一) OO 1=14cm ,(见解法一) 由1254v v =可设点P 的移动速度为5k cm/s ,⊙O 的移动速度为4k cm/s , ∴点P 移动的时间为459252k k=(s ).①当⊙O 首次到达⊙O 1的位置时,⊙O 移动的时间为1479422k k k=≠, ∴此时PD 与⊙O 1不可能相切.②当⊙O 在返回途中到达⊙O 1的位置时,⊙O 移动的时间为2(204)14942k k⨯--=, ∴此时PD 与⊙O 1恰好相切.。

2016年甘肃省定西市中考数学试卷(解析版)

2016年甘肃省定西市中考数学试卷(解析版)

2016年甘肃省定西市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2016•临夏州)下列图形中,是中心对称图形的是()A.B. C.D.【解答】解:A、是中心对称图形,故此选项正确;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误.故选:A.2.(3分)(2016•临夏州)在1,﹣2,0,这四个数中,最大的数是()A.﹣2 B.0 C.D.1【解答】解:由正数大于零,零大于负数,得﹣2<0<1<.最大的数是,故选:C.3.(3分)(2016•临夏州)在数轴上表示不等式x﹣1<0的解集,正确的是()A.B.C.D.【解答】解:x﹣1<0解得:x<1,故选:C.4.(3分)(2016•临夏州)下列根式中是最简二次根式的是()A.B.C.D.【解答】解:A、=,故此选项错误;B、是最简二次根式,故此选项正确;C、=3,故此选项错误;D、=2,故此选项错误;故选:B.5.(3分)(2016•临夏州)已知点P(0,m)在y轴的负半轴上,则点M(﹣m,﹣m+1)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【解答】解:由点P(0,m)在y轴的负半轴上,得m<0.由不等式的性质,得﹣m>0,﹣m+1>1,则点M(﹣m,﹣m+1)在第一象限,故选:A.6.(3分)(2016•临夏州)如图,AB∥CD,DE⊥CE,∠1=34°,则∠DCE的度数为()A.34°B.54°C.66°D.56°【解答】解:∵AB∥CD,∴∠D=∠1=34°,∵DE⊥CE,∴∠DEC=90°,∴∠DCE=180°﹣90°﹣34°=56°.故选D.7.(3分)(2016•临夏州)如果两个相似三角形的面积比是1:4,那么它们的周长比是()A.1:16 B.1:4 C.1:6 D.1:2【解答】解:∵两个相似三角形的面积比是1:4,∴两个相似三角形的相似比是1:2,∴两个相似三角形的周长比是1:2,故选:D.8.(3分)(2016•临夏州)某工厂现在平均每天比原计划多生产50台机器,现在生产800台所需时间与原计划生产600台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A.=B.=C.=D.=【解答】解:设原计划平均每天生产x台机器,根据题意得:=,故选:A.9.(3分)(2016•临夏州)若x2+4x﹣4=0,则3(x﹣2)2﹣6(x+1)(x﹣1)的值为()A.﹣6 B.6 C.18 D.30【解答】解:∵x2+4x﹣4=0,即x2+4x=4,∴原式=3(x2﹣4x+4)﹣6(x2﹣1)=3x2﹣12x+12﹣6x2+6=﹣3x2﹣12x+18=﹣3(x2+4x)+18=﹣12+18=6.故选B10.(3分)(2016•临夏州)如图,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC边上一动点,沿B→A→C的路径移动,过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y,则下列能大致反映y与x函数关系的图象是()A.B.C.D.【解答】解:过A点作AH⊥BC于H,∵△ABC是等腰直角三角形,∴∠B=∠C=45°,BH=CH=AH=BC=2,当0≤x≤2时,如图1,∵∠B=45°,∴PD=BD=x,∴y=•x•x=x2;当2<x≤4时,如图2,∵∠C=45°,∴PD=CD=4﹣x,∴y=•(4﹣x)•x=﹣x2+2x,故选A二、填空题(共8小题,每小题4分,满分32分)11.(4分)(2016•临夏州)因式分解:2a2﹣8=2(a+2)(a﹣2).【解答】解:2a2﹣8=2(a2﹣4)=2(a+2)(a﹣2).故答案为:2(a+2)(a﹣2).12.(4分)(2016•临夏州)计算:(﹣5a4)•(﹣8ab2)=40a5b2.【解答】解:(﹣5a4)•(﹣8ab2)=40a5b2.故答案为:40a5b2.13.(4分)(2016•临夏州)如图,点A(3,t)在第一象限,OA与x轴所夹的锐角为α,tanα=,则t的值是.【解答】解:过点A作AB⊥x轴于B,∵点A(3,t)在第一象限,∴AB=t,OB=3,又∵tanα===,∴t=.故答案为:.14.(4分)(2016•临夏州)如果单项式2x m+2n y n﹣2m+2与x5y7是同类项,那么n m的值是.【解答】解:根据题意得:,解得:,则n m=3﹣1=.故答案是.15.(4分)(2016•临夏州)三角形的两边长分别是3和4,第三边长是方程x2﹣13x+40=0的根,则该三角形的周长为12.【解答】解:x2﹣13x+40=0,(x﹣5)(x﹣8)=0,所以x1=5,x2=8,而三角形的两边长分别是3和4,所以三角形第三边的长为5,所以三角形的周长为3+4+5=12.故答案为12.16.(4分)(2016•临夏州)如图,在⊙O中,弦AC=2,点B是圆上一点,且∠ABC=45°,则⊙O的半径R=.【解答】解:∵∠ABC=45°,∴∠AOC=90°,∵OA=OC=R,∴R2+R2=2,解得R=.故答案为:.17.(4分)(2016•临夏州)将一张矩形纸片折叠成如图所示的图形,若AB=6cm,则AC=6cm.【解答】解:如图,延长原矩形的边,∵矩形的对边平行,∴∠1=∠ACB,由翻折变换的性质得,∠1=∠ABC,∴∠ABC=∠ACB,∴AC=AB,∵AB=6cm,∴AC=6cm.故答案为:6.18.(4分)(2016•临夏州)古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,它有一定的规律性,若把第一个三角形数记为x1,第二个三角形数记为x2,…第n个三角形数记为x n,则x n+x n+1=(n+1)2.【解答】解:∵x1=1,x2═3=1+2,x3=6=1+2+3,x4═10=1+2+3+4,x5═15=1+2+3+4+5,…∴x n=1+2+3+…+n=,x n+1=,则x n+x n+1=+=(n+1)2,故答案为:(n+1)2.三、解答题(共5小题,满分38分)19.(6分)(2016•临夏州)计算:()﹣2﹣|﹣1+|+2sin60°+(﹣1﹣)0.【解答】解:()﹣2﹣|﹣1+|+2sin60°+(﹣1﹣)0=4+1﹣+2×+1=4+1﹣++1=6.20.(6分)(2016•临夏州)如图,在平面直角坐标系中,△ABC的顶点A(0,1),B(3,2),C(1,4)均在正方形网格的格点上.(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)将△A1B1C1沿x轴方向向左平移3个单位后得到△A2B2C2,写出顶点A2,B2,C2的坐标.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求,点A2(﹣3,﹣1),B2(0,﹣2),C2(﹣2,﹣4).21.(8分)(2016•临夏州)已知关于x的方程x2+mx+m﹣2=0.(1)若此方程的一个根为1,求m的值;(2)求证:不论m取何实数,此方程都有两个不相等的实数根.【解答】解:(1)根据题意,将x=1代入方程x2+mx+m﹣2=0,得:1+m+m﹣2=0,解得:m=;(2)∵△=m2﹣4×1×(m﹣2)=m2﹣4m+8=(m﹣2)2+4>0,∴不论m取何实数,该方程都有两个不相等的实数根.22.(8分)(2016•临夏州)图①是小明在健身器材上进行仰卧起坐锻炼时的情景,图②是小明锻炼时上半身由ON位置运动到与地面垂直的OM位置时的示意图.已知AC=0.66米,BD=0.26米,α=20°.(参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364)(1)求AB的长(精确到0.01米);(2)若测得ON=0.8米,试计算小明头顶由N点运动到M点的路径的长度.(结果保留π)【解答】解:(1)过B作BE⊥AC于E,则AE=AC﹣BD=0.66米﹣0.26米=0.4米,∠AEB=90°,AB==≈1.17(米);(2)∠MON=90°+20°=110°,所以的长度是=π(米).23.(10分)(2016•临夏州)在甲、乙两个不透明的布袋里,都装有3个大小、材质完全相同的小球,其中甲袋中的小球上分别标有数字0,1,2;乙袋中的小球上分别标有数字﹣1,﹣2,0.现从甲袋中任意摸出一个小球,记其标有的数字为x,再从乙袋中任意摸出一个小球,记其标有的数字为y,以此确定点M 的坐标(x,y).(1)请你用画树状图或列表的方法,写出点M所有可能的坐标;(2)求点M(x,y)在函数y=﹣的图象上的概率.【解答】解:(1)画树状图得:则点M所有可能的坐标为:(0,﹣1),(0,﹣2),(0,0),(1,﹣1),(1,﹣2),(1,0),(2,﹣1),(2,﹣2),(2,0);(2)∵点M(x,y)在函数y=﹣的图象上的有:(1,﹣2),(2,﹣1),∴点M(x,y)在函数y=﹣的图象上的概率为:.四、解答题(共5小题,满分50分)24.(8分)(2016•临夏州)2016年《政府工作报告》中提出了十大新词汇,为了解同学们对新词汇的关注度,某数学兴趣小组选取其中的A:“互联网+政务服务”,B:“工匠精神”,C:“光网城市”,D:“大众旅游时代”四个热词在全校学生中进行了抽样调查,要求被调查的每位同学只能从中选择一个我最关注的热词.根据调查结果,该小组绘制了如下的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了多少名同学?(2)条形统计图中,m=60,n=90;(3)扇形统计图中,热词B所在扇形的圆心角是多少度?【解答】解:(1)105÷35%=300(人),答:一共调查了300名同学,(2)n=300×30%=90(人),m=300﹣105﹣90﹣45=60(人).故答案为:60,90;(3)×360°=72°.答:扇形统计图中,热词B所在扇形的圆心角是72度.25.(10分)(2016•临夏州)如图,函数y1=﹣x+4的图象与函数y2=(x>0)的图象交于A(m,1),B(1,n)两点.(1)求k,m,n的值;(2)利用图象写出当x≥1时,y1和y2的大小关系.【解答】解:(1)把A(m,1)代入一次函数解析式得:1=﹣m+4,即m=3,∴A(3,1),把A(3,1)代入反比例解析式得:k=3,把B(1,n)代入一次函数解析式得:n=﹣1+4=3;(2)∵A(3,1),B(1,3),∴由图象得:当1<x<3时,y1>y2;当x>3时,y1<y2;当x=1或x=3时,y1=y2.26.(10分)(2016•临夏州)如图,已知EC∥AB,∠EDA=∠ABF.(1)求证:四边形ABCD是平行四边形;(2)求证:OA2=OE•OF.【解答】证明:(1)∵EC∥AB,∴∠EDA=∠DAB,∵∠EDA=∠ABF,∴∠DAB=∠ABF,∴AD∥BC,∵DC∥AB,∴四边形ABCD为平行四边形;(2)∵EC∥AB,∴△OAB∽△OED,∴=,∵AD∥BC,∴△OBF∽△ODA,∴=,∴=,∴OA2=OE•OF.27.(10分)(2016•临夏州)如图,在△ABC中,AB=AC,点D在BC上,BD=DC,过点D作DE⊥AC,垂足为E,⊙O经过A,B,D三点.(1)求证:AB是⊙O的直径;(2)判断DE与⊙O的位置关系,并加以证明;(3)若⊙O的半径为3,∠BAC=60°,求DE的长.【解答】(1)证明:连接AD,∵AB=AC,BD=DC,∴AD⊥BC,∴∠ADB=90°,∴AB为圆O的直径;(2)DE与圆O相切,理由为:证明:连接OD,∵O、D分别为AB、BC的中点,∴OD为△ABC的中位线,∴OD∥BC,∵DE⊥BC,∴DE⊥OD,∵OD为圆的半径,∴DE与圆O相切;(3)解:∵AB=AC,∠BAC=60°,∴△ABC为等边三角形,∴AB=AC=BC=6,连接BF,∵AB为圆O的直径,∴∠AFB=∠DEC=90°,∴AF=CF=3,DE∥BF,∵D为BC中点,∴E为CF中点,即DE为△BCF中位线,在Rt△ABF中,AB=6,AF=3,根据勾股定理得:BF==3,则DE=BF=.28.(12分)(2016•临夏州)如图,已知抛物线y=﹣x2+bx+c经过A(3,0),B(0,3)两点.(1)求此抛物线的解析式和直线AB的解析式;(2)如图①,动点E从O点出发,沿着OA方向以1个单位/秒的速度向终点A匀速运动,同时,动点F 从A点出发,沿着AB方向以个单位/秒的速度向终点B匀速运动,当E,F中任意一点到达终点时另一点也随之停止运动,连接EF,设运动时间为t秒,当t为何值时,△AEF为直角三角形?(3)如图②,取一根橡皮筋,两端点分别固定在A,B处,用铅笔拉着这根橡皮筋使笔尖P在直线AB 上方的抛物线上移动,动点P与A,B两点构成无数个三角形,在这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时点P的坐标;如果不存在,请简要说明理由.【解答】解:(1)∵抛物线y=﹣x2+bx+c经过A(3,0),B(0,3)两点,∴,∴,∴y=﹣x2+2x+3,设直线AB的解析式为y=kx+n,∴,∴,∴y=﹣x+3;(2)由运动得,OE=t,AF=t,∴AE=OA﹣OE=3﹣t,∵△AEF为直角三角形,∴①△AOB∽△AEF,∴,∴,∴t=,②△AOB∽△AFE,∴,∴,∴t=;(3)如图,存在,过点P作PC∥AB交y轴于C,∵直线AB解析式为y=﹣x+3,∴设直线PC解析式为y=﹣x+b,联立,∴﹣x+b=﹣x2+2x+3,∴x2﹣3x+b﹣3=0∴△=9﹣4(b﹣3)=0∴b=,∴BC=﹣3=,x=,∴P(,).过点B作BD⊥PC,∴直线BD解析式为y=x+3,∴BD=,∴BD=,∵AB=3S最大=AB×BD=×3×=.即:存在面积最大,最大是,此时点P(,).。

甘肃省定西市中考数学试卷及答案

甘肃省定西市中考数学试卷及答案

甘肃省定西市中考数学试卷及答案(本试卷满分为150分,考题时间为120分钟)A 卷(满分100分)一、选择题(本大题共10小题,每小题4分,共40分.每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来.) 1.图中几何体的主视图是2.下列运算中,计算结果正确的是A .x 2·x 3=x 6B .x 2n ÷x n -2=x n +2C .(2x 3)2=4x 9D .x 3+x 3=x3.如果两圆的半径分别为2和1,圆心距为3,那么能反映这两圆位置关系的图是4.多项式2a 2-4ab +2b 2分解因式的结果正确的是A .2(a 2-2ab +b 2)B .2a (a -2b )+2b 2C .2(a -b ) 2D .(2a -2b ) 25.如图,将三角板的直角顶点放在两条平行线a 、b 中的直线b 上,如果∠1=40°,则∠2的度数是 A .30° B .45° C .40° D .50°6.在a 2□4a □4的空格中,任意填上“+”或“-”,在所得到的代数式中,可以构成完全平方式的概率是 A .12 B .13 C .14 D .1 7.将二次函数y =x 2-2x +3化为y =(x -h )2+k 的形式,结果为A .y =(x +1)2+4B .y =(x -1)2+4C .y =(x +1)2+2D .y =(x -1)2+2 8.样本数据3、6、a 、4、2的平均数是5,则这个样本的方差是 A .8B .5C .2 2D .39.一个圆锥的侧面展开图是半径为1的半圆,则该圆锥的底面半径是 A .13 B .12 C .34D .1 10.如图,有一块矩形纸片ABCD ,AB =8,AD =6.将纸片折叠,使得AD 边落在AB 边上,折痕为AE ,再将△AED 沿DE 向右翻折,AE 与BC 的交点为F ,则CF 的长为a b 1C . B . A .D .正面A .6B .4C .2D .1二、填空题(本大题共8小题,每小题4分,共32分.只要求填写最后结果.) 11.计算8-12=_ ▲ . 12.若x +y =3,xy =1,则x 2+y 2=_ ▲ .13.为了测量校园内一棵不可攀的树的高度,学校数学应用实践小组做了如下的探索:根据光的反射定律,利用一面镜子和皮尺,设计如图所示的测量方案:把镜子放在离树(AB )8.7m 的点E 处,然后观测考沿着直线BE 后退到点D ,这时恰好在镜子里看到树梢顶点A ,再用皮尺量得DE =2.7m ,观测者目高CD =1.6m ,则树高AB 约是_ ▲ .(精确到0.1m )14.如图(1),在宽为20m ,长为32m 的矩形耕地上修建同样宽的三条道路(横向与纵向垂直),把耕地分成若干小矩形块,作为小麦试验田国,假设试验田面积为570m 2,求道路宽为多少?设宽为x m ,从图(2)的思考方式出发列出的方程是_ ▲ .15.如图,点A 、B 在数轴上,它们所对应的数分别是-4与2x +23x -5,且点A 、B 到原点的距离相等.则x =_ ▲ .16.计算:sin 230°+tan44°tan46°+sin 260°=_ ▲ .17.抛物线y =-x 2+bx +c 的部分图象如图所示,若函数y >0值时,则x 的取值范围是_▲ .(1)(2)EB D CE18.如图,在梯形ABCD 中,AB ∥CD ,∠BAD =90°,AB =6,对角线AC 平分∠BAD ,点E 在AB 上,且AE =2(AE <AD ),点P 是AC 上的动点,则PE +PB 的最小值是_ ▲ .三、解答题(本大题共3小题,其中19题9分,20题6分,21题13分,共28分.)解答时写出必要的文字说明及演算过程.19.本题共9分(其中第Ⅰ小题4分,第Ⅱ小题5分)Ⅰ.先化简(,再从-2、-1、0、1、2中选一个你认为适合的数作为x 的值代入求值.Ⅱ.已知l 1:直线y =-x +3和l 2:直线y =2x ,l 1与x 轴交点为A .求: (1)l 1与l 2的交点坐标.(2)经过点A 且平行于l 2的直线的解析式20.已知,如图E 、F 是四边形ABCD 的对角线AC 上的两点,AF =CE ,DF =BE ,DF ∥BE ,四边形ABCD 是平行四边形吗?请说明理由.21.本题共13分(其中第Ⅰ小题6分,第Ⅱ小题7分)Ⅰ.爱养花的李先生为选择一个合适的时间去参观西安世界园艺博览会,他查阅了5月10日至16日是(星期一至星期日)每天的参观人数,得到图(1)、图(2)所示的统计图.其中图(1)是每天参观人数的统计图,图(2)是5月15日是(星期六)这一天上午、BAED F中午、下午和晚上四个时段参观人数的扇形统计图,请你根据统计图解答下面的问题: (1)5月10日至16日这一周中,参观人数最多的是日是_ ▲ ,有_ ▲ 万人,参观人数最少的是日是_ ▲ ,有_ ▲ 万人,中位数是_ ▲ .(2)5月15日是(星期六)这一天,上午的参观人数比下午的参观人数多多少人?(精确到1万人)(3)如果李先生想尽可能选择参观人数较少的时间参观世园会,你认为选择什么时间较合适?Ⅱ.如图在等腰Rt △OBA 和Rt △BCD 中,∠OBA =∠BCD =90°,点A 和点C 都在双曲线y =4x(k >0)上,求点D 的坐标.B 卷(满分50分)四、解答题(本大题共50分,解答时写出必要的演算步骤过程及推理过程.) 22.(8分)如图,在平面直角坐标系中,O 为坐标原点,每个小方格的边长为1个单位长度.正方形ABCD 顶点都在格点上,其中,点A 的坐标为 (1,1).(1)若将正方形ABCD 绕点A 顺时针方向旋转,点B 到达点B 1,点C 到达点C 1,点D 到达点D 1,求点B 1、C 1、D 1的坐标.(2)若线段AC 1的长度..与点D 1的横坐标...的差.恰好是一元二次方程x 2+ax +1=0的一个根,求a 的值.第220题A BC D Ox y ABCD Oxyy =4x23.(10分)某校开展的一次动漫设计大赛,杨帆同学运用了数学知识进行了富有创意的图案设计,如图(1),他在边长为1的正方形ABCD 内作等边△BCE ,并与正方形的对角线交于点F 、G ,制作如图(2)的图标,请我计算一下图案中阴影图形的面积.24.(10分)某电脑公司各种品牌、型号的电脑价格如下表,育才中学要从甲、乙两种品牌电脑中各选择一种型号的电脑.(1)写出所有选购方案(利用树状图或列表方法表示).如果各种选购方案被选中的可能性相同,那么A 型号电脑被选中的概率是多少?(2)该中学预计购买甲、乙两种品牌电脑共36台,其中甲品牌电脑只选了A 型号,学校规定购买费用不能高于10万元,又不低于9.2万元,问购买A 型号电脑可以是多少台?甲乙型号 ABCDE单价(元/台)6000400025005000200025.(10分)在△ABC 中,AB =AC ,点O 是△ABC 的外心,连接AO 并延长交BC 于D ,交△ABC的外接圆于E ,过点B 作⊙O 的切线交AO 的延长线于Q ,设OQ =92,BQ =32.(1)求⊙O 的半径;(2)若DE =35,求四边形ACEB 的周长.26.(10分)在梯形OABC 中,CB ∥OA ,∠AOC =60°,∠OAB =90°,OC =2,BC =4,以点O为原点,OA 所在的直线为x 轴,建立平面直角坐标系,另有一边长为2的等边△DEF ,DE 在x 轴上(如图(1)),如果让△DEF 以每秒1个单位的速度向左作匀速直线运动,开始时点D 与点A 重合,当点D 到达坐标原点时运动停止.(1)设△DEF 运动时间为t ,△DEF 与梯形OABC 重叠部分的面积为S ,求S 关于t 的函数关系式.(2)探究:在△DEF 运动过程中,如果射线DF 交经过O 、C 、B 三点的抛物线于点G ,是否存在这样的时刻t ,使得△OAG 的面积与梯形OABC 的面积相等?若存在,求出t 的值;若不存在,请说明理由.A B C QED OA B CDE GF O (1)AD E GF (2)数学试题参照答案及评分标准A卷(满分100分)一、选择题(满分40分)评分标准:答对一题得4分,不答或答错均得0分1.D 2.B 3.B 4.C 5.D 6.A 7.D 8.A 9.B10.C二、填空题(满分32分)评分标准:在每小题后的横线上填上最终结果,答对一题得4分,不答或答错和不是最终结果均得0分.11.7 13.5.2 14.(322)(2)570x x x--= 15.112.25或16.2 17.31x-<< 18.三、解答题(满分28分)19.Ⅰ.原式=2(1)(1)1x x xx--++·21xx-.=11x+·(1)(1)x xx+-=1xx-当2x=-时,原式=32(或当x==22)Ⅱ.解:(1)设直线1l与2l的交点为M,则由32y xy x=-+⎧⎨=⎩解得1,2.x y =⎧⎨=⎩∴(12)M ,.(2)设经过点A 且平行于2l 的直线的解析式为2.y x b =+ ∵直线1l 与x 轴的交点(30)A , ∴60b +=, ∴ 6.b =-则:所求直线的解析式为2 6.y x =-20.解:结论:四边形ABCD 是平行四边形. 证明:∵DF ∥BE . ∴∠AFD =∠CEB .又∵AF CE DF BE ==,, ∴△AFD ≌△CEB (SAS ). ∴AD CB =,∠DAF =∠BCE . ∴AD ∥CB .∴四边形ABCD 是平行四边形.说明:其它证法可参照上面的评分标准评分.21.Ⅰ.①15,34;10,16;22万; ②34(74%-6%)≈23(万人)③答案不唯一,只要符合题意均可得分. Ⅱ.解:点A 在双曲线4y x=上,且在△OBA 中,AB OB =,∠90OBA =°则4OB AB =. ∴2AB OB ==过点C 作CE ⊥x 轴于E CF ,⊥y 轴于F .设BE x =. 由在BCD △中90BC CD BCD ==,∠°.则CE x =. 又点C 在双曲线4y x=上 (2) 4.x x ∴+=解得10x x =>,,1.21)x OD ∴=∴=+=∴点D .B 卷(满分50分)四、解答题(本大题共50分,解答时写出必要的演算步骤及推理过程)22.解:(1)由已知111(21)(40)(32)B C D -,,,,, (2)由勾股定理得:AC =则3)是方程210x ax ++=的一根,设另一根为0x ,则0x 3)=1.03x ==3)3)]a ∴=-+=-另解:23)3)10a a ++==,23.解:连接FG 并延长交AB 于M AC ,于N , BCE △和四边形ABCD 分别是正三角形和正方形..4530MN AB MN CD BAC ABE ∴⊥⊥=︒=︒,∠,∠∴设MF x =,则 1.x +=122.BCE ABF x S S S S ∴==∴--△△阴影正方形=112==另解:14BCDF S S S =-阴影正方形四边形1111()(12)4222264=---⨯-=24.解:(1)树状图如下:共有6种选购方案:(,)A D 、(B ,D )、(C ,D )、(A ,E )、(B ,E )、(C ,E ).1(.3P A 型号被选中)=(2) 设购买A 型号x 台,由(1)知当选用方案(,)A D 时:由已知9200060005000(36)100000x x +-≤≤得8880x --≤≤,不符合题意.当选用方案()A E ,时,由已知:9200060002000(36)100000x x +-≤≤ 得57.x ≤≤答:购买A 型号电脑可以是5台,6台或7台. 25.(1)连接OB BQ ,切O 于B ..OB BQ ∴⊥在Rt OBQ △中,92OQ BQ ==,32OB ∴==. 即O 的半径是32.(2)延长BO 交AC 于F .AB BC =则.AB BC BF AC =∴⊥,又AE 是O 的直径,90ACE ABE ∴==︒∠∠.BF CE ∴∥(另解:DBF OBA OAB DCE =∠=∠=∠∠) ..33521.3325BOD CED BO ODCE DEDE BO CE OD ∴∴=⨯∴===-△∽△∴在Rt ACE △中,3,1AE CE ==,则AC =又O 是AE 的中点,1122OF CF ∴==,则 2.BF = ∴在Rt ABF △中,12AF AC ==AB ∴=在Rt ABE △,BE =(如用ABQ BEQ △∽△及解Rt ABE △得AB BE ,,计算正确也得分) 故:四边形ACEB的周长是:1+26.解:(1)DEF △是边长为2OABC 中,2460OC BC COA AB x ===︒⊥,,∠,轴5,OA AB ∴==依题意:①当201t <≤时 ②222122)(2)422t S t t <<=--=--+时,③当25t S =≤≤时(2)由已知点(00)(1(5O C B ,,,设过点O 、C 、B 的抛物线的解析式为2.y ax bx =+则255a b a b =+=+,, 解得5a b ⎧=-⎪⎪⎨⎪=⎪⎩∴该抛物线的解析式为:255y x x =-+. ∴若存在点G ,使得DCA OABC S S =△梯形;此时,设点G 的坐标为2().55x x x -+,射线DF 与抛物线的交点在x 轴上方.2115()(54)22x ∴⨯⨯=⨯+化简得2690x x -+=,解得 3.x =则此时点(3G GH x ⊥,作轴于H ,则9cot 605DH GH =︒== ∴此时9192)55t =+=(秒 故:存在时刻195t =(秒)时,OAG △与梯形OABC 的面积相等.。

2015年定西市中考数学试题

2015年定西市中考数学试题

甘肃省定西市2015年中考数学试题 一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.64的立方根是( )A.4B.±4C.8D.±82.中国航空母舰“辽宁号”的满载排水量为67500吨,将数67500用科学记数法可表示为( )A.0.675×105B.6.75×104C.67.5×103D.675×102 3.若∠A=34°,则∠A 的补角为( )A.56°B.146°C. 156°D.166°4.下列运算正确的是( )A. x 2+x 2=x 4B. (a-b)2=a 2-b 2C. (-a 2)3=-a 6D.3a 2·2a 3=6a 65.如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是( )6.下列命题中,假命题是( )A.平行四边形是中心对称图形B.三角形三边的垂直平分线相交于一点,这点到三角形三个顶点的距离相等C.对于简单的随机抽样,可以用样本的方差去估计总体的方差D.若x 2=y 2,则x=y7.近年来某县加大了对教育经费的投入,2013年投入2500万元,2015年将投入3600万元,设该县投入教育经费的年平均增长率为x ,根据题意列方程,则下列方程正确的是( ) A.2500x 2=3600 B.2500(1+x)2=3600C.2500(1+x%)2=3600D.2500(1+x)+2500(1+x )2=36008.△ABC 为⊙O 的内接三角形,若∠AOC=160°,则∠ABC 的度数是( )A.80°B.160°C.100°D.80°或100°9.如图,D 、E 分别是△ABC 的边AB 、BC 上的点,且DE//AC ,若S △BDE :S △CDE =1:3,则S △DOE :S △AOC 的值为( )A.31B.41C. 91 D.161 10.如图,矩形ABCD 中,AB=3,BC=5,点P 是BC 边上的一个动点(点P 与点B ,C 都不重合),现将△PCD 沿直线PD 折叠,使点C 落到点F 处;过点P 作∠BPF 的角平分线交AB 于点E.设BP=x ,BE=y,则下列图象中,能表示y 与x 的函数关系的图象大致是( )二、填空题:本大题共8小题,每小题3分,共24分.11.分解因式:x 3y-2x 2y+xy= 12.分式方程352+=x x 的解是 13.在函数y=x x 1+中,自变量x 的取值范围是 14.定义新运算:对于任意实数a,b 都有:a ⊕b=a (a-b)+1,其中等式右边是通常的加法、减法及乘法运算,如2⊕5=2×(2-5)+1=2×(-3)+1=-5,那么不等式3⊕x<13的解集是15.已知α、β均为锐角,且满足|sin α-21|+()21tan -β=0,则α+β= 16.关于x 的方程kx 2-4x-32=0有实数根,则k 的取值范围是 17.如图,半圆O 的直径AE=4,点B ,C ,D 均在半圆上,若AB=BC ,CD=DE ,连接OB ,OD ,则图中阴影部分的面积为18.古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,其中1是第一个三角形数,3是第二个三角形数,6是第三个三角形数,…,依此类推,那么第9个三角形数是,2016是第个三角形数.三、解答题(一):本大题共5小题,共26分.解答应写出必要的文字说明,证明过程或演算步骤.19.(4分)计算:(π-5)0+4+(-1)2015-3tan60°.20.(4分)先化简,再求值:⎪⎭⎫ ⎝⎛+-÷-+-13111222x x x x ,其中x=0.21.(6分)如图,已知在△ABC 中,∠A=90°,(1)请用圆规和直尺作出⊙P,使圆心P 在AC 边上,且与AB ,BC 两边都相切(保留作图痕迹,不写作法和证明).(2)若∠B=60°,AB=3,求⊙P 的面积.22.(6分)如图①所示,将直尺摆放在三角板ABC 上,使直尺与三角板的边分别交于点D ,E ,F ,G ,量得∠CGD=42°。

2015年甘肃中考数学真题卷含答案解析

2015年甘肃中考数学真题卷含答案解析

2015年兰州市初中毕业生学业考试数学试题(含答案全解全析)第Ⅰ卷(选择题,共60分)一、选择题:本大题共15小题,每小题4分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列函数解析式中,一定为二次函数的是( )A.y=3x-1B.y=ax2+bx+cC.s=2t2-2t+1D.y=x2+1x2.由五个同样大小的立方体组成如图的几何体,则关于此几何体三种视图叙述正确的是( )A.左视图与俯视图相同B.左视图与主视图相同C.主视图与俯视图相同D.三种视图都相同3.在下列二次函数中,其图象的对称轴为x=-2的是( )A.y=(x+2)2B.y=2x2-2C.y=-2x2-2D.y=2(x-2)24.如图,△ABC中,∠B=90°,BC=2AB,则cos A=( )A.√52B.12C.2√55D.√555.如图,线段CD两个端点的坐标分别为C(1,2)、D(2,0),以原点为位似中心,将线段CD放大得到线段AB,若点B的坐标为(5,0),则点A的坐标为( )A.(2,5)B.(2.5,5)C.(3,5)D.(3,6)6.一元二次方程x2-8x-1=0配方后可变形为( )A.(x+4)2=17B.(x+4)2=15C.(x-4)2=17D.(x-4)2=157.下列命题错误..的是( )A.对角线互相垂直平分的四边形是菱形B.平行四边形的对角线互相平分C.矩形的对角线相等D.对角线相等的四边形是矩形8.在同一直角坐标系中,一次函数y=kx-k与反比例函数y=kx(k≠0)的图象大致是( )9.如图,经过原点O的☉P与x、y轴分别交于A、B两点,点C是劣弧OB上一点,则∠ACB=( )A.80°B.90°C.100°D.无法确定10.如图,菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E,F,连结EF,则△AEF的面积是( )A.4√3B.3√3C.2√3D.√311.股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一支股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为x,则x满足的方程是( )A.(1+x)2=1110B.(1+x)2=109C.1+2x=1110D.1+2x=10912.若点P1(x1,y1),P2(x2,y2)在反比例函数y=kx(k>0)的图象上,且x1=-x2,则( )A.y1<y2B.y1=y2C.y1>y2D.y1=-y213.二次函数y=ax2+bx+c的图象如图,点C在y轴的正半轴上,且OA=OC,则( )A.ac+1=bB.ab+1=cC.bc+1=aD.以上都不是14.二次函数y=x2+x+c的图象与x轴有两个交点A(x1,0),B(x2,0),且x1<x2,点P(m,n)是图象上一点,那么下列判断正确的是( )A.当n<0时,m<0B.当n>0时,m>x2C.当n<0时,x1<m<x2D.当n>0时,m<x115.如图,☉O的半径为2,AB、CD是互相垂直的两条直径,点P是☉O上任意一点(P与A、B、C、D不重合),过点P作PM⊥AB于点M,PN⊥CD于点N,点Q是MN的中点,当点P沿着圆周转过45°时,点Q走过的路径长为( )A.π4B.π2C.π6D.π3第Ⅱ卷(非选择题,共90分)二、填空题:本大题共5小题,每小题4分,共20分.16.若一元二次方程ax 2-bx-2 015=0有一根为x=-1,则a+b= . 17.如果a b =c d =ef =k(b+d+f ≠0),且a+c+e=3(b+d+f),那么k= .18.在一个不透明的袋中装有除颜色外其余均相同的n 个小球,其中有5个黑球,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,之后把它放回袋中,搅匀后,再继续摸出一球.以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:摸球试验次数 100 1 000 5 000 10 000 50 000 100 000 摸出黑球次数 46 487 2 506 5 008 24 996 50 007根据列表,可以估计出n 的值是 .19.如图,点P 、Q 是反比例函数y=kx 图象上的两点,PA ⊥y 轴于点A,QN ⊥x 轴于点N,作PM ⊥x 轴于点M,QB ⊥y 轴于点B,连结PB 、QM,△ABP 的面积记为S 1,△QMN 的面积记为S 2,则S 1 S 2.(填“>”或“<”或“=”)20.已知△ABC 的边BC=4 cm,☉O 是其外接圆,且半径也为4 cm,则∠A 的度数是 .三、解答题:本大题共8小题,共70分.解答时写出必要的文字说明、证明过程或演算步骤.21.(本小题满分10分,每题5分) (1)计算:2-1-√3tan 60°+(π-2 015)0+|-12|;(2)解方程:x 2-1=2(x+1).22.(本小题满分5分)如图,在图中求作☉P,使☉P 满足以线段MN 为弦且圆心P 到∠AOB 两边的距离相等.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)23.(本小题满分6分)为了参加中考体育测试,甲、乙、丙三位同学进行足球传球训练.球从一个人脚下随机传到另一个人脚下,且每位传球人传球给其余两人的机会是均等的,由甲开始传球,共传球三次.(1)请利用树状图列举出三次传球的所有可能情况;(2)求三次传球后,球回到甲脚下的概率;(3)三次传球后,球回到甲脚下的概率大还是传到乙脚下的概率大?24.(本小题满分8分)如图,在一面与地面垂直的围墙的同侧有一根高10米的旗杆AB和一根高度未知的电线杆CD,它们都与地面垂直,为了测得电线杆的高度,一个小组的同学进行了如下测量:某一时刻,在太阳光照射下,旗杆落在围墙上的影子EF的长度为2米,落在地面上的影子BF的长为10米,而电线杆落在围墙上的影子GH的长度为3米,落在地面上的影子DH 的长为5米.依据这些数据,该小组的同学计算出了电线杆的高度.(1)该小组的同学在这里利用的是投影的有关知识进行计算的;(2)试计算出电线杆的高度,并写出计算的过程.25.(本小题满分9分)如图,四边形ABCD中,AB∥CD,AB≠CD,BD=AC.(1)求证:AD=BC;(2)若E,F,G,H分别是AB,CD,AC,BD的中点.求证:线段EF与线段GH互相垂直平分.26.(本小题满分10分)如图,A(-4,12),B(-1,2)是一次函数y1=ax+b与反比例函数y2=mx图象的两个交点,AC⊥x轴于点C,BD⊥y轴于点D.(1)根据图象直接回答:在第二象限内,当x取何值时,y1-y2>0?(2)求一次函数解析式及m的值;(3)P是线段AB上一点,连结PC,PD,若△PCA和△PDB面积相等,求点P的坐标.27.(本小题满分10分)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC边于点D,以AB上一点O为圆心作☉O,使☉O经过点A和点D.(1)判断直线BC与☉O的位置关系,并说明理由;(2)若AC=3,∠B=30°.①求☉O的半径;②设☉O与AB边的另一个交点为E,求线段BD、BE与劣弧DE所围成的阴影部分的面积.(结果保留根号和π)28.(本小题满分12分)已知二次函数y=ax2的图象经过点(2,1).(1)求二次函数y=ax2的解析式;(2)一次函数y=mx+4的图象与二次函数y=ax2的图象交于A(x1,y1)、B(x2,y2)两点.①当m=3时(图①),求证:△AOB为直角三角形;2时(图②),△AOB的形状,并证明;②试判断当m≠32(3)根据第(2)问,说出一条你能得到的结论.(不要求证明)答案全解全析:一、选择题1.C 根据二次函数的定义:形如y=ax 2+bx+c(a 、b 、c 为常数,且a ≠0)的函数叫做二次函数,结合各选项知,选C.2.B 左视图为,主视图为,俯视图为,故选B.评析 本题主要考查物体的三视图,属容易题.3.A 根据二次函数y=a(x-h)2+k(a ≠0)的图象的对称轴为直线x=h,知只有A 选项符合题意. 4.D 设AB=k(k>0),则BC=2k,∵∠B=90°,∴AC=√AB 2+BC 2=√5k,∴cos A=ABAC =√5k =√55,故选D.5.B 设点A 的坐标为(x,y),由位似图形的性质知,x 1=y 2=52,得x=2.5,y=5,则点A 的坐标为(2.5,5).故选B.6.C 变形得x 2-8x=1,x 2-8x+16=1+16,(x-4)2=17,故选C. 7.D 对角线相等的平行四边形是矩形,故D 错误,选D.8.A 分k>0和k<0两种情况讨论:当k>0时,反比例函数的图象经过第一、三象限,一次函数的图象经过第一、三、四象限,没有符合题意的选项;当k<0时,反比例函数的图象经过第二、四象限,一次函数的图象经过第一、二、四象限,故选A. 9.B 根据同弧所对的圆周角相等,得到∠ACB=∠AOB=90°,故选B.10.B 连结AC,在菱形ABCD 中,AB=BC,∵∠B=60°,∴△ABC 是等边三角形,∵AE ⊥BC,∴AE=2√3,∠EAC=30°,同理可得AF=2√3,∠CAF=30°,则△EAF 为等边三角形,∴S △AEF =√34×(2√3)2=3√3.故选B.11.B 设原价为1,则某天跌停后是0.9,根据题意可列方程为0.9(1+x)2=1,即(1+x)2=109,故选B.12.D 由题意,得xy=k,因为k 是定值,所以当x 1=-x 2时,y 1=-y 2,故选D. 13.A 由题意得点C 的坐标为(0,c), ∵OA=OC,∴点A 的坐标为(-c,0).将(-c,0)代入二次函数解析式,得ac 2-bc+c=0, ∵c ≠0,∴ac -b+1=0, 即ac+1=b.故选A.14.C 由已知得,函数图象开口向上,对称轴在y 轴左侧,画出草图(如图),当n>0时,m<x 1或m>x 2;当n<0时,x 1<m<x 2.故选C.15.A 连结OP.∵∠PMO=∠PNO=∠MON=90°,∴四边形MPNO 为矩形,∵Q 为MN 的中点,∴Q 在OP 上,且OQ=12OP=1.∵点P 沿圆周转过45°,∴点Q 也沿相应的圆周转过45°,∴点Q 走过的路径长为45×1×π180=π4. 二、填空题16.答案 2 015解析 将x=-1代入方程得a+b-2 015=0,则a+b=2 015. 17.答案 3解析 由题意得a=bk,c=dk,e=fk,则a+c+e=k(b+d+f)=3(b+d+f),故k=3. 18.答案 10解析 当试验次数越多时,频率越接近概率,由题表得,概率为0.5,故n=10. 19.答案 =解析 由反比例函数的性质得,S矩形APMO=S矩形BONQ.同时减去公共部分后,所得两个矩形的面积仍相等,即2S △ABP =2S △MNQ ,故S 1=S 2. 20.答案 30°解析 ∵OB=OC=BC=4 cm,∴△OBC 为等边三角形, ∴∠BOC=60°,故∠A=30°.三、解答题21.解析 (1)2-1-√3tan 60°+(π-2 015)0+|-1| =1-3+1+1=1-3+1 =-1.(2)x 2-1=2(x+1)可化为x 2-2x-3=0,解得x 1=-1,x 2=3.22.解析☉P 为所求作的圆. 23.解析 (1)如图:(2)P(三次传球后,球回到甲脚下)=28=14. (3)P(三次传球后,球回到甲脚下)=28, P(三次传球后,球传到乙脚下)=38, 因为38>28,所以球传到乙脚下的概率大.24.解析 (1)平行.(2)如图,连结CG,AE,过点E 作EM ⊥AB 于M,过点G 作GN ⊥CD 于N,则MB=EF=2,ND=GH=3,ME=BF=10,NG=DH=5. 所以AM=10-2=8,由平行投影可知AM ME =CNNG ,即810=CD -35, 解得CD=7,即电线杆的高度为7米.25.证明 (1)过点B 作BM ∥AC 交DC 的延长线于点M, ∵AB ∥CD,∴四边形ABMC 为平行四边形. ∴AC=BM=BD,∴∠BDC=∠M=∠ACD. 在△ACD 和△BDC 中,{AC =BD,∠ACD =∠BDC,CD =DC,∴△ACD ≌△BDC, ∴AD=BC.(2)连结EH,HF,FG,GE,∵E,F,G,H 分别是AB,CD,AC,BD 的中点,∴HE ∥AD,且HE=12AD,FG ∥AD,且FG=12AD,EH=12AD,EG=12BC, ∴HE ∥FG 且HE=FG,∴四边形HFGE 为平行四边形. 由(1)知,AD=BC, ∴HE=EG,∴▱HFGE 为菱形,∴线段EF 与线段GH 互相垂直平分.26.解析 (1)在第二象限内,当-4<x<-1时,y 1-y 2>0. (2)∵反比例函数y 2=mx 的图象过A (-4,12), ∴m=-4×12=-2,∵一次函数y 1=ax+b 的图象过A (-4,12),B(-1,2),∴{-4a +b =12,-a +b =2,解得{a =12,b =52, ∴y 1=12x+52. (3)设P (t,12t +52),过P 作PM ⊥x 轴,PN ⊥y 轴,∴PM=12t+52,PN=-t,∵S △PCA =S △PDB ,∴12AC ·CM=12BD ·DN,即12×12(t+4)=12×1×(2-12t -52),解得t=-52, ∴P (-52,54).27.解析 (1)相切.理由如下:如图,连结OD,∵AD 平分∠BAC,∴∠1=∠2,∵OA=OD,∴∠1=∠3,∴∠2=∠3,∴OD ∥AC.又∠C=90°,∴OD ⊥BC,∴BC 与☉O 相切.(2)①∵AC=3,∠B=30°,∴AB=6.设OA=OD=r,∴OB=2r.∴2r+r=6,解得r=2,即☉O 的半径是2.②由①得OD=2,OB=4,∴BD=2√3.S 阴影=12×2√3×2-60π×22360=2√3-2π3. 28.解析 (1)∵二次函数y=ax 2的图象过点(2,1),∴1=4a,∴a=1,∴二次函数的解析式为y=14x 2.(2)①证明:当m=32时,{y =32x +4,y =14x 2,解得{x 1=-2,y 1=1,{x 2=8,y 2=16,∴A(-2,1),B(8,16).分别过A,B 作AC ⊥x 轴,BD ⊥x 轴,∴AC=1,OC=2,OD=8,BD=16.∴AC OC =OD BD =12,又∵∠ACO=∠ODB,∴△ACO ∽△ODB,∴∠AOC=∠OBD.又∵∠OBD+∠BOD=90°,∴∠AOC+∠BOD=90°,∴∠AOB=90°,∴△AOB 为直角三角形.②△AOB 为直角三角形,证明如下:当m ≠3时,{y =mx +4,y =14x 2,解得{x 1=2m -2√m 2+4,y 1=(m -√m 2+4)2,{x 2=2m +2√m 2+4,y 2=(m +√m 2+4)2,∴A(2m -2√m 2+4,(m-√m 2+4)2),B(2m+2√m 2+4,(m+√m 2+4)2).分别过A,B 作AC ⊥x 轴,BD ⊥x 轴,∴AC=(m -√m 2+4)2,OC=-(2m-2√m 2+4),BD=(m+√m 2+4)2,OD=2m+2√m 2+4, ∴AC OC =OD BD =-m -√m 2+42, 又∵∠ACO=∠ODB,∴△ACO ∽△ODB,∴∠AOC=∠OBD.又∵∠OBD+∠BOD=90°,∴∠AOC+∠BOD=90°,∴∠AOB=90°,∴△AOB 为直角三角形.(3)如:一次函数y=mx+4的图象与二次函数y=ax2的图象的交点为A,B,则△AOB恒为直角三角形等.。

甘肃省定西市中考数学试题及答案D

甘肃省定西市中考数学试题及答案D

甘肃省定西市中考数学试题及答案D考生注意:本试卷满分为120分,考试时间为120分钟.所有试题均在答题卡上作答,否则无效. 一.选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项,将此选项的字母填在答题卡上.1.下列图形中,是中心对称图形的是【 】2.在1,-2,0,35这四个数中,最大的数是【 】 A.2 B.0 C.35D.13.在数轴上表示不等式01<-x 的解集,正确的是【 】4.下列根式中是最简二次根式的是【 】12.9.3.32.D C B A5.已知点),0(m P 在y 轴的负半轴上,则点M )1,(+--m m 在【 】 A.第一象限 B.第二象限 C.第三象限 D.第四象限6.如图,AB ∥CD,DE ⊥CE,∠1=34°,则∠DCE 的度数为【 】 A .34° B.54° C.66° D.56°7.如果两个相似三角形的面积比是1∶4,那么它们的周长比是【 】 A.1∶16 B.1∶4 C.1∶6 D.1∶28.某工厂现在平均每天比原计划每天多生产50台机器,现在生产800台机器所需时间与原计划生产600台机器所需时间相同.设原计划平均每天生产x 台机器.根据题意,下面所列方程正确的是【 】.50600800.;50600800.;60050800.;60050800.A -=+==-=+x x D x x C x x x x B9.若,0442=-+x x 则)1)(1(6)2(32-+--x x x 的值为【 】第6题图A.-6B.6C.18D.3010.如图,△ABC 是等腰直角三角形,∠A=90°,BC=4,点P 是△ABC 边上一动点,沿B →A →C 的路径移动,过点P 作PD ⊥BC 于点D,设BD=x ,△BDP 的面积为y ,则下列能大致反映y 与x 函数关系的图象是【 】二、填空题:本大题共8小题,每小题3分,共24分. 11.因式分解:.___________822=-x 12.计算:=-⋅-)8()5(24ab a ___________.13.如图,点A(3,t )在第一象限,射线OA 与x 轴所夹的锐角为α,,23tan =α则t 的值是________.14.如果单项式2222+-+m n n m y x与75y x 是同类项,那么m n 的值是________.15.三角形的两边长分别是3和4,第三边长是方程040132=+-x x 的根,则该三角形的周长为____.16.如图,在⊙O 中,弦AC=32,点B 是圆上一点,且∠ABC=45°,则⊙O 的半径R=_______. 17.将一张矩形纸片折叠成如图所示的图形,若AB=6cm,则AC=_______cm.18.古希腊数学家把数1,3,6,10,15,21,…,叫做三角形数,它有一定的规律性.若把第一个三角形数记为,1x第二个三角形数记为,2x …,第n 个三角形数记为n x ,则1++n n x x =_________.三.解答题(一):本大题共5小题,共26分.解答应写出必要的文字说明,证明过程或演算步骤:第13题图第16题图 第17题图19.(4分)计算:.)3-(-160sin 231--210-2+︒++⎪⎭⎫⎝⎛20.(4分)如图,在平面直角坐标系中,△ABC 的顶点A(0,1),B(3,2),C(1,4)均在正方形的网格的格点上. (1)画出△ABC 关于x 轴的对称图形;△111C B A (2)将111C B A △沿x 轴方向向左平移3个单位后得到222C B A △,写出顶点222C B A ,,的坐标.21.(6分)已知关于x 的方程022=-++m mx x . (1)若此方程的一个根为1,求m 的值;(2)求证:不论m 取何实数,此方程都有两个不相等的实数根.22.(6分)图①是小明在健身器材上进行仰卧起坐锻炼时的情景.图②是小明锻炼时上半身由ON 位置运动到与地面垂直的OM 位置时的示意图.已知AC=0.66米,BD=0.26米,α=20°.(参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364).(1)求AB 的长(精确到0.01米);(2)若测得ON=0.8米,试计算小明头顶由N 点运动到M 点的路径的长度(结果保留π)23.(6分)在甲、乙两个不透明的布袋里,都装有3个大小、材质完全相同的小球,其中甲袋中的小球上分别标有数字0,1,2;乙袋中的小球上分别标有数字-1,-2,0.现从甲袋中任意摸出第20题图第22题图第25题图第27题图一个小球,记其标有的数字为x ,再从乙袋中任意摸出一个小球,记其标有的数字为y ,以此确定点M 的坐标(x ,y ).(1)请你用画树状图或列表的方法,写出点M 所有可能的坐标; (2)求点M (x ,y )在函数xy 2-=的图象上的概率. 四、解答题(二):本大题共5小题,共40分.解答应写出必要的文字说明、证明过程或演算步骤.24.(7分)2016年《政府工作报告》中提出了十大新词汇.为了解同学们对新词汇的关注度,某数学兴趣小组选取其中的A :“互联网+政务服务”,B :“工匠精神”,C :“光网城市”,D :“大众旅游时代”四个热词在全校学生中进行了抽样调查,要求被调查的每位同学只能从中选择一个我最关注的热词.根据调查结果,该小组绘制了如下的两幅不完整的统计图. 请你根据统计图提供的信息,解答下列问题: (1)本次调查中,一共调查了多少名同学? (2)条形统计图中,m =_______,n =_____.(3)扇形统计图中,热词B 所在扇形的圆心角是多少度?25.(7分)如图,函数41+-=x y 的图象与函数)0(2>=x xky 的图象交于),1(),1,(n B m A 两点. (1)求k ,m ,n 的值;(2)利用图象写出当1≥x 时,21y y 与的大小关系. 26.(8分)如图,已知EC ∥AB,∠EDA=∠ABF. (1)求证:四边形ABCD 为平行四边形; (2)求证:.OF OE OA 2⋅=第24题图第26题图27.(8分)如图,在△ABC 中,AB=AC,点D 在BC 上,BD=DC,过点D 作DE ⊥AC,垂足为E,⊙O 经过A,B,D 三点.(1)求证:AB 是⊙O 的直径;(2)判断DE 与⊙O 的位置关系,并加以证明; (3)若⊙O 的半径为3,∠BAC=60°,求DE 的长.28.(10分)如图,已知抛物线c bx x y ++-=2经过A(3,0),B(0,3)两点. (1)求此抛物线的解析式和直线AB 的解析式;(2)如图①,动点E 从O 点出发,沿着OA 方向以1个单位/秒的速度向终点A 匀速运动,同时,动点F 从A 点出发,沿着AB 方向以2个单位/秒的速度向终点B 匀速运动,当E,F 中任意一点到达终点时另一点也随之停止运动.连接EF,设运动时间为t 秒.当t 为何值时,△AEF 为直角三角形?(3)如图②,取一根橡皮筋,两端点分别固定在A,B 处.用铅笔拉着这根橡皮筋使笔尖P 在直线AB 上方的抛物线上移动,动点P 与A,B 两点构成无数个三角形,在这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时点P 的坐标;如果不存在,请简要说明理由.第28题图数学试题参考答案及评分标准一、选择题:本大题共10小题,每小题3分,共30分.二、填空题:本大题共8小题,每小题3分,共24分. 11.2(2)(2)x x +-;12.5240a b ;13.92;14.13;15.12 ;16.6;17. 6 ;18.2(1)n +或n2+2n+1.三、解答题(一):本大题共5小题,共26分.解答应写出必要的文字说明,证明过程或演算步骤.19.(4分)解:原式=22-(3-1)+2×3+1 2分 =4-3+1+3+1 3分 =6 4分 20.(4分)解:(1)△A1B1C1为所作; 2分 (2)A2(-3,-1),B2(0,-2),C2(-2,-4). 4分21.(6分)(1)解:把x =1代入方程 220x mx m ++-=得 1m m ++ 解得 m =12. 2分 (2)证明:△=24(2)m m -- 3分题号 1 2 3 4 5 6 7 8 9 10 答案ACCBADDABByxO ABCB 1C 1A 12(2)4m =-+ 4分 ∵ 2(2)m -≥0,∴ 2(2)4m -+>0, 即 △>0, 5分 ∴ 此方程有两个不相等的实数根. 6分22.(6分)解:(1) 过点B 作BF ⊥AC 于点F . 1分 ∴ AF=AC -BD=0.4(米), 2分 ∴B=AF ÷sin20°≈1.17(米); 3分 (2)∵∠MON=90°+20°=110°, 4分 ∴ 1100.82218045MN ⨯π==π(米). 6分23.(6分)解:(1)画树状图:方法一: 方法二:2分 所以点M (x, y )共有9种可能:(0,-1),(0,-2),(0,0),(1,-1),(1,-2),(1,0),(2,-1),(2,-2),(2,0); 4分(2)∵只有点(1,-2),(2,-1)在函数2y x=-的图象上, 5分 ∴点M (x ,y )在函数2y x =-的图象上的概率为29. 6分四、解答题(二):本大题共5小题,共40分.解答应写出必要的文字说明、证明过程或演算步骤.(注:解法合理,答案正确均可得分)24.(7分)解:(1)105÷35%=300(人).答:共调查了300名学生; 1分 (2)n =300×30%=90(人),m =300-105-90-45=60(人). 故答案为:60,90;(每空2分) 5分 (3)60300×360°=72°.答:B 所在扇形的圆心角是72°. 7分 (0, 0) (0, -1)(0, -2) (1, -1) (1, -2) (1, 0) (2, -2)(2, -1)1 0 2-1-2 0 乙袋甲袋结果(2, 0)25.(7分)解:(1)把点A (m,1)代入14y x =-+,得m=3, 2分 则 A (3,1),∴k =3×1=3; 3分 把点B (1,n )代入2ky x=,得出n=3; 4分 (2)如图,由图象可知:①当1<x <3时,1y >2y ; 5分②当x =1或x =3时,1y =2y ; 6分(注:x 的两个值各占0.5分) ③当x >3时,1y <2y . 7分 26.(8分)(1)证明:∵EC ∥AB, ∴∠C=∠ABF . 1分 又∵∠EDA=∠ABF,∴∠C=∠EDA . 2分 ∴AD ∥BC, 3分 ∴四边形ABCD 是平行四边形. 4分 (2)证明:∵EC ∥AB, ∴OA OB OEOD=. 5分又∵AD ∥BC, ∴OF OB OA OD =, 6分 ∴OA OF OEOA=, 7分∴2OA OE OF =⋅. 8分 27.(8分)(1)证明:如图①,连接AD, ∵在△ABC 中, AB=AC,BD=DC, ∴AD ⊥BC 1分∴∠ADB=90°,AB 是⊙O 的直径; 2分 (2)DE 与⊙O 的相切. 3分 证明:如图②,连接OD, ∵AO=BO,BD=DC, ∴OD 是△BAC 的中位线,图②ABCD E O图①AB CD E O∴OD ∥AC, 4分 又∵DE ⊥AC ∴DE ⊥OD,∴DE 为⊙O 的切线; 5分 (3)解:如图③,∵AO=3,∴AB=6, 又∵AB=AC,∠BAC=60°, ∴△ABC 是等边三角形, ∴AD=33, 6分 ∵AC ∙DE=CD ∙AD,∴6∙DE=3×33, 7分 解得 DE =332. 8分 28.(10分)解:(1)设直线AB 的解析式为y kx m =+, 1分 把A(3,0),B(0,3)代入,得 330m k m =⎧⎨+=⎩, 解得13k m =-⎧⎨=⎩ ∴直线AB 的解析式为3y x =-+ 2分 把A(3,0),B(0,3) 代入 2y x bx c =-++中,得 9303b c c -++=⎧⎨=⎩,解得23b c =⎧⎨=⎩∴抛物线的解析式为 223y x x =-++. 3分 (2)∵OA=OB=3,∠BOA=90°,∴∠EAF=45°. 设运动时间为t 秒,则AF=2t,AE=3-t . 4分 (i )当∠EFA=90°时,如图①所示: 在Rt △EAF 中,cos45°22AF AE ==,即2232t t =-. 解得 t =1. 5分(ii) 当∠FEA=90°时,如图②所示:在Rt △AEF 中,cos45°22AE AF ==, AB CDEO图③图①OyAxBEF图②yOA BE F即222t=. 解得t =32. 综上所述,当t =1或t =32时,△AEF 是直角三角形. 6分 (3)存在. 如图③,过点P 作PN ∥y 轴,交直线AB 于点N,交x 轴于点D. 过点B 作BC ⊥PN 交PN 于点C .设点P (x ,223x x -++),则点N (x ,3x -+)∴PN=2223(3)3x x x x x -++--+=-+. 7分 ∴ABP BPN APN S S S ∆∆∆=+=1122PN BC PN AD ⋅+⋅ 8分=2211(3)(3)(3)22x x x x x x -+⋅+-+- =23327228x ⎛⎫--+ ⎪⎝⎭ 9分当32x =时,△ABP 的面积最大,最大面积为278. 此时点P(32,154). 10分yx O xA x xB AP图③NC MD M。

2015年中考数学试题(含答案)

2015年中考数学试题(含答案)

2015年河南初中学业水平暨高级中等学校招生考试试题数 学注意事项:1. 本试卷共6页,三个大题,满分120分,考试时间100分钟。

2. 本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上。

答在试卷上的答案无效。

一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的。

1. 下列各数中最大的数是( )A. 5B.3C. πD. -8 2. 如图所示的几何体的俯视图是( )3. 据统计,2014年我国高新技术产品出口总额达40 570亿元,将数据40 570亿用科学记数法表示为( ) A.4.0570×109 B. 0.40570×1010 C. 40.570×1011 D. 4.0570×10124. 如图,直线a ,b 被直线c ,d 所截,若∠1=∠2,∠3=125°,则∠4的度数为( ) A. 55° B. 60° C.70° D. 75°5. 不等式组⎩⎨⎧>-≥+13,05x x 的解集在数轴上表示为( )6. 小王参加某企业招聘测试,他的笔试,面试、技能操作得分分别为85分,80分,90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是( )A. 255分B. 84分C. 84.5分D.86分7. 如图,在□ABCD 中,用直尺和圆规作∠BAD 的平分线AG 交BC 于点E ,若BF =6,AB =5,则AE 的长为( )C DB A 正面 第2题dc ba第4题-52 0 -520 -52 0 -520 CDBAA. 4B. 6C. 8D. 108. 如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,… 组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则第2015秒时,点P 的坐标是( )A.(2014,0)B.(2015,-1)C. (2015,1)D. (2016,0)二、填空题(每小题3分,共21分) 9.计算:(-3)0+3-1=.10. 如图,△ABC 中,点D 、E 分别在边AB ,BC 上,DE //AC ,若DB =4,DA =2,BE =3,则EC = . 11. 如图,直线y =kx 与双曲线)0(2>=x xy 交于点 A (1,a ),则k = .12. 已知点A (4,y 1),B (2,y 2),C (-2,y 3)都在二次函数y =(x -2)2-1的图象上,则y 1,y 2,y 3的大小关系是 . 13. 现有四张分别标有数字1,2,3,4的卡片,它们除数字外完全相同,把卡片背面朝上洗匀,从中随机抽取一张后放回,再 背面朝上洗匀,从中随机抽取一张,则两次抽出的卡片所标数 字不同的概率是 .14. 如图,在扇形AOB 中,∠AOB =90°,点C 为OA 的中点,CE ⊥OA 交AB 于点E ,以点O 为圆心,OC 的长为半径 作CD 交OB 于点D ,若OA =2,则阴影部分的面积为 .15. 如图,正方形ABCD 的边长是16,点E 在边AB 上,AE =3,点F 是边BC 上不与点B 、C 重合的一个动点,把△EBF 沿EF 折叠,点B 落在B ′处,若△CDB ′恰为等腰三角形,则DB ′的长为 .E FCDBGA第7图第8题E CDBA第14题EFCDBA 第15题B ′三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:)11(22222ab b a b ab a -÷-+-,其中15+=a ,15-=b .17.(9分)如图,AB 是半圆O 的直径,点P 是半圆上不与点A 、B 重合的一个动点,延长BP 到点C ,使PC =PB ,D 是AC 的中点,连接PD ,PO . (1)求证:△CDP ≌△POB ; (2)填空:① 若AB =4,则四边形AOPD 的最大面积为 ; ② 连接OD ,当∠PBA 的度数为 时,四边形BPDO18.(9分)为了了解市民“获取新闻的最主要途径”,某市记者开展了一次抽样调查,根据调查结果绘制了如下尚不完整的统计图。

定西中考数学试题及答案-中考 (2).doc

定西中考数学试题及答案-中考 (2).doc

:2016年定西中考数学试题及答案-中考总结:话题作文与学期梳理课程特色:以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。

学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。

适合学员想扎实写作基础,稳固提高作文水平的初中生赠送《中学语文知识地图—中学必考文学常识一本通》第十五章:学期课程融汇与升华课程特色:以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。

适合学员现代文阅读答题技巧掌握不够全面,想稳固提高的初中生赠送《中学语文知识地图—中学文言文必考140字》课程特色:全面地检测与分析学生考试丢分的问题,让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。

适合学员想夯实语文基础知识,成绩稳步提高的初中生赠送《学生优秀作品及点评指导(2.0版)》第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。

适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。

适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。

该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。

适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。

甘肃省定西市中考数学试卷含答案解析(Word版).doc

甘肃省定西市中考数学试卷含答案解析(Word版).doc

学校班级姓名2018年甘肃省定西市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确1.(3分)﹣2018的相反数是()A.﹣2018 B.2018 C.﹣ D.【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣2018的相反数是:2018.故选:B.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.(3分)下列计算结果等于x3的是()A.x6÷x2B.x4﹣x C.x+x2D.x2•x【分析】根据同底数幂的除法、乘法及同类项的定义逐一计算即可得.【解答】解:A、x6÷x2=x4,不符合题意;B、x4﹣x不能再计算,不符合题意;C、x+x2不能再计算,不符合题意;D、x2•x=x3,符合题意;故选:D.【点评】本题主要考查整式的运算,解题的关键是掌握同底数幂的除法、乘法及同类项的定义.3.(3分)若一个角为65°,则它的补角的度数为()A.25°B.35°C.115°D.125°【分析】根据互为补角的两个角的和等于180°列式进行计算即可得解.【解答】解:180°﹣65°=115°.故它的补角的度数为115°.故选:C.【点评】本题考查了余角和补角,解决本题的关键是熟记互为补角的和等于180°.4.(3分)已知=(a≠0,b≠0),下列变形错误的是()A.=B.2a=3b C.=D.3a=2b【分析】根据两内项之积等于两外项之积对各选项分析判断即可得解.【解答】解:由=得,3a=2b,A、由原式可得:3a=2b,正确;B、由原式可得2a=3b,错误;C、由原式可得:3a=2b,正确;D、由原式可得:3a=2b,正确;故选:B.【点评】本题考查了比例的性质,主要利用了两内项之积等于两外项之积.5.(3分)若分式的值为0,则x的值是()A.2或﹣2 B.2 C.﹣2 D.0【分析】直接利用分式的值为零则分子为零进而得出答案.【解答】解:∵分式的值为0,∴x2﹣4=0,解得:x=2或﹣2.故选:A.【点评】此题主要考查了分式的值为零的条件,正确把握定义是解题关键.6.(3分)甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷10次,他们成绩的平均数与方差s2如下表:甲乙丙丁平均数(环)11.111.110.910.9方差s2 1.1 1.2 1.3 1.4若要选一名成绩好且发挥稳定的同学参加比赛,则应该选择()A.甲B.乙C.丙D.丁【分析】根据平均数和方差的意义解答.【解答】解:从平均数看,成绩好的同学有甲、乙,从方差看甲、乙两人中,甲方差小,即甲发挥稳定,故选:A.【点评】本题考查了平均数和方差,熟悉它们的意义是解题的关键.7.(3分)关于x的一元二次方程x2+4x+k=0有两个实数根,则k的取值范围是()A.k≤﹣4 B.k<﹣4 C.k≤4 D.k<4【分析】根据判别式的意义得△=42﹣4k≥0,然后解不等式即可.【解答】解:根据题意得△=42﹣4k≥0,解得k≤4.故选:C.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.8.(3分)如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置,若四边形AECF的面积为25,DE=2,则AE的长为()A.5 B.C.7 D.【分析】利用旋转的性质得出四边形AECF的面积等于正方形ABCD的面积,进而可求出正方形的边长,再利用勾股定理得出答案.【解答】解:∵把△ADE顺时针旋转△ABF的位置,∴四边形AECF的面积等于正方形ABCD的面积等于25,∴AD=DC=5,∵DE=2,∴Rt△ADE中,AE==.故选:D.【点评】此题主要考查了旋转的性质以及正方形的性质,正确利用旋转的性质得出对应边关系是解题关键.9.(3分)如图,⊙A过点O(0,0),C(,0),D(0,1),点B是x轴下方⊙A上的一点,连接BO,BD,则∠OBD的度数是()A.15°B.30°C.45°D.60°【分析】连接DC,利用三角函数得出∠DCO=30°,进而利用圆周角定理得出∠DBO=30°即可.【解答】解:连接DC,∵C(,0),D(0,1),∴∠DOC=90°,OD=1,OC=,∴∠DCO=30°,∴∠OBD=30°,故选:B.【点评】此题考查圆周角定理,关键是利用三角函数得出∠DCO=30°.10.(3分)如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x <3时,y>0,其中正确的是()A.①②④B.①②⑤C.②③④D.③④⑤【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c 与0的关系,然后根据对称轴判定b与0的关系以及2a+b=0;当x=﹣1时,y=a ﹣b+c;然后由图象确定当x取何值时,y>0.【解答】解:①∵对称轴在y轴右侧,∴a、b异号,∴ab<0,故正确;②∵对称轴x=﹣=1,∴2a+b=0;故正确;③∵2a+b=0,∴b=﹣2a,∵当x=﹣1时,y=a﹣b+c<0,∴a﹣(﹣2a)+c=3a+c<0,故错误;④根据图示知,当m=1时,有最大值;当m≠1时,有am2+bm+c≤a+b+c,所以a+b≥m(am+b)(m为实数).故正确.⑤如图,当﹣1<x<3时,y不只是大于0.故错误.故选:A.【点评】本题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a决定抛物线的开口方向,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b 同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点,抛物线与y轴交于(0,c).二、填空题:本大题共8小题,每小题4分,共32分11.(4分)计算:2sin30°+(﹣1)2018﹣()﹣1=0.【分析】根据特殊角的三角函数值、幂的乘方和负整数指数幂可以解答本题.【解答】解:2sin30°+(﹣1)2018﹣()﹣1=2×+1﹣2=1+1﹣2=0,故答案为:0.【点评】本题考查实数的运算、负整数指数幂、特殊角的三角函数值,解答本题的关键是明确它们各自的计算方法.12.(4分)使得代数式有意义的x的取值范围是x>3.【分析】二次根式中被开方数的取值范围:二次根式中的被开方数是非负数.【解答】解:∵代数式有意义,∴x﹣3>0,∴x>3,∴x的取值范围是x>3,故答案为:x>3.【点评】本题主要考查了二次根式有意义的条件,如果所给式子中含有分母,则除了保证被开方数为非负数外,还必须保证分母不为零.13.(4分)若正多边形的内角和是1080°,则该正多边形的边数是8.【分析】n边形的内角和是(n﹣2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:根据n边形的内角和公式,得(n﹣2)•180=1080,解得n=8.∴这个多边形的边数是8.故答案为:8.【点评】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.14.(4分)已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的侧面积为108.【分析】观察该几何体的三视图发现该几何体为正六棱柱,然后根据提供的尺寸求得其侧面积即可.【解答】解:观察该几何体的三视图发现该几何体为正六棱柱,其底面边长为3,高为6,所以其侧面积为3×6×6=108,故答案为:108.【点评】本题考查了由三视图判断几何体的知识,解题的关键是能够根据三视图判断几何体的形状及各部分的尺寸,难度不大.15.(4分)已知a,b,c是△ABC的三边长,a,b满足|a﹣7|+(b﹣1)2=0,c 为奇数,则c=7.【分析】根据非负数的性质列式求出a、b的值,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求出c的取值范围,再根据c是奇数求出c的值.【解答】解:∵a,b满足|a﹣7|+(b﹣1)2=0,∴a﹣7=0,b﹣1=0,解得a=7,b=1,∵7﹣1=6,7+1=8,∴6<c<8,又∵c为奇数,∴c=7,故答案是:7.【点评】本题考查配方法的应用、非负数的性质:偶次方,解题的关键是明确题意,明确配方法和三角形三边的关系.16.(4分)如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式组的解集为﹣2<x<2.【分析】先将点P(n,﹣4)代入y=﹣x﹣2,求出n的值,再找出直线y=2x+m 落在y=﹣x﹣2的下方且都在x轴下方的部分对应的自变量的取值范围即可.【解答】解:∵一次函数y=﹣x﹣2的图象过点P(n,﹣4),∴﹣4=﹣n﹣2,解得n=2,∴P(2,﹣4),又∵y=﹣x﹣2与x轴的交点是(﹣2,0),∴关于x的不等式2x+m<﹣x﹣2<0的解集为﹣2<x<2.故答案为﹣2<x<2.【点评】本题考查了一次函数与一元一次不等式,体现了数形结合的思想方法,准确确定出n的值,是解答本题的关键.17.(4分)如图,分别以等边三角形的每个顶点为圆心、以边长为半径在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为a,则勒洛三角形的周长为πa.【分析】首先根据等边三角形的性质得出∠A=∠B=∠C=60°,AB=BC=CA=a,再利用弧长公式求出的长=的长=的长==,那么勒洛三角形的周长为×3=πa.【解答】解:如图.∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,AB=BC=CA=a,∴的长=的长=的长==,∴勒洛三角形的周长为×3=πa.故答案为πa.【点评】本题考查了弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R),也考查了等边三角形的性质.18.(4分)如图,是一个运算程序的示意图,若开始输入x的值为625,则第2018次输出的结果为1.【分析】依次求出每次输出的结果,根据结果得出规律,即可得出答案.【解答】解:当x=625时,x=125,当x=125时,x=25,当x=25时,x=5,当x=5时,x=1,当x=1时,x+4=5,当x=5时,x=1,当x=1时,x+4=5,当x=5时,x=1,…(2018﹣3)÷2=1007.5,即输出的结果是1,故答案为:1【点评】本题考查了求代数式的值,能根据求出的结果得出规律是解此题的关键.三、解答题(一);本大题共5小题,共38分,解答应写出必要的文字说明,证明过程或演算步骤19.(6分)计算:÷(﹣1)【分析】先计算括号内分式的减法,再计算除法即可得.【解答】解:原式=÷(﹣)=÷=•=.【点评】本题主要考查分式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.20.(6分)如图,在△ABC中,∠ABC=90°.(1)作∠ACB的平分线交AB边于点O,再以点O为圆心,OB的长为半径作⊙O;(要求:不写做法,保留作图痕迹)(2)判断(1)中AC与⊙O的位置关系,直接写出结果.【分析】(1)首先利用角平分线的作法得出CO,进而以点O为圆心,OB为半径作⊙O即可;(2)利用角平分线的性质以及直线与圆的位置关系进而求出即可.【解答】解:(1)如图所示:;(2)相切;过O点作OD⊥AC于D点,∵CO平分∠ACB,∴OB=OD,即d=r,∴⊙O与直线AC相切,【点评】此题主要考查了复杂作图以及角平分线的性质与作法和直线与圆的位置关系,正确利用角平分线的性质求出是解题关键.21.(8分)《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.【分析】设合伙买鸡者有x人,鸡的价格为y文钱,根据“如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设合伙买鸡者有x人,鸡的价格为y文钱,根据题意得:,解得:.答:合伙买鸡者有9人,鸡的价格为70文钱.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.22.(8分)随着中国经济的快速发展以及科技水平的飞速提高,中国高铁正迅速崛起.高铁大大缩短了时空距离,改变了人们的出行方式.如图,A,B两地被大山阻隔,由A地到B地需要绕行C地,若打通穿山隧道,建成A,B两地的直达高铁可以缩短从A地到B地的路程.已知:∠CAB=30°,∠CBA=45°,AC=640公里,求隧道打通后与打通前相比,从A地到B地的路程将约缩短多少公里?(参考数据:≈1.7,≈1.4)【分析】过点C作CD⊥AB于点D,利用锐角三角函数的定义求出CD及AD 的长,进而可得出结论.【解答】解:过点C作CD⊥AB于点D,在Rt△ADC和Rt△BCD中,∵∠CAB=30°,∠CBA=45°,AC=640,∴CD=320,AD=320,∴BD=CD=320,不吃20,∴AC+BC=640+320≈1088,∴AB=AD+BD=320+320≈864,∴1088﹣864=224(公里),答:隧道打通后与打通前相比,从A地到B地的路程将约缩短224公里.【点评】本题考查的是解直角三角形的应用﹣方向角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,需要熟记锐角三角函数的定义.23.(10分)如图,在正方形方格中,阴影部分是涂黑3个小正方形所形成的图案.(1)如果将一粒米随机地抛在这个正方形方格上,那么米粒落在阴影部分的概率是多少?(2)现将方格内空白的小正方形(A,B,C,D,E,F)中任取2个涂黑,得到新图案,请用列表或画树状图的方法求新图案是轴对称图形的概率.【分析】(1)直接利用概率公式计算可得;(2)列表得出所有等可能结果,从中找到新图案是轴对称图形的结果数,利用概率公式计算可得.【解答】解:(1)∵正方形网格被等分成9等份,其中阴影部分面积占其中的3份,∴米粒落在阴影部分的概率是=;(2)列表如下:A B C D E FA(B,A)(C,A)(D,A)(E,A)(F,A)B(A,B)(C,B)(D,B)(E,B)(F,B)C(A,C)(B,C)(D,C)(E,C)(F,C)D(A,D)(B,D)(C,D)(E,D)(F,D)E(A,E)(B,E)(C,E)(D,E)(F,E)F(A,F)(B,F)(C,F)(D,F)(E,F)由表可知,共有30种等可能结果,其中是轴对称图形的有10种,故新图案是轴对称图形的概率为=.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.四、解答题(二):本大题共5小题,共50分。

2015-2016学年甘肃省定西市安定区公园路中学九年级(下)第一次月考数学试卷(解析版)

2015-2016学年甘肃省定西市安定区公园路中学九年级(下)第一次月考数学试卷(解析版)

2015-2016学年甘肃省定西市安定区公园路中学九年级(下)第一次月考数学试卷一、选择题:(每题3分,共30分)1.16的平方根是()A.4 B.﹣4 C.±4 D.±22.石墨烯目前是世界上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.000 000 000 34米,将这个数用科学记数法表示为()A.0.34×10﹣9B.3.4×10﹣9C.3.4×10﹣10 D.3.4×10﹣113.如图,△ABC是⊙O的内接三角形,若∠C=60°,则∠AOB的度数是()A.30°B.60°C.90°D.120°4.下列运算正确的是()A.a2+a3=a5B.(﹣a3)2=a6C.3a2•2a3=6a6D.(a﹣b)2=a2﹣b25.一次函数y=﹣x+1的图象不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE⊥AB,垂足为E,DE=1,则BC=()A.B.2 C.3 D.+27.安定区某企业2014年的产值是360万元,要使2016年的产值达到490万元,设该企业这两年的平均增长率为x,根据题意列方程,则下列方程正确的是()A.360x2=490 B.360(1﹣x)2=490 C.490(1+x)2=360 D.360(1+x)2=4908.如图,点E是平行四边形ABCD的边AD上的中点,AC、BE相交于点F,则S△AEF:S△CBF=()A.1:4 B.1:2 C.1:9 D.4:19.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列判断正确的是()A.abc>0 B.a﹣b+c<0 C.b2﹣4ac<0 D.2a+b=010.如图,P是矩形ABCD的边上的动点,当P从A点出发沿A→D→C→B运动到达B点时,△APB 的面积s与运动时间t的函数关系的图象大致是()A.B.C.D.二、填空题:(每题3分,共24分)11.分解因式:a3﹣4a2b+4ab2=.12.不等式组的所有整数解的积为.13.在函数y=+(x﹣1)0中,自变量x的取值范围是.14.定义新运算®:对于任意实数a、b都有:a®b=a2+ab,如果3®4=32+3×4=9+12=21,那么方程x®2=0的解为.15.在平面直角坐标系中,以原点为中心,把点A(1,4)顺时针旋转90°,得到的点A′的坐标为.16.关于x的一元二次方程(k﹣1)x2﹣4x﹣1=0总有实数根,则k的取值范围是.17.如图,C、D是直径为4的半圆O上的三等分点,P是直径AB上的任意一点,连接CP、DP,则图中阴影部分的面积是.18.如图是由火柴棒搭成的几何图案,则第19个图案中有根火柴棒.三、解答题:(共26分)19.计算:()﹣1﹣+(π﹣1026)0+tan60°.20.解分式方程:﹣=1.21.如图,已知△ABC中,∠C=90°.(1)用直尺和圆规在△ABC所在的平面内找一点P,使PA=PB=PC.(2)如果∠B=30°,AC=2,求△ABC的面积.22.如图,在Rt△ABC中,∠C=90°,∠A=30°,如果D是AC上的点,且当AD=4时,∠BDC=45°,求BC的长.23.有大小、形状、颜色、质地完全相同的四张卡片,正面分别写有3、4、5、6四个数字,将这四张卡片背面向上洗匀.(1)从中任意抽取一张,能被3整除的概率是.(2)求从中任意抽取两张,其和恰好是10的概率.四、解答题:(共40分)24.公园路中学组织了一次教师踢毽子比赛,甲、乙两教研组每队各10人的比赛成绩如表(10分)甲队成绩的中位数是分,乙队成绩的众数是分.(2)计算乙队的平均成绩和方差.(3)已知甲队的成绩的方差是1.4,则成绩较为整齐的是队.25.如图,E、F、G、H分别是凸四边形ABCD的四边的中点,顺次连接E、F、G、H这四点围成四边形EFGH.(1)求证:四边形EFGH是平行四边形.(2)要使四边形EFGH成为菱形,则AC与BD之间应满足的数量关系是.26.如图,直线y=2x与反比例函数y=(k≠0,x>0)的图象交于点A(1,a),点B是反比例函数图象上的任意一点(不与A点重合).(1)求a的值及反比例函数的解析式.(2)过点A作AC⊥y轴,AE⊥x轴,垂足分别为C、E,过点B作BD⊥y轴,BF⊥x轴,垂足分别为D、F,AE与BD相交于点G.设四边形ACDG和BGEF的面积分别为S1和S2,猜想S1和S2的数量关系,并说明理由.27.如图,已知⊙O的直径为AB,AC⊥AB于点A,BC与⊙O相交于点D,在AC上取一点E,使得ED=EA.(1)求证:ED是⊙O的切线.(2)当OA=3,AE=4时,求BC的长度.28.如图,在平面直角坐标系中,抛物线经过点A(﹣1,0),B(4,0),C(0,﹣2).(1)求此抛物线的解析式和对称轴.(2)在此抛物线的对称轴上是否存在点P,使△PAC的周长最小?若存在,请求出点P的坐标;若不存在,说明理由.(3)在抛物线上是否存在一点D,使△ABD是直角三角形?若存在,请求出点D的坐标;若不存在,请说明理由.2015-2016学年甘肃省定西市安定区公园路中学九年级(下)第一次月考数学试卷参考答案与试题解析一、选择题:(每题3分,共30分)1.16的平方根是()A.4 B.﹣4 C.±4 D.±2【分析】根据平方根定义求出即可.【解答】解:16的平方根是±4,故选C.2.石墨烯目前是世界上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.000 000 000 34米,将这个数用科学记数法表示为()A.0.34×10﹣9B.3.4×10﹣9C.3.4×10﹣10 D.3.4×10﹣11【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 000 000 34=3.4×10﹣10;故选C.3.如图,△ABC是⊙O的内接三角形,若∠C=60°,则∠AOB的度数是()A.30°B.60°C.90°D.120°【分析】利用圆周角与圆心角的关系求解即可.【解答】解:∵∠AOB和∠C是同弧所对的圆心角和圆周角,∴∠AOB=2∠C=120°.故选D.4.下列运算正确的是()A.a2+a3=a5B.(﹣a3)2=a6C.3a2•2a3=6a6D.(a﹣b)2=a2﹣b2【分析】直接利用合并同类项法则以及积的乘方运算法则和单项式乘以单项式运算法则分别计算得出答案.【解答】解:A、a2+a3,无法计算,故此选项错误;B、(﹣a3)2=a6,正确;C、3a2•2a3=6a5,故此选项错误;D、(a﹣b)2=a2+b2﹣2ab,故此选项错误.故选:B.5.一次函数y=﹣x+1的图象不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【分析】先根据一次函数y=﹣x+1中k=﹣1,b=1判断出函数图象经过的象限,进而可得出结论.【解答】解:∵一次函数y=﹣x+1中k=﹣1<0,b=1>0,∴此函数的图象经过一、二、四象限,不经过第三象限.故选C6.如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE⊥AB,垂足为E,DE=1,则BC=()A.B.2 C.3 D.+2【分析】根据角平分线的性质即可求得CD的长,然后在直角△BDE中,根据30°的锐角所对的直角边等于斜边的一半,即可求得BD长,则BC即可求得.【解答】解:∵AD是△ABC的角平分线,DE⊥AB,∠C=90°,∴CD=DE=1,又∵直角△BDE中,∠B=30°,∴BD=2DE=2,∴BC=CD+BD=1+2=3.故选C.7.安定区某企业2014年的产值是360万元,要使2016年的产值达到490万元,设该企业这两年的平均增长率为x,根据题意列方程,则下列方程正确的是()A.360x2=490 B.360(1﹣x)2=490 C.490(1+x)2=360 D.360(1+x)2=490【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果年平均增长率为x,根据2014年产值360万元,预计2016年产值490万元即可得出方程.【解答】解:设年平均增长率为x,则2015的产值为:360(1+x)2016的产值为:360(1+x)2.那么可得方程:360(1+x)2=490.故选D.8.如图,点E是平行四边形ABCD的边AD上的中点,AC、BE相交于点F,则S△AEF:S△CBF=()A.1:4 B.1:2 C.1:9 D.4:1【分析】根据平行四边形的性质得到AD=BC,AD∥BC,由点E是AD的中点,得到AE=AD=BC,通过△AEF∽△BCF,根据相似三角形的性质得到=,于是得到结论.【解答】解:在▱ABCD中,∵AD=BC,AD∥BC,∵点E是AD的中点,∴AE=AD=BC,∵AD∥BC,∴△AFE∽△BCF,∴=,∴S△AFE:S△CFB=()2=,故选A.9.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列判断正确的是()A.abc>0 B.a﹣b+c<0 C.b2﹣4ac<0 D.2a+b=0【分析】结合抛物线的图象可知a>0,c<0;由抛物线交x轴的交点为(﹣3,0)、(1,0)可得出C答案不正确,且抛物线对称轴为x=﹣1,即a=b,即D答案不正确;结合a>0,c<0可得出abc <0,即A答案不正确;当x=﹣1时,函数的图象在x轴的下方可得出a﹣b+c<0,从而得出结论.【解答】解:∵抛物线开口向上,∴a>0,∵抛物线与y轴的交点在y轴的负半轴,∴c<0,∵抛物线的对称轴为x=﹣1,∴﹣=﹣1,即a=b>0.A、∵a=b>0,c<0,∴abc<0,即A答案不正确;B、当x=﹣1时,抛物线上的点在x下方,即y=a﹣b+c<0,即B答案正确;C、∵抛物线与x轴有两个不同的交点,∴方程ax2+bx+c=0有两个不等实根,∴△=b2﹣4ac>0,即C答案不正确;D、∵﹣=﹣1,∴a=b,即D答案不正确.故选B.10.如图,P是矩形ABCD的边上的动点,当P从A点出发沿A→D→C→B运动到达B点时,△APB 的面积s与运动时间t的函数关系的图象大致是()A.B.C.D.【分析】分三种情形讨论△APB的面积变化情况,即可得出结论.【解答】解:①当点P在AD上运动时,△ABP的面积是逐渐增加的,②当点P在CD上运动时,面积不变,③当点P在BC上运动时面积是逐渐减少的,所以△APB的面积s与运动时间t的函数关系的图象是D.故选D.二、填空题:(每题3分,共24分)11.分解因式:a3﹣4a2b+4ab2=a(a﹣2b)2.【分析】首先提公因式a,然后利用完全平方公式即可分解.【解答】解:原式=a(a2﹣4ab+4b2)=a(a﹣2b)2.故答案是:a(a﹣2b)2.12.不等式组的所有整数解的积为6.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,找出整数解,相乘可得.【解答】解:解不等式2x﹣1>0,得:x>,解不等式x﹣1≤0,得:x≤3,所以不等式组的解集为:<x≤3,则该不等式组所有整数解的乘积为:1×2×3=6,故答案为:6.13.在函数y=+(x﹣1)0中,自变量x的取值范围是x>﹣2且x≠1.【分析】根据二次根式被开方数是非负数,0的0次幂没有意义即可求解.【解答】解:根据题意得:x+2≥0且x﹣1≠0,解得:x>﹣2且x≠1.故答案是:x>﹣2且x≠1.14.定义新运算®:对于任意实数a、b都有:a®b=a2+ab,如果3®4=32+3×4=9+12=21,那么方程x®2=0的解为x1=0,x2=﹣2.【分析】根据新定义得到x2+2x=0,然后利用因式分解法解方程即可.【解答】解:方程x®2=0化为x2+2x=0,则x(x+2)=0,所以x1=0,x2=﹣2.故答案为x1=0,x2=﹣2.15.在平面直角坐标系中,以原点为中心,把点A(1,4)顺时针旋转90°,得到的点A′的坐标为(4,﹣1).【分析】作AB⊥x轴于B,则把Rt△AOB绕点A顺时针旋转90°得到Rt△A′OB′,然后写出A′点的坐标.【解答】解:如图,点A′的坐标为(4,﹣1).故答案为(4,﹣1).16.关于x的一元二次方程(k﹣1)x2﹣4x﹣1=0总有实数根,则k的取值范围是k≥﹣3且k≠1.【分析】由方程为一元二次方程可得知k﹣1≠0;由方程总有实数根可得出根的判别式△≥0,解关于k的一元一次不等式即可得出结论.【解答】解:∵(k﹣1)x2﹣4x﹣1=0是一元二次方程,∴k﹣1≠0,即k≠1;若要方程(k﹣1)x2﹣4x﹣1=0总有实数根,只要△≥0即可,△=(﹣4)2﹣4(k﹣1)(﹣1)=4k+12≥0,解得:k≥﹣3.故答案为:k≥﹣3且k≠1.17.如图,C、D是直径为4的半圆O上的三等分点,P是直径AB上的任意一点,连接CP、DP,则图中阴影部分的面积是π.【分析】连接OC、OD、CD,利用同底等高的三角形面积相等可知阴影部分的面积等于扇形OCD 的面积,然后计算扇形面积就可.【解答】解:连接OC、OD、CD.∵△COD和△CDA等底等高,∴S△COD=S△ACD.∵点C,D为半圆的三等分点,∴∠COD=180°÷3=60°,∴阴影部分的面积=S扇形COD==π.故答案为:π.18.如图是由火柴棒搭成的几何图案,则第19个图案中有760根火柴棒.【分析】本题可分别写出n=1,2,3,…,所对应的火柴棒的根数.然后进行归纳,即可得出最终答案.【解答】解:依题意得:第1个图,根数4=2×1×(1+1);第2个图,根数12=2×2×(2+1);第3个图,根数24=2×3×(3+1);…第19个图,根数2×19×(19+1)=760;故答案为:760.三、解答题:(共26分)19.计算:()﹣1﹣+(π﹣1026)0+tan60°.【分析】原式第一项利用负整数指数幂法则计算,第二项利用算术平方根定义计算,第三项利用零指数幂法则计算,最后一项利用特殊角的三角函数值计算即可得到结果.【解答】解:原式=2﹣3+1+1=1.20.解分式方程:﹣=1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3x﹣3﹣x2﹣x=x2﹣1,解得:x=1,经检验x=1是增根,分式方程无解.21.如图,已知△ABC中,∠C=90°.(1)用直尺和圆规在△ABC所在的平面内找一点P,使PA=PB=PC.(2)如果∠B=30°,AC=2,求△ABC的面积.【分析】(1)作BC的垂直平分线交斜边AB于点P,则点P满足条件;(2)利用含30度的直角三角形三边的关系求出BC,然后根据三角形面积公式求解.【解答】解:(1)如图,点P为所作;(2)∵∠B=30°,∴BC=AC=2,∴△ABC的面积=×2×2=2.22.如图,在Rt△ABC中,∠C=90°,∠A=30°,如果D是AC上的点,且当AD=4时,∠BDC=45°,求BC的长.【分析】设BC=x,由于昨天可知△BDC是等腰直角三角形,所以CD=BC=x,由含30度角的直角三角形的性质可知AB=2x,再利用勾股定理即可建立关于x的方程,解方程求出x的值即可.【解答】解:设BC=x,∵在Rt△ABC中,∠C=90°,∠BDC=45°,∴∠DBC=45°,∴CD=BC=x,∴AC=AD+CD=4+x,∵∠A=30°,∴AB=2x,∴(2x)2=x2+(x+4)2,解得:x=2+2或﹣2+2(舍),即BC的长是2+2.23.有大小、形状、颜色、质地完全相同的四张卡片,正面分别写有3、4、5、6四个数字,将这四张卡片背面向上洗匀.(1)从中任意抽取一张,能被3整除的概率是.(2)求从中任意抽取两张,其和恰好是10的概率.【分析】(1)由题意可知3,6能被3整除,所以其概率可求出;(2)列举出所有情况,看两张卡片和是10的倍数的情况占总情况的多少即可.【解答】解:(1)∵正面分别写有3、4、5、6四个数字,∴从中任意抽取一张,能被3整除的概率=,故答案为:;由列表可知所有可能情况有12种,其中和恰好是10的倍数由1种,所以其概率=.四、解答题:(共40分)24.公园路中学组织了一次教师踢毽子比赛,甲、乙两教研组每队各10人的比赛成绩如表(10分)甲队成绩的中位数是9.5分,乙队成绩的众数是10(2)计算乙队的平均成绩和方差.(3)已知甲队的成绩的方差是1.4,则成绩较为整齐的是乙队.【分析】(1)根据中位数的定义求出最中间两个数的平均数;根据众数的定义找出出现次数最多的数即可;(2)先求出乙队的平均成绩,再根据方差公式进行计算;(3)先比较出甲队和乙队的方差,再根据方差的意义即可得出答案.【解答】解:(1)把甲队的成绩从小到大排列为:7,7,8,9,9,10,10,10,10,10,最中间两个数的平均数是(9+10)÷2=9.5(分),则中位数是9.5分;乙队成绩中10出现了4次,出现的次数最多,则乙队成绩的众数是10分;(2)乙队的平均成绩是:×(10×4+8×2+7+9×3)=9,则方差是:×[4×(10﹣9)2+2×(8﹣9)2+(7﹣9)2+3×(9﹣9)2]=1;(3)∵甲队成绩的方差是1.4,乙队成绩的方差是1,∴成绩较为整齐的是乙队.故答案为:(1)9.5 10 (3)乙25.如图,E、F、G、H分别是凸四边形ABCD的四边的中点,顺次连接E、F、G、H这四点围成四边形EFGH.(1)求证:四边形EFGH是平行四边形.(2)要使四边形EFGH成为菱形,则AC与BD之间应满足的数量关系是AC=BD.【分析】(1)由三角形中位线定理得出HE∥AC,HE=AC,GF∥AC,GF=AC,因此HE=GF且HE∥GF;即可得出结论;(2)由菱形的性质得出EF=HE,由(1)得:HE=AC,同理:EF=BD,因此AC=BC.【解答】(1)证明:如图1所示,连接AC,∵E、F、G、H分别是四边形ABCD边的中点,∴HE∥AC,HE=AC,GF∥AC,GF=AC,∴HE=GF且HE∥GF;∴四边形EFGH是平行四边形.(2)解:连接BD,如图2所示:若四边形EFGH成为菱形,则EF=HE,由(1)得:HE=AC,同理:EF=BD,∴AC=BC;故答案为:AC=BD.26.如图,直线y=2x与反比例函数y=(k≠0,x>0)的图象交于点A(1,a),点B是反比例函数图象上的任意一点(不与A点重合).(1)求a的值及反比例函数的解析式.(2)过点A作AC⊥y轴,AE⊥x轴,垂足分别为C、E,过点B作BD⊥y轴,BF⊥x轴,垂足分别为D、F,AE与BD相交于点G.设四边形ACDG和BGEF的面积分别为S1和S2,猜想S1和S2的数量关系,并说明理由.【分析】(1)把点A坐标代入两个函数解析式即可解决问题.(2)由四边形ACOE与四边形DBFO面积相等即可证明.【解答】解(1)∵直线y=2x与反比例函数y=(k≠0,x>0)的图象交于点A(1,a),∴a=2×1=2,2=,∴a=2,k=2,∴反比例函数为y=.(2)结论:s1=s2.设A(m,n),B(a,b),∵A、B在反比例函数图象上,∴mn=2,ab=2,∵S四边形ACOE=mn=2,S四边形DBFO=ab=2,∴S四边形ACOE=S四边形DBFO,∴S四边形ACDG=S四边形BFEG,即s1=s2.27.如图,已知⊙O的直径为AB,AC⊥AB于点A,BC与⊙O相交于点D,在AC上取一点E,使得ED=EA.(1)求证:ED是⊙O的切线.(2)当OA=3,AE=4时,求BC的长度.【分析】(1)如图,连接OD.通过证明△AOE≌△DOE得到∠OAE=∠ODE=90°,易证得结论;(2)利用圆周角定理和垂径定理推知OE∥BC,所以根据平行线分线段成比例求得BC的长度即可.【解答】(1)证明:如图,连接OD.∵AC⊥AB,∴∠BAC=90°,即∠OAE=90°.在△AOE与△DOE中,,∴△AOE≌△DOE(SSS),∴∠OAE=∠ODE=90°,即OD⊥ED.又∵OD是⊙O的半径,∴ED是⊙O的切线;(2)解:如图,在△OAE中,∠OAE=90°,OA=3,AE=4,∴由勾股定理易求OE=5.∵AB是直径,∴∠ADB=90°,即AD⊥BC.又∵由(1)知,△AOE≌△DOE,∴∠AEO=∠DEO,又∵AE=DE,∴OE⊥AD,∴OE∥BC,∴==.BC=2OE=10,即BC的长度是10.28.如图,在平面直角坐标系中,抛物线经过点A(﹣1,0),B(4,0),C(0,﹣2).(1)求此抛物线的解析式和对称轴.(2)在此抛物线的对称轴上是否存在点P,使△PAC的周长最小?若存在,请求出点P的坐标;若不存在,说明理由.(3)在抛物线上是否存在一点D,使△ABD是直角三角形?若存在,请求出点D的坐标;若不存在,请说明理由.【分析】(1)由抛物线过点C(0,﹣2),故设抛物线的解析式为y=ax2+bx﹣2,由点在抛物线的可列出关于a、b的二元一次方程组,解方程组即可得出抛物线的解析式,将解析式进行配方即可得出抛物线的对称轴;(2)假设存在,由抛物线的对称性可知PA=PB,而当B、P、C三点共线时PB+PC最短,故找出直线BC的解析式,令x=,求出y值,即可得出结论;(3)假设存在,设出点D的坐标,结合抛物线的图象可知,△ABD是直角三角形边AB为斜边,由两点间的距离公式表示出各边的长度,结合勾股定理即可得出关于m的一元四次方程,解方程即可得出结论.【解答】解:(1)∵该抛物线过点C(0,﹣2),∴可设该抛物线的解析式为y=ax2+bx﹣2,将A(﹣1,0),B(4,0)代入,得,解得.∴此抛物线的解析式为y=x2﹣x﹣2.∵抛物线解析式为y=x2﹣x﹣2=﹣,∴抛物线的对称轴为x=.(2)假设存在符合条件的点P,连接PB,如图所示.由抛物线的对称性可知:PA=PB,△PAC的周长C△PAC=PA+PC+AC=PB+PC+AC,∴当B、P、C三点共线时,PB+PC最小(三角形中两边之和大于第三边).设直线BC的解析式为y=kx+c,将点B(4,0),点C(0,﹣2)代入,得,解得:,即直线BC的解析式为y=x﹣2.令x=,则有y=﹣2=﹣,即点P的坐标为(,﹣).故在此抛物线的对称轴上存在点P,使△PAC的周长最小,点P的坐标为(,﹣).(3)假设存在,设点D的坐标为(m,﹣m﹣2),∵点A(﹣1,0),点B(4,0),∴由两点间的距离公式可知:AB=4﹣(﹣1)=5,AD=,BD=.∵△ABD是直角三角形,且结合二次函数图象可知AB只能为斜边,∴AD2+BD2=AB2,即=25,整理得:m(m+1)(m﹣3)(m﹣4)=0,解得:m1=0,m2=﹣1(舍去),m3=3,m4=4(舍去),此时点D的坐标为(0,﹣2)或(3,﹣2).故在抛物线上存在一点D,使△ABD是直角三角形,点D的坐标为(0,﹣2)或(3,﹣2).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年甘肃省定西市中考数学试卷一、选择题(本题共10小题,每小题3分,共30分)1.(3分)(2015•定西)64的立方根是()A.4B.±4 C.8D.±82.(3分)(2015•定西)中国航空母舰“辽宁号”的满载排水量为67500吨.将数67500用科学记数法表示为()A.0.675×105B.6.75×104C.67.5×103D.675×1023.(3分)(2015•定西)若∠A=34°,则∠A的补角为()A.56°B.146°C.156°D.166°4.(3分)(2015•定西)下列运算正确的是()A.x2+x2=x4B.(a﹣b)2=a2﹣b2C.(﹣a2)3=﹣a6D.3a2•2a3=6a65.(3分)(2015•定西)如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()A.B.C.D.6.(3分)(2015•定西)下列命题中,假命题是()A.平行四边形是中心对称图形B.三角形三边的垂直平分线相交于一点,这点到三角形三个顶点的距离相等C.对于简单的随机样本,可以用样本的方差去估计总体的方差D.若x2=y2,则x=y7.(3分)(2015•定西)今年来某县加大了对教育经费的投入,2013年投入2500万元,2015年投入3500万元.假设该县投入教育经费的年平均增长率为x,根据题意列方程,则下列方程正确的是()A.2500x2=3500 B.2500(1+x)2=3500C.2500(1+x%)2=3500 D.2500(1+x)+2500(1+x)2=35008.(3分)(2015•定西)△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80°B.160°C.100°D.80°或100°9.(3分)(2015•定西)如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△DOE:S△AOC的值为()A.B.C.D.10.(3分)(2015•定西)如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P与点B、C都不重合),现将△PCD沿直线PD折叠,使点C落到点F处;过点P作∠BPF的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是()A.B.C.D.二、填空题(本题共8小题,每小题3分,共24分)11.(3分)(2015•定西)分解因式:x3y﹣2x2y+xy=.12.(3分)(2015•定西)分式方程的解是.13.(3分)(2015•定西)在函数y=中,自变量x的取值范围是.14.(3分)(2015•定西)定义新运算:对于任意实数a,b都有:a⊕b=a(a﹣b)+1,其中等式右边是通常的加法、减法及乘法运算.如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣5,那么不等式3⊕x<13的解集为.15.(3分)(2015•定西)已知α、β均为锐角,且满足|sinα﹣|+=0,则α+β=.16.(3分)(2015•定西)关于x的方程kx2﹣4x﹣=0有实数根,则k的取值范围是.17.(3分)(2015•定西)如图,半圆O的直径AE=4,点B,C,D均在半圆上,若AB=BC,CD=DE,连接OB,OD,则图中阴影部分的面积为.18.(3分)(2015•定西)古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,其中1是第一个三角形数,3是第2个三角形数,6是第3个三角形数,…依此类推,那么第9个三角形数是,2016是第个三角形数.三、解答题(本题共5小题,共26分)19.(4分)(2015•定西)计算:()0++(﹣1)2015﹣tan60°.20.(4分)(2015•定西)先化简,再求值:÷(1﹣),其中x=0.21.(6分)(2015•定西)如图,已知在△ABC中,∠A=90°(1)请用圆规和直尺作出⊙P,使圆心P在AC边上,且与AB,BC两边都相切(保留作图痕迹,不写作法和证明).(2)若∠B=60°,AB=3,求⊙P的面积.22.(6分)(2015•定西)如图①所示,将直尺摆放在三角板上,使直尺与三角板的边分别交于点D,E,F,G,已知∠CGD=42°(1)求∠CEF的度数;(2)将直尺向下平移,使直尺的边缘通过三角板的顶点B,交AC边于点H,如图②所示,点H,B在直尺上的度数分别为4,13.4,求BC的长(结果保留两位小数).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)23.(6分)(2015•定西)有三张卡片(形状、大小、颜色、质地都相等),正面分别下上整式x2+1,﹣x2﹣2,3.将这三张卡片背面向上洗匀,从中任意抽取一张卡片,记卡片上的整式为A,再从剩下的卡片中任意抽取一张,记卡片上的整式为B,于是得到代数式.(1)请用画树状图成列表的方法,写出代数式所有可能的结果;(2)求代数式恰好是分式的概率.四、解答题(本题共5小题,共40分)24.(7分)(2015•定西)某班同学响应“阳光体育运动”号召,利用课外活动积极参加体育锻炼,每位同学从长跑、铅球、立定跳远、篮球定时定点投篮中任选一项进行了训练,训练前后都进行了测试,现将项目选择情况及训练后篮球定时定点投篮进球数进行整理,作出如下统计图表.训练后篮球定点投篮测试进球统计表8 7 6 5 4 3进球数(个)人数 2 1 4 7 8 2请你根据图表中的信息回答下列问题:(1)训练后篮球定时定点投篮人均进球数为个;(2)选择长跑训练的人数占全班人数的百分比是,该班共有同学人;(3)根据测试资料,参加篮球定时定点投篮的学生训练后比训练前的人均进球增加了25%,求参加训练之前的人均进球数.25.(7分)(2015•定西)如图,平行四边形ABCD中,AB=3cm,BC=5cm,∠B=60°,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连结CE,DF.(1)求证:四边形CEDF是平行四边形;(2)①当AE=cm时,四边形CEDF是矩形;②当AE=cm时,四边形CEDF是菱形.(直接写出答案,不需要说明理由)26.(8分)(2015•定西)如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在反比例函数y=(k>x,x>0)的图象上,点D的坐标为(4,3).(1)求k的值;(2)若将菱形ABCD沿x轴正方向平移,当菱形的顶点D落在函数y=(k>0,x>0)的图象上时,求菱形ABCD沿x轴正方向平移的距离.27.(8分)(2015•定西)已知△ABC内接于⊙O,过点A作直线EF.(1)如图①所示,若AB为⊙O的直径,要使EF成为⊙O的切线,还需要添加的一个条件是(至少说出两种):或者.(2)如图②所示,如果AB是不过圆心O的弦,且∠CAE=∠B,那么EF是⊙O的切线吗?试证明你的判断.28.(10分)(2015•定西)如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴相交于点M.(1)求抛物线的解析式和对称轴;(2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;(3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由2015年甘肃省定西市中考数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分)1.(3分)(2015•定西)64的立方根是()A.4B.±4 C.8D.±8考点:立方根.分析:如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.解答:解:∵4的立方等于64,∴64的立方根等于4.故选A.点评:此题主要考查了求一个数的立方根,解题时应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.2.(3分)(2015•定西)中国航空母舰“辽宁号”的满载排水量为67500吨.将数67500用科学记数法表示为()A.0.675×105B.6.75×104C.67.5×103D.675×102考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将67500用科学记数法表示为:6.75×104.故选:B.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2015•定西)若∠A=34°,则∠A的补角为()A.56°B.146°C.156°D.166°考点:余角和补角.分析:根据互补的两角之和为180°,可得出答案.解答:解:∵∠A=34°,∴∠A的补角=180°﹣34°=146°.故选B.点评:本题考查了余角和补角的知识,解答本题的关键是掌握互补的两角之和为180°.4.(3分)(2015•定西)下列运算正确的是()A.x2+x2=x4B.(a﹣b)2=a2﹣b2C.(﹣a2)3=﹣a6D.3a2•2a3=6a6考点:完全平方公式;合并同类项;幂的乘方与积的乘方;单项式乘单项式.分析:根据同类项、完全平方公式、幂的乘方和单项式的乘法计算即可.解答:解:A、x2+x2=2x2,错误;B、(a﹣b)2=a2﹣2ab+b2,错误;C、(﹣a2)3=﹣a6,正确;D、3a2•2a3=6a5,错误;故选C.点评:此题考查同类项、完全平方公式、幂的乘方和单项式的乘法,关键是根据法则进行计算.5.(3分)(2015•定西)如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()A.B.C.D.考点:简单组合体的三视图.分析:找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.解答:解:从上面看易得上面第一层中间有1个正方形,第二层有3个正方形.下面一层左边有1个正方形,故选A.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.6.(3分)(2015•定西)下列命题中,假命题是()A.平行四边形是中心对称图形B.三角形三边的垂直平分线相交于一点,这点到三角形三个顶点的距离相等C.对于简单的随机样本,可以用样本的方差去估计总体的方差D.若x2=y2,则x=y考点:命题与定理;有理数的乘方;线段垂直平分线的性质;中心对称图形;用样本估计总体.分析:根据平行四边形的性质、三角形外心的性质以及用样本的数字特征估计总体的数字特征和有理数乘方的运算逐项分析即可.解答:解:A、平行四边形是中心对称图形,它的中心对称点为两条对角线的交点,故该命题是真命题;B、三角形三边的垂直平分线相交于一点,为三角形的外心,这点到三角形三个顶点的距离相等,故该命题是真命题;C、用样本的数字特征估计总体的数字特征:主要数据有众数、中位数、平均数、标准差与方差,故该命题是真命题;D、若x2=y2,则x=±y,不是x=y,故该命题是假命题;故选D.点评:本题考查了命题真假的判断,属于基础题.根据定义:符合事实真理的判断是真命题,不符合事实真理的判断是假命题,不难选出正确项.7.(3分)(2015•定西)今年来某县加大了对教育经费的投入,2013年投入2500万元,2015年投入3500万元.假设该县投入教育经费的年平均增长率为x,根据题意列方程,则下列方程正确的是()A.2500x2=3500 B.2500(1+x)2=3500C.2500(1+x%)2=3500 D.2500(1+x)+2500(1+x)2=3500考点:由实际问题抽象出一元二次方程.专题:增长率问题.分析:根据2013年教育经费额×(1+平均年增长率)2=2015年教育经费支出额,列出方程即可.解答:解:设增长率为x,根据题意得2500×(1+x)2=3500,故选B.点评:本题考查一元二次方程的应用﹣﹣求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.(当增长时中间的“±”号选“+”,当下降时中间的“±”号选“﹣”).8.(3分)(2015•定西)△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80°B.160°C.100°D.80°或100°考点:圆周角定理.分析:首先根据题意画出图形,由圆周角定理即可求得答案∠ABC的度数,又由圆的内接四边形的性质,即可求得∠ABC的度数.解答:解:如图,∵∠AOC=160°,∴∠ABC=∠AOC=×160°=80°,∵∠ABC+∠AB′C=180°,∴∠AB′C=180°﹣∠ABC=180°﹣80°=100°.∴∠ABC的度数是:80°或100°.故选D.点评:此题考查了圆周角定理与圆的内接四边形的性质.此题难度不大,注意数形结合思想与分类讨论思想的应用,注意别漏解.9.(3分)(2015•定西)如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△DOE:S△AOC的值为()A.B.C.D.考点:相似三角形的判定与性质.分析:证明BE:EC=1:3,进而证明BE:BC=1:4;证明△DOE∽△AOC ,得到=,借助相似三角形的性质即可解决问题.解答:解:∵S△BDE:S△CDE=1:3,∴BE:EC=1:3;∴BE:BC=1:4;∵DE∥AC,∴△DOE∽△AOC,∴=,∴S△DOE:S△AOC ==,故选D.点评:本题主要考查了相似三角形的判定及其性质的应用问题;解题的关键是灵活运用形似三角形的判定及其性质来分析、判断、推理或解答.10.(3分)(2015•定西)如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P与点B、C都不重合),现将△PCD沿直线PD折叠,使点C落到点F处;过点P作∠BPF的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是()A.B.C.D.考点:动点问题的函数图象.分析:证明△BPE∽△CDP,根据相似三角形的对应边的比相等求得y与x的函数关系式,根据函数的性质即可作出判断.解答:解:∵∠CPD=∠FPD,∠BPE=∠FPE,又∵∠CPD+∠FPD+∠BPE+∠FPE=180°,∴∠CPD+∠BPE=90°,又∵直角△BPE中,∠BPE+∠BEP=90°,∴∠BEP=∠CPD,又∵∠B=∠C,∴△BPE∽△CDP,∴,即,则y=﹣x2+,y是x的二次函数,且开口向下.故选C.点评:本题考查了动点问题的函数图象,求函数的解析式,就是把自变量当作已知数值,然后求函数变量y的值,即求线段长的问题,正确证明△BPE∽△CDP是关键.二、填空题(本题共8小题,每小题3分,共24分)11.(3分)(2015•定西)分解因式:x3y﹣2x2y+xy=xy(x﹣1)2.考点:提公因式法与公式法的综合运用.专题:计算题.分析:原式提取公因式,再利用完全平方公式分解即可.解答:解:原式=xy(x2﹣2x+1)=xy(x﹣1)2.故答案为:xy(x﹣1)2点评:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.(3分)(2015•定西)分式方程的解是x=2.考点:解分式方程.分析:观察可得最简公分母是x(x+3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程的两边同乘x(x+3),得2(x+3)=5x,解得x=2.检验:把x=2代入x(x+3)=10≠0,即x=2是原分式方程的解.故原方程的解为:x=2.故答案为:x=2.点评:此题考查了分式方程的求解方法.注意:①解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,②解分式方程一定注意要验根.13.(3分)(2015•定西)在函数y=中,自变量x的取值范围是x≥﹣1且x≠0.考点:函数自变量的取值范围.分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.解答:解:根据题意得:x+1≥0且x≠0,解得:x≥﹣1且x≠0.故答案为:x≥﹣1且x≠0.点评:考查了函数自变量的取值范围,函数自变量的取值范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.14.(3分)(2015•定西)定义新运算:对于任意实数a,b都有:a⊕b=a(a﹣b)+1,其中等式右边是通常的加法、减法及乘法运算.如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣5,那么不等式3⊕x<13的解集为x>﹣1.考点:一元一次不等式的应用.专题:新定义.分析:根据运算的定义列出不等式,然后解不等式求得不等式的解集即可.解答:解:3⊕x<13,3(3﹣x)+1<13,解得:x>﹣1.故答案为:x>﹣1.点评:此题考查一元一次不等式解集的求法,理解运算的方法,改为不等式是解决问题的关键.15.(3分)(2015•定西)已知α、β均为锐角,且满足|sinα﹣|+=0,则α+β=75°.考点:特殊角的三角函数值;非负数的性质:绝对值;非负数的性质:算术平方根.分析:根据非负数的性质求出sinα、tanβ的值,然后根据特殊角的三角函数值求出两个角的度数.解答:解:∵|sinα﹣|+=0,∴sinα=,tanβ=1,∴α=30°,β=45°,则α+β=30°+45°=75°.故答案为:75°.点评:本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.16.(3分)(2015•定西)关于x的方程kx2﹣4x﹣=0有实数根,则k的取值范围是k≥﹣6.考点:根的判别式;一元一次方程的解.分析:由于k的取值不确定,故应分k=0(此时方程化简为一元一次方程)和k≠0(此时方程为二元一次方程)两种情况进行解答.解答:解:当k=0时,﹣4x﹣=0,解得x=﹣,当k≠0时,方程kx2﹣4x﹣=0是一元二次方程,根据题意可得:△=16﹣4k×(﹣)≥0,解得k≥﹣6,k≠0,综上k≥﹣6,故答案为k≥﹣6.点评:本题考查的是根的判别式,注意掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.同时解答此题时要注意分k=0和k≠0两种情况进行讨论.17.(3分)(2015•定西)如图,半圆O的直径AE=4,点B,C,D均在半圆上,若AB=BC,CD=DE,连接OB,OD,则图中阴影部分的面积为π.考点:扇形面积的计算.分析:根据题意可知,图中阴影部分的面积等于扇形BOD的面积,根据扇形面积公式即可求解.解答:解:∵AB=BC,CD=DE,∴=,=,∴+=+,∴∠BOD=90°,∴S阴影=S扇形OBD==π.故答案是:π.点评:本题考查了扇形的面积计算及圆心角、弧之间的关系.解答本题的关键是得出阴影部分的面积等于扇形BOD的面积.18.(3分)(2015•定西)古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,其中1是第一个三角形数,3是第2个三角形数,6是第3个三角形数,…依此类推,那么第9个三角形数是45,2016是第63个三角形数.考点:规律型:数字的变化类.分析:根据所给的数据发现:第n个三角形数是1+2+3+…+n,由此代入分别求得答案即可.解答:解:第9个三角形数是1+2+3+4+5+6+7+8+9=45,1+2+3+4+…+n=2016,n(n+1)=4032,解得:n=63.故答案为:45,63.点评:此题考查数字的变化规律,找出数字之间的运算规律,利用规律解决问题.三、解答题(本题共5小题,共26分)19.(4分)(2015•定西)计算:()0++(﹣1)2015﹣tan60°.考点:实数的运算;零指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项利用零指数幂法则计算,第二项利用算术平方根定义计算,第三项利用乘方的意义化简,最后一项利用特殊角的三角函数值计算即可得到结果.解答:解:原式=1+2﹣1﹣×=2﹣3=﹣1.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(4分)(2015•定西)先化简,再求值:÷(1﹣),其中x=0.考点:分式的化简求值.分析:先根据分式混合运算的法则把原式进行化简,再把x=0代入进行计算即可.解答:解:原式=÷(﹣)=•=,当x=0时,原式=.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.21.(6分)(2015•定西)如图,已知在△ABC中,∠A=90°(1)请用圆规和直尺作出⊙P,使圆心P在AC边上,且与AB,BC两边都相切(保留作图痕迹,不写作法和证明).(2)若∠B=60°,AB=3,求⊙P的面积.考点:作图—复杂作图;切线的性质.分析:(1)作∠ABC的平分线交AC于P,再以P为圆心PA为半径即可作出⊙P;(2)根据角平分线的性质得到∠ABP=30°,根据三角函数可得AP=,再根据圆的面积公式即可求解.解答:解:(1)如图所示,则⊙P为所求作的圆.(2)∵∠B=60°,BP平分∠ABC,∴∠ABP=30°,∵tan∠ABP=,∴AP=,∴S⊙P=3π.点评:本题主要考查了作图﹣复杂作图,角平分线的性质,即角平分线上的点到角两边的距离相等.同时考查了圆的面积.22.(6分)(2015•定西)如图①所示,将直尺摆放在三角板上,使直尺与三角板的边分别交于点D,E,F,G,已知∠CGD=42°(1)求∠CEF的度数;(2)将直尺向下平移,使直尺的边缘通过三角板的顶点B,交AC边于点H,如图②所示,点H,B在直尺上的度数分别为4,13.4,求BC的长(结果保留两位小数).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)考点:解直角三角形.分析:(1)先根据直角三角形的两锐角互为求出∠CDG的度数,再根据两直线平行,同位角相等求出∠DEF,然后根据三角形的一个外角等于与它不相邻的两个内角的和即可求出∠EFA;(2)根据度数求出HB的长度,再根据∠CBH=∠CGD=42°,利用42°的余弦值进求解.解答:解:(1)∵∠CGD=42°,∠C=90°,∴∠CDG=90°﹣42°=48°,∵DG∥EF,∴∠CEF=∠CDG=48°;(2)∵点H,B的读数分别为4,13.4,∴HB=13.4﹣4=9.4(m),∴BC=HBcos42°≈9.4×0.74≈6.96(m).答:BC的长为6.96m.点评:本题考查了解直角三角形与平行线的性质,直角三角形两锐角互余的性质,三角形的一个外角等于与它不相邻的两个内角的和,综合性较强,但难度不大,仔细分析图形并认真计算即可.23.(6分)(2015•定西)有三张卡片(形状、大小、颜色、质地都相等),正面分别下上整式x2+1,﹣x2﹣2,3.将这三张卡片背面向上洗匀,从中任意抽取一张卡片,记卡片上的整式为A,再从剩下的卡片中任意抽取一张,记卡片上的整式为B,于是得到代数式.(1)请用画树状图成列表的方法,写出代数式所有可能的结果;(2)求代数式恰好是分式的概率.考点:列表法与树状图法;分式的定义.分析:(1)首先根据题意画出树状图,然后由树状图即可求得所有等可能的结果;(2)由(1)中的树状图,可求得抽取的两张卡片结果能组成分式的情况,然后利用概率公式求解即可求得答案.解答:解:(1)画树状图:列表:x2+1 ﹣x2﹣2 3第一次第二次x2+1﹣x2﹣23(2)代数式所有可能的结果共有6种,其中代数式是分式的有4种:,,,,所以P (是分式)=.点评:此题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.四、解答题(本题共5小题,共40分)24.(7分)(2015•定西)某班同学响应“阳光体育运动”号召,利用课外活动积极参加体育锻炼,每位同学从长跑、铅球、立定跳远、篮球定时定点投篮中任选一项进行了训练,训练前后都进行了测试,现将项目选择情况及训练后篮球定时定点投篮进球数进行整理,作出如下统计图表.训练后篮球定点投篮测试进球统计表进球数8 7 6 5 4 3(个)人数 2 1 4 7 8 2请你根据图表中的信息回答下列问题:(1)训练后篮球定时定点投篮人均进球数为5个;(2)选择长跑训练的人数占全班人数的百分比是10%,该班共有同学40人;(3)根据测试资料,参加篮球定时定点投篮的学生训练后比训练前的人均进球增加了25%,求参加训练之前的人均进球数.考点:扇形统计图;一元一次方程的应用;统计表.分析:(1)根据平均数的概念计算平均进球数;(2)根据所有人数的比例和为1计算选择长跑训练的人数占全班人数的百分比;由总人数=某种运动的人数÷所占比例计算总人数;(3)通过比较训练前后的成绩,利用增长率的意义即可列方程求解.解答:解:(1)参加篮球训练的人数是:2+1+4+7+8+2=24(人).训练后篮球定时定点投篮人均进球数==5(个).故答案是:5;(2)由扇形图可以看出:选择长跑训练的人数占全班人数的百分比=1﹣60%﹣10%﹣20%=10%,则全班同学的人数为24÷60%=40(人),故答案是:10%,40;(3)设参加训练之前的人均进球数为x个,则x(1+25%)=5,解得x=4.即参加训练之前的人均进球数是4个.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.(7分)(2015•定西)如图,平行四边形ABCD中,AB=3cm,BC=5cm,∠B=60°,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连结CE,DF.(1)求证:四边形CEDF是平行四边形;(2)①当AE= 3.5cm时,四边形CEDF是矩形;②当AE=2cm时,四边形CEDF是菱形.(直接写出答案,不需要说明理由)考点:平行四边形的判定与性质;菱形的判定;矩形的判定.专题:动点型.分析:(1)证△CFG≌△EDG,推出FG=EG,根据平行四边形的判定推出即可;(2)①求出△MBA≌△EDC,推出∠CED=∠AMB=90°,根据矩形的判定推出即可;②求出△CDE是等边三角形,推出CE=DE,根据菱形的判定推出即可.解答:(1)证明:∵四边形ABCD是平行四边形,∴CF∥ED,∴∠FCG=∠EDG,∵G是CD的中点,∴CG=DG,在△FCG和△EDG中,,∴△FCG≌△EDG(ASA)∴FG=EG,∵CG=DG,∴四边形CEDF是平行四边形;(2)①解:当AE=3.5时,平行四边形CEDF是矩形,理由是:过A作AM⊥BC于M,∵∠B=60°,AB=3,∴BM=1.5,∵四边形ABCD是平行四边形,∴∠CDA=∠B=60°,DC=AB=3,BC=AD=5,∵AE=3.5,∴DE=1.5=BM,在△MBA和△EDC中,,∴△MBA≌△EDC(SAS),∴∠CED=∠AMB=90°,∵四边形CEDF是平行四边形,∴四边形CEDF是矩形,故答案为:3.5;②当AE=2时,四边形CEDF是菱形,理由是:∵AD=5,AE=2,∴DE=3,∵CD=3,∠CDE=60°,∴△CDE是等边三角形,∴CE=DE,∵四边形CEDF是平行四边形,∴四边形CEDF是菱形,故答案为:2.点评:本题考查了平行四边形的性质和判定,菱形的判定,矩形的判定,等边三角形的性质和判定,全等三角形的性质和判定的应用,注意:有一组邻边相等的平行四边形是菱形,有一个角是直角的平行四边形是矩形.26.(8分)(2015•定西)如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在反比例函数y=(k>x,x>0)的图象上,点D的坐标为(4,3).(1)求k的值;(2)若将菱形ABCD沿x轴正方向平移,当菱形的顶点D落在函数y=(k>0,x>0)的图象上时,求菱形ABCD沿x轴正方向平移的距离.考点:反比例函数综合题.分析:(1)过点D作x轴的垂线,垂足为F,首先得出A点坐标,再利用反比例函数图象上点的坐标性质得出即可;(2)将菱形ABCD沿x轴正方向平移,使得点D落在函数(x>0)的图象D′点处,得出点D′的纵坐标为3,求出其横坐标,进而得出菱形ABCD平移的距离.解答:解:(1)过点D作x轴的垂线,垂足为F,∵点D的坐标为(4,3),∴OF=4,DF=3,∴OD=5,∴AD=5,∴点A坐标为(4,8),∴k=xy=4×8=32,∴k=32;(2)将菱形ABCD沿x轴正方向平移,使得点D落在函数(x>0)的图象D′点处,过点D′做x轴的垂线,垂足为F′.∵DF=3,∴D′F′=3,∴点D′的纵坐标为3,∵点D′在的图象上∴3=,解得:x=,即OF′=,∴FF′=﹣4=,∴菱形ABCD平移的距离为.点评:此题主要考查了反比例函数综合以及反比例函数图象上点的坐标性质,得出A点坐标是解题关键.27.(8分)(2015•定西)已知△ABC内接于⊙O,过点A作直线EF.(1)如图①所示,若AB为⊙O的直径,要使EF成为⊙O的切线,还需要添加的一个条件是(至少说出两种):∠BAE=90°或者∠EAC=∠ABC.(2)如图②所示,如果AB是不过圆心O的弦,且∠CAE=∠B,那么EF是⊙O的切线吗?试证明你的判断.考点:切线的判定.分析:(1)求出∠BAE=90°,再根据切线的判定定理推出即可;(2)作直径AM,连接CM,根据圆周角定理求出∠M=∠B,∠ACM=90°,求出∠MAC+∠CAE=90°,再根据切线的判定推出即可.解答:解:(1)①∠BAE=90°,②∠EAC=∠ABC,理由是:①∵∠BAE=90°,∴AE⊥AB,∵AB是直径,∴EF是⊙O的切线;②∵AB是直径,∴∠ACB=90°,∴∠ABC+∠BAC=90°,∵∠EAC=∠ABC,∴∠BAE=∠BAC+∠EAC=∠BAC+∠ABC=90°,即AE⊥AB,∵AB是直径,∴EF是⊙O的切线;(2)EF是⊙O的切线.证明:作直径AM,连接CM,则∠ACM=90°,∠M=∠B,∴∠M+∠CAM=∠B+∠CAM=90°,∵∠CAE=∠B,∴∠CAM+∠CAE=90°,∴AE⊥AM,∵AM为直径,∴EF是⊙O的切线.点评:本题考查了圆周角定理,切线的判定的应用,主要考查学生运用定理进行推理的能力,注意:经过半径的外端,并且垂直于半径的直线是圆的切线.28.(10分)(2015•定西)如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴相交于点M.(1)求抛物线的解析式和对称轴;(2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;(3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.。

相关文档
最新文档