导数题型方法总结(绝对经典)

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章

导数及其应用

一.导数的概念 1..已知x

f x f x

x f x ∆-∆+=→∆)

2()2(lim

,1

)(0

则的值是( )

A. 4

1- B. 2 C. 41

D. -2

变式1:()()()为则设h

f h f f h 233lim ,430--='→( )

A .-1 B.-2 C .-3

D .1 变式2:()()()00003,lim x f x x f x x f x x x ∆→+∆--∆∆设在可导则等于

( )

A .()02x f '

B .()0x f '

C .()03x f '

D .()04x f '

导数各种题型方法总结

请同学们高度重视:

首先,关于二次函数的不等式恒成立的主要解法: 1、分离变量;2变更主元;3根分布;4判别式法 5、二次函数区间最值求法:(1)对称轴(重视单调区间) 与定义域的关系 (2)端点处和顶点是最值所在

其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。 \

最后,同学们在看例题时,请注意寻找关键的等价变形和回归的基础

一、基础题型:函数的单调区间、极值、最值;不等式恒成立;

1、此类问题提倡按以下三个步骤进行解决: 第一步:令0)('

=x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知;

其中不等式恒成立问题的实质是函数的最值问题, #

2、常见处理方法有三种:

第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0)

第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元);

(请同学们参看2010省统测2)

例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上,

()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数,432

3()1262

x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围;

(2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值.

解:由函数4323()1262x mx x f x =-- 得32

()332

x mx f x x '=-- 2()3g x x mx ∴=-- }

(1)

()y f x =在区间[]0,3上为“凸函数”,

则 2

()30g x x mx ∴=--< 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于max ()0g x <

(0)030

2

(3)09330g m g m <-<⎧⎧⇒⇒>⎨

⎨<--<⎩⎩

解法二:分离变量法:

∵ 当0x =时, 2

()330g x x mx ∴=--=-<恒成立, …

当03x <≤时, 2

()30g x x mx =--<恒成立

等价于233

x m x x x ->=-的最大值(03x <≤)恒成立, 而3

()h x x x

=-(03x <≤)是增函数,则max ()(3)2h x h ==

2m ∴>

(2)∵当2m ≤时()f x 在区间(),a b 上都为“凸函数”

则等价于当2m ≤时2

()30g x x mx =--< 恒成立

变更主元法

再等价于2()30F m mx x =-+>在2m ≤恒成立(视为关于

m 的一次函数最值问题)

]

22

(2)023011(2)0230

F x x x F x x ⎧->--+>⎧⎪

⇒⇒⇒-<<⎨⎨>-+>⎪⎩⎩

2b a ∴-=

例2),10(32R b a b x a ∈<<+-

(Ⅱ)若对任意的],2,1[++∈a a x 不等式()f x a '≤恒成立,求a 的取值范围.

(二次函数区间最值的例子)

解:(Ⅰ)()()2

2

()433f x x ax a x a x a '=-+-=---

01a <<

令,0)(>'x f 得)(x f 的单调递增区间为(a ,3a )

令,0)(<'x f 得)(x f 的单调递减区间为(-∞,a )和(3a ,+∞)

∴当x=a 时,)(x f 极小值=;4

33

b a +-

当x=3a 时,)(x f 极大值=b.

(Ⅱ)由|)(x f '|≤a ,得:对任意的],2,1[++∈a a x 2

2

43a x ax a a -≤-+≤恒成立①

则等价于()g x 这个二次函数max min ()()g x a g x a

≤⎧⎨≥-⎩ 22

()43g x x ax a =-+的对称轴2x a =

01,a <<

12a a a a +>+=(放缩法)

即定义域在对称轴的右边,()g x 这个二次函数的最值问题:单调增函数的最值问题。

22()43[1,2]g x x ax a a a =-+++在上是增函数.

max min ()(2)2 1.

()(1)4 4.

g x g a a g x g a a =+=-+=+=-+

于是,对任意]2,1[++∈a a x ,不等式①恒成立,等价于

(2)44,4

1.(1)215g a a a a g a a a +=-+≤⎧≤≤⎨

+=-+≥-⎩

解得 :

又,10<

.15

4

<≤a 点评:重视二次函数区间最值求法:对称轴(重视单调区间)与定义域的关系

第三种:构造函数求最值

题型特征:)()(x g x f >恒成立0)()()(>-=⇔x g x f x h 恒成立;从而转化为第一、二种题型

例3;已知函数32

()f x x ax =+图象上一点(1,)P b 处的切线斜率为3-,

32

6()(1)3(0)2

t g x x x t x t -=+

-++>

(Ⅰ)求,a b 的值;

(Ⅱ)当[1,4]x ∈-时,求()f x 的值域;

(Ⅲ)当[1,4]x ∈时,不等式()()f x g x ≤恒成立,求实数t 的取值范围。

解:(Ⅰ)/

2

()32f x x ax =+∴/(1)31f b a

⎧=-⎨=+⎩, 解得3

2a b =-⎧⎨=-⎩

(Ⅱ)由(Ⅰ)知,()f x 在[1,0]-上单调递增,在[0,2]上单调递减,在[2,4]上单调递减 又(1)4,(0)0,(2)4,(4)16f f f f -=-==-= ∴()f x 的值域是[4,16]-

(Ⅲ)令2

()()()(1)3

[1,4]2

t h x f x g x x t x x =-=-++-∈ >

思路1:要使()()f x g x ≤恒成立,只需()0h x ≤,即2

(2)26t x x x -≥-分离变量 思路2:二次函数区间最值

2x a =

[]1,

2a a ++

相关文档
最新文档