2020-2021备战中考数学 直角三角形的边角关系 培优练习(含答案)含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021备战中考数学 直角三角形的边角关系 培优练习(含答案)含答案

一、直角三角形的边角关系

1.如图,某无人机于空中A 处探测到目标B D 、的俯角分别是30、60︒︒,此时无人机的飞

行高度AC 为60m ,随后无人机从A 处继续水平飞行303m 到达'A 处.

(1)求之间的距离

(2)求从无人机'A 上看目标的俯角的正切值. 【答案】(1)120米;(2)3

5

. 【解析】 【分析】

(1)解直角三角形即可得到结论;

(2)过'A 作'A E BC ⊥交BC 的延长线于E ,连接'A D ,于是得到'60A E AC ==,

'30CE AA ==3Rt △ABC 中,求得DC=

3

3

3,然后根据三角函数的定义即可得到结论. 【详解】

解:(1)由题意得:∠ABD=30°,∠ADC=60°, 在Rt △ABC 中,AC=60m ,

∴AB=sin 30AC

=6012

=120(m )

(2)过'A 作'A E BC ⊥交BC 的延长线于E ,连接'A D , 则'60A E AC ==, '30CE AA ==3

在Rt △ABC 中, AC=60m ,∠ADC=60°,

∴DC=333∴3

∴tan ∠A 'A D= tan ∠'A DC=

'A E DE 5032

35

答:从无人机'A 上看目标D 2

35

【点睛】

本题考查了解直角三角形的应用,添加辅助线建立直角三角形是解题的关键.

2.如图,海上观察哨所B 位于观察哨所A 正北方向,距离为25海里.在某时刻,哨所A 与哨所B 同时发现一走私船,其位置C 位于哨所A 北偏东53°的方向上,位于哨所B 南偏东37°的方向上.

(1)求观察哨所A 与走私船所在的位置C 的距离;

(2)若观察哨所A 发现走私船从C 处以16海里/小时的速度向正东方向逃窜,并立即派缉私艇沿北偏东76°的方向前去拦截.求缉私艇的速度为多少时,恰好在D 处成功拦截.(结果保留根号)

(参考数据:sin37°=cos53°≈,cos37 =sin53°≈去,tan37°≈2,tan76°≈)

【答案】(1)观察哨所A 与走私船所在的位置C 的距离为15海里;(2)当缉私艇以每小时617D 处成功拦截. 【解析】 【分析】

(1)先根据三角形内角和定理求出∠ACB =90°,再解Rt △ABC ,利用正弦函数定义得出AC 即可;

(2)过点C 作CM ⊥AB 于点M ,易知,D 、C 、M 在一条直线上.解Rt △AMC ,求出CM 、AM .解Rt △AMD 中,求出DM 、AD ,得出CD .设缉私艇的速度为x 海里/小时,根据走私船行驶CD 所用的时间等于缉私艇行驶AD 所用的时间列出方程,解方程即可. 【详解】

(1)在ABC △中,180180375390ACB B BAC ︒︒︒︒︒∠=-∠-∠=--=. 在Rt ABC V 中,sin AC B AB =

,所以3sin 3725155

AC AB ︒

=⋅=⨯=(海里). 答:观察哨所A 与走私船所在的位置C 的距离为15海里.

(2)过点C 作CM AB ⊥,垂足为M ,由题意易知,D C M 、、在一条直线上. 在Rt ACM V 中,4

sin 15125

CM AC CAM =⋅∠=⨯

=,

3

cos 1595

AM AC CAM =⋅∠=⨯=.

在Rt ADM △中,tan MD

DAM AM

∠=,

所以tan 7636MD AM ︒=⋅=. 所以222293691724AD AM MD CD MD MC =

+=+==-=,.

设缉私艇的速度为v 海里/小时,则有24917

16v

=

,解得617v =. 经检验,617v =是原方程的解.

答:当缉私艇以每小时617海里的速度行驶时,恰好在D 处成功拦截.

【点睛】

此题考查了解直角三角形的应用﹣方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.

3.已知Rt △ABC 中,AB 是⊙O 的弦,斜边AC 交⊙O 于点D ,且AD=DC ,延长CB 交⊙O 于点E .

(1)图1的A 、B 、C 、D 、E 五个点中,是否存在某两点间的距离等于线段CE 的长?请说明理由;

(2)如图2,过点E 作⊙O 的切线,交AC 的延长线于点F . ①若CF=CD 时,求sin ∠CAB 的值;

②若CF=aCD (a >0)时,试猜想sin ∠CAB 的值.(用含a 的代数式表示,直接写出结

果)

【答案】(1)AE=CE;(2)①;②.

【解析】

试题分析:(1)连接AE、DE,如图1,根据圆周角定理可得∠ADE=∠ABE=90°,由于AD=DC,根据垂直平分线的性质可得AE=CE;

(2)连接AE、ED,如图2,由∠ABE=90°可得AE是⊙O的直径,根据切线的性质可得∠AEF=90°,从而可证到△ADE∽△AEF,然后运用相似三角形的性质可得=AD•AF.①当CF=CD时,可得,从而有EC=AE=CD,在Rt△DEC中运用三角函数可得

sin∠CED=,根据圆周角定理可得∠CAB=∠DEC,即可求出sin∠CAB的值;②当CF=aCD(a>0)时,同①即可解决问题.

试题解析:(1)AE=CE.理由:

连接AE、DE,如图1,∵∠ABC=90°,∴∠ABE=90,∴∠ADE=∠ABE=90°,∵AD=DC,

∴AE=CE;

(2)连接AE、ED,如图2,∵∠ABE=90°,∴AE是⊙O的直径,∵EF是⊙OO的切线,

∴∠AEF=90°,∴∠ADE=∠AEF=90°,又∵∠DAE=∠EAF,∴△ADE∽△AEF,∴,∴=AD•AF.

①当CF=CD时,AD=DC=CF,AF=3DC,∴=DC•3DC=,∴AE=DC,∵EC=AE,∴EC=DC,∴sin∠CAB=sin∠CED===;

②当CF=aCD(a>0)时,sin∠CAB=.

∵CF=aCD,AD=DC,∴AF=AD+DC+CF=(a+2)CD,∴=DC•(a+2)DC=(a+2),∴AE=DC,∵EC=AE,∴EC=DC,

∴sin∠CAB=sin∠CED==.

相关文档
最新文档