综合法和分析法证明不等式
不等式证明的基本方法
4. 放缩法是在证明不等式或变形中, 将条件或结论或变换中的 式子放大或缩小进行求证的方法.放缩时要看准目标,做到 有的放矢, 注意放缩适度. 放缩法是证明不等式的常用技巧, 有些不等式若恰当地运用放缩法可以很快得证,要控制难 度.
比较法
(2010 年高考江苏卷试题)设 a、b 是非负实数,求证:a3 +b3≥ ab(a2+b2). 【思路分析】 先作差,再用不等式的基本性质解答.
不等式证明的基本方法
1.比较法是证明不等式最常用最基本的方法,有两种: (1)求差法:a>b⇔a-b>0; a (2)求商法:a>b>0⇔b>1,(b>0).
2.分析法、综合法是证明数学问题的两大最基本的方法. 综合法是以已知的定义、公理、定理为依据,逐步下推,直 到推出问题的结论为止,简而言之,就是“由因导果”. 分析法是从问题的结论出发,追溯导致结论成立的条件,逐 步上溯,直到使结论成立的条件与已知条件或已知事实吻合 为止,简而言之,就是“执果索因”.
分析法与综合法
如果 a>0,b>0,求证:a3+b3≥a2b+ab2. 【证法一】 (用分析法) 要证 a3+b3≥a2b+ab2, 只需证(a+b)(a2-ab+b2)≥ab(a+b) ∵a>0,b>0,有 a+b>0,故只需证 a2-ab+b2≥ab, 只需证(a-b)2≥0 显然(a-b)2≥0 成立,以上各步均可逆, ∴a3+b3≥a2b+ab2
1.设 a>0,a≠1,0<x<1.求证:|loga(1-x)|>|loga(1+x)|.
证明:方法一:(平方后作差)
2 log2 (1 - x ) - log a a(1+x)
=[loga(1-x)+loga(1+x)]· [loga(1-x)-loga(1+x)]= 1-x loga(1-x )· loga . 1+x
不等式的证明:综合法与分析法讲义
不等式的证明:综合法与分析法一、引入:综合法和分析法是数学中常用的两种直接证明方法,也是不等式证明中的基本方法。
由于两者在证明思路上存在着明显的互逆性,这里将其放在一起加以认识、学习,以便于对比研究两种思路方法的特点。
所谓综合法,即从已知条件出发,根据不等式的性质或已知的不等式,逐步推导出要证的不等式。
而分析法,则是由结果开始,倒过来寻找原因,直至原因成为明显的或者在已知中。
前一种是“由因及果”,后一种是“执果索因”。
打一个比方:张三在山里迷了路,救援人员从驻地出发,逐步寻找,直至找到他,这是“综合法”;而张三自己找路,直至回到驻地,这是“分析法”。
以前得到的结论,可以作为证明的根据。
特别的,AB B A 222≥+是常常要用到的一个重要不等式。
二、典型例题:例1、b a ,都是正数。
求证:.2≥+ab b a例2、已知d c b a ,,,都是正数。
求证: (1);2cd ab d c b a +≥+++ (2).44abcd d c b a ≥+++ (3)33a b c abc ++≥例3、证明:ca bc ab c b a ++≥++222。
证法一 因为 ab b a 222≥+ (2)bc c b 222≥+ (3)ca a c 222≥+ (4)所以三式相加得)(2)(2222ca bc ab c b a ++≥++ (5)两边同时除以2即得(1)。
证法二 因为,0)(21)(21)(21)(222222≥-+-+-=++-++a c c b b a ca bc ab c b a 所以(1)成立。
例4、已知c b a ,,都是正数,求证.3333abc c b a ≥++并指出等号在什么时候成立?探究:如果将不等式abc c b a 3333≥++中的333,,c b a 分别用c b a ,,来代替,并在两边同除以3,会得到怎样的不等式?并利用得到的结果证明不等式:27)1)(1)(1(>++++++a c c b b a ,其中c b a ,,是互不相等的正数,且1=abc . 例5、已知a ,b ,m 都是正数,并且.b a <求证:.ba mb m a >++ (1) 证法一 要证(1),只需证)()(m b a m a b +>+ (2)要证(2),只需证am bm > (3)要证(3),只需证a b > (4)已知(4)成立,所以(1)成立。
不等式的证明
不等式的证明最新考纲 通过一些简单问题了解证明不等式的基本方法:比较法、综合法、分析法.知 识 梳 理1.基本不等式定理1:如果a ,b ∈R,那么a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 定理2:如果a ,b >0,那么a +b 2≥a =b 时,等号成立,即两个正数的算术平均不小于(即大于或等于)它们的几何平均.定理3:如果a ,b ,c ∈R +,那么a +b +c 3≥a =b =c 时,等号成立.2.不等式的证明方法(1)比较法①作差法(a ,b ∈R):a -b >0⇔a >b ;a -b <0⇔a <b ;a -b =0⇔a =b . ②作商法(a >0,b >0):a b >1⇔a >b ;a b <1⇔a <b ;a b=1⇔a =b .(2)综合法与分析法①综合法:从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立.综合法又叫顺推证法或由因导果法.②分析法:从要证的结论出发,逐步寻求使它成立的充分条件,所需条件为已知条件或一个明显成立的事实(定义、公理或已证明的定理、性质等),从而得出要证的命题成立,这种证法称为分析法,即“执果索因”的证明方法.[微点提醒]1.作差比较法的实质是把两个数或式子的大小判断问题转化为一个数(或式子)与0的大小关系.2.用分析法证明数学问题时,要注意书写格式的规范性,常常用“要证(欲证)……”“即要证……”“就要证……”等分析到一个明显成立的结论,再说明所要证明的数学问题成立.3.利用基本不等式证明不等式或求最值时,要注意变形配凑常数.基础自测1.判断下列结论正误(在括号内打“√”或“×”)(1)比较法最终要判断式子的符号得出结论.( )(2)综合法是从原因推导到结果的思维方法,它是从已知条件出发,经过逐步推理,最后达到待证的结论.( )(3)分析法又叫逆推证法或执果索因法,是从待证结论出发,一步一步地寻求结论成立的必要条件,最后达到题设的已知条件或已被证明的事实.( )(4)使用反证法时,“反设”不能作为推理的条件应用.( )解析(1)作商比较法是商与1的大小比较.(3)分析法是从结论出发,寻找结论成立的充分条件.(4)应用反证法时,“反设”可以作为推理的条件应用.答案(1)×(2)√(3)×(4)×2.(选修4-5P23习题2.1T1改编)已知a≥b>0,M=2a3-b3,N=2ab2-a2b,则M,N的大小关系为________.解析2a3-b3-(2ab2-a2b)=2a(a2-b2)+b(a2-b2)=(a2-b2)(2a+b)=(a-b)(a+b)(2a+b).因为a≥b>0,所以a-b≥0,a+b>0,2a+b>0,从而(a-b)(a+b)(2a+b)≥0,故2a3-b3≥2ab2-a2b.答案M≥N3.(选修4-5P25T3改编)已知a,b,c∈(0,+∞),且a+b+c=1,则1a +1b+1c的最小值为________.解析把a+b+c=1代入1a +1b+1c得a+b+ca+a+b+cb+a+b+cc=3+⎝⎛⎭⎪⎫ba+ab+⎝ ⎛⎭⎪⎫c a +a c +⎝ ⎛⎭⎪⎫c b +b c ≥3+2+2+2=9, 当且仅当a =b =c =13时等号成立. 答案 94.(2019·聊城模拟)下列四个不等式:①log x 10+lg x ≥2(x >1);②|a -b |<|a |+|b |;③⎪⎪⎪⎪⎪⎪b a +a b ≥2(ab ≠0);④|x -1|+|x -2|≥1,其中恒成立的个数是( )A.1B.2C.3D.4解析 log x 10+lg x =1lg x+lg x ≥2(x >1),①正确; ab ≤0时,|a -b |=|a |+|b |,②不正确;因为ab ≠0,b a 与a b同号,所以⎪⎪⎪⎪⎪⎪b a +a b =⎪⎪⎪⎪⎪⎪b a +⎪⎪⎪⎪⎪⎪a b ≥2,③正确; 由|x -1|+|x -2|的几何意义知,|x -1|+|x -2|≥1恒成立,④也正确,综上①③④正确.答案 C5.(2017·全国Ⅱ卷)已知a >0,b >0,且a 3+b 3=2.证明:(1)(a +b )(a 5+b 5)≥4;(2)a +b ≤2.证明 (1)(a +b )(a 5+b 5)=a 6+ab 5+a 5b +b 6=(a 3+b 3)2-2a 3b 3+ab (a 4+b 4)=4+ab (a 4+b 4-2a 2b 2)=4+ab (a 2-b 2)2≥4.(2)(a+b)3=a3+3a2b+3ab2+b3=2+3ab(a+b)≤2+3(a+b)24(a+b)=2+3(a+b)34,所以(a+b)3≤8,因此a+b≤2.考点一比较法证明不等式【例1】设a,b是非负实数,求证:a2+b2≥ab(a+b). 证明因为a2+b2-ab(a+b)=(a2-a ab)+(b2-b ab)=a a(a-b)+b b(b-a)=(a-b)(a a-b b)=(a 12-b12)(a32-b32).因为a≥0,b≥0,所以不论a≥b≥0,还是0≤a≤b,都有a 12-b12与a32-b32同号,所以(a 12-b12)(a32-b32)≥0,所以a2+b2≥ab(a+b).规律方法比较法证明不等式的方法与步骤1.作差比较法:作差、变形、判号、下结论.2.作商比较法:作商、变形、判断、下结论.提醒(1)当被证的不等式两端是多项式、分式或对数式时,一般使用作差比较法.(2)当被证的不等式两边含有幂式或指数式或乘积式时,一般使用作商比较法.【训练1】(1)(2019·锦州模拟)设不等式|2x-1|<1的解集为M.①求集合M;②若a,b∈M,试比较ab+1与a+b的大小.(2)若a >b >1,证明:a +1a >b +1b. (1)解 ①由|2x -1|<1得-1<2x -1<1,解得0<x <1.所以M ={x |0<x <1}.②由①和a ,b ∈M 可知0<a <1,0<b <1,所以(ab +1)-(a +b )=(a -1)(b -1)>0.故ab +1>a +b .(2)证明 a +1a -⎝ ⎛⎭⎪⎫b +1b =a -b +b -a ab =(a -b )(ab -1)ab . 由a >b >1得ab >1,a -b >0,所以(a -b )(ab -1)ab>0. 即a +1a -⎝ ⎛⎭⎪⎫b +1b >0, 所以a +1a >b +1b. 考点二 综合法证明不等式【例2】 (1)已知a ,b ,c ∈R,且它们互不相等,求证a 4+b 4+c 4>a 2b 2+b 2c 2+c 2a 2;(2)已知x ,y ,z 均为正数,求证:x yz +y zx +z xy ≥1x +1y +1z. 证明 (1)∵a 4+b 4≥2a 2b 2,b 4+c 4≥2b 2c 2,a 4+c 4≥2a 2c 2,∴2(a 4+b 4+c 4)≥2(a 2b 2+b 2c 2+c 2a 2),即a 4+b 4+c 4≥a 2b 2+b 2c 2+c 2a 2.又∵a ,b ,c 互不相等,∴a 4+b 4+c 4>a 2b 2+b 2c 2+c 2a 2.(2)因为x ,y ,z 都为正数,所以x yz +y zx =1z ⎝ ⎛⎭⎪⎫x y +y x ≥2z①,同理可得yxz+zyx≥2x②,z xy +xyz≥2y③,当且仅当x=y=z时,以上三式等号都成立. 将上述三个不等式两边分别相加,并除以2,得xyz +yzx+zxy≥1x+1y+1z.规律方法 1.综合法证明不等式,要着力分析已知与求证之间,不等式的左右两端之间的差异与联系.合理进行转换,恰当选择已知不等式,这是证明的关键.2.在用综合法证明不等式时,不等式的性质和基本不等式是最常用的.在运用这些性质时,要注意性质成立的前提条件.【训练2】已知实数a,b,c满足a>0,b>0,c>0,且abc=1.(1)证明:(1+a)(1+b)(1+c)≥8;(2)证明:a+b+c≤1a+1b+1c.证明(1)1+a≥2a,1+b≥2b,1+c≥2c,相乘得:(1+a)(1+b)(1+c)≥8abc=8.(2)1a +1b+1c=ab+bc+ac,ab+bc≥2ab2c=2b,ab+ac≥2a2bc=2a,bc+ac≥2abc2=2c,相加得a+b+c≤1a +1b+1c.考点三分析法证明不等式【例3】已知函数f(x)=|x-1|.(1)解不等式f (x -1)+f (x +3)≥6;(2)若|a |<1,|b |<1,且a ≠0,求证:f (ab )>|a |f ⎝ ⎛⎭⎪⎫b a . (1)解 由题意,知原不等式等价为|x -2|+|x +2|≥6,令g (x )=|x -2|+|x +2|,则g (x )=⎩⎨⎧-2x ,x ≤-2,4,-2<x <2,2x ,x ≥2.当x ≤-2时,由-2x ≥6,得x ≤-3;当-2<x <2时,4≥6不成立,此时无解;当x ≥2时,由2x ≥6,得x ≥3.综上,不等式的解集是(-∞,-3]∪[3,+∞).(2)证明 要证f (ab )>|a |f ⎝ ⎛⎭⎪⎫b a , 只需证|ab -1|>|b -a |,只需证(ab -1)2>(b -a )2.而(ab -1)2-(b -a )2=a 2b 2-a 2-b 2+1=(a 2-1)(b 2-1)>0,从而原不等式成立. 规律方法 1.当要证的不等式较难发现条件和结论之间的关系时,可用分析法来寻找证明途径,使用分析法证明的关键是推理的每一步必须可逆.2.分析法证明的思路是“执果索因”,其框图表示为: Q ⇐P 1→P 1⇐P 2→P 2⇐P 3→…→得到一个明显成立的条件【训练3】 已知a >b >c ,且a +b +c =0,求证:b 2-ac <3a .证明 由a >b >c 且a +b +c =0,知a >0,c <0. 要证b 2-ac <3a ,只需证b 2-ac <3a 2.∵a +b +c =0,只需证b 2+a (a +b )<3a 2,只需证2a 2-ab -b 2>0,只需证(a -b )(2a +b )>0,只需证(a -b )(a -c )>0.∵a >b >c ,∴a -b >0,a -c >0,∴(a -b )(a -c )>0显然成立,故原不等式成立.[思维升华]证明不等式的方法和技巧:(1)如果已知条件与待证明的结论直接联系不明显,可考虑用分析法;如果待证的命题以“至少”“至多”等方式给出或否定性命题、唯一性命题,则考虑用反证法;如果待证不等式与自然数有关,则考虑用数学归纳法等.(2)在必要的情况下,可能还需要使用换元法、构造法等技巧简化对问题的表述和证明.尤其是对含绝对值不等式的解法或证明,其简化的根本思路是去绝对值号,转化为常见的不等式(组)求解.多以绝对值的几何意义或“找零点、分区间、逐个解、并起来”为简化策略,而绝对值三角不等式,往往作为不等式放缩的依据.[易错防范]在使用基本不等式时,等号成立的条件是一直要注意的事情,特别是连续使用时,要求分析每次使用时等号是否成立.基础巩固题组(建议用时:60分钟)1.设a ,b >0且a +b =1,求证:⎝⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2≥252. 证明 因为(12+12)⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2≥⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a +1a +⎝ ⎛⎭⎪⎫b +1b 2=⎣⎢⎡⎦⎥⎤1+⎝ ⎛⎭⎪⎫1a +1b 2=⎝ ⎛⎭⎪⎫1+1ab 2≥25⎝⎛⎭⎪⎫因为ab ≤14. 所以⎝ ⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2≥252.2.设a >0,b >0,a +b =1,求证1a +1b +1ab≥8. 证明 ∵a >0,b >0,a +b =1,∴1=a +b ≥2ab , 即ab ≤12,∴1ab≥4, ∴1a +1b +1ab =(a +b )⎝ ⎛⎭⎪⎫1a +1b +1ab ≥2ab ·21ab +1ab ≥4+4=8. 当且仅当a =b =12时等号成立, ∴1a +1b +1ab≥8. 3.(2019·大理一模)已知函数f (x )=|x |+|x -3|.(1)解关于x 的不等式f (x )-5≥x .(2)设m ,n ∈{y |y =f (x )},试比较mn +4与2(m +n )的大小.解 (1)f (x )=|x |+|x -3|=⎩⎨⎧3-2x ,x <0,3,0≤x ≤3,2x -3,x >3.f (x )-5≥x ,即⎩⎨⎧x <0,3-2x ≥x +5或⎩⎨⎧0≤x ≤3,3≥x +5或⎩⎨⎧x >3,2x -3≥x +5,解得x ≤-23或x ∈∅或x ≥8. 所以不等式的解集为⎝⎛⎦⎥⎤-∞,-23∪[8,+∞). (2)由(1)易知f (x )≥3,所以m ≥3,n ≥3.由于2(m +n )-(mn +4)=2m -mn +2n -4=(m -2)(2-n ).且m ≥3,n ≥3,所以m -2>0,2-n <0,即(m -2)(2-n )<0,所以2(m +n )<mn +4.4.(2019·郴州质量检测)已知a ,b ,c 为正数,函数f (x )=|x +1|+|x -5|.(1)求不等式f (x )≤10的解集;(2)若f (x )的最小值为m ,且a +b +c =m ,求证:a 2+b 2+c 2≥12.(1)解 f (x )=|x +1|+|x -5|≤10等价于⎩⎨⎧x ≤-1,-(x +1)-(x -5)≤10或⎩⎨⎧-1<x <5,(x +1)-(x -5)≤10或⎩⎨⎧x ≥5,(x +1)+(x -5)≤10,解得-3≤x ≤-1或-1<x <5或5≤x ≤7,∴不等式f (x )≤10的解集为{x |-3≤x ≤7}.(2)证明 ∵f (x )=|x +1|+|x -5|≥|(x +1)-(x -5)|=6,∴m =6,即a +b +c =6.∵a 2+b 2≥2ab ,a 2+c 2≥2ac ,c 2+b 2≥2cb ,∴2(a 2+b 2+c 2)≥2(ab +ac +bc ),∴3(a 2+b 2+c 2)≥a 2+b 2+c 2+2ab +2ac +2bc =(a +b +c )2,∴a 2+b 2+c 2≥12.当且仅当a =b =c =2时等号成立.5.(2019·沈阳模拟)设a ,b ,c >0,且ab +bc +ca =1.求证:(1)a +b +c ≥3; (2)a bc +b ac +c ab ≥3(a +b +c ). 证明 (1)要证a +b +c ≥3,由于a ,b ,c >0,因此只需证明(a +b +c )2≥3.即证a 2+b 2+c 2+2(ab +bc +ca )≥3.而ab +bc +ca =1,故只需证明a 2+b 2+c 2+2(ab +bc +ca )≥3(ab +bc +ca ),即证a 2+b 2+c 2≥ab +bc +ca .而这可以由ab +bc +ca ≤a 2+b 22+b 2+c 22+c 2+a 22=a 2+b 2+c 2(当且仅当a =b =c时等号成立)证得.所以原不等式成立. (2)a bc +b ac +c ab =a +b +c abc. 在(1)中已证a +b +c ≥ 3.因此要证原不等式成立,只需证明1abc ≥a +b +c , 即证a bc +b ac +c ab ≤1,即证a bc +b ac +c ab ≤ab +bc +ca .而a bc =ab ·ac ≤ab +ac2, b ac ≤ab +bc2,c ab ≤bc +ac2,所以a bc +b ac +c ab ≤ab +bc +ca⎝ ⎛⎭⎪⎫当且仅当a =b =c =33时等号成立. 所以原不等式成立.6.(2019·百校联盟联考)已知函数f (x )=|2x -3|+|2x -1|的最小值为M .(1)若m ,n ∈[-M ,M ],求证:2|m +n |≤|4+mn |;(2)若a ,b ∈(0,+∞),a +2b =M ,求2a +1b的最小值. (1)证明 ∵f (x )=|2x -3|+|2x -1|≥|2x -3-(2x -1)|=2,∴M =2. 要证明2|m +n |≤|4+mn |,只需证明4(m +n )2≤(4+mn )2,∵4(m +n )2-(4+mn )2=4(m 2+2mn +n 2)-(16+8mn +m 2n 2)=(m 2-4)(4-n 2), ∵m ,n ∈[-2,2],∴m 2,n 2∈[0,4],∴(m 2-4)(4-n 2)≤0,∴4(m +n )2-(4+mn )2≤0,∴4(m +n )2≤(4+mn )2,可得2|m +n |≤|4+mn |.(2)解 由(1)得,a +2b =2,因为a ,b ∈(0,+∞),所以2a +1b =12⎝ ⎛⎭⎪⎫2a +1b (a +2b ) =12⎝ ⎛⎭⎪⎫2+2+a b +4b a ≥12⎝ ⎛⎭⎪⎫4+2a b ·4b a =4, 当且仅当a =1,b =12时,等号成立. 所以2a +1b的最小值为4. 能力提升题组(建议用时:20分钟)7.已知函数f (x )=x +1+|3-x |,x ≥-1.(1)求不等式f (x )≤6的解集;(2)若f (x )的最小值为n ,正数a ,b 满足2nab =a +2b ,求证:2a +b ≥98. (1)解 根据题意,若f (x )≤6,则有⎩⎨⎧x +1+3-x ≤6,-1≤x <3或⎩⎨⎧x +1+(x -3)≤6,x ≥3, 解得-1≤x ≤4,故原不等式的解集为{x |-1≤x ≤4}.(2)证明 函数f (x )=x +1+|3-x |=⎩⎨⎧4,-1≤x <3,2x -2,x ≥3,分析可得f (x )的最小值为4,即n =4, 则正数a ,b 满足8ab =a +2b ,即1b +2a=8, 又a >0,b >0,∴2a +b =18⎝ ⎛⎭⎪⎫1b +2a (2a +b )=18⎝ ⎛⎭⎪⎫2a b +2b a +5≥18⎝ ⎛⎭⎪⎫5+22a b ·2b a =98,当且仅当a =b =38时取等号. 原不等式得证.8.(2015·全国Ⅱ卷)设a ,b ,c ,d 均为正数,且a +b =c +d ,证明:(1)若ab >cd ,则a +b >c +d ;(2)a +b >c +d 是|a -b |<|c -d |的充要条件.证明 (1)∵a ,b ,c ,d 为正数,且a +b =c +d ,欲证a +b >c +d ,只需证明(a +b )2>(c +d )2, 也就是证明a +b +2ab >c +d +2cd ,只需证明ab >cd ,即证ab >cd .由于ab >cd ,因此a +b >c +d .(2)①若|a -b |<|c -d |,则(a -b )2<(c -d )2,即(a +b )2-4ab <(c +d )2-4cd .∵a +b =c +d ,所以ab >cd . 由(1)得a +b >c +d .②若a +b >c +d ,则(a +b )2>(c +d )2, ∴a +b +2ab >c +d +2cd .∵a +b =c +d ,所以ab >cd .于是(a -b )2=(a +b )2-4ab <(c +d )2-4cd =(c -d )2. 因此|a -b |<|c -d |.综上,a +b >c +d 是|a -b |<|c -d |的充要条件.。
证明不等式的基本方法—综合法与分析法
例5 求证: 2 7 3 6 例6 若a>0,b>0,且a+b=1,求证:
1 1 a b 2 2 2
分析法:当不等式的结构不易发现需要 用不等式的哪些性质或事实解决这个问 题时,我们常常从要证的结论出发,逐步 寻求使它成立的充分条件,直至所需条 件为已知条件或一个明显成立的事实, 从而得出要证的命题成立(执果索因).
典例剖析
例3 若a,b,c为互不相等的正数,且
1 1 1 abc=1,求证: a 求证:
a b b c c a 2(a b c )
2 2 2 2 2 2
综合法:从已知不等式出发,逐步推
出所证不等式(由因推果).
典例剖析
明,则需要我们掌握更多的证明方法.
本节课我们研究综合法与分析法证明
不等式.
典例剖析
例1 已知a,b,c>0,且不全相等,求证:
a(b 2 +c 2 )+b(c 2 +a 2 )+c(a 2 +b 2 )>6abc. 例2 若a1,a2,…,an∈R+,且a1a2…an=1, 求证:(1+a1)(1+a2)…(1+an)≥2n. 提示:在证明不等式时,命题中的条件 能启发我们的证明思路.
作业布置
P25习题2.2:
2(2),3,8,9.
数学选修4-5不等式选讲第二讲证明不等式的基本方法
课题:证明不等式的基本方 法—综合法与分析法 授课:张贤华 学校:衡阳市第八中学
时间:2009年下期
问题提出
1.我们已经学过的证明不等式的 主要依据有哪些?
(1)两实数比较大小的基本原理
(2)不等式的基本性质(共9条) (3)基本不等式:二元平均数不等 式,三元平均数不等式,绝对值三 角不等式
初中数学知识点:不等式证明的六大方法
马行软地易失蹄,人贪安逸易失志。
对待生命要认真,对待生活要活泼。
以下是为您推荐初中数学知识点:不等式证明的六大方法。
1、比较法:包括比差和比商两种方法。
2、综合法
证明不等式时,从命题的已知条件出发,利用公理、定理、法则等,逐步推导出要证明的命题的方法称为综合法,它是由因导果的方法。
3、分析法
证明不等式时,从待证命题出发,分析使其成立的充分条件,利用已知的一些基本原理,逐步探索,最后将命题成立的条件归结为一个已经证明过的定理、简单事实或题设的条件,这种证明的方法称为分析法,它是执果索因的方法。
4、放缩法
证明不等式时,有时根据需要把需证明的不等式的值适当放大或缩小,使其化繁为简,化难为易,达到证明的目的,这种方法称为放缩法。
5、数学归纳法
用数学归纳法证明不等式,要注意两步一结论。
在证明第二步时,一般多用到比较法、放缩法和分析法。
6、反证法
证明不等式时,首先假设要证明的命题的反面成立,把它作为条件和其他条件结合在一起,利用已知定义、定理、公理等基本原理逐步推证出一个与命题的
条件或已证明的定理或公认的简单事实相矛盾的结论,以此说明原假设的结论不成立,从而肯定原命题的结论成立的方法称为反证法。
第2讲不等式的基本方法-综合法与分析法课件人教新课标
∴3x2+3y2>2xy成立.
1
1
∴(x2+y22) >(x3明不等式 例 3 设 a>0,b>0,且 a+b=1,求证 a+1+ b+1≤ 6. 证明 要证 a+1+ b+1≤ 6,
只需证( a+1+ b+1)2≤6,
即证(a+b)+2+2 ab+a+b+1≤6.
A.1a<1b
B.a+1b>b+1a
√C.b+1a>a+1b
D.ba<ba+ +11
解析 ∵a<b<0,∴ab>0,∴aab<abb<0,即1b<1a<0.
∴a+1b<b+1a.
1234
解析 答案
2.已知函数 f(x)=12x,a>0,b>0,a≠b,A=f a+2 b,B=f( ab),C= 2ab
第二讲 证明不等式的基本方法
二 综合法与分析法
学习目标 1.理解综合法、分析法证明不等式的原理和思维特点. 2.掌握综合法、分析法证明不等式的方法和步骤. 3.会用综合法、分析法证明一些不等式.
内容索引
问题导学 题型探究 达标检测
问题导学
知识点 综合法与分析法
思考1 在“推理与证明”中,学习过分析法、综合法,请回顾分析法、 综合法的基本特征. 答案 分析法是逆推证法或执果索因法,综合法是顺推证法或由因导 果法.
Q⇐P1 → P1⇐P2 → P2⇐P3 →…→ 得到一个明显成立的条件
题型探究
类型一 综合法证明不等式 例 1 已知 a,b∈R+,且 a+b=1, 求证:a+1a2+b+1b2≥225.
证明
反思与感悟 综合法证明不等式,揭示出条件和结论之间的因果联系, 为此要着力分析已知与求证之间,不等式的左右两端之间的差异与联系. 合理进行转换,恰当选择已知不等式,这是证明的关键.
不等式证明几种方法
同理: ,
以上三式相乘:(1a)a•(1b)b•(1c)c≤ 与①矛盾
∴原式成立
例五、已知a+b+c> 0,ab+bc+ca> 0,abc> 0,求证:a,b,c> 0
证:设a< 0,∵abc> 0,∴bc< 0
又由a+b+c> 0,则b+c=a> 0
∴ab+bc+ca=a(b+c) +bc< 0与题设矛盾
8.若x,y> 0,且x+y>2,则 和 中至少有一个小于2
一、裂项放缩
例1.(1)求 的值; (2)求证: .
解析:(1)因为 ,所以
(2)因为 ,所以
奇巧积累
:(1) (2)
(3)
(4)
(5) (6)
(7) (8)
(9)
(10) (11)
(11)
(12)
(13)
(14) (15)
(15)
例2.(1)求证:
分析:当水的流速相同时,水管的流量取决于水管横截面面积的大小。设截面的周长为 பைடு நூலகம்则周长为 的圆的半径为 ,截面积为 ;周长为 的正方形为 ,截面积为 。所以本题只需证明 。
证明:设截面的周长为 ,则截面是圆的水管的截面面积为 ,截面是正方形的水管的截面面积为 。只需证明: 。
为了证明上式成立,只需证明 。
例3、已知a,b,m都是正数,并且 求证: (1)
证法一要证(1),只需证 (2)
要证(2),只需证 (3)
要证(3),只需证 (4)
已知(4)成立,所以(1)成立。
证明不等式的几种方法
不等式证明题的命题形式多样,证明不等式的方法也很多,如综合法、分析法、反证法、放缩法、构造法等.本文主要介绍一下综合法、分析法、反证法的应用技巧.一、综合法用综合法证明不等式,需先根据题目中的已知信息,以及已知的事实、结论、性质、定理等,一步步推导,直到推导出需要证明的式子为止.因而综合法就是由“因”到“果”的推导过程.每一步的推导过程一定要符合数学逻辑.在证明不等式时,可以从左往右推导,也可以从右往左推导.例1.若a,b,c是不完全相等的正数,求证:ln a+b2+ln b+c2+ln c+a2>ln a+ln b+ln c.证明:由于a,b,c都是正数,所以a+b2≥ab>0,b+c2≥bc>0,a+c2≥ac>0,又因为a,b,c是不完全相等的正数,如果这三个不等式都成立,就取不到等号,因此a+b2·b+c2·c+a2>ab·bc·ca=abc,在上式的两边取对数得:ln(a+b2·b+c2·c+a2)>ln(abc),即:lna+b2+ln b+c2+ln c+a2>ln a+ln b+ln c.解答本题主要运用基本不等式a+b2≥ab;然后根据不等式的可乘性,通过取对数,将不等式左边的式子进行化简.在推导不等式的过程中,经常需要用到这几个不等式:a2+b2≥2ab,a+b2≥ab(当且仅当a=b时取等号).二、分析法用分析法解题的思路和综合法相反,用分析法证明不等式,需要从要证明的不等式出发,然后分析这个不等式成立的充分条件是什么,一步一步递推,证明不等式成立的充分条件符合题中给出的信息,或者符合已知的数学结论.一般来说,分析法常用于证明较复杂的不等式问题.若由不等式一边的式子很难推导出另一边的式子,就可以采用分析法进行证明,通过分析、推理,一步步简化不等式,最终得到一个比较简便的等价不等式.例2.设a>b>0,求证:(a-b)28a<a+b2-ab<(a-b)28b.证明:要证:(a-b)28a a+b2ab(a-b)28b,即证:(a+b)28a<(a-b)22<(a-b)28b,由于a>b>0,所以a≠b,即证:(a+b)24a<1<(a+b)24b,<1<1<,根据a>b>0,可知该不等式成立,于是得证:(a+b)28a<a+b2-ab<(a-b)28b.这个不等式较为复杂,我们很难从不等式左边的式子推导出右边的式子,同样也很难反向推导出结论,但是可以用分析法,将不等式一步步简化,先将中间项合并,再将其化为1,然后通过恒等变换,化简即可.三、反证法反证法是解答证明题的一个重要手段.一般地,当题目中出现“至少”“不存在”“至多”等字眼时,都可以考虑使用反证法进行证明.用反证法证明不等式,要首先假设命题不成立;然后结合题中已知的信息和已有的数学知识,得到存在矛盾的结论,那就说明假设的命题不成立,这样就可以证明不等式成立.例3.已知a>0,b>0,且a+b>2,求证:1+b a,1+a b中至少有一个小于2.证明:假设1+b a,1+a b都大于2,因为a>0,b>0,则1+b≥2a,1+a≥2b,将这两个式子相加得:2+a+b≥2a+2b,化简得:a+b≤2,与题目中的a+b>2相矛盾,因此,1+b a,1+a b中至少有一个小于2.由题目中出现了“至少”的字眼,所以考虑使用反证法进行证明.在提出假设命题时,要注意命题的反面情况,如“1+b a、1+a b至少有一个小于2”的反面情况是“1+b a、1+a b都大于2”.熟练掌握综合法、分析法、反证法的适用情形、特点,以及解题的步骤,对解题有很大的帮助.同学们在日常学习中,要学会积累解题技巧和规律,以提升解题的效率.(作者单位:江西省龙南中学)赖明辉备考指南59。
解不等式的几种常见思路
解不等式的几种常见思路一、证明不等式常用思路:不等式的证明思路和方法有:比较法、综合法、分析法、放缩法、反证法;换元法、常数代换法、几何法、数学归纳法、构造函数法等。
(换元法是一个需要专门讨论的方法,这里暂不举例)1、比较法:比较法证明不等式的一般步骤:作差(作商)—变形—判断—结论.作差法:差与“0”比较。
为了判断作差后的符号,经常需要把这个差变形为一个常数,或者变形为一个常数与一个或几个平方和的形式,也可变形为几个因式的积的形式,判断其正负.作商法:商与“1”相比较。
作商时,需要满足两者均为正数。
2、综合法(顺推):综合法是指从已知条件出发,经过逐步的逻辑推理,最后得到结论,其特点是“执因索果”,即由“已知”,利用已经证明过的不等式或不等式的性质逐步推向“未知”。
综合法证明不等式的逻辑关系是:A B1B2…Bn B,及从已知条件A 出发,逐步推演不等式成立的必要条件,推导出所要证明的结论B.3、分析法(逆推):从求证的结论出发,分析使这个结论成立的充分条件,把证明不等式转化为判定这些充分条件是否具备的问题,即“执果索因”.即从“未知”看“需知”,逐步靠拢“已知”。
4、放缩法:要证明不等式A<B 成立,借助一个或多个中间变量通过适当的放大或缩小达到证明不等式的方法.放缩法证明不等式的理论依据主要有:①不等式的传递性;②等量加不等量为不等量;③同分子(分母)异分母(分子)的两个分式大小的比较.常用的放缩技巧有:①应用均值不等式进行放缩;②舍掉(或加进)一些项;③在分式中放大或缩小分子或分母。
5、反证法:即从正难则反的角度去思考,要证明不等式A>B,先假设A≤B,由题设及其它性质,推出矛盾,从而肯定A>B. 凡涉及到的证明不等式为否定命题、惟一性命题或含有“至多”、“至少”、“不可能”、“不存在”等词语时,可以考虑用反证法.6、常数代换法常数代换是指利用某些带有常数项的恒等式,把常量化为变量代入到所求证的式子中,以到达化繁为简的目的。
选修4-5-证明不等式的基本方法-综合法与分析法
12
分析法
证明命题时,我们还常常从要证的结论出 发,逐步寻找使它成立的充分条件,直至所需 条件为已知条件或一个明显成立的事实(定义、 公理或已证明的定理、性质等),从而得出要 证的命题成立,这种证明方法叫做分析法.
这是一种执果索因 的思考和证明方法
2021/3/10
讲解:XX
13
例 1 .求 证 2736
证 : a i 0 ( i 1 , 2 ,, n ) , 所 以 有
1 a1 2 a1, 1a2 2 a2 ,
1an 2 an ,
各 式 相 乘 得 ( 1 a 1 ) ( 1 a 2 )( 1 a n ) 2 n a 1 a 2a n 2 n 当 且 仅 当 a i 1 时 , 1 a i a i取 等 号 ,
a , b , c 不 全 相 等 , 以 上 三 式 中 至 少 有 一 个 不 取 等 号 ,
2021三 /3/10式 相 加 , 即 得 要 证 讲解的 :XX不 等 式 . 3
综合法: 综合法又叫顺推法或由因导果法
一般地,从已知条件出发,利用定义、公 理、定理、性质等,经过一系列的推理、论证 而得出命题成立,这种证明方法叫综合法.
2 021/3原 /10 式 在 a 1 a 2 讲解 :Xa X n 时 取 等 号 . 6
变式练习: 已知a,b,cR,且abc1,求证:
1a1b111c18
分 析 :1 1abc 1bc2b c,
a
a
aa
同 理 112ac, 112ab, b bc c
三 式 相 乘 即 得 要 证 的 不 等 式 .
4
例2.已知a1,a2,...,an∈R+,且a1a2...an=1,求证 (1+a1)(1+a2)…(1+an)≥2n
证明不等式的基本方法
恒成立,求实数a的取值范围”提出各自的解题思路.
甲说:“只须不等式左边的最小值不小于右边的最大值”; 乙说:“把不等式变形为左边含变量x的函数,右边仅含常 数,求函数的最值”; 丙说:“把不等式两边看成关于x的函数,作出函数图象”;
参考上述解题思路,你认为他们所讨论的问题的正确结论,
即a的取值范围是________. [答案] a≤10
[点评与警示] 论证过程中,执果索因与由因导果总是不
断变化,交替出现.尤其综合题推理较盲目时,利用分析法从
要证的问题入手,逐步推求,再用综合法逐步完善,最后找到 起始条件为止.
(人教版选修 4—5 第 30 页第 1 题)已知 a, b, c∈(0,1), 1 求证:(1-a)b,(1-b)c,(1-c)a 不同时大于4.
[证明]
(反证法)假设(1-a)b,(1-b)c,(1-c)a 都大于 ①
1 1 (1-b)c· (1-c)a>64 4,则(1-a)b· 1 即[a(1-a)· b(1-b)· c(1-c)]>64
a+1-a 2 1 而 0<a(1-a)≤[ ]= , 2 4
1 1 0<b(1-b)≤ ,0<c(1-c)≤ 4 4 1 ∴[a(1-a)][b(1-b)][c(1-c)]≤ 与①矛盾 64 1 ∴(1-a)b,(1-b)c,(1-c)a 不同时大于 . 4
) B.a2>b2 1a 1b D.(2) <(2)
1 2 .若 a > b > 1 , P = lga· lgb , Q = (lga + lgb) , R = 2 a+b lg( ),则( 2 A.R<P<Q C.Q<P<R
[解析]
) B.P<Q<R
D.P<R<Q 1 ∵lga>lgb>0,∴ (lga+lgb)> lga· lgb,即 Q 2
证明不等式的方法
证明不等式的方法1.比较法。
在证明不等式的方法中,比较法是最基本、最重要的方法。
比较法是利用不等式两边的差是正还是负来证明不等关系的。
利用不等式的性质对不等式进行变形,变形目的在于判断差的符号,而不考虑值是多少。
2.综合法。
综合法是由已知条件出发,推导出所要证明的不等式成立,即由已知逐步推演不等式成立的必要条件得到结论。
综合法是“由因导果”。
3.分析法。
分析法也是证明不等式的一种常用的基本方法,当证题不知从何入手时,有时可以用分析法获得解决。
分析法是和综合法对立统一的两种方法,它是由结果步步寻求不等式成立的充分条件,找寻已知,是“执果索因”。
分析法和综合法常常是不能分离的,如果使用综合法证明不等式,难以入手时常用分析法探索证题的途径,之后用综合法形式写出它的证明过程。
4.作商法。
将不等式左右两端作商、变形化简商式到最简形式,判断商与1的大小,应用范围一般是被证式的两端都是正数,被证式子两端都是乘积形式或指数形式时常用此法。
5.判别式法,对于含有两个或两个以上字母的不等式,在使用比较法无效时,若能整理成一边为零,而另一边为某个字母的二次式时,这时候可用判别式法。
6.代换法。
代换法中常用的有两种:一种是三角代换法,一种是增量代换法。
三角代换法多用于条件不等式的证明,当所给条件较复杂,一个变量不易用另一个变量表示,这时候可考虑三角代换,将两个变量都用同一个参数表示。
此法可以把复杂的代数问题转化为三角问题。
要注意的是可能对引入的角有一定的限制,这一点要根据已知来定。
增量代换法一般是在对称式(任意互换两个字母,代数式不变)和给定字母顺序的不等式,常用增量法进行代换,代换的目的是通过代换达到减元的目的,使问题化难为易,化繁为简。
7.构造函数法。
函数思想是中学数学重要的思想方法之一,有些数学问题只要将其中某些变化的量建立起联系,构造出函数,再利用函数的性质,就能解决问题。
8.反证法。
用直接法证明不等式困难时,可考虑用反证法。
高中数学第二讲证明不等式的基本方法综合法与分析法
2。
2.2 分析法课堂导学三点剖析一,利用分析法证明不等式【例1】 (1)设a>b 〉0,求证:333b a b a ->-。
(2)已知0〈α〈π,证明2sin2α≤cot 2α,并指出等号成立的条件。
证明:(1)要证333b a b a ->-,∵a>b〉0,有3b a ->0, ∴需证(3b a -)3>(33b a -)3,展开得a —b 〉a —323b a +b ab -323, 即证明)(3333b a ab -〉0, 也就是证33b a ->0,在题设条件下这一不等式显然成立,∴原不等式成立.(2)要证2sin2α≤cot 2α,由0<α<π知sinα〉0,只需证2sinα·sin2α≤1+cosα,即证明4sin 2αcosα-(1+cosα)≤0,也就是证(1+cosα)[4(1—cosα)cosα-1]≤0,而1+cosα>0,于是只要证-4cos 2α+4cosα—1≤0,即—(2cosα—1)2≤0,就是(2cosα-1)2≥0,这是显然的。
∴2sin2α≤cot 2α,等号在2cosα=1,α=3π时取得。
各个击破类题演练1若a ,b,c 三数均大于1,且ab=10,求证:log a c+log b c≥4lgc.证明:由于a>1,b 〉1,要证log a c+log b c≥4lgc,需证b ca clg lg lg lg +≥4lgc,而lgc>0, 因此只要证b a lg 1lg 1+≥4,即证b a b a lg lg lg lg +≥4。
∵ab=10,有lga+lgb=1,于是只需证lga·lgb≤41, 而lga·lgb≤(2lg lg b a +)2=41。
∴不等式log a c+log b c≥4lgc 成立.变式提升1已知a>0,b 1—a 1>1,求证:ba ->+111。
高中数学第二讲证明不等式的基本方法综合法与分析法
2。
2.1 综合法课堂导学三点剖析一,利用综合法证明不等式【例1】 (1)若a>0,b 〉0,求证:ab b a 22+≥a+b.思路分析:主要利用不等式2ba +≥ab 和a 2+b 2≥2ab。
证明:由a 2+b 2≥2ab,∴2(a 2+b 2)≥a 2+b 2+2ab,即2(a 2+b 2)≥(a+b)2。
∴ab b a 22+≥b a b a b a b a ++≥++222)()(2=a+b.(2)设a ,b ,c 都是正数,求证:2222222≥+++++a c c b b a (a+b+c ).思路分析:主要利用不等式2)(2222y x y x +≥+。
证明:由不等式a 2+b 2≥2)(22222b a ab b a +=++. ∴22b a +≥2ba +. 同理,2,22222ac a c cb c b +≥++≥+2)222(2222222=+++++=+++++∴ca cb ba a c cb b a (a+b+c )各个击破类题演练1已知a,b,c∈(0,+∞),且a ,b ,c 成等比数列,求证:a 2+b 2+c 2≥(a—b+c)2。
证明:左边-右边=2(ab+bc-ac)。
∵a,b ,c 成等比数列,∴b 2=ac.又∵a,b,c∈(0,+∞),∴0〈b=ac ≤2ca +〈a+c 。
∴a+c—b 〉0。
∴2(ab+bc —ac )=2(ab+bc —b 2)=2b(a+c —b )〉0,∴a 2+b 2+c 2>(a —b+c )2.变式提升1若a,b,c 是正数,能确定b a c c a b c b a +++++222与2c b a ++的大小吗? 解析:∵cb a +24+(b+c )≥4a, ac b +24+(c+a)≥4b, ba c +24+(a+b)≥4c , ∴c b a +24+a c b +24+ba c +24≥2(a+b+c ), 即b a c a c b c b a +++++222≥2c b a ++. 二、用综合法证明条件不等式【例2】 已知a,b ,c 〉0,且abc=1,求证:c b a ++≤a 1+b 1+c 1。
不等式的证明分析法与综合法习题(可编辑修改word版)
2.3 不等式的证明(2)——分析法与综合法习题知能目标锁定1.掌握分析法证明不等式的方法与步骤,能够用分析法证明一些复杂的不等式;2.了解综合法的意义,熟悉综合法证明不等式的步骤与方法;重点难点透视1.综合法与分析法证明不等式是重点,分析法是证明不等式的难点.方法指导1.分析法⑴分析法是证明不等式的一种常用方法.它的证明思路是:从未知,看需知,逐步靠已知.即”执果索因”.⑵分析法证明的逻辑关系是:结论 B ⇐B1 ⇐B2⇐ ⇐Bn⇐A⑶用分析法证题一定要注意书写格式,并保证步步可逆.(A 已确认).⑷用分析法探求方向,逐步剥离外壳,直至内核.有时分析法与综合法联合使用.当不等式两边有多个根式或多个分式时,常用分析法.2.综合法⑴ 综合法的特点是 :由因导果 .其逻辑关系是 :已知条件A ⇒B1 ⇒B2⇒ ⇒Bn⇒B (结论),后一步是前一步的必要条件.⑵在用综合法证题时要注意两点:常用分析法去寻找证题思路,找出从何处入手, 将不等式变形,使其结构特点明显或转化为容易证明的不等式.精题巧练一.夯实双基1.若a>2,b>2,则a b 与a+b 的大小关系是a b( )a+bA.= B. < C.> D.不能确定2.设b >a > 0 ,则下列不等式中正确的是()A.lga> 0 B. >b -a C.a<1 +aD.b<b + 1 b 1 +a 2 +a a a +1b -a2 xyb + 2 a bc x + y 3. 若 a ,b,c ∈ R + ,且 a+b+c=1,那么 1a + 1 +b 1有最小值( ) cA.6B.9C.4D.34. 设a = 2, b = - 3, c = - ,那么 a ,b,c 的大小关系是( )A .a > b > cB .a > c > bC .b > a > cD .b > c > a 5. 若 x >y>1,则下列 4 个选项中最小的是( )A. x + yB.2xyC. D. 1 ( 1 + 1 )2 二.循序厚积x + y2 x y6. 已知两个变量 x,y 满足 x+y=4,则使不等式 1 +4≥ m 恒成立的实数m 的取值范围是;7. 已知 a,b 为正数,且 a+b=1 则 x y+ 的最大值为 ;8. 若 a ,b,c ∈ R +,且 a +b+c=1,则+ + 的最大值是;9. 若 x y+yz+zx=1,则 x 2 + y 2 + z 2 与 1 的关系是;10. 10.若a > b > 0, m = - b , n = ,则 m 与 n 的大小关系是.三、提升能力11. a 、b 、c 、d 是不全相等的正数,求证:(a b+cd)(ac+bd)>abcd12.设 x >0,y>0,求证:≤ 213. 已知 a,b ∈ R + ,且 a+b=1,求证: (a + 1 )2 + (b + 1 )2≥25. a b27 6 a + 2 aa - bx + y214. 设 a,b,c 是不全相等的正数,求证: lg a + b + lg b + c + lg a + c> lg a + lg b + lg c .2 2 215. 如果直角三角形的周长为 2,则它的最大面积是多少?友情提示易错点:乱用均值不等式;误用分析法,把”逆求”作为”逆推”,以证” p ⇒ q 为例, 这时的推理过程就是: q ⇒ q 1 ⇒ q 2 ⇒ ⇒ q n ⇒ p .证明的结果是证明了逆命题”q ⇒ p ”.而正确的推证过程是: q ⇐ q 1 ⇐ q 2 ⇐ ⇐ q n ⇐ p . 易忽视点:均值不等式中能否取道”=”的条件分析易被忽视导致出错. 解题规律:用定理,抓步骤,重格式.。
高中数学—综合法与分析法
∵∴即a2>(aab->-1bcb),(+b-bc-1)c(c+-ca)-1<a0, 0 成立.
5. 已知 m, nR+,
求证
m
+ 2
n
m+n
mnnm
.
证明: ∵ m, nR+,
要证
m+ 2
n
m+n
mnnm
,
只需证
(
m+ 2
n
)m+n
mnnm
,
(
m+ 2
n
)m+n
(
mn )m+n ,
∴只需证 ( mn)m+n mnnm,
b3+c3=(b+c)(b2-bc+c2) ≥(b+c)bc, c3+a3=(c+a)(c2-ca+a2) ≥(c+a)ca, ∴2(a3+b3+c3)≥(a+b)ab+(b+c)bc+(c+a)ca
=a2b+ab2+b2c+bc2+c2a+ca2 =a2(b+c)+b2(a+c)+c2(a+b).
配方计算得 (a-b)2+(b-c)2+(c-a)2>0,
∵a, b, c互不相等, ∴(a-b)2+(b-c)2+(c-a)2>0 成立, ∴原不等式成立.
4. 已知 a>b>c,
求证
1 a-b
+
1 b-c
+
1 c-a
分析法综合法证明不等式
设a、b、c均为正数,且a+b+c=1,证明:
(1)ab+bc+ac≤ ;(2) + + ≥1.
证明:(1)由a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ac得a2+b2+c2≥ab+bc+ca.由题设得(a+b+c)2=1,即a2+b2+c2+2ab+2bc+2ca=1.所以3(ab+bc+ca)≤式是“由因导果”,用分析法证明不等式是“执果索因”,它们是两种思路截然相反的证明方法.综合法往往是分析法的逆过程,表述简单、条理清楚,所以在实际应用时,往往用分析法找思路,用综合法写步骤,由此可见,分析法与综合法相互转化,互相渗透,互为前提,充分利用这一辩证关系,可以增加解题思路,开阔视野.
分析法、综合法证明不等式
【例2】(1)已知x,y均为正数,且x>y,求证:2x+ ≥2y+3;
(2)设a,b,c>0且ab+bc+ca=1,求证:a+b+c≥ .
【证明】(1)因为x>0,y>0,x-y>0,2x+ -2y=2(x-y)+ =(x-y)+(x-y)+ ≥
3 =3,所以2x+ ≥2y+3.
(2)因为a,b,c>0,所以要证a+b+c≥ ,只需证明(a+b+c)2≥3.即证:a2+b2+c2+2(ab+bc+ca)≥3,而ab+bc+ca=1,故需证明:a2+b2+c2+2(ab+bc+ca)≥3(ab+bc+ca).即证:a2+b2+c2≥ab+bc+ca.而ab+bc+ca≤ + + =a2+b2+c2(当且仅当a=b=c时等号成立)成立.所以原不等式成立.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 / 2
§6.2综合法和分析法证明不等式
【复习目标】
1. 熟悉证明不等式的综合法、分析法,并能应用其证明不等式;
2. 理解分析法的实质是“执果索因”;注意用分析法证明不等式的表述格式;
3. 对于较复杂的不等式,能综合使用各种方法给予证明。
【重点难点】
综合法的难点在于从何处出发进行论证并不明确,因此我们经常用分析法寻找解题的思路,再用综合法表述。
分析法是“执果索因”,综合法是“由因导果”。
要注意分析法的表述格式。
【课前预习】
1. “a>1”是“11<a
”的() A. 充分但不必要条件 B. 必要但不充分条件 C. 充要条件 D. 既不充分也不必要条
2.
3)a ≥
3. 证明a 2+b 2+c 2≥ab+bc+ac.
4. 设a,b,c ∈R +,则三个数b a 1+,c b 1+,a
c 1+的值,则 ( ) A. 都大于2 B. 至少有一个不大于2 C. 都小于2 D. 至少有一个不小于2
【典型例题】
例1 (1)已知,x y R +∈,且21x y +=
,求证:
113x y
+≥+ (2)设a,b,c 都是正数,求证:c b a a c c b b a ++≥++. 例2 已知a>0,b>0,2c>a+b. 求证:c -ab c -2<a<c+ab c -2.
例3 若21)(x x f +=,a ≠b. 求证b a b f a f -<-)()(.
【巩固练习】
1. 设23-=a ,56-=b ,67-=c , 则a,b,c 大小顺序是 ( )
A .a>b>c
B .b>c>a
C .c>a>b
D .a>c>b
2. 设0<a<b,a+b=1,在下列不等式中正确的是 ( )
A .b<2ab<22b a +<a 2+b 2
B .2ab<b<a 2+b 2<22b a +
C .2ab<a 2+b 2<22b a +<b
D .2ab<a 2+b 2<b<22b a +
3. a>b>1,P=b a lg lg ,Q=)lg (lg 21b a +,R=)2
lg(b a + ( ) A .R<P<Q B .P<Q<R C .Q<P<R D .P<R<Q
【本课小结】
【课后作业】
1. 已知:a,b,c 为正实数.求证:bc ac ab a b c a b c
++≥++.
2. 设x>0,y>0,证明:3
1332122)()(y x y x +>+. 3. 已知a >0,b >0,且a 2+22b =1,求证:a 21b +≤4
23. 4. 若x 、y 是正实数,x+y=1,求证:(1+x 1)(1+y 1)≥9.。