动量守恒经典例题
动量守恒定律典型例题

动量守恒定律的典型例题【例1】把一支枪固定在小车上,小车放在光滑的水平桌面上.枪发射出一颗子弹.对于此过程,下列说法中正确的有哪些?[]A.枪和子弹组成的系统动量守恒B.枪和车组成的系统动量守恒C.车、枪和子弹组成的系统动量守恒D.车、枪和子弹组成的系统近似动量守恒,因为子弹和枪筒之间有摩擦力.且摩擦力的冲量甚小【例2】一个质量M=1kg的鸟在空中v0=6m/s沿水平方向飞行,离地面高度h=20m,忽被一颗质量m=20g 沿水平方向同向飞来的子弹击中,子弹速度v=300m/s,击中后子弹留在鸟体内,鸟立即死去,g=10m/s2.求:鸟被击中后经多少时间落地;鸟落地处离被击中处的水平距离.【例3】一列车沿平直轨道以速度v0匀速前进,途中最后一节质量为m的车厢突然脱钩,若前部列车的质量为M,脱钩后牵引力不变,且每一部分所受摩擦力均正比于它的重力,则当最后一节车厢滑行停止的时刻,前部列车的速度为[]【例4】质量m1=10g的小球在光滑的水平桌面上以v1=30cm/s的速率向右运动,恰好遇上在同一条直线上向左运动的另一个小球.第二个小球的质量为m2=50g,速率v2=10cm/s.碰撞后,小球m2恰好停止.那么,碰撞后小球m1的速度是多大,方向如何?【例5】甲、乙两小孩各乘一辆冰车在水平冰面上游戏.甲和他的冰车的总质量共为M=30kg,乙和他的冰车的总质量也是30kg.游戏时,甲推着一质量为m=15km的箱子,和他一起以大小为v0=2m/s的速度滑行.乙以同样大小的速度迎面滑来.为了避免相撞,甲突然将箱子沿冰面推给乙,箱子到乙处时乙迅速把它抓住.若不计冰面的摩擦力,求甲至少要以多大的速度(相对于地面)将箱子推出,才能避免和乙相碰.【例6】两辆质量相同的小车A和B,置于光滑水平面上,一人站在A车上,两车均静止.若这个人从A 车跳到B车上,接着又跳回A车,仍与A车保持相对静止,则此时A车的速率[]A.等于零B.小于B车的速率C.大于B车的速率D.等于B车的速率【例7】甲、乙两船在平静的湖面上以相同的速度匀速航行,且甲船在前乙船在后.从甲船上以相对于甲船的速度v,水平向后方的乙船上抛一沙袋,其质量为m.设甲船和沙袋总质量为M,乙船的质量也为M.问抛掷沙袋后,甲、乙两船的速度变化多少?【分析】由题意可知,沙袋从甲船抛出落到乙船上,先后出现了两个相互作用的过程,即沙袋跟甲船和沙袋跟乙船的相互作用过程.在这两个过程中的系统,沿水平方向的合外力为零,因此,两个系统的动量都守恒.值得注意的是,题目中给定的速度选择了不同的参照系.船速是相对于地面参照系,而抛出的沙袋的速度v是相对于抛出时的甲船参照系.【解】取甲船初速度V的方向为正方向,则沙袋的速度应取负值.统一选取地面参照系,则沙袋抛出前,沙袋与甲船的总动量为MV.沙袋抛出后,甲船的动量为(M-m)v甲',沙袋的动量为m(v甲'-v).根据动量守恒定律有MV=(M-m)v甲'+m(v甲'-v).(1)取沙袋和乙船为研究对象,在其相互作用过程中有MV+m(v甲'-v)=(M+m)v乙'.(2)联立(l)、(2)式解得则甲、乙两船的速度变化分别为【例8】小型迫击炮在总质量为1000kg的船上发射,炮弹的质量为2kg.若炮弹飞离炮口时相对于地面的速度为600m/s,且速度跟水平面成45°角,求发射炮弹后小船后退的速度?【例9】两块厚度相同的木块A和B,并列紧靠着放在光滑的水平面上,其质量分别为m A=2.0kg,m B=0.90kg.它们的下底面光滑,上表面粗糙.另有质量m C=0.10kg的铅块C(其长度可略去不计)以v C=10m/s 的速度恰好水平地滑到A的上表面(见图),由于摩擦,铅块最后停在本块B上,测得B、C的共同速度为v=0.50m/s,求木块A的速度和铅块C离开A时的速度.【分析】C滑上A时,由于B与A紧靠在一起,将推动B一起运动.取C与A、B这一系统为研究对象,水平方向不受外力,动量守恒.滑上后,C在A的摩擦力作用下作匀减速运动,(A+B)在C的摩擦力作用下作匀加速运动.待C滑出A后,C继续减速,B在C的摩擦力作用下继续作加速运动,于是A与B分离,直至C最后停于B上.【解】设C离开A时的速度为v C,此时A、B的共同速度为v A,对于C刚要滑上A和C刚离开A这两个瞬间,由动量守恒定律知m C v C=(m A+m B)v A+m C v'C(1)以后,物体C离开A,与B发生相互作用.从此时起,物体A不再加速,物体B将继续加速一段时间,于是B与A分离.当C相对静止于物体B上时,C与B的速度分别由v'C和v A变化到共同速度v.因此,可改选C与B为研究对象,对于C刚滑上B和C、B相对静止时的这两个瞬间,由动量守恒定律知m C v'C+m B v A=(m B+m C)v(2)由(l)式得m C v'C=m C v C-(m A+m B)v A代入(2)式m C v'C-(m A+m C)v A+m B v A=(m B+m C)v.得木块A的速度所以铅块C离开A时的速度【说明】应用动量守恒定律时,必需明确研究对象,即是哪一个系统的动量守恒.另外需明确考察的是系统在哪两个瞬间的动量.如果我们始终以(C+A+B)这一系统为研究对象,并考察C刚要滑上A和C刚离开A,以及C、B刚相对静止这三个瞬间,由于水平方向不受外力,则由动量守恒定律知m C v C=(m A+m B)v A+m C v'C=m A v A+(m B+m C)v.同样可得【例10】在静止的湖面上有一质量M=100kg的小船,船上站立质量m=50kg的人,船长L=6m,最初人和船静止.当人从船头走到船尾(如图),船后退多大距离?(忽略水的阻力)【例13】一个静止的质量为M的原子核,放射出一个质量为m的粒子,粒子离开原子核时相对于核的速度为v0,原子核剩余部分的速率等于[]。
物理动量守恒定律题20套(带答案)

考点:考查了动量守恒定律的应用 【名师点睛】要使两车不相撞,甲车以最小的水平速度将小球发射到乙车上的临界条件是 两车速度相同,以甲车、球与乙车为系统,由系统动量守恒列出等式,再以球与乙车为系 统,由系统动量守恒列出等式,联立求解
2.一质量为 的子弹以某一初速度水平射入置于光滑水平面上的木块 并留在其中, 与木块 用一根弹性良好的轻质弹簧连在一起,开始弹簧处于原长,如图所示.已知弹簧
代入数据解得:E 损=0.25J 答:①碰后 A 球的速度为 1.0m/s; ②碰撞过程中 A、B 系统损失的机械能为 0.25J. 【点评】小球碰撞过程中动量守恒、机械能不守恒,由动量守恒定律与能量守恒定律可以 正确解题,应用动量守恒定律解题时要注意正方向的选择.
9.如图所示,光滑平行金属导轨的水平部分处于竖直向下的 B=4T 的匀磁场中,两导轨间 距 L=0.5m,导轨足够长金属棒 a 和 b 的质量都为 m=1kg,电阻 Ra Rb 1 .b 棒静止于轨 道水平部分,现将 a 棒从 h=80cm 高处自静止沿弧形轨道下滑,通过 C 点进入轨道的水平 部分,已知两棒在运动过程中始终保持与导轨垂直,且两棒始终不相碰.求 a、b 两棒的最 终速度大小以及整个过程中 b 棒中产生的焦耳热(已知重力加速度 g 取 10m/s2)
根据题意: m1 : m2 2
有以上四式解得: v2 2 2gR
接下来男演员做平抛运动:由 4R 1 gt2 ,得 t 8R
2
g
因而: s v2t 8R ; 【点睛】
两演员一起从从 A 点摆到 B 点,只有重力做功,根据械能守恒定律求出最低点速度;女 演员在极短时间内将男演员沿水平方向推出,两演员系统动量守恒,由于女演员刚好能回
Q
25道物理动量守恒的大题

1用放射源钋的α射线轰击铍时,能发射出一种穿透力极强的中性射线,这就是所谓铍“辐射”。
1932年,查德威克用铍“辐射”分别照射(轰击)氢和氮(它们可视为处于静止状态)。
测得照射后沿铍“辐射”方向高速运动的氢核和氮核的速度之比为7.0。
查德威克假设铍“辐射”是由一种质量不为零的中性粒子构成的,从而通过上述实验在历史上首次发现了中子。
假设铍“辐射”中的中性粒子与氢或氮发生弹性正碰,试在不考虑相对论效应的条件下计算构成铍“辐射”的中性粒子的质量。
(质量用原子质量单位u表示,1 u等于1个12C 原子质量的十二分之一。
取氢核和氦核的质量分别为1.0 u和14 u。
)分析与求解:设构成铍“辐射”的中性粒子的质量和速度分别为m和v,氢核的质量为m H。
构成铍“辐射”的中性粒子与氢核发生弹性正碰,碰后两粒子的速度分别为v/和v H/。
对于电子、质子、中子、原子核等粒子,在物理过程中的重力通常不计,因此,在中性粒子与氢核的碰撞过程中,二者不受外力作用,它们的总动量守恒;又由于二者的碰撞属于弹性碰撞,同们的总动能保持不变,分别运用动量守恒与能量守恒定律得:mv=mv′+m H v H′;解此两式碰后氢核的速度:同理,对于质量为m N的氮核,亦可求得其碰后速度为,由及的表达式可求得:,根据题意可知:v H′=7.0v N′解此两式可得中性粒子的质量:m=1.2u2如图所示,质量均为m的A、B两个弹性小球,用长为2L的不可伸长的轻绳连接。
现把小球A、B置于距地面高H(H足够大)处,间距为L,当A球自由下落的同时,B球以水平速度v o指向A球水平抛出,求:(1)两球从开始运动到相碰,A球下落的距离;(2)A、B两球相碰(碰撞时无机械能损失)后,各自速度的水平分量;(3)轻绳拉直过程中,B球受到绳子拉力的冲量大小。
分析与求解:由于A球自由下落,B球水平抛出,所以,两球始终位于同一水平线上。
水平方向上两球的运动情景是B球以速度v o匀速运动L后与“静止”的A球碰撞,由于无机械能损失,碰撞后两球互换速度,此后,A球以速度v o匀速运动2L后,使绳子拉直,A、B获得相同的速度,而这个拉直过程中,两球水平方向不受外力作用,水平方向总动量守恒。
物理动量守恒定律题20套(带答案)及解析

物理动量守恒定律题20套(带答案)及解析一、高考物理精讲专题动量守恒定律1.如图所示,在水平地面上有两物块甲和乙,它们的质量分别为2m 、m ,甲与地面间无摩擦,乙与地面间的动摩擦因数恒定.现让甲以速度0v 向着静止的乙运动并发生正碰,且碰撞时间极短,若甲在乙刚停下来时恰好与乙发生第二次碰撞,试求:(1)第一次碰撞过程中系统损失的动能 (2)第一次碰撞过程中甲对乙的冲量 【答案】(1)2014mv ;(2) 0mv 【解析】 【详解】解:(1)设第一次碰撞刚结束时甲、乙的速度分别为1v 、2v ,之后甲做匀速直线运动,乙以2v 初速度做匀减速直线运动,在乙刚停下时甲追上乙碰撞,因此两物体在这段时间平均速度相等,有:212v v =而第一次碰撞中系统动量守恒有:01222mv mv mv =+ 由以上两式可得:012v v =,20 v v = 所以第一次碰撞中的机械能损失为:222201201111222224E m v m v mv mv ∆=--=gg g g (2)根据动量定理可得第一次碰撞过程中甲对乙的冲量:200I mv mv =-=2.如图所示,一小车置于光滑水平面上,轻质弹簧右端固定,左端栓连物块b ,小车质量M =3kg ,AO 部分粗糙且长L =2m ,动摩擦因数μ=0.3,OB 部分光滑.另一小物块a .放在车的最左端,和车一起以v 0=4m/s 的速度向右匀速运动,车撞到固定挡板后瞬间速度变为零,但不与挡板粘连.已知车OB 部分的长度大于弹簧的自然长度,弹簧始终处于弹性限度内.a 、b 两物块视为质点质量均为m =1kg ,碰撞时间极短且不粘连,碰后一起向右运动.(取g =10m/s 2)求:(1)物块a 与b 碰后的速度大小;(2)当物块a 相对小车静止时小车右端B 到挡板的距离;(3)当物块a相对小车静止时在小车上的位置到O点的距离.【答案】(1)1m/s (2) (3) x=0.125m【解析】试题分析:(1)对物块a,由动能定理得:代入数据解得a与b碰前速度:;a、b碰撞过程系统动量守恒,以a的初速度方向为正方向,由动量守恒定律得:,代入数据解得:;(2)当弹簧恢复到原长时两物块分离,a以在小车上向左滑动,当与车同速时,以向左为正方向,由动量守恒定律得:,代入数据解得:,对小车,由动能定理得:,代入数据解得,同速时车B端距挡板的距离:;(3)由能量守恒得:,解得滑块a与车相对静止时与O点距离:;考点:动量守恒定律、动能定理。
动量守恒定律经典例题

甲(含船)和球、乙(含船)和球、甲乙(含船 )和球
(2)若最终甲的速度为0,乙的速度为多少?
甲
乙
如图所示,光滑水平面上两小车中间夹一压缩了的轻弹
簧,两手分别按住小车,使它们静止,对两车及弹簧组
成的系统,下列说法中正确的是(
)
A.两手同时放开后,系统总动量始终为零
B.先放开左手,后放开右手,动量不守恒
(B)若A、B与平板车上表面间的动摩擦因数相 同,A、B、C组成的系统的动量守恒
(C)若A、B所受的摩擦力大小相等,A、B组成 的系统的动量守恒
(D)若A、B所受的摩擦力大小相等,A、B、C组 成的系统的动量守恒
BCD
如图所示,A、B两物体的质量比mA∶mB=3∶2, 它们原来静止在平板车C上,A、B间有一根被压 缩了的弹簧,A、B与长平板车的上表面间动摩擦 因数相同,地面光滑.当弹簧突然释放后,则有 A.A、B
A.当小球到达最低点时,木块有最大速率 B.当小球的速率最大时,木块有最大速率 C.当小球再次上升到最高点时,木块的速率为最大 D.当小球再次上升到最高点时,木块的速率为零
ABD
质量为M的小车中挂有一个单摆,摆球的质量为M0,小车和单摆 以恒定的速度V0沿水平地面运动,与位于正对面的质量为M1的 静止木块发生碰撞,碰撞时间极短,在此过程中,下列哪些说 法是可能发生的( ) A.小车、木块、摆球的速度都发生变化,分别为V1、V2和V3, 且满足:(M+M0)V0=MV1+M1V2+M0V3; B.摆球的速度不变,小车和木块的速度为V1、V2,且满足:
B.A、B、C系统动量守恒 C. D.小车向右运动
BC
热气球下面吊着一个篮子,向上做匀速直线 运动,剪断绳子后在篮子落地前,系统的动 量是否守恒?若篮子落地后呢?
动量守恒例子

动量守恒例子
1. 你看那打台球的时候呀,一个球去撞击另一个球,撞完之后呢,前面那个球的动量就转移到后面那个球上啦,这多明显的动量守恒例子呀!
2. 哎呀,就像我们玩抛接球游戏,把球扔出去,球在空中飞的时候,整个系统的动量不也是守恒的嘛!
3. 想想看那些碰碰车呀,两辆车撞在一起又弹开,它们的动量不就是在相互转换,这不就是动量守恒嘛,多好玩!
4. 你说火箭发射的时候,燃料燃烧产生的推力让火箭飞出去,这从某种角度来说,也是动量守恒的应用呀,这可神奇了呢!
5. 孩子们玩的那种弹弓,把石子射出去,弹弓和石子之间的动量不也在变化但又守恒着嘛,你说是不是很有趣!
6. 就好比两个打架的人,互相推搡,他们之间的力量和动量也是在不停转换呀,这其实也是一种动量守恒的体现呀,只不过不太好罢了!
7. 再想想跳远比赛,运动员用力起跳,身体获得向前的动量,这也是符合动量守恒的呀,这多值得我们去观察和思考呀!
我的观点结论就是:生活中有好多好多动量守恒的例子呀,只要我们细心去观察,就能发现它们无处不在,实在是太奇妙啦!。
分方向(水平方向)动量守恒的应用常见例题全带答案

【例1】如图所示,在光滑旳水平面上有一物体M,物体上有一光滑旳半圆弧轨道,最低点为C,两端A、B同样高.现让小滑块m从A点静止下滑,则( )A.m不能达到小车上旳B点B.M与m构成旳系统机械能守恒,动量守恒C.m从A到B旳过程中小车始终向左运动,m达到B旳瞬间,M速度为零D.m从A到C旳过程中M向左运动,m从C到B旳过程中M向右运动变式1:如图所示,在光滑旳水平面上放有一物体M,物体上有一光滑旳半圆弧轨道,轨道半径为R,最低点为C,两端A、B等高,现让小滑块m从A点静止下滑,在此后旳过程中,则ﻫA.M和m构成旳系统机械能守恒,动量守恒B.M和m构成旳系统机械能守恒,动量不守恒ﻫC.m从A到B旳过程中,M运动旳位移为mmm+mD.m从A到C旳过程中M向左运动,m从C到B旳过程中M向右运动ﻫ例2、(多选)如下图(左)所示,小车质量为M,小车顶端为半径为R 旳四分之一光滑圆弧,质量为m旳小球从圆弧顶端由静止释放,对此运动过程旳分析,下列说法中对旳旳是(g为本地重力加速度) ( )A.若地面粗糙且小车可以静止不动,当小球滑到圆弧最低点时速度为√2mmB.若地面粗糙且小车可以静止不动,则小球对小车旳压力最大3mgC.若地面光滑,当小球滑到圆弧最低点时,小车速度为m错误!D.若地面光滑,当小球滑到圆弧最低点时,小车速度为M错误!变式1(多选)如上图(右)所示,将一种内、外侧均光滑旳半圆形槽,置于光滑旳水平面上,槽旳左侧有一种竖直墙壁.现让一种小球自左端槽口A旳正上方从静止开始下落,与半圆形槽相切从A点进入槽内,则如下说法对旳旳是()A.小球在半圆形槽内运动旳全过程中,小球与槽构成旳系统机械能守恒B.小球在半圆形槽内运动旳全过程中,小球与槽构成旳系统机械能不守恒C.小球从最低点向右侧最高点运动过程中,小球与槽构成旳系统在水平方向动量守恒D.小球离开槽右侧最高点后来,将做竖直上抛运动例3 如图所示,AB为一光滑水平横杆,杆上套一质量为M旳小圆环,环上系一长为L质量不计旳细绳,绳旳另一端拴一质量为m旳小球,现将绳拉直,且与AB平行,由静止释放小球,则当线绳与A B成θ角时,圆环移动旳距离是多少?变式1如图所示,光滑水平面上有一小车,小车上固定一杆,总质量为M;杆顶系一长为L旳轻绳,轻绳另一端系一质量为m旳小球.绳被水平拉直处在静止状态(小球处在最左端).将小球由静止释放,小球从最左端摆下并继续摆至最右端旳过程中,小车运动旳距离是多少?变式2 质量为M旳气球上有一质量为m旳人,共同静止在距地面高为h旳空中,目前从气球中放下一根不计质量旳软绳,人沿着软绳下滑到地面,软绳至少为多长,人才干安全达到地面?(忽视空气阻力)例4 如图所示,光滑水平面上有一质量为2M、半径为R(R足够大)旳圆弧曲面C,质量为M旳小球B置于其底端,另一种小球A质量为\f(M,2),以v0=6 m/s旳速度向B运动,并与B发生弹性碰撞,不计一切摩擦,小球均视为质点,求:(1)小球B旳最大速率;(2)小球B运动到圆弧曲面最高点时旳速率;(3)通过计算判断小球B能否与小球A再次发生碰撞。
物理动量守恒定律题20套(带答案)及解析

物理动量守恒定律题20套(带答案)及解析一、高考物理精讲专题动量守恒定律1.如图所示,一个带圆弧轨道的平台固定在水平地面上,光滑圆弧MN 的半径为R =3.2m ,水平部分NP 长L =3.5m ,物体B 静止在足够长的平板小车C 上,B 与小车的接触面光滑,小车的左端紧贴平台的右端.从M 点由静止释放的物体A 滑至轨道最右端P 点后再滑上小车,物体A 滑上小车后若与物体B 相碰必粘在一起,它们间无竖直作用力.A 与平台水平轨道和小车上表面的动摩擦因数都为0.4,且最大静摩擦力与滑动摩擦力大小相等.物体A 、B 和小车C 的质量均为1kg ,取g =10m/s 2.求(1)物体A 进入N 点前瞬间对轨道的压力大小? (2)物体A 在NP 上运动的时间? (3)物体A 最终离小车左端的距离为多少?【答案】(1)物体A 进入N 点前瞬间对轨道的压力大小为30N ; (2)物体A 在NP 上运动的时间为0.5s (3)物体A 最终离小车左端的距离为3316m 【解析】试题分析:(1)物体A 由M 到N 过程中,由动能定理得:m A gR=m A v N 2 在N 点,由牛顿定律得 F N -m A g=m A 联立解得F N =3m A g=30N由牛顿第三定律得,物体A 进入轨道前瞬间对轨道压力大小为:F N ′=3m A g=30N (2)物体A 在平台上运动过程中 μm A g=m A a L=v N t-at 2代入数据解得 t=0.5s t=3.5s(不合题意,舍去) (3)物体A 刚滑上小车时速度 v 1= v N -at=6m/s从物体A 滑上小车到相对小车静止过程中,小车、物体A 组成系统动量守恒,而物体B 保持静止 (m A + m C )v 2= m A v 1 小车最终速度 v 2=3m/s此过程中A 相对小车的位移为L 1,则2211211222mgL mv mv μ=-⨯解得:L 1=94m物体A 与小车匀速运动直到A 碰到物体B ,A ,B 相互作用的过程中动量守恒: (m A + m B )v 3= m A v 2此后A ,B 组成的系统与小车发生相互作用,动量守恒,且达到共同速度v 4 (m A + m B )v 3+m C v 2=" (m"A +m B +m C ) v 4 此过程中A 相对小车的位移大小为L 2,则222223*********mgL mv mv mv μ=+⨯-⨯解得:L 2=316m 物体A 最终离小车左端的距离为x=L 1-L 2=3316m 考点:牛顿第二定律;动量守恒定律;能量守恒定律.2.如图所示,一辆质量M=3 kg 的小车A 静止在光滑的水平面上,小车上有一质量m=l kg 的光滑小球B ,将一轻质弹簧压缩并锁定,此时弹簧的弹性势能为E p =6J ,小球与小车右壁距离为L=0.4m ,解除锁定,小球脱离弹簧后与小车右壁的油灰阻挡层碰撞并被粘住,求:①小球脱离弹簧时的速度大小;②在整个过程中,小车移动的距离。
动量守恒定律的各种题型

动量守恒定律应用的各种题型1.两球碰撞型【例题1】甲乙两球在水平光滑轨道上向同方向运动,已知它们的动量分别是P 1=5kgm/s ,P 2=7kgm/s ,甲从后面追上乙并发生碰撞,碰后乙球的动量变为10 kgm/s ,则二球质量m 1与m 2间的关系可能是下面的哪几种?A 、m 1=m 2B 、2m 1=m 2C 、4m 1=m 2D 、6m 1=m 2。
★解析:甲乙两球在碰撞过程中动量守恒,所以有: P 1+P 2= P 1,+ P 2,即:P 1,=2 kgm/s 。
由于在碰撞过程中,不可能有其它形式的能量转化为机械能,只能是系统内物体间机械能相互转化或一部分机械能转化为内能,因此系统的机械能不会增加。
所以有:22'212'12221212222m P m P m P m P +≥+ 所以有:m 1≤5121m 2,不少学生就选择(C 、D )选项。
这个结论合“理”,但却不合“情”。
因为题目给出物理情景是“甲从后面追上乙”,要符合这一物理情景,就必须有2211m P m P 〉,即m 1275m 〈;同时还要符合碰撞后乙球的速度必须大于或等于甲球的速度这一物理情景,即2'21'1m P m P 〈,所以 2151m m 〉。
因此选项(D )是不合“情”的,正确的答案应该是(C )选项。
2、子弹打木块型(动量守恒、机械能不守恒)【例题2】质量为m 的子弹,以水平初速度v 0射向质量为M 的长方体木块。
(1)设木块可沿光滑水平面自由滑动,子弹留在木块内,木块对子弹的阻力恒为f ,求弹射入木块的深度L 。
并讨论:随M 的增大,L 如何变化?(2)设v 0=900m/s ,当木块固定于水平面上时,子弹穿出木块的速度为v 1=100m/s 。
若木块可沿光滑水平面自由滑动,子弹仍以v 0=900m/s 的速度射向木块,发现子弹仍可穿出木块,求M/m 的取值范围(两次子弹所受阻力相同)。
动量守恒定律典型例题解析

动量守恒定律·典型例题解析【例1】 如图52-1所示,在光滑的水平面上,质量为m 1的小球以速度v 1追逐质量为m 2,速度为v 2的小球,追及并发生相碰后速度分别为v 1′和v 2′,将两个小球作为系统,试根据牛顿运动定律推导出动量守恒定律.解析:在两球相互作用过程中,根据牛顿第二定律,对小球1有:F ==,对有′==.由牛顿第三定律得=m a m m F m a m F 1112222∆∆∆∆v t v t 12 -F ′,所以F ·Δt =-F ′·Δt ,m 1Δv 1=-m 2Δv 2,即m 1(v 1′-v 1)=-m 2(v 2′-v 2),整理后得:m 1v 1+m 2v 2=m 1v 1′+m 2v 2′,这表明以两小球为系统,系统所受的合外力为零时,系统的总动量守恒.点拨:动量守恒定律和牛顿运动定律是一致的,当系统内受力情况不明,或相互作用力为变力时,用牛顿运动定律求解很繁杂,而动量定理只管发生相互作用前、后的状态,不必过问相互作用的细节,因而避免了直接运用牛顿运动定律解题的困难,使问题简化.【例2】 把一支枪水平地固定在光滑水平面上的小车上,当枪发射出一颗子弹时,下列说法正确的是[ ]A .枪和子弹组成的系统动量守恒B .枪和车组成的系统动量守恒C .子弹、枪、小车这三者组成的系统动量守恒D .子弹的动量变化与枪和车的动量变化相同解析:正确答案为C点拨:在发射子弹时,子弹与枪之间,枪与车之间都存在相互作用力,所以将枪和子弹作为系统,或枪和车作为系统,系统所受的合外力均不为零,系统的动量不守恒,当将三者作为系统时,系统所受的合外力为零,系统的动量守恒,这时子弹的动量变化与枪和车的动量变化大小相等,方向相反.可见,系统的动量是否守恒,与系统的选取直接相关.【例3】 如图52-2所示,设车厢的长度为l ,质量为M ,静止于光滑的水平面上,车厢内有一质量为m 的物体以初速度v 0向右运动,与车厢壁来回碰撞n 次后,静止在车厢中,这时车厢的速度为_______,方向与v 0的方向_______.点拨:不论物体与车厢怎样发生作用,碰撞多少次,将物体与车厢作为系统,物体与车厢间作用力是内力,不改变系统的总动量,同时这一系统所受的合外力为零,系统的总动量守恒,以v 0为正方向,有mv 0=(M +m)v ′.【例4】 一辆列车的总质量为M ,在平直的水平轨道上以速度v 匀速行驶,突然最后一节质量为m 的车厢脱钩,假设列车所受的阻力与车的重量成正比,机车的牵引力不变,当脱钩的车厢刚好停止运动时,前面列车的速度为多大?点拨:以整列列车为系统,不管最后一节车厢是否脱钩,系统所受的外力在竖直方向上重力与轨道给系统的弹力相平衡,在运动方向上牵引力与系统所受的总的阻力相平衡,即系统所受的外力为零,总动量守恒.参考答案例,相同例-3 mv M +m 4 M M mv 0跟踪反馈1.在光滑水平面上有两个质量不等的物体,它们之间夹一被压缩的弹簧,开始时两物用细绳相连,烧断细绳后两物体[ ]A .在任何时刻加速度大小相等B .在任何时刻速度大小相等C .在任何时刻动量大小相等D .在任意一段时间内,弹簧对两物体的冲量相同2.沿一直线相向运动的甲、乙两质点,作用前动量分别是P 1=10kg ·m/s ,P 2=-18kg ·m/s ,作用后甲的动量为-1kg ·m/s ,不计任何外界阻力,则作用后乙的动量为[ ]A .-29kg ·m/sB.29kg·m/sC.-7kg·m/sD.7kg·m/s3.质量为490g的木块静止在光滑水平面上,质量为10g的子弹以500m/s 的速度水平射入木块并嵌在其中,从子弹刚射入木块至与木块相对静止的过程中,木块增加的动量为_______kg·m/s,它们的共同运动速度为_______m/s.4.质量为120t的机车,向右匀速滑行与静止的质量均为60t的四节车厢挂接在一起运动,由于四节车厢的挂接,使机车的速度减小了3m/s,求机车在挂接前的速度.参考答案1.C 2.C 3.4.9;10 4.4.5m/s;方向向右。
高中物理动量守恒定律题20套(带答案)及解析

高中物理动量守恒定律题20套(带答案)及解析一、高考物理精讲专题动量守恒定律1.水平放置长为L=4.5m 的传送带顺时针转动,速度为v =3m/s ,质量为m 2=3kg 的小球被长为1l m =的轻质细线悬挂在O 点,球的左边缘恰于传送带右端B 对齐;质量为m 1=1kg 的物块自传送带上的左端A 点以初速度v 0=5m/s 的速度水平向右运动,运动至B 点与球m 2发生碰撞,在极短的时间内以碰撞前速率的12反弹,小球向右摆动一个小角度即被取走。
已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度210m/s g =。
求:(1)碰撞后瞬间,小球受到的拉力是多大?(2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少? 【答案】(1)42N (2)13.5J 【解析】 【详解】解:设滑块m1与小球碰撞前一直做匀减速运动,根据动能定理:221111011=22m gL m v m v μ--解之可得:1=4m/s v 因为1v v <,说明假设合理滑块与小球碰撞,由动量守恒定律:21111221=+2m v m v m v - 解之得:2=2m/s v碰后,对小球,根据牛顿第二定律:2222m v F m g l-=小球受到的拉力:42N F =(2)设滑块与小球碰撞前的运动时间为1t ,则()01112L v v t =+ 解之得:11s t =在这过程中,传送带运行距离为:113S vt m == 滑块与传送带的相对路程为:11 1.5X L X m ∆=-=设滑块与小球碰撞后不能回到传送带左端,向左运动最大时间为2t 则根据动量定理:121112m gt m v μ⎛⎫-=-⋅⎪⎝⎭解之得:22s t =滑块向左运动最大位移:121122m x v t ⎛⎫=⋅⋅ ⎪⎝⎭=2m 因为m x L <,说明假设成立,即滑块最终从传送带的右端离开传送带 再考虑到滑块与小球碰后的速度112v <v , 说明滑块与小球碰后在传送带上的总时间为22t在滑块与传送带碰撞后的时间内,传送带与滑块间的相对路程22212X vt m ∆==因此,整个过程中,因摩擦而产生的内能是()112Q m g x x μ=∆+∆=13.5J2.如图所示,质量为M =2kg 的小车静止在光滑的水平地面上,其AB 部分为半径R =0.3m的光滑14圆孤,BC 部分水平粗糙,BC 长为L =0.6m 。
物理动量守恒定律题20套(带答案)

物理动量守恒定律题20套(带答案)一、高考物理精讲专题动量守恒定律1.在图所示足够长的光滑水平面上,用质量分别为3kg和1kg的甲、乙两滑块,将仅与甲拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板P.现将两滑块由静止释放,当弹簧恢复原长时,甲的速度大小为2m/s,此时乙尚未与P相撞.①求弹簧恢复原长时乙的速度大小;②若乙与挡板P碰撞反弹后,不能再与弹簧发生碰撞.求挡板P对乙的冲量的最大值.【答案】v乙=6m/s. I=8N【解析】【详解】(1)当弹簧恢复原长时,设甲乙的速度分别为和,对两滑块及弹簧组成的系统,设向左的方向为正方向,由动量守恒定律可得:又知联立以上方程可得,方向向右。
(2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为由动量定理可得,挡板对乙滑块冲量的最大值为:2.如图:竖直面内固定的绝缘轨道abc,由半径R=3 m的光滑圆弧段bc与长l=1.5 m的粗糙水平段ab在b点相切而构成,O点是圆弧段的圆心,Oc与Ob的夹角θ=37°;过f点的竖直虚线左侧有方向竖直向上、场强大小E=10 N/C的匀强电场,Ocb的外侧有一长度足够长、宽度d =1.6 m的矩形区域efgh,ef与Oc交于c点,ecf与水平向右的方向所成的夹角为β(53°≤β≤147°),矩形区域内有方向水平向里的匀强磁场.质量m2=3×10-3 kg、电荷量q=3×l0-3 C的带正电小物体Q静止在圆弧轨道上b点,质量m1=1.5×10-3 kg的不带电小物体P从轨道右端a以v0=8 m/s的水平速度向左运动,P、Q碰撞时间极短,碰后P以1 m/s的速度水平向右弹回.已知P与ab间的动摩擦因数μ=0.5,A、B均可视为质点,Q 的电荷量始终不变,忽略空气阻力,sin37°=0.6,cos37°=0.8,重力加速度大小g=10m/s2.求:(1)碰后瞬间,圆弧轨道对物体Q的弹力大小F N;(2)当β=53°时,物体Q刚好不从gh边穿出磁场,求区域efgh内所加磁场的磁感应强度大小B1;(3)当区域efgh内所加磁场的磁感应强度为B2=2T时,要让物体Q从gh边穿出磁场且在磁场中运动的时间最长,求此最长时间t及对应的β值.【答案】(1)24.610N F N -=⨯ (2)1 1.25B T = (3)127s 360t π=,001290143ββ==和 【解析】 【详解】解:(1)设P 碰撞前后的速度分别为1v 和1v ',Q 碰后的速度为2v 从a 到b ,对P ,由动能定理得:221011111-22m gl m v m v μ=- 解得:17m/s v =碰撞过程中,对P ,Q 系统:由动量守恒定律:111122m v m v m v '=+取向左为正方向,由题意11m/s v =-', 解得:24m/s v =b 点:对Q ,由牛顿第二定律得:2222N v F m g m R-=解得:24.610N N F -=⨯(2)设Q 在c 点的速度为c v ,在b 到c 点,由机械能守恒定律:22222211(1cos )22c m gR m v m v θ-+=解得:2m/s c v =进入磁场后:Q 所受电场力22310N F qE m g -==⨯= ,Q 在磁场做匀速率圆周运动由牛顿第二定律得:2211c c m v qv B r =Q 刚好不从gh 边穿出磁场,由几何关系:1 1.6m r d == 解得:1 1.25T B = (3)当所加磁场22T B =,2221m cm v r qB == 要让Q 从gh 边穿出磁场且在磁场中运动的时间最长,则Q 在磁场中运动轨迹对应的圆心角最大,则当gh 边或ef 边与圆轨迹相切,轨迹如图所示:设最大圆心角为α,由几何关系得:22cos(180)d r rα-︒-= 解得:127α=︒ 运动周期:222m T qB π=则Q 在磁场中运动的最长时间:222127127•s 360360360m t T qB παπ===︒此时对应的β角:190β=︒和2143β=︒3.两个质量分别为0.3A m kg =、0.1B m kg =的小滑块A 、B 和一根轻质短弹簧,弹簧的一端与小滑块A 粘连,另一端与小滑块B 接触而不粘连.现使小滑块A 和B 之间夹着被压缩的轻质弹簧,处于锁定状态,一起以速度03/v m s =在水平面上做匀速直线运动,如题8图所示.一段时间后,突然解除锁定(解除锁定没有机械能损失),两滑块仍沿水平面做直线运动,两滑块在水平面分离后,小滑块B 冲上斜面的高度为 1.5h m =.斜面倾角o 37θ=,小滑块与斜面间的动摩擦因数为0.15μ=,水平面与斜面圆滑连接.重力加速度g 取210/m s .求:(提示:o sin 370.6=,o cos370.8=)(1)A 、B 滑块分离时,B 滑块的速度大小. (2)解除锁定前弹簧的弹性势能.【答案】(1)6/B v m s = (2)0.6P E J = 【解析】试题分析:(1)设分离时A 、B 的速度分别为A v 、B v , 小滑块B 冲上斜面轨道过程中,由动能定理有:2cos 1sin 2B B B Bm gh m gh m v θμθ+⋅= ① (3分)代入已知数据解得:6/B v m s = ② (2分)(2)由动量守恒定律得:0()A B A A B B m m v m v m v +=+ ③ (3分) 解得:2/A v m s = (2分) 由能量守恒得:2220111()222A B P A A B Bm m v E m v m v ++=+ ④ (4分) 解得:0.6P E J = ⑤ (2分)考点:本题考查了动能定理、动量守恒定律、能量守恒定律.4.如图所示,质量M=1kg 的半圆弧形绝缘凹槽放置在光滑的水平面上,凹槽部分嵌有cd 和ef 两个光滑半圆形导轨,c 与e 端由导线连接,一质量m=lkg 的导体棒自ce 端的正上方h=2m 处平行ce 由静止下落,并恰好从ce 端进入凹槽,整个装置处于范围足够大的竖直方向的匀强磁场中,导体棒在槽内运动过程中与导轨接触良好。
动量守恒定律经典习题(带答案)

动量守恒定律习题(带答案)(基础、典型)例1、质量为1kg的物体从距地面5m高处自由下落,正落在以5m/s的速度沿水平方向匀速前进的小车上,车上装有砂子,车与砂的总质量为4kg,地面光滑,则车后来的速度为多少?例2、质量为1kg的滑块以4m/s的水平速度滑上静止在光滑水平面上的质量为3kg的小车,最后以共同速度运动,滑块与车的摩擦系数为0.2,则此过程经历的时间为多少?例3、一颗手榴弹在5m高处以v0=10m/s的速度水平飞行时,炸裂成质量比为3:2的两小块,质量大的以100m/s的速度反向飞行,求两块落地点的距离。
(g取10m/s2)例4、如图所示,质量为0.4kg的木块以2m/s的速度水平地滑上静止的平板小车,车的质量为1.6kg,木块与小车之间的摩擦系数为0.2(g取10m/s2)。
设小车足够长,求:(1)木块和小车相对静止时小车的速度。
(2)从木块滑上小车到它们处于相对静止所经历的时间。
(3)从木块滑上小车到它们处于相对静止木块在小车上滑行的距离。
例5、甲、乙两小孩各乘一辆冰车在水平冰面上游戏,甲和他所乘的冰车的质量共为30kg,乙和他所乘的冰车的质量也为30kg。
游戏时,甲推着一个质量为15kg的箱子和甲一起以2m/s的速度滑行,乙以同样大小的速度迎面滑来。
为了避免相撞,甲突然将箱子沿冰面推向乙,箱子滑到乙处,乙迅速将它抓住。
若不计冰面的摩擦,甲至少要以多大的速度(相对于地面)将箱子推出,才能避免与乙相撞?答案:1.分析:以物体和车做为研究对象,受力情况如图所示。
在物体落入车的过程中,物体与车接触瞬间竖直方向具有较大的动量,落入车后,竖直方向上的动量减为0,由动量定理可知,车给重物的作用力远大于物体的重力。
因此地面给车的支持力远大于车与重物的重力之和。
系统所受合外力不为零,系统总动量不守恒。
但在水平方向系统不受外力作用,所以系统水平方向动量守恒。
以车的运动方向为正方向,由动量守恒定律可得:车 重物 初:v 0=5m/s 0末:v v ⇒Mv 0=(M+m)v⇒s m v m N M v /454140=⨯+=+=即为所求。
高考物理动量守恒定律题20套(带答案)

高考物理动量守恒定律题20套(带答案)一、高考物理精讲专题动量守恒定律1.如图所示,在光滑的水平面上有一长为L 的木板B ,上表面粗糙,在其左端有一光滑的四分之一圆弧槽C ,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B 、C 静止在水平面上.现有滑块A 以初速度0v 从右端滑上B ,一段时间后,以02v 滑离B ,并恰好能到达C 的最高点.A 、B 、C 的质量均为m .求: (1)A 刚滑离木板B 时,木板B 的速度; (2)A 与B 的上表面间的动摩擦因数μ; (3)圆弧槽C 的半径R ;(4)从开始滑上B 到最后滑离C 的过程中A 损失的机械能.【答案】(1) v B =04v ;(2)20516v gL μ=(3)2064v R g =(4)201532mv E ∆=【解析】 【详解】(1)对A 在木板B 上的滑动过程,取A 、B 、C 为一个系统,根据动量守恒定律有:mv 0=m2v +2mv B 解得v B =4v (2)对A 在木板B 上的滑动过程,A 、B 、C 系统减少的动能全部转化为系统产生的热量222000111()2()22224v v mgL mv m m μ⨯=--解得20516v gLμ=(3)对A 滑上C 直到最高点的作用过程,A 、C 系统水平方向上动量守恒,则有:2mv +mv B =2mv A 、C 系统机械能守恒:22200111()()222242v v mgR m m mv +-⨯=解得264v R g= (4)对A 滑上C 直到离开C 的作用过程,A 、C 系统水平方向上动量守恒0024A C mv mv mv mv +=+ A 、C 系统初、末状态机械能守恒,2222001111()()222422A C m m m m +=+v v v v 解得v A =4v . 所以从开始滑上B 到最后滑离C 的过程中A 损失的机械能为:2220015112232A mv E mv mv ∆=-=【点睛】该题是一个板块的问题,关键是要理清A 、B 、C 运动的物理过程,灵活选择物理规律,能够熟练运用动量守恒定律和能量守恒定律列出等式求解.2.如图甲所示,物块A 、B 的质量分别是 m A =4.0kg 和m B =3.0kg .用轻弹簧拴接,放在光滑的水平地面上,物块B 右侧与竖直墙相接触.另有一物块C 从t =0时以一定速度向右运动,在t =4s 时与物块A 相碰,并立即与A 粘在一起不再分开,物块C 的v -t 图象如图乙所示.求:①物块C 的质量?②B 离开墙后的运动过程中弹簧具有的最大弹性势能E P ? 【答案】(1)2kg (2)9J 【解析】试题分析:①由图知,C 与A 碰前速度为v 1=9 m/s ,碰后速度为v 2=3 m/s ,C 与A 碰撞过程动量守恒.m c v 1=(m A +m C )v 2 即m c =2 kg②12 s 时B 离开墙壁,之后A 、B 、C 及弹簧组成的系统动量和机械能守恒,且当A 、C 与B 的速度相等时,弹簧弹性势能最大 (m A +m C )v 3=(m A +m B +m C )v 4得E p =9 J考点:考查了动量守恒定律,机械能守恒定律的应用【名师点睛】分析清楚物体的运动过程、正确选择研究对象是正确解题的关键,应用动量守恒定律、能量守恒定律、动量定理即可正确解题.3.人站在小车上和小车一起以速度v 0沿光滑水平面向右运动.地面上的人将一小球以速度v 沿水平方向向左抛给车上的人,人接住后再将小球以同样大小的速度v 水平向右抛出,接和抛的过程中车上的人和车始终保持相对静止.重复上述过程,当车上的人将小球向右抛出n 次后,人和车速度刚好变为0.已知人和车的总质量为M ,求小球的质量m . 【答案】02Mv m nv= 【解析】试题分析:以人和小车、小球组成的系统为研究对象,车上的人第一次将小球抛出,规定向右为正方向,由动量守恒定律:Mv 0-mv=Mv 1+mv 得:102mvv v M=-车上的人第二次将小球抛出,由动量守恒: Mv 1-mv=Mv 2+mv 得:2022mvv v M=-⋅同理,车上的人第n 次将小球抛出后,有02n mvv v n M=-⋅ 由题意v n =0, 得:02Mv m nv=考点:动量守恒定律4.如图所示,一条带有圆轨道的长轨道水平固定,圆轨道竖直,底端分别与两侧的直轨道相切,半径R =0.5m ,物块A 以v 0=6m/s 的速度滑入圆轨道,滑过最高点Q ,再沿圆轨道滑出后,与直轨道上P 处静止的物块B 碰撞,碰后粘在一起运动,P 点左侧轨道光滑,右侧轨道呈粗糙段、光滑段交替排列,每段长度都为L =0.1m ,物块与各粗糙段间的动摩擦因数都为μ=0.1,A 、B 的质量均为m =1kg(重力加速度g 取10m/s 2;A 、B 视为质点,碰撞时间极短).(1)求A 滑过Q 点时的速度大小v 和受到的弹力大小F ; (2)若碰后AB 最终停止在第k 个粗糙段上,求k 的数值; (3)求碰后AB 滑至第n 个(n <k )光滑段上的速度v n 与n 的关系式. 【答案】(1)5m/s v =, F =22 N (2) k =45 (3)90.2m/s ()n v n n k =-<【解析】⑴物块A 从开始运动到运动至Q 点的过程中,受重力和轨道的弹力作用,但弹力始终不做功,只有重力做功,根据动能定理有:-2mgR =-解得:v ==4m/s在Q 点,不妨假设轨道对物块A 的弹力F 方向竖直向下,根据向心力公式有:mg +F =解得:F =-mg =22N ,为正值,说明方向与假设方向相同。
动量守恒及应用超级好题(含答案)

1、如图所示,在光滑水平长直轨道上有、两个绝缘体,它们之间有一根长为的轻质软线相连接,其中的质量为,的质量为,为带有电荷量为的正电荷,不带电,空间存在着方向水平向右的匀强电场,场强大小为。
开始用外力把与靠在一起并保持静止,某时刻撤去外力,开始向右运动,直到细线绷紧,当细线被绷紧时,两物体将有极短时间的相互作用,而后开始运动,且细线再次松弛。
已知开始运动时的速度等于线刚绷紧前瞬间的速度的。
设整个过程中,的电荷量都保持不变。
问(1)细线第一次绷紧前瞬间的速度多大?(2)从开始运动后到细线第二次被绷紧前的过程中,与是否会相碰?(3)如果能相碰,的位移和相碰前瞬间、的速度各是多少?如果不能相碰,和间的最短距离是多少?细线第二次被绷紧的瞬间的位移多大?2、用轻弹簧相连的质量均为m=2㎏的A、B两物体都以v=6m/s的速度在光滑的水平地面上运动,弹簧处于原长,质量M = 4㎏的物体C静止在前方,如图所示。
B与C碰撞后二者粘在一起运动,在以后的运动中,求:(1)B与C碰撞后二者粘在一起的共同速度v1.(2)当弹簧的弹性势能最大时物体A的速度v2。
3、如图,水平地面上静止放置着物块B和C,相距=1.0 m.物块A以速度=10 m/s沿水平方向与B正碰.碰撞后A和B牢固地粘在一起向右运动,并再与C发生正碰,碰后瞬间C的速度=2.0 m/s.已知A和B的质量均为m,C 的质量为A质量的k倍,物块与地面的动摩擦因数=0.45.(设碰撞时间很短,g取10 m/)(1)计算与C碰撞前瞬间AB的速度;(2)根据AB与C的碰撞过程分析k的取值范围,并讨论与C碰撞后AB的可能运动方向.4、如图所示,光滑水平面左端有一弹性挡板,右端与处于同一高度的水平传送带之间的距离可忽略,传送带水平部分的长度,传送带逆时钟匀速转动其速度.上放置两个质量都为的小物块、,开始时、静止,、间压缩一轻质弹簧,其弹性势能.现解除锁定,弹开、,并迅速移走弹簧.取.(1)求物块、被弹开时速度的大小.(2)要使小物块在传送带的端不掉下,则小物块与传送带间的动摩擦因数至少为多大?(3)若小物块与传送带间的动摩擦因数,当与发生第一次弹性碰撞后物块返回,在水平面上、相碰后粘接在一起,求碰后它们的速度大小及方向,并说明它们最终的运动情况.5、如图所示,轻弹簧的两端与质量均为2m的B、C两物块固定连接,静止在光滑水平面上,物块C紧靠挡板但不粘连.另一质量为m的小物块A以速度V0从右向左与B发生弹性正碰,碰撞时间极短可忽略不计.(所有过程都在弹簧弹性限度范围内)求:(1)A、B碰后瞬间各自的速度;(2)弹簧第一次压缩最短与第一次伸长最长时弹性势能之比.6、如图所示,在光滑水平面上放着一个质量M=0.3kg的木块(可视为质点),在木块正上方1m处有一个固定悬定点O,在悬点O和木块之间用一根长2m、不可伸长的轻绳连接.有一颗质量m=0.1kg的子弹以80m/s的速度水平射入木块并留在其中,之后木块绕O点在竖直平面内做圆周运动.求:(1)木块以多大速度脱离水平地面? (2)当木块到达最高点时对轻绳的拉力F为多少?7、22.(16分)一质量M=0.8kg的小物块,用长l=0.8m的细绳悬挂在天花板上,处于静止状态。
动量守恒定律 典型例题及练习题

动量典型例题及练习【例题1】两块高度相同的木块A 和B ,紧靠着放在光滑的水平面上,其质量分别为m A =2kg ,m B =0.9kg 。
它们的下底面光滑,但上表面粗糙。
另有一质量m =0.1kg的物体C(可视为质点)以v C =10m/s 的速度恰好水平地滑动A 的上表面,物体C 最后停在B 上,此时B 、C 的共同速度v =0.5m/s,求(1)C 刚离开A 时,木块C 的速度(2)木块A 最终的速度为多大?﹡练习1、如图,在光滑水平面上的两平板车的质量分别为M 1=2kg 和M 2=3kg ,在M 1光滑的表面上放有一质量为m =1kg 的滑块,与M 1一起以5m/s 的速度向右运动,M 2静止。
M 1 与M 2 相撞后以相同的速度一起运动,但没有连接。
m 最后滑上M 2,并因摩擦停在上M 2 ,求两车最终的速度。
﹡练习2、如图所示,在一光滑的水平面上有两块相同的木板B 和C 。
重物A (可以视为质点),位于B 的右端,A 的质量是2kg ,B 、C 的质量都是10kg 。
现A 和B 以2m/s 的速度滑向静止的C ,B 和C 发生正碰,碰后B 和C 粘在一起运动,A 在C 上滑行,A 与C 之间的摩擦因数μ=0.2。
已知A 滑到C 的右端而未掉下。
试问: C 至少多长A 不会掉下?【例题2】如图所示,在光滑水平面上有A 、B 两辆小车,水平面的左侧有一竖直墙,在小车B 上坐着一个小孩,小孩与B 车的总质量是A 车质量的10倍。
两车开始都处于静止状态,小孩把A车以相对于地面的速度v 推出,A 车与墙壁碰后仍以原速率返回,小孩接到A 车后,又把它以相对于地面的速度v 推出。
每次推出,A 车相对于地面的速度都是v ,方向向左。
则小孩把A 车推出几次后,A 车返回时小孩不能再接到A 车?﹡练习3、甲、乙两个小孩各乘一辆冰车在水平冰面上游戏,甲和他的冰车的质量共为M =30kg ,乙和他的冰车的质量也是30kg 。
动量守恒专题(含答案)

动量守恒定律1.质量为M 的物块静止在光滑水平桌面上,质量为m 的子弹以水平速度v 0射入物块后,以水平速度2v 0/3射出。
则物块的速度为 ,此过程中损失的机械能为2.将静置在地面上,质量为M(含燃料)的火箭模型点火升空,在极短时间内以相对地面的速度v 0竖直向下喷出质量为m 的炽热气体。
忽略喷气过程重力和空气阻力的影响,则喷气结束时火箭模型获得的速度大小是3.如图所示,进行太空行走的宇航员A 和B 的质量分别为80 kg 和100 kg,他们携手远离空间站,相对空间站的速度为0.1 m/s 。
A 将B 向空间站方向轻推后,A 的速度变为0.2 m/s,求此时B 的速度大小和方向。
4.蹦床是运动员在一张绷紧的弹性网上蹦跳、翻滚并在空中做各种动作的运动项目.一个质量为60 kg的运动员,从离水平网面3.2 m 高处自由下落,着网后沿竖直方向蹦回离水平网面5.0 m 高处.已知运动员与网接触的时间为1.2 s .若把这段时间内网对运动员的作用力当做恒力处理,求此力的大小.(g 取10 m/s 2)解析:法一:运动员刚接触网时速度的大小为v 1=2gh 1=2×10×3.2 m/s =8 m/s ,方向竖直向下.刚离开网时速度的大小为v 2=2gh 2=2×10×5 m/s =10 m/s ,方向竖直向上.运动员接触网的过程中,网的作用力为F ,规定竖直向上为正方向,根据动量定理得 (F -mg )t =m v 2-(-m v 1)F =m v 2+m v 1t+mg =60×10+60×81.2N +60×10 N =1.5×103 N ,方向竖直向上.法二:运动员从3.2 m 高处自由下落的时间为t 1= 2h 1g = 2×3.210s =0.8 s 运动员刚离开网弹回5.0 m 高处所用的时间为t 2= 2h 2g = 2×510s =1 s 整个过程中运动员始终受重力作用,仅在与网接触的t 3=1.2 s 时间内受到网对他向上的弹力F 的作用,对全过程应用动量定理得:F ·t 3-mg (t 1+t 2+t 3)=0F =(t 1+t 2+t 3)t 3mg =0.8+1+1.21.2×60×10 N =1.5×103 N ,方向竖直向上.答案:1.5×103 N5.光滑水平轨道上有三个木块A 、B 、C ,质量分别为m A =3m 、m B =m C =m ,开始时B 、C 均静止,A 以初速度v 0向右运动,A 与B 碰撞后分开,B 又与C 发生碰撞并粘在一起,此后A 与B 间的距离保持不变.求B 与C 碰撞前B 的速度大小.【解析】 法一:把A 、B 、C 看成一个系统,整个过程中由动量守恒定律得m A v 0=(m A +m B +m C )vB 、C 碰撞过程中由动量守恒定律m B v B =(m B +m C )v联立解得v B =65v 0. 法二:设A 与B 碰撞后,A 的速度为v ,B 与C 碰撞前B 的速度为v B ,B 与C 碰撞后粘在一起的速度为v ,由动量守恒定律得对A 、B 木块:m A v 0=m A v A +m B v B ①对B 、C 木块:m B v B =(m B +m C )v ②由A 到B 间的距离保持不变可知v A =v ③联立①②③式,代入数据得v B =65v 0. 6.质量为M =2 kg 的小平板车静止在光滑水平面上,车的一端静止着质量为m A=2 kg 的物体A (可视为质点),如图所示,一颗质量为m B =20 g 的子弹以600 m/s的水平速度射穿A 后,速度变为100 m/s ,最后物体A 仍在车上.若物体A 与小车间的动摩擦因数μ=0.5,取g =10 m/s 2,求(1)平板车最后的速度是多大?(2)平板车的长度至少为多少?解析:(1)从子弹射入A 到A 与车相对静止的过程中,子弹、A 与车系统动量守恒,则m B v 0=m B v ′+(m A +M )v解得v =m B (v 0-v ′)m A +M =0.02×(600-100)2+2m/s =2.5 m/s.(2)子弹射穿A 的过程中,子弹与A 系统动量守恒,由动量守恒定律有m B v 0=m B v ′+m A v A 得v A =m B (v 0-v ′)m A =0.02×(600-100)2m/s =5 m/s 由能量守恒得μm A gL =12m A v 2A -12(m A +M )v 2 代入数据解得:L =1.25 m.7、如图所示,光滑水平面上静止着A 、B 两个滑块,A 上固定一轻杠,杠用轻绳在竖直方向悬挂一个光滑的球C ,球C 紧靠轻杆但与轻杆不粘连,对A 施加水平向右的瞬时冲量I=6N.S ,使A 、C 由静止开始运动,A 向右滑动与静止在水平面上的B 相碰,A 、B 在极短时间内便粘在一起运动,此后运动过程中,绳子摆动均未超过水平位置,已知A 、B 、C 的质量均为m=1kg,取g=10m/s 2 ,求:1)A 、B 碰撞结束瞬间A 的速度;28.如图,A 、B 、C 三个木块的质量均为m ,置于光滑的水平面上,B 、C 之间有一轻质弹簧,弹簧的两端与木块接触而不固连. 将弹簧压紧到不能再压缩时用细线把B 和C 紧连,使弹簧不能伸展,以至于B 、C 可视为一个整体. 现A 以初速υ0沿B 、C 的连线方向朝B 运动,与B 相碰并粘合在一起. 以后细线突然断开,弹簧伸展,从而使C 与A 、B 分离. 已知C 离开弹簧后的速度恰为υ0. 求弹簧释放的势能.9.在粗糙的水平桌面上有两个静止的木块A 和B,两者相距为d 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动量守恒定律的典型例题【例1】把一支枪固定在小车上,小车放在光滑的水平桌面上.枪发射出一颗子弹.对于此过程,下列说法中正确的有哪些?[]a.枪和子弹组成的系统动量守恒b.枪和车组成的系统动量守恒c.车、枪和子弹组成的系统动量守恒d.车、枪和子弹组成的系统近似动量守恒,因为子弹和枪筒之间有摩擦力.且摩擦力的冲量甚小【分析】本题涉及如何选择系统,并判断系统是否动量守恒.物体间存在相互作用力是构成系统的必要条件,据此,本题中所涉及的桌子、小车、枪和子弹符合构成系统的条件.不仅如此,这些物体都跟地球有相互作用力.如果仅依据有相互作用就该纳入系统,那么推延下去只有把整个宇宙包括进去才能算是一个完整的体系,显然这对于分析、解决一些具体问题是没有意义的.选择体系的目的在于应用动量守恒定律去分析和解决问题,这样在选择物体构成体系的时候,除了物体间有相互作用之外,还必须考虑“由于物体的相互作用而改变了物体的动量”的条件.桌子和小车之间虽有相互作用力,但桌子的动量并没有发生变化.不应纳入系统内,小车、枪和子弹由于相互作用而改变了各自的动量,所以这三者构成了系统.分析系统是否动量守恒,则应区分内力和外力.对于选定的系统来说,重力和桌面的弹力是外力,由于其合力为零所以系统动量守恒.子弹与枪筒之间的摩擦力是系统的内力,只能影响子弹和枪各自的动量,不能改变系统的总动量.所以d的因果论述是错误的.【解】正确的是c.【例2】一个质量m=1kg的鸟在空中v0=6m/s沿水平方向飞行,离地面高度h=20m,忽被一颗质量m=20g沿水平方向同向飞来的子弹击中,子弹速度v=300m/s,击中后子弹留在鸟体内,鸟立即死去,g=10m/s2.求:鸟被击中后经多少时间落地;鸟落地处离被击中处的水平距离.【分析】子弹击中鸟的过程,水平方向动量守恒,接着两者一起作平抛运动。
【解】把子弹和鸟作为一个系统,水平方向动量守恒.设击中后的共同速度为u,取v0的方向为正方向,则由mv0+mv=(m+m)u,得击中后,鸟带着子弹作平抛运动,运动时间为鸟落地处离击中处水平距离为s=ut=11.76×2m=23.52m.【例3】一列车沿平直轨道以速度v0匀速前进,途中最后一节质量为m的车厢突然脱钩,若前部列车的质量为m,脱钩后牵引力不变,且每一部分所受摩擦力均正比于它的重力,则当最后一节车厢滑行停止的时刻,前部列车的速度为[]【分析】列车原来做匀速直线运动,牵引力f等于摩擦力f,f=k(m+m)g(k为比例系数),因此,整个列车所受的合外力等于零.尾部车厢脱钩后,每一部分所受摩擦力仍正比于它们的重力.因此,如果把整个列车作为研究对象,脱钩前后所受合外力始终为零,在尾部车厢停止前的任何一个瞬间,整个列车(前部+尾部)的动量应该守恒.考虑刚脱钩和尾部车厢刚停止这两个瞬间,由(m+m)v0=0+mv得此时前部列车的速度为【答】b.【说明】上述求解是根据列车受力的特点,恰当地选取研究对象,巧妙地运用了动量守恒定律,显得非常简单.如果把每一部分作为研究对象,就需用牛顿第二定律等规律求解.有兴趣的同学,请自行研究比较.【例4】质量m1=10g的小球在光滑的水平桌面上以v1 =30cm/s的速率向右运动,恰好遇上在同一条直线上向左运动的另一个小球.第二个小球的质量为m2=50g,速率v2=10cm/s.撞后,小球m2恰好停止.那么,碰撞后小球m1的速度是多大,方向如何?【分析】取相互作用的两个小球为研究的系统。
由于桌面光滑,在水平方向上系统不受外力.在竖直方向上,系统受重力和桌面的弹力,其合力为零.故两球碰撞的过程动量守恒.【解】设向右的方向为正方向,则各速度的正、负号分别为v1=30cm/s,v2=10cm/s,v'2=0.据动量守恒定律有m l v l+m2v2=m1v'1+m2v'2.解得v'1=-20cm/s.即碰撞后球m1的速度大小为20cm/s,方向向左.【说明】通过此例总结运用动量守恒定律解题的要点如下.(1)确定研究对象.对象应是相互作用的物体系.(2)分析系统所受的内力和外力,着重确认系统所受到的合外力是否为零,或合外力的冲量是否可以忽略不计.(3)选取正方向,并将系统内的物体始、末状态的动量冠以正、负号,以表示动量的方向.(4)分别列出系统内各物体运动变化前(始状态)和运动变化后(末状态)的动量之和.(5)根据动量守恒定律建立方程,解方程求得未知量.【例5】甲、乙两小孩各乘一辆冰车在水平冰面上游戏.甲和他的冰车的总质量共为m=30kg,乙和他的冰车的总质量也是30kg.游戏时,甲推着一质量为m=15km的箱子,和他一起以大小为v0=2m/s的速度滑行.乙以同样大小的速度迎面滑来.为了避免相撞,甲突然将箱子沿冰面推给乙,箱子到乙处时乙迅速把它抓住.若不计冰面的摩擦力,求甲至少要以多大的速度(相对于地面)将箱子推出,才能避免和乙相碰.【分析】甲推出箱子和乙抓住箱子是两个动量守恒的过程,可运用动量守恒求解.甲把箱于推出后,甲的运动有三种可能:一是继续向前,方向不变;一是静止;一是方向改变,向后倒退.按题意要求.是确定甲推箱子给乙,避免跟乙相碰的最小速度.上述三种情况中,以第一种情况甲推出箱子的速度最小,第二、第三种情况则需要以更大的速度推出箱子才能实现.【解】设甲推出的箱子速度为v,推出后甲的速度变为v1,取v0方向为正方向,据动量守恒有(m+m)v0=mv1+mv.(1)乙抓住箱子的过程,动量守恒,则mv+mv0=(m+m)v2.(2)甲、乙两冰车避免相撞的条件是v2≥v1,取v2=v1.(3)联立(1)、(2)、(3)式,并代入数据解得v=5.2m/s.【说明】本题仅依据两个动量守恒的过程建立的方程还能求解,关键是正确找出临界条件,并据此建立第三个等式才能求解.【例6】两辆质量相同的小车a和b,置于光滑水平面上,一人站在a车上,两车均静止.若这个人从a车跳到b车上,接着又跳回a车,仍与a车保持相对静止,则此时a车的速率[]a.等于零b.小于b车的速率c.大于b车的速率d.等于b车的速率【分析】设人的质量为m0,车的质量为m.取a、b 两车和人这一系统为研究对象,人在两车间往返跳跃的过程中,整个系统水平方向不受外力作用,动量守恒.取开始时人站在a车上和后来又相对a车静止时这两个时刻考察系统的动量,则0=(m0+m)v a+mv b,可见,两车反向运动,a车的速率小于b车的速率.【答】b.【说明】本题中两车相互作用前后动量在一直线上,但两者动量方向即速度方向均不甚明确,因此没有事先规定正方向,而是从一般的动【例7】甲、乙两船在平静的湖面上以相同的速度匀速航行,且甲船在前乙船在后.从甲船上以相对于甲船的速度v,水平向后方的乙船上抛一沙袋,其质量为m.设甲船和沙袋总质量为m,乙船的质量也为m.问抛掷沙袋后,甲、乙两船的速度变化多少?【分析】由题意可知,沙袋从甲船抛出落到乙船上,先后出现了两个相互作用的过程,即沙袋跟甲船和沙袋跟乙船的相互作用过程.在这两个过程中的系统,沿水平方向的合外力为零,因此,两个系统的动量都守恒.值得注意的是,题目中给定的速度选择了不同的参照系.船速是相对于地面参照系,而抛出的沙袋的速度v 是相对于抛出时的甲船参照系.【解】取甲船初速度v的方向为正方向,则沙袋的速度应取负值.统一选取地面参照系,则沙袋抛出前,沙袋与甲船的总动量为mv.沙袋抛出后,甲船的动量为(m-m)v甲',沙袋的动量为m(v甲'-v).根据动量守恒定律有mv=(m-m)v甲'+m(v甲'-v).(1)取沙袋和乙船为研究对象,在其相互作用过程中有mv+m(v甲'-v)=(m+m)v乙'.(2)联立(l)、(2)式解得则甲、乙两船的速度变化分别为【例8】小型迫击炮在总质量为1000kg的船上发射,炮弹的质量为2kg.若炮弹飞离炮口时相对于地面的速度为600m/s,且速度跟水平面成45°角,求发射炮弹后小船后退的速度?【分析】取炮弹和小船组成的系统为研究对象,在发射炮弹的过程中,炮弹和炮身(炮和船视为固定在一起)的作用力为内力.系统受到的外力有炮弹和船的重力、水对船的浮力.在船静止的情况下,重力和浮力相等,但在发射炮弹时,浮力要大于重力.因此,在垂直方向上,系统所受到的合外力不为零,但在水平方向上系统不受外力(不计水的阻力),故在该方向上动量守恒.【解】发射炮弹前,总质量为1000kg的船静止,则总动量mv=0.发射炮弹后,炮弹在水平方向的动量为mv1'cos45°,船后退的动量为(m-m)v2'.据动量守恒定律有0=mv1'cos45°+(m-m)v2'.取炮弹的水平速度方向为正方向,代入已知数据解得【例9】两块厚度相同的木块a和b,并列紧靠着放在光滑的水平面上,其质量分别为m a=2.0kg,m b=0.90k g.它们的下底面光滑,上表面粗糙.另有质量m c=0. 10kg的铅块c(其长度可略去不计)以v c=10m/s的速度恰好水平地滑到a的上表面(见图),由于摩擦,铅块最后停在本块b上,测得b、c的共同速度为v=0.50m/s,求木块a的速度和铅块c离开a时的速度.【分析】c滑上a时,由于b与a紧靠在一起,将推动b一起运动.取c与a、b这一系统为研究对象,水平方向不受外力,动量守恒.滑上后,c在a的摩擦力作用下作匀减速运动,(a+b)在c的摩擦力作用下作匀加速运动.待c滑出a后,c继续减速,b在c的摩擦力作用下继续作加速运动,于是a与b分离,直至c最后停于b上.【解】设c离开a时的速度为v c,此时a、b的共同速度为v a,对于c刚要滑上a和c刚离开a这两个瞬间,由动量守恒定律知m c v c=(m a+m b)v a+m c v'c(1)以后,物体c离开a,与b发生相互作用.从此时起,物体a不再加速,物体b将继续加速一段时间,于是b 与a分离.当c相对静止于物体b上时,c与b的速度分别由v'c和v a变化到共同速度v.因此,可改选c与b为研究对象,对于c刚滑上b和c、b相对静止时的这两个瞬间,由动量守恒定律知m c v'c+m b v a=(m b+m c)v(2)由(l)式得m c v'c=m c v c-(m a+m b)v a 代入(2)式m c v'c-(m a+m c)v a+m b v a=(m b+m c)v.得木块a的速度所以铅块c离开a时的速度【说明】应用动量守恒定律时,必需明确研究对象,即是哪一个系统的动量守恒.另外需明确考察的是系统在哪两个瞬间的动量.如果我们始终以(c+a+b)这一系统为研究对象,并考察c刚要滑上a和c刚离开a,以及c、b刚相对静止这三个瞬间,由于水平方向不受外力,则由动量守恒定律知m c v c=(m a+m b)v a+m c v'c=m a v a+(m b+m c)v.同样可得【例10】在静止的湖面上有一质量m=100kg的小船,船上站立质量m=50kg的人,船长l=6m,最初人和船静止.当人从船头走到船尾(如图),船后退多大距离?(忽略水的阻力)[分析]有的学生对这一问题是这样解答的.由船和人组成的系统,当忽略水的阻力时,水平方向动量守恒.取人前进的方向为正方向,设t时间内这一结果是错误的,其原因是在列动量守恒方程时,船后退的速度考系的速度代入同一公式中必然要出错.【解】选地球为参考系,人在船上行走,相对于地球的平均速度为为【例11】一浮吊质量m=2×104kg,由岸上吊起一质量m=2×103kg的货物后,再将吊杆oa从与竖直方向间夹角θ=60°转到θ'=30°,设吊杆长l=8m,水的阻力不计,求浮吊在水平方向移动的距离?向哪边移动?【分析】对浮吊和货物组成的系统,在吊杆转动过程中水平方向不受外力,动量守恒.当货物随吊杆转动远离码头时,浮吊将向岸边靠拢,犹如人在船上向前走时船会后退一样,所以可应用动量守恒求解.【解】设浮吊和货物在水平方向都作匀速运动,浮吊向右的速度为v,货物相对于浮吊向左的速度为u,则货物相对河岸的速度为(v-u).由0=mv+m(v-u),吊杆从方位角θ转到θ'需时所以浮吊向岸边移动的距离【说明】当吊杆从方位角θ转到θ'时,浮吊便向岸边移动一定的距离,这个距离与吊杆转动的速度,也就是货物移动的速度无关。