2变形岩石的应变分析基础

合集下载

构造地质学复习资料

构造地质学复习资料

构造地质学复习资料1.绪论1.构造变形的场的基本类型:伸展构造,压缩构造,升降构造,走滑构造,滑动构造,旋转构造。

(伸、缩、升降、减、滑、旋)。

2.朱志澄将构造层次分为:表构造层次、浅构造层次、中构造层次、深构造层次。

其中表、浅构造层次为脆性破裂域,中深构造层次为塑形流变域。

2.沉积岩岩层构造1.构造的类型、成因、规模、和形态千差万别,但是从几何学看,基本可以归纳为:面状构造和线状构造。

2.面状构造的三大产状要素:走向、倾向、倾角。

(1)走向:1.走向线:倾斜平面与水平面的交线.2.走向:走向线两端所指的方向(相差180°)(2)倾向:1.倾斜线:倾斜平面上与走向线垂直的线。

2.倾向:倾斜线(下端)在水平面上的投影所指的方向。

(3)倾角:倾斜平面与水平面的交角。

(4)视倾斜线:当剖面与岩层的走向斜交时,岩层与该剖面的交迹线。

(5)视倾角(假倾角):视倾斜线与其在水面上的投影线间的夹角。

(真倾角总是大于假倾角)3.沉积岩层的原生构造(1)原生构造:沉积、成岩过程中所形成的构造。

(2)次生构造:成岩之后,遭受地质作用变化后的构造。

(3)层理:由于岩石成分、构造和颜色的突变或者渐变所显示出来的一种成层构造。

4.原生构造鉴定岩层的顶低面(1)递变层理(韵律层理、粒序层理)递变层理的特点是:在一个单层中,从底面到顶面粒度由粗到细。

(下粗上细)(2)层面暴露标志:泥裂、雨痕泥裂:在剖面上呈“V”字型,开口示顶、尖端示底。

雨痕:凹面示顶,凸面示底。

5.倾斜岩层倾斜岩层露头界线复杂,表现为与地形等高线交切关系,并显示出一定的规律性,即在经过山脊和河谷时,均呈“V”字形态展布,即“V”字形法则。

相反相同(岩层倾向与地面坡向相反,露头线与等高线同向弯曲)相同相反(岩层倾向与地面坡向一致,岩层倾角>地面坡角,露头线与等高线反向弯曲。

)相同相同(岩层倾向与地面坡向一致,岩层倾角<地面坡角,露头线与等高线同向弯曲。

地质构造之力学基础(应变分析)

地质构造之力学基础(应变分析)

§2 应变分析
(三) 岩石变形的阶段
有关岩石在应力作用下的变形行为的多数资料是通过岩石变形实验得来的, 岩石在 外力的作用下, 一般都会经历弹性变形、塑性变形、断裂变形等三个阶段。这三个阶段依 次发生, 但不是截然分开的, 而是彼此过度的。 1. 弹性变形:
(1) 弹性变形:岩石在外力作用下变形, 当外力解除后, 岩石又恢复到变形前的状态, 这种变形行为叫弹性变形
2.线应变:物体内某方向上单位长度的改变量叫线应变.
一杆件受纵向拉伸变形, 设杆件原长为l0, 拉伸变形后的长度为l, 那么, 杆件绝对
伸长为:
△l=l-l0 纵向线应变定义为: ε =(l-l0)/ l0 即 ε = △l / l0
实验证明, 杆件拉伸变形, 不但有纵向伸长变形, 同时还有横向缩短变形。设杆
韧性: 岩石在断裂前的 塑性变形量超过10%
§2 应变分析
(四) 剪裂角分析 在岩石变形实验中发现, 岩石受到挤压力的作用, 会在与挤压力方向成
一定交角的位置形成一对剪切破裂, 由于这一对剪切破裂是受同一作用力而形成 的, 构造地质学中称这一对剪切破裂为共轭剪切破裂。
当岩石发生共轭剪切破裂时, 包含最大主应力σ1象限的共轭剪切破裂 面中间的夹角称为共轭剪切破裂角(2θ)
最大主应力轴σ1作用方向与剪切破裂面的夹角称为 剪裂角(θ).
§2 应变分析
二维应力状态的应力分析可知, 两组最大剪应力作用面与最大主应力轴σ1或最小主 应力轴的夹角均为45°, 二剪裂面之间的夹角为90°, 二剪裂面的交线是中间应力轴s2的作 用方向。
但从野外实地观察和室内岩石实验来看, 岩石内两组共轭剪裂面的交角常以锐角指 向最大主应力σ1方向, 即包含σ1的共轭剪切破裂角常常小于90°, 通常在60°左右, 而共轭 剪切破裂的剪裂角则小于45°, 也就是说, 两组共轭剪裂面并不沿理论分析的最大剪应力 作用面的方位发育, 这个现象可用库伦、莫尔强度理论来解释。

岩体力学考试重点(经典)分析

岩体力学考试重点(经典)分析

第二章 岩石的基本物理力学性质1、全应力—应变曲线(岩石试件在(刚性试验机)单轴压缩载荷作用下产生变形的全过程)(1)OA 阶段,通常被称为孔隙裂隙压密阶段。

其特征是应力—应变曲线呈上凹型,在此阶段岩石试件中原有的张开型结构面和微裂隙逐渐闭合,横向膨胀较小,试件体积随载荷的增大而减小。

本阶段对节理裂隙丰富的岩石表现较为明显,对坚硬少裂隙的岩石不明显。

(2)AC 阶段,通常称此阶段为弹性变形阶段。

其中AB 阶段为线弹性变形阶段;BC 为非线性变形阶段。

BC 阶段中出现了微裂隙的破裂,因此也称为破裂稳定发展阶段。

(3)CD 阶段,非稳定破裂发展阶段或称累积性破坏阶段。

C 点是岩石从弹性变为塑性的转折点,称为屈服点,其相应的应力称为屈服应力(屈服极限),数值约为峰值应力的三分之二左右。

进入此阶段后,微破裂的发展出现了质的变化,它们不断聚合形成了宏观裂隙,直至岩石试件完全破坏。

此时,试件由体积压缩转为扩容,轴向应变和体积应变速率迅速增大。

当达到D 点时,岩石已经破坏,此时的强度称为峰值强度。

(4)DE 阶段称为破坏后阶段。

当载荷达到D 点后,岩石试件内部结构已遭到破坏,但试件基本保持整体形状。

进入本阶段后,宏观裂隙快速发展,并且相互交叉联合形成宏观断裂面,岩块的变形主要表现为沿宏观断裂面的块体滑移,试件的承载能力迅速下降,但不会到零,岩石仍具有一定的承载能力。

应该指出,对于坚硬的岩石来说,这一塑性阶段很短,有的几乎不存在,它所表现的是脆性破坏的特征。

所谓脆性是指应力超出了屈服应力却并不表现出明显的塑性变形的特性,而因此达到破坏,即为脆性破坏。

2、单轴压缩条件下的岩石变形特征:①岩石的变形特性通常可以从试验时所记录下来的应力—应变曲线中获得;②岩石的应力—应变曲线反映了各种不同应力水平下所对应的应变(变形)规律;③岩石试件在(刚性试验机)单轴压缩载荷作用下产生变形的全过程,可全应力-应变曲线来表示。

3、三轴压缩条件下的岩石变形特征A 、 时岩石变形特征①岩石的强度随围压( )的增加,岩石的屈服应力随之提高;②总体来说,岩石的弹性模量变化不大,有随围压增大而增大的趋势;③随着围压的增加,峰值应力所对应的应变值23σσ=23σσ=有所增大,其变形特征表现出低围压的脆性向高围压的塑性转换的规律。

岩石力学讲义-岩石的变形特征

岩石力学讲义-岩石的变形特征

i
E i
i
o i
L
2)变形参数: 应力-应变关系不成直线
岩石的变形特征可以用以下几种模量说明:


m

0
M
① m
① 初始模量:曲线原点处切线斜率
Ei=dd 0
② 切线模量:曲线上任一点处切线的斜率
d Et d m
③ 割线模量:曲线上某点与原点连线的斜率
变形参数测定的动力法
设岩石为均质、各向同性、弹性体,则弹性波在 岩体介质中传播的纵波速度和横波速度可以用下 列公式表示:
纵波速度:
Vp
Ed
1 d
1 d 1 2d
横波速度:
Vs
Ed
1
21 d
变形参数测定的动力法
根据上述两个式子可以推导得出由纵横波速度表 示的动态弹性模量和泊松比:
1>2=3
真三轴实验示意图
常规三轴实验示意图
施加轴向压力 施加围压
围压对变形破坏的影响
• 围压增大,岩石的抗压强度(峰值强度)增大。 • 围压增大,岩石的变形模量(弹性模量)增大。软 岩增大明显,硬岩石增大不明显。 • 围压增大,岩石的塑性增强。 • 围压增大,岩石的破坏方式从脆性劈裂向延性破 坏(塑性流动)过渡。
类型Ⅰ
类型Ⅱ
σ σ
ε
ε
σ
3)峰值前的变形机理
类类型型 ⅢⅠ :塑-弹性—应力较低时类 ,曲型线Ⅱ略向上弯,应力增加 到一定数值逐渐变为直线,直至试样破坏。典型岩石:花 岗岩、片理平行于压力方向的片岩以及某些辉绿岩。
σ
类型Ⅳ:塑-弹-塑性—压力较低时,曲线向上弯曲;压力
增加到一定值后,曲线就成为直线;最后,曲线向下弯曲;

岩石变形的微观分析机制

岩石变形的微观分析机制
位错理论的确定和发展,是与位错观测技术的发展密切相关的。位错 观测技术方法主要有:
(1)早期方法是观察自由长大的螺形式晶体表面,例如验证了弗兰克 关于“位错台阶式”晶体长大方式设想。
(2)化学浸蚀或电解质浸蚀显示晶体表面的位错“露头方法”。由于 位错中心和附近的晶体点阵发生了畸变,因此杂质等溶质原子偏聚在这里, 显示位错蚀抗。
(3)缀饰法—溶质(或杂质)原子趋向于偏聚在位错线及其附近。缀 饰法是选择具有一定光学特性的沉淀粒子做溶质,以它缀饰位错,使位错 在光学显微镜被直接观察。橄榄石氧化法就是最典型的例子。
(4)透射电子显微镜分析法(TEM) 电子衍射显微分析法—利用位错对电子入射波的衍射强度不同,直接 观测位错的组态特征和测定位错取向和伯格斯b矢量大小和方法,从而准 确测定矿物塑性变形的滑移体系(即滑移面和滑移方向的指标化)。
iii. 扩散蠕变(Diffusion creep)—在高温低应力的变形条件下,通过 矿物中点缺陷(空位和杂质)和质点(原子和离子)沿颗粒内部或颗粒边界 产生物质扩散和运动,而导致蠕变。
2.1 晶体的缺陷(crystal defects)
晶体缺陷--理想完整晶体中原子往往做周期性规则排列。 而偏离规则排列的晶体,常引起晶体缺陷。晶体缺陷包括点缺 陷、线缺陷和面缺陷。晶体的缺陷对晶体结构性能(强度、塑 性、相变、扩散、重结晶、氧化还原)产生重大影响。
2.2 扩散蠕变(Diffusion creep)
点缺陷
点缺陷在晶体点阵内的 迁移导致物质扩散和运 动、晶体变形,这个过 程即是扩散蠕变。
iii. 扩散蠕变(Diffusion creep)的分类,扩散蠕变按其 控制因素和作用方式不同可分为二类:
(a)晶内扩散蠕变,即纳巴洛—赫林(Nabbro-Herring creep):在一定温度和应力作用下空位沿着晶粒内部从高密 度部位向低密度部位扩散而引起岩石或矿物的塑性变形。

岩石力学 岩石的变形 破坏特征

岩石力学 岩石的变形 破坏特征

体胀系数:温度上升1℃所引起的体积增量与初始体积的比值。
vs
Vt V0 V0
线胀系数:温度上升1℃所引起的长度增量与初始长度的比值。
ls

Lt L0 L0
岩石的导热率是度量岩石的热传导能力的参数,是指当温度上升1℃时,热量
在单位时间内传递单位距离的损耗值。
Ct

QT LtT
3、岩石的各向异性和渗透性
A
r
o
a
空隙闭合应力:单轴压缩状态下使岩石中的空隙闭合的 最下应力。
2.岩石变形特征

v
r r
e B
A
o
a
比例弹性极限或弹性极限:应力-应变曲线保持直线 关系的极限应力
2.岩石变形特征
v
r r
p
C
e B
A
a
屈服应力:单轴压缩状态下岩石出现塑性变形的极限应力
2.岩石变形特征
抗冻性:岩石抵抗冻融破坏的能力。 膨胀性:岩石吸水后体积增大引起岩石结构破坏的
性能称膨胀性。 崩解性:岩石被水浸泡,内部结构遭到完全破坏呈
碎块状崩开散落的性能。具有强烈崩解性的岩石和 土,短时间内即发生崩解。
2、岩石的物理性质
岩石的热理性:是指岩石温度发生变化时所表现出来的
物理性质。(热胀冷缩)
大、小开空隙的相对比例关系。
Wp

mw2 ms
100 %
Wa

mw1 ms
100%
2、岩石的物理性质
岩石的软化性
岩石浸水饱和后强度降低的性质,称为软化性
软化系数(KR)为岩石试件的饱和抗压强度(σcw)与 干抗压强度(σc)的比值
KR

岩石的产状和岩石变形

岩石的产状和岩石变形

岩层的产状和岩石变形2007/12/13 14:49岩层是指由两个平行的或近于平行的界面所限制的岩性相同或近似的层状岩石。

岩层的上下界面叫层面,分别称为顶面和底面。

岩层的顶面和底面的垂直距离称为岩层的厚度。

任何岩层的厚度在横向上都有变化,有的厚度比较稳定,在较大范围内变化较小;有的则逐渐变薄,以至消失,称为尖灭;有的中间厚、两边薄并逐渐尖灭,称为透镜体。

如果岩性基本均一的岩层,中间夹有其它岩性的岩层,称为夹层,如砂岩含页岩夹层,砂岩夹煤层等等;如果岩层由两种以上不同岩性的岩层交互组成,则称为互层,如砂、页岩互层,页岩、灰岩互层等等。

夹层和互层反映构造运动或气候变化所导致的沉积环境的变化。

一、岩层的产状(一)不同产状的岩层岩层在地壳中的空间方位称为岩层的产状。

由于岩层沉积环境和所受的构造运动不同,可以有不同的产状。

一般可以分为水平岩层、倾斜岩层、直立岩层和倒转岩层:1.水平岩层在广阔的海底、湖盆、盆地中沉积的岩层,其原始产状大都是水平或近于水平的。

在水平岩层地区,如果未受侵蚀或侵蚀不深,在地表往往只能见到最上面较新的地层;只有在受切割很深的情况下,才能出露下面较老的岩层。

例如华北平原,除非根据钻孔资料,否则不能知道地下都有什么岩层。

2.倾斜岩层指岩层层面与水平面有一定交角(0—90°)的岩层。

有些是原始倾斜岩层,例如在沉积盆地的边缘形成的岩层,某些在山坡山口形成的残积、洪积层,某些风成、冰川形成的岩层,堆积在火山口周围的熔岩及火山碎屑层等,常常是原始堆积时就是倾斜的。

但是,在大多数情况下,岩层受到构造运动发生变形变位,使之形成倾斜的产状。

在一定范围内岩层的产状大体一致,称为单斜岩层。

单斜岩层往往是褶皱构造的一部分。

3.直立岩层指岩层层面与水平面直交或近于直交的岩层,即直立起来的岩层。

在强烈构造运动挤压下,常可形成直立岩层。

4.倒转岩层指岩层翻转、老岩层在上而新岩层在下的岩层(图7-12),这种岩层主要是在强烈挤压下岩层褶皱倒转过来形成的。

2.4岩石的变形特性

2.4岩石的变形特性

(2)应力—应变全过程曲线形态
在刚性机下,峰值前后的全部应力—应变曲线分5个阶段:1-3阶段
同普通试验机。
CD阶段(应变软化阶段):
①该阶段试件变形主要表现为沿宏观断裂面的块体滑移;
②试件仍具有一定的承载力,承载力随应变的增大而减小,但
并不降到零,具有明显的软化现象。
D点以后(摩擦阶段):反映断裂面的摩擦所具有的抵抗外力的能力。
P
C
B
A O
D
峰后曲线特点: ① 第5阶段岩石的原生和新生裂隙贯穿,到达D点后,靠碎
块间的摩擦力承载,故 D —称为残余应力。 ② 承载力随着应变增加而减少,有明显的软化现象。
(3)全应力—应变曲线的补充性质
① 曲线呈近似对称性; ② C点后卸载有残余应变, ③ 每次加载与卸载曲线都不重合,且围成一环形面积,称 为塑性滞环, ④ 加载曲线不过原卸载点,但在邻近处和原曲线光滑衔接。
⑤弹性后效特性:
由蠕变方程看出,应力保持一定时,模型应变由弹簧的瞬时应变和粘 壶的蠕变应变组成。如果在某一时刻卸除载荷,弹簧应变将立即恢复,而 粘壶的蠕变应变将残留保持不变,即该模型无弹性后效,存在永久应变。
分3个阶段: (1)原生微裂隙压密阶段(OA级)
特点:① 1 1 曲线 ,曲线斜率↑,应变率随应力增 加而减小;
②变形:塑性,非线性(变形不可恢复) 原因:微裂隙闭合(压密)。裂隙岩石明显,坚 硬少裂隙岩石不明显,甚至不出现本段。
(2)弹性变形阶段(AB段) 特点:① 1 1 曲线是直线; ② 弹性模量E为常数(卸载,变形可恢复) 原因:岩石固体部分变形,B点开始屈服,B点对应的应 力为屈服极限 B 。
岩石刚度:k s

k
s

岩石力学 岩体的应力—应变分析

岩石力学 岩体的应力—应变分析

3.“等价”模型求模量
设岩体内存在单独一组有规律的节理,可用 “等价”连续介质模型来代替这个不连续岩体
等价原理: 保证模型和原型中的总应力和位移
相等;但原型和模型中的变形不同 “等价”模型变形=岩块变形+节理法向变 形 1 1 1 既:
En

E

Kn

En

E

Kn
En 岩体的变形模量
弹—塑 性变形 非线性
出现2个 破坏点 多线性
二、岩体变形模量
1.由应力-应变曲线确定
确定方法
2.岩块与节理面变形叠加求模量 3.“等价”模型确定 4.现场实测方法
1.由应力-应变曲线确定 变形模量 Ed e y 弹性模量
E e
E Ed
2.岩块变形与节理面变形叠加求模量
依据:岩体的位移=岩块的位移+节理的位移 d 岩块的位移: 1 E
2 2 2 m d ( 1 ) 节理的位移: 2 nhE
2 2 2 m d ( 1 ) 岩体的位移: E nhE
d
(a) (b)
岩体有效变形模量: Eeff
d Eeff
等价模型求模量设岩体内存在单独一组有规律的节理可用等价连续介质模型来代替这个不连续岩体等价原理
第五节 岩体的应力—应变分析 一、岩体的 曲线
1.岩石和岩体应力-应变曲线差别
岩体
岩石
岩石和岩体的σ-ε曲线对比示意图
2.岩体变形曲线类型
弹性 线性
岩体内部 破裂或结 构面局部 剪切破坏。 双线性
E 岩块弹性模量
返回
K n 节理的法向刚度系数 4.现场实测方法(4.6讲)

构造分析基本理论与原理

构造分析基本理论与原理

在上述四个带中强硬岩层形成如下构造:
• 1带:已经形成的石香肠正被挤压在一起或形成 褶皱; • 2带:已经形成的石香肠,继续被拉伸增大间距。 • 3带:已经形成褶皱遭受到拉伸,褶皱展开或石 香肠化破坏; • 4带:已经形成褶皱遭受到继续压缩,褶皱波长 减少,波幅增大;
依据有限应变椭圆主轴方位与无限小应变椭圆主轴方位是否 发生变化,可以划分为共轴递进变形和非共轴递进变形
递进的简 单剪切是非共轴 递进变形的典型 实例。
6、简单剪切变形和纯剪变形
• 1 简单剪切 • 特殊的均匀变形,物体 中质点沿着彼此平行的 方向上滑动。 • x’=x+ γy γ =tan ψ • y’=y • 2 纯剪切 Pure shear • x’=(1+ex)x, x’/x=1+ ex • y’=(1+ey)y, y’/y=1+ ey y
压熔缝合线和压熔条带—共轴流动的标志
•大理岩中压熔缝合线和压熔条带(内蒙)
共轴变形(共轭叶理)
7、构造变形分解作用 • 基本概念(Bell ,1985) • 岩石在递进变形过程中,由于地质体结构的 不均一性(原生的或次生的)导致应变的不 均一性,因此岩石的变形可分解成递进剪切 变形和递进伸缩变形。 • 岩石在递进变形过程中与矿物溶解(岩石熔 融)最直接相关的是其剪切变形分量,溶解 (熔融)现象主要发生在强烈剪切的变形带 中
L0
L1Βιβλιοθήκη 平方长度比指变形前后线段长度比的平方,一般 用表示: =(L1/ L0 )2 =(1+ e)2 (2)
线 应 变 实 例
L0 2.3 剪应变 变形前相互垂直 的两条物质线,变形 后其夹角偏离直角的 改变量称为角剪应变 ,其正切称为剪应 变 。

岩石弯曲试验方法与分析

岩石弯曲试验方法与分析

岩石弯曲试验方法与分析岩石是地球地壳中主要的构成物质之一,了解其力学性质对于地质工程和岩石工程等领域具有重要意义。

本文将探讨岩石弯曲试验的方法与分析,旨在帮助读者更好地理解岩石的弯曲性能。

一、引言岩石的弯曲行为是岩石力学中的重要研究内容之一。

岩石在地壳运动过程中,经历了各种力的作用,其中弯曲是常见的一种。

了解岩石弯曲的性能与行为,对于预测和评估地质灾害,设计地下工程结构以及合理的岩石开采等都具有重要意义。

二、岩石弯曲试验方法岩石弯曲试验通常采用三点弯曲试验和四点弯曲试验。

1. 三点弯曲试验三点弯曲试验是一种常用的岩石力学试验方法,其基本原理是在岩石试样两个支撑点之间施加集中力,使其产生曲线形变。

试验时,将岩石试样放置于两个支撑点之间,施加一定的荷载,通过测量试样的变形和荷载大小,来判断岩石的弯曲性能。

2. 四点弯曲试验四点弯曲试验相较于三点弯曲试验来说,更加接近实际应力状态。

通过在试样两端加入两个集中载荷点,并在试样中间加入两个支撑点,来模拟真实的应力状态。

通过该试验方法,可以更准确地分析岩石试样的弯曲行为。

三、岩石弯曲试验参数与分析进行岩石弯曲试验后,需要分析试验参数以获得准确的结果。

1. 弯曲强度弯曲强度是岩石的一个重要力学参数,它表示岩石在弯曲过程中最大承载荷载的能力。

通过弯曲试验,可以测得岩石试样的弯曲强度,这对于岩石的评估和设计具有重要参考价值。

2. 应变与变形特性岩石在受力后,会发生一定的应变和变形。

通过岩石弯曲试验获得的应变与变形数据,可以对岩石的变形特性进行分析,从而更好地了解岩石的物理特性。

3. 岩石的弯曲模量弯曲模量是指单位应变下的应力变化率。

通过弯曲试验中反映的应变和荷载关系,可以计算出岩石的弯曲模量,以便更加准确地评估岩石的力学性能。

四、岩石弯曲试验结果的应用岩石弯曲试验的结果可以应用于多个领域。

1. 地质灾害评估地质灾害如滑坡、斜坡等与岩石的力学性能密切相关。

通过岩石弯曲试验的结果,可以评估岩石的弯曲稳定性,进一步预测和评估地质灾害风险。

地质构造力学分析汇总

地质构造力学分析汇总

岩石的结构是指岩石内部颗粒的形状和大小、 排列方式及胶结的紧密程度。一般来讲,颗粒圆 滑、胶结不紧的岩石强度较低;而颗粒细、胶结 紧的岩石则强度大。
重庆工程职业技术学院
构造地质学
第二章
• (3)岩石的构造
岩石的构造差异直接影响到岩石对受力后变
形的不同反应。
重庆工程职业技术学院
构造地质学
第二章
2.2 外界因素
构造地质学
第二章
2. 一点的应力状态
我们把物体受力后其内部任一点各
个截面上的应力分布情况,称为该点的
应力状态。
重庆工程职业技术学院
构造地质学
第二章
重庆工程职业技术学院
构造地质学
第二章
重庆工程职业技术学院
构造地质学
第二章
重庆工程职业技术学院
构造地质学
第二章
一点的应力状态分为三类:
• 单轴应力状态:
第二章
图2-14 塑性材料拉伸时的应力应变曲线图 σa-比例极限;σb-弹性极限;σc-屈服极限;σd-强度极限;
重庆工程职业技术学院
构造地质学
第二章
• 3.1 弹性变形
当物体在外力作用下发生变形,取消 外力后能完全恢复到变形前状态的变形,
称为弹性变形。弹性变形的主要特点是符
合虎克定律。
重庆工程职业技术学院
间的关系。
重庆工程职业技术学院
构造地质学
第二章
图2-4 单轴应力状态分析
重庆工程职业技术学院
构造地质学
第二章

1
2
(1 cos 2 )

1
2
sin 2
重庆工程职业技术学院
构造地质学

地质构造分析的力学基础

地质构造分析的力学基础
应变)、角度变化(角应变)或体积变化(体应 变)
拉伸、压缩、剪切、弯曲和扭转。
有关应变的几个基本概念
线应变:变形前后物体内线段的相对伸长 或缩短
1)伸长度(线应变):变形前后单位线段长 度的改变量
L0
L1
e = (L1 - L0 )/ L0 _
e — 伸长为正;缩短为负
在拉伸或压缩情况下,变形物体不仅会 在拉伸或压缩方向上(纵向上)产生变 形,而且在与之垂直的方向上(横向上) 产生应变(e0)。 e0 =b/b0
5)外力作用方式:拉伸与压缩 6)快速施力与缓慢施力 7)重复施力
注意:岩石自身力学性质也是影响其变形 方式的重要因素!
常温常压下一些岩石的强度极限表
岩石的破坏
岩石破裂的两种主要方式 —张裂和剪裂
岩石破裂理论:
按照应力分析,在与挤压或拉伸方向呈45 交角的截面上剪应力最大。称为最大剪切面。 因此,剪切破裂面应该发生在这个方向上, 成对出现,称为共轭剪切破裂面。
顺时针为正,逆时针为
负。
体积应变:变形前 后体积的变化量。
=(V-V0)/V0
应变椭球:变形 物体内一点上变 形前的一个圆球 体在变形后变成 一个椭球体—应 变椭球。
应变椭球体内有三 个互相垂直的主轴, 沿主轴方向只有线 应变而没有剪应变, 称之为应变主轴 (应变主方向)。 分别以1,2,3 (或X, Y, Z)表 示。椭球体的三个 主轴的半径分别为
A0 τ s
P
当=45时, sin 2=1, <45时,sin 2<1
=1/2s1;当 >45或
结论3:在与挤压或拉伸方向呈45交角的截面上剪 应力最大。称为最大剪切面。
当=90时, =0,s=0

构造地质学04第四章变形岩石应变分析基础

构造地质学04第四章变形岩石应变分析基础

应变椭圆
为增量应变,
t 3ⅰ t 4ⅰ
T3为有限应变
t3ⅰ
T3+t4ⅰ T4
可见,4时刻的有限应变是在3有限应变基础上,叠加上4时间间 隔的增量应变的结果;换言之,某一时刻的有限应变,是在此刻 之前一系列应变增量积累的总和。
二. 共轴递进变形 递进变形的过程中,增量应变椭球体
的主应变轴方位与有限应变椭球体的主应 变轴的方位始终保持一致。作为主应变轴 质线也始终如一,不发生转换。但其它质 线都经历了复杂的历史。 递进纯剪变形是共轴递进变形的典型实例。
递进变形包括两部分应变,即增量 应变和有限应变。
增量应变(瞬时应变),它代表在变形历 史的某一瞬间正在发生的一个无限小应变 有限应变:代表在变形历史的某一瞬间以 前已经发生的应变总和,又称全量变
举例:
T1
初始单位圆
T4 t4ⅰ
T2 t2ⅰ
T3
T4
有限
应变椭圆
T2+t3ⅰ T3
增量
T3
T2-3T之间的t3ⅰ 单位圆
结构要素 三个主应变轴:X. Y. Z (或A、B、C) 主轴方向相互垂直,代表三个应变主轴方向。 1.三个主轴(只有线应变,无剪应变)
(Z)
(X)
(Y)
设线应变的伸长度e1 > e2 > e3=长度比1+ e1 >1+ e2 >1+e3
椭球体的三个应变主轴半径分别为 √λ1,√λ2,√λ3
(1+ e1) (1+ e2)
扭转
弯曲
非均匀变形的特点: (1)直线变形后不呈直线 (2)平行线变形后不再平行 (3)在同一方向的每一个点大小不相等 (4)变形方式:扭曲和弯曲

构造地质学-4应变与岩石变形

构造地质学-4应变与岩石变形

(C)形变
(D)体变
一、变形、位移和应变
2. 应变——变形的度量 物体在某一时刻的形态与早先的形态(一般指 初始状态或未变形的状态)之间的差别就是物 体在该时刻的应变。应变对非刚性变形而言。 应变可分为线应变和剪应变,线应变反映伸缩 变形,剪应变反映旋转变形。
P
l0 l
b b
0
P 初始长宽比较小的长方 形材料变形成为长宽比 较大的长方形材料
一、变形、位移和应变 2. 应变 (1)线应变
(1)线应变:用百分数表示的单位长度改变量。
设一原始长度为l0的杆件变形后长度为l,则其线应
变e为
l e
l0 l
,线应变用百分数表示。
伸长时的线应变 l0
l0
为正值,缩短时
的线应变为负值。 P
b b
0
P
正、负号与应力 分析的规定相反。
线应变反映材料 的伸缩变形
与旋转变形 五、递进变形 六、脆性和韧-脆性岩石的变形行为 七、岩石破裂准则 八、影响岩石力学性质的外部因素 九、应变测量 十、岩石变形的微观机制
二、应变椭球体
1.主应变和应变主方向 在均匀变形条件下,以变形物体内部任意点 为中心总是可以截取一个体积微小的立方体, 该立方体三对表面上只有线应变而无剪应变, 这三对相互垂直的截面就是该点的主应变面, 其上的线应变称为主应变,其方向称为应变 主方向或主应变轴,平行于最大伸长方向者 称为最大应变主方向1或最大主应变轴A, 平行于最大压缩方向者称为最小应变主方向 3或最小主应变轴C,介于其间的为中间应 变主方向2或中间主应变轴B。
应变椭球体方程
Z 圆截面
x2 y2 z2 1
1 2 3
Z
YZ面 XZ面

构造地质学-应变分析

构造地质学-应变分析
例2:
化石变形后铰合线偏差,与中线不再垂直; 角剪应变(应变角)ψ = 45º; 剪应变γ= tgψ = tg 45º = 1
讨论
如何识别一个圆形地质体 是否由变形所致 ?
三、均匀应变与非均匀应变
1. 均匀应变:
(1)定义: 物体内各质点的应变特点相同的变形
(2)特点: 变形前的直线,变形后仍是直线; 变形前的平行线,变形后仍是平行线
共轴递进变形: 在ຫໍສະໝຸດ 进变形过程中,应变主轴的 方向保持不变
非共轴递进变形:在递进变形过程中,应变主轴的 方向随着剪应变量的增加而改变
二者的应力作用方式有何区别?
五、弗林( Flinn )图解
用主应变比(a、b)作为坐标轴的二维图解 a = X / Y = (1 + e 1)/(1 + e 2) b = Y / Z = (1 + e 2)/(1 + e 3)
原点(1,1),任意一种形态的椭球体都可在图上表示为 一点(P),其位置反映应变椭球体的形态和应变强度
2. 非均匀应变:
(1)定义: 物体内各质点的应变特点发生变化的变形
(2)特点: 变形前的直线,变形后为曲线或折线; 变形前的平行线,变形后不在保持平行
非均匀变形 A.变形前; B.变形后; C.不连续变形
3. 连续变形: 物体内从一点到另一点的应变状态是 逐渐变化的(如弯曲)
4. 不连续变形: 物体内从一点到另一点的应变状态是 突然变化(如断开)
应变椭球体的形态用数值 k 表示
k = tanα = (a - 1) / (b - 1)
( k 值相当于 p 点与原点的斜率)
讨论: k=0 1>k>0 k=1 ∞>k>1 k=∞
单轴旋转扁球体(轴对称缩短) 扁形椭球体(压扁型) 平面应变椭球体 长型椭球体(收缩型) 单轴旋转长球体(轴对称伸长)

第四章应变分析基础

第四章应变分析基础

应变椭球:三维变形中初始单位球体经变形形成的椭球 应变主轴: 应变椭球的三主轴方向。分别称为最大、中间 和最小应变主轴。记做λ 1 (X) ,λ 2 (Y),λ 3 (Z) 长度分别为X=λ 11/2,Y=λ 21/2,Z=λ 31/2 应变主平面:应变椭球上包含任意两个应变主轴的切面。 XY,XZ,YZ面, λ 1 (X) 主轴、主平面的地质意义: X方向-拉伸线理 XY面-面理面
1 / 2(2 '1 ' )
2 '
[1 / 2(2 '1 ' ),0]
2 '
'
六、 递进变形
有限应变(总应变):物体变形最终状态与初始状态对比发生的 变化 递进变形:物体从初始状态变化到最终状态的过程是一个由许多 次微量应变的逐次叠加过程,该过程即为递进变形 增量应变:递进变形 中某一瞬间正在 发生的小应变叫 增量应变 无限小应变:如果所 取的变形瞬间非 常微小,其间发 生的微量应变为 无限小应变
三、应变椭球体
西班牙伊比利亚半岛Los Fuejos
断层传播褶皱中的应变
(a)最大和最小主应变轴的
分布;
(b)无有限应变的方位;
(c)应变椭球体等扁率(最小
主半径/最大主半径)图
四、 三维应变的弗林(Flinn)图解
a=X/Y, b=Y/Z, k=(a-1)/(b-1) k=0:轴对称压缩,铁饼型;1>k>0:压扁型;k=1: 平面应变 ∞>k>1:拉伸应变;k=∞:单轴拉伸,雪茄型
实际上,杆件在纵向被拉长的同时,还有 横向变形,其横向线应变e0 为
b b0 b e0 b0 b0
泊松比:在弹性变形内,一种材料的横向线 应变与纵向线应变之比的绝对值为一常数, 该常数就是该材 料的泊松比(),P P 即
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2变形岩石的应变分析基础
➢ 如果原始垂线相对于特定 方向顺时针旋转,角剪应 变γ取负值;
➢ 如果原始垂线相对于特定 方向逆时针旋转,角剪应 变γ取正值;
➢ 如右图,A’B’、B’C’取正值, C’A’取负值!
2变形岩石的应变分析基础
有限应变(finite strain):物体变形的 最终状态和初始状态的对比所发生 的变化
Angular shear strain, 角剪应变 ψ, 变形前相互垂直的两条直线,变形后其
夹角偏离直角的量。
ψ
Shear strain 剪应变 γ =tan ψ
2变形岩石的应变分析基础
➢对某一直线而言,由其顺时针旋转90°所成直角
,若变形后原直角减小,其值为正!
➢否则,原直角增加时,则取负值! ➢如图中OY线γy=为正值,而γx则为负值
2变形岩石的应变分析基础
实验装置及设计
2变形岩石的应变分析基础
2变形岩石的应变分析基础
天然岩石,在特定的地质环境下,受到 应力作用而发生质点间的相对位移
经过一定的时间,改变了原有地质结构 的形态和方位,而形成的新的构造和组 构。
2变形岩石的应变分析基础
刚体平移 Translation 物体相对于
可以代表整个物体的变形特征。
2变形岩石的应变分析基础
连续变形:物体内从 一点到另一点的应变 状态是逐渐改变的。
不连续变形:如断裂。
不连续变形(Discontinuous Deformation ): 如断裂构造
应变相容性(strain compatibility, Hudleston, 1999, JSG): Two or more strain types coordinate with each other
p
p’
p’’
y’’
x’’
6 一般的均匀应变 x’=ax+by y’=cx+dy 系数为a, b, c, d 或 x=(dx’-by’)/(ad-bc) y=(-cx+ay)/(ad-bc) 直线的变形
y=mx+k y’=[(c+dm)/(a+bm)]x’+[(ad
-bc/(a+bm)]k
外部坐标作整体的平移(直 移)
刚体旋转 Rotation 物
体相对于外部坐标作整体的 旋转
单元体相对 于坐标 的位移基本型式
体变 Dilation 物体 内各个质点的相对位置 发生了变化,改变了物 体的大小
形变 Distortion(变 歪)物体内各个质点的 相对位置发生了变化, 改变了物体的形状
2
变 形 岩 石 础的 应 变 分 析 基
2变形岩石的应变分析基础
位移矢量 displacement vector 质点的初始位置和最终位置的连线(方
向和距离)并不代表质点的真正位移路 径 displacement path
x’
x
1 刚体平移
x’=x+u
y’=y+v
y
2 刚体旋转 x’=cosω x+sin ω y y’=-sin ω x+cos ω y y
x’=ax+by y’=cx+dy
x=Ax’+By’ y=Cx’+Dy’
2变形岩石的应变分析基础
1 应变椭球/圆strain ellipse的概念
单位球体经均匀变形后成 为的椭球体称为应变椭球 (strain ellipsoid), 以椭球的形态和方位来形 象地表达岩石的应变状态。
二维应变分析中,一个单 位球体变形后成为椭球。
ΔA=(A’-A)/A=(1+ ex)(1+
ey)-1
y
y’
p P’
5 纯剪切 Pure shear
ΔA=0,
(1+ ex)(1+ ey)=1
(1+ ex)=1/(1+ ey)
x x’
x
5 普通剪切 general shear 简单剪切 x’=x+ γy y’=y 叠加单轴伸缩 x’’=x’ y’’=(1+ey)y’. x’’=x+ γy y’’=(1+ey)y
变形后单位长度的改变量
e=(l’-l)/l=l’/l-1
l’/l=1+e
Quadratic elongation 平方长度比
λ=( l’/l)2=(1+e)2
Natural strain 自然应变
Δl
ε=ΣΔl/l=∫l’l dl/l =ln(l’/l)=ln (1+e)
l l’
l l’
2变形岩石的应变分析基础
2变形岩石的应变分析基础
: 赤平投影(定量几何分析)、剪应变(定量运动学) 大小变化: 变化过程:构造模拟(正演、反演):数学与物理方法
主要参考书: J. G. Ramsay and M. I. Huber, 1983, The Technique of
Modern Structural Geology Volume 1 Strain Analysis 现代构造地质学方法 第一卷 应变分析,地质出版社, 1991。 郑亚东、常志忠,1985,岩石有限应变测量及韧性剪切带 ,地质出版社。
递进变形 progressive deformation 增量应变 incremental strain 无限小应变(infinitesimal strain)
2变形岩石的应变分析基础
物体内各点的应变状态相同的变形称均匀变形。
变形前的直线在变形后仍是直线; 变形前的平行线在变形后仍然平行。 其中的单位圆变形后成为椭圆,称为应变椭圆 其中任何一小单元的应变性质(大小和方向)
y’ ω
x’=ax+by y’=cx+dy
x=Ax’+By’ y=Cx’+Dy’ p’
v
pu x
p p’
x’
x
3 简单剪切 x’=x+ γy γ =tan ψ y’=y
ΔA=0,
y
y
p
P’
4 双轴伸缩 x’=(1+ex)x, x’/x=1+ ex
ψ
y
x
x’
x
y’=(1+ey)y, y’/y=1+ ey
应变 Strain 物体在 应力作用下的形状和大 小的改变量。有时也涉 及其旋转的成分
2变形岩石的应变分析基础
应力状态 是指某一瞬间作用于物体上的应力
分布情况,应力场是随时间而变化的。
应变 是指物体在变形前后状态的比较,是经过
一段时间的变形后两种状态的比较。
2变形岩石的应变分析基础
Extension 线应变(伸长度)
相关文档
最新文档