数学七年级上册 几何图形初步单元测试卷(解析版)

合集下载

人教版初一七年级上册数学 《第四章 几何图形初步》单元测试卷02(含答案)

人教版初一七年级上册数学 《第四章 几何图形初步》单元测试卷02(含答案)

人教版七年级数学上册《第四章几何图形初步》单元测试卷一、选择题(共8小题,4*8=32)1.下列能用∠C表示∠1的是()2.A,B两点间的距离是()A.连结两点间的直线B.连结两点的线段C.连结两点间的直线的长度D.连结两点的线段的长度3.将正方体的表面沿某些棱剪开,展成如图所示的平面图形,则原正方体中与数字5所在的面相对的面上标的数字为()A.1B.2C.3D.44.已知线段AB=15cm,点C是直线AB上一点,BC=5cm,若M是AC的中点,N是BC的中点,则线段MN的长度是()A.10cm B.5cmC.10cm或5cm D.7.5cm5.α与∠β的度数分别是(2m-67)°和(68-m)°,且∠α与∠β都是∠γ的补角,那么∠α与∠β的关系是()A.互余但不相等B.互为补角C.相等但不互余D.互余且相等6.已知线段AB=8cm,点C是直线AB上一点,BC=2cm,若M是AB的中点,N是BC的中点,则线段MN的长度为()A.5cm B.5cm或3cmC.7cm或3cm D.7cm7.已知∠AOB=30°,自∠AOB的顶点O引射线OC,若∠AOC:∠AOB=4:3,则∠BOC=()A.10°B.40°C.40°或70°D.10°或70°8.已知直线AB上有一点O,射线OC和射线OD在直线AB的同侧,∠BOC=50°,∠COD =100°,则∠BOC与∠AOD的平分线的夹角的度数是()A.130°B.135°C.140°D.145°二、填空题(共6小题,4*6=24)9.如图,AB+BC>AC,其理由是____.10.如图,在横线上填上适当的角:∠AOB=-∠COB=∠AOD-.11.如图,延长线段AB到C,使BC=4,若AB=8,则线段AC的长是BC的_____倍.12.如图,点A,O,B在一条直线上,且∠AOC=50°,OD平分∠AOC,则∠BOD=________.13.已知线段AB=5cm,点C在直线AB上,且BC=3cm,则线段AC=________.14.归纳与猜想:(1)观察下图填空:图1中有个角;图2有个角;图3中有个角;(2)根据(1)猜想:在一个角内引n-2条射线可组成个角.三、解答题(共5小题,44分)15.(6分)下图中实物的形状对应哪些立体图形?把相应的实物与图形用线连起来.16.(8分)王老师到市场买菜,发现如果把10千克的菜放到秤上,指示盘上的指针转了180°,如图.第二天王老师就给同学们出了两个问题:(1)如果把0.6千克的菜放在秤上,指针转过多少角度?(2)如果指针转了7°12′,这些菜有多少千克?AB,点E是17.(8分)如图,已知A,B,C三点在同一直线上,AB=24cm,BC=38 AC的中点,点D是AB的中点,求DE的长.18.(10分)如图,已知∠AOB=12∠BOC,∠COD=∠AOD=3∠AOB,求∠AOB和∠COD的度数.19.(12分)如图,已知线段AB和CD的公共部分BD=13AB=14CD,线段AB,CD 的中点E,F之间的距离是10cm,求AB,CD的长.参考答案1-4CDBC5-8CBDC9.两点之间线段最短10.∠AOC ,∠DOB11.312.155°13.2cm 或8cm14.3,6,10;n (n -1)215.解:如图所示。

人教版七年级上册数学 第四章 几何图形初步 单元测试(含解析)

人教版七年级上册数学 第四章 几何图形初步 单元测试(含解析)

第四章几何图形初步单元测试一.选择题1.对如图所示几何体的认识正确的是()A.棱柱的底面是四边形B.棱柱的侧面是三角形C.几何体是四棱柱D.棱柱的底面是三角形2.电视剧《西游记》中,孙悟空的“金箍棒”飞速旋转,形成一个圆面,是属于()A.点动成线B.线动成面C.面动成体D.以上都不对3.下列说法正确的是()A.延长直线AB到点CB.延长射线AB到点CC.延长线段AB到点CD.射线AB与射线BA是同一条射线4.如图,C为线段AD上一点,点B为CD的中点,且AD=9,BD=2.若点E在直线AD 上,且EA=1,则BE的长为()A.4B.6或8C.6D.85.下列说法正确的是()A.两点之间的线段,叫做这两点之间的距离B.87'等于1.45°C.射线OA与射线AO表示的是同一条射线D.延长线段AB到点C,使AC=BC6.线段AB=9,点C在线段AB上,且有AC=AB,M是AB的中点,则MC等于()A.3B.C.D.7.某公司员工分别在A、B、C三个住宅区,A区有30人,B区有15人,C区有10人,三个区在一条直线上,位置如图所示,该公司的接送车打算在此间只设一个停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠点的位置应设在()A.A区B.B区C.C区D.A、B两区之间8.如图,将一副三角板叠在一起使直角顶点重合于点O,(两块三角板可以在同一平面内自由转动),下列结论一定成立的是()A.∠BOA>∠DOC B.∠BOA﹣∠DOC=90°C.∠BOA+∠DOC=180°D.∠BOC≠∠DOA9.下列说法正确的是()A.射线比直线短B.从同一点引出的两条射线所组成的图形叫做角C.若AP=BP,则P是线段AB的中点D.两点之间的线段叫做这两点之间的距离10.如图,O在直线AB上,OC平分∠DOA(大于90°),OE平分∠DOB,OF⊥AB,则图中互余的角有()对.A.6B.7C.8D.10二.填空题11.若一个六棱柱,则它有条棱,有个面.12.秒针旋转一周时,形成一个圆面,用数学知识可以理解为.13.已知点A、B、C在同一直线上,若AB=10cm,AC=16cm,点M、N分别是线段AB、AC中点,则线段MN的长是.14.如图,线段AB=3,延长AB到点C,使BC=2AB,则AC=.15.如图,已知CD=AD=BC,E、F分别是AC、BC的中点,且BF=40cm,则EF 的长度为cm.16.人们会把弯曲的河道改直,这样能够缩短航程.这样做的道理是.17.如图,有一种电子游戏,电子屏幕上有一条直线,在直线上有A,B,C,D四点,且AB=BC=CD,点P沿直线l从右向左移动,当出现点P与A,B,C,D四点中的至少两个点距离相等时,就会发出警报,则直线l上会发出警报的点P有个.18.如图,已知A、B是线段EF上两点,EA:AB:BF=1:2:3,M、N分别为EA、BF 的中点,且MN=8cm,则EF长为.19.如图,C、D是线段AB上的两点,E是AC的中点,F是BD的中点,若AB=m,CD =n,则线段EF的长为.20.如图,射线OC,OD在∠AOB内,∠AOB和∠BOC互为补角,.若∠COD比∠BOD大m°(m<30),则∠AOC=°.(用含m的式子表示)三.解答题21.如图所示是一张铁皮.(1)计算该铁皮的面积;(2)它能否做成一个长方体盒子?若能,画出来,计算它的体积;若不能,说明理由.22.如图,线段AB=20,BC=15,点M是AC的中点.(1)求线段AM的长度;(2)在CB上取一点N,使得CN:NB=2:3.求MN的长.23.如图,是小明家和学校所在地的简单地图,已知OA=2km,OB=3.5km,OP=4km,点C为OP的中点,回答下列问题:(1)图中到小明家距离相同的是哪些地方?(2)由图可知,公园在小明家东偏南30°方向2km处.请用方向与距离描述学校、商场、停车场相对于小明家的位置.24.如图,在直线AD上任取一点O,过点O做射线OB,OE平分∠DOB,OC平分∠AOB,∠BOC=26°时,求∠BOE的度数.25.如图,C是线段AB上一点,AC=5cm,点p从点A出发沿AB以3cm/s的速度匀速向点B运动,点Q从点C出发沿CB以1cm/s的速度匀速向点B运动,两点同时出发,结果点P比点Q先到3s.(1)求AB的长;(2)设点P、Q出发时间为ts,①求点P与点Q重合时(未到达点B),t的值;②直接写出点P与点Q相距2cm时,t的值.26.线段与角的计算.(1)如图1,已知点C为AB上一点,AC=15cm,CB=AC,若D、E分别为AC、AB 的中点,求DE的长.(2)已知:如图2,∠AOB被分成∠AOC:∠COD:∠DOB=2:3:4,OM平分∠AOC,ON平分∠DOB,且∠MON=90°,求∠AOB的度数.参考答案1.解:如图所示的几何体是三棱柱,它有两个全等的三角形的底面,三个矩形的侧面,因此选项ABC均不符合题意,选项D符合题意;故选:D.2.解:孙悟空的“金箍棒”飞速旋转,形成一个圆面,是属于线动成面,故选:B.3.解:A、直线可以沿两个方向无限延伸,故不能说延长直线AB,故本选项不符合题意;B、射线可沿延伸方向无限延伸,故不能说延长射线AB,故本选项不符合题意;C、线段不能延伸,可以说延长线段AB到点C,故本选项符合题意;D、射线AB与射线BA不是同一条射线,故本选项不符合题意;故选:C.4.解:若E在线段DA的延长线,如图1,∵EA=1,AD=9,∴ED=EA+AD=1+9=10,∵BD=2,∴BE=ED﹣BD=10﹣2=8,若E线段AD上,如图2,EA=1,AD=9,∴ED=AD﹣EA=9﹣1=8,∵BD=2,∴BE=ED﹣BD=8﹣2=6,综上所述,BE的长为8或6.故选:B.5.解:A、应为:连结两点的线段的长度叫做这两点间的距离,故本选项错误;B、87'=60'+27'=1°+()°=1.45°,故本选项正确;C、射线OA的端点是点O,射线AO的端点是点A,所以,它们不是同一条射线,故本选项错误;D、延长线段AB到点C,则AC一定大于BC,不能使AC=BC,故本选项错误.故选:B.6.解:∵AB=9,∴AC=AB=3,∵M是AB的中点,∴AM=AB=∴MC=AM﹣AC=﹣3=故选:B.7.解:∵当停靠点在A区时,所有员工步行到停靠点路程和是:15×100+10×300=4500m,当停靠点在B区时,所有员工步行到停靠点路程和是:30×100+10×200=5000m,当停靠点在C区时,所有员工步行到停靠点路程和是:30×300+15×200=12000m,当停靠点在A、B区之间时,设在A区、B区之间时,设距离A区x米,则所有员工步行路程之和=30x+15(100﹣x)+10(100+200﹣x),=30x+1500﹣15x+3000﹣10x,=5x+4500,∴当x=0时,即在A区时,路程之和最小,为4500米;综上,当停靠点在A区时,所有员工步行到停靠点路程和最小,那么停靠点的位置应该在A区.故选:A.8.解:因为是直角三角板,所以∠AOC=∠BOD=90°,所以∠BOA+∠DOC=∠AOC+∠BOC+∠DOC=∠AOC=∠BOD=180°,故选:C.9.解:A.射线和直线不可以比较长短,原说法错误,故本选项不符合题意;B.从同一点引出的两条射线所组成的图形叫做角,原说法正确,故本选项符合题意;C.若点P在线段AB上,AP=BP,则P是线段AB的中点,原说法错误,故本选项不符合题意;D.两点之间的线段的长度叫做这两点之间的距离,原说法错误,故本选项不符合题意;故选:B.10.解:∵OC平分∠DOA,∴∠AOC=∠COD,∵OE平分∠DOB,∴∠DOE=∠BOE,∴∠COE=90°,∴∠AOC+∠BOE=90°,∠AOC+∠DOE=90°,∠COD+∠BOE=90°,∠COD+∠DOE =90°,∠COF+∠EOF=90°,∵OF⊥AB,∴∠AOC+∠COF=90°,∠COD+∠COF=90°,∠BOE+∠EOF=90°,∠BOD+∠DOF =90°,∠DOE+∠EOF=90°,∴互余的角有10对.故选:D.11.解:因为六棱柱上下两个底面是6边形,侧面是6个长方形,所以共有18条棱,8个面;故答案为18,8.12.解:根据点、线、面、体之间的关系可得,线动成面.13.解:(1)如图1,,∵AB=10cm,点M是线段AB的中点,∴AM=10÷2=5(cm);∵AC=16cm,点N是线段AC的中点,∴AN=16÷2=8(cm),∴MN=AM+AN=5+8=13(cm)(2)如图2,,∵AB=10cm,点M是线段AB的中点,∴AM=10÷2=5(cm);∵AC=16cm,点N是线段AC的中点,∴AN=16÷2=8(cm),∴MN=AN﹣AM=8﹣5=3(cm),综上,线段MN的长是13cm或3cm.故答案为:13cm或3cm.14.解:∵AB=3,∴BC=2AB=6,∴AC=AB+BC=3+6=9.故答案为:9.15.解:∵点F是BC的中点,且BF=40cm,∴BC=2BF=80cm,∵CD=AD=BC,∴CD=×80=16cm,AD=64cm,∴AC=AD﹣CD=48cm,∵E、F分别是AC、BC的中点,∴CE=AC=24cm,CF=BF=40cm,∴EF的长度为CE+CF=64cm,故答案为:64.16.解:由线段的性质可知,把弯曲的河道改直,能够缩短航程,这样做根据的道理是两点之间线段最短,故答案为:两点之间线段最短.17.解:根据题意可知:当点P经过任意一条线段中点时会发出报警,∵图中共有线段DC、DB、DA、CB、CA、BA,∵BC和AD中点是同一个∴发出警报的可能最多有5个.故答案为5.18.解:∵EA:AB:BF=1:2:3,可以设EA=x,AB=2x,BF=3x,而M、N分别为EA、BF的中点,∴MA=EA,NB=BF,∴MN=MA+AB+BN=x+2x+x=4x ∵MN=8cm,∴4x=8,∴x=2,∴EF=EA+AB+BF=6x=12,∴EF的长为12cm,故答案为:12cm.19.解:∵AB=m,CD=n.∴AB﹣CD=m﹣n,∵E、F分别是AC、DB的中点,∴CE=AC,DF=DB,∴CE+DF=(m﹣n),∴EF=CE+DF+DC=(m﹣n)+n=m+n,故答案为:m+n.20.解:∵∠AOB和∠BOC互为补角,∴∠AOB+∠BOC=180°,∵∠BOD=,∴3∠BOD+∠BOC=180°,即∠BOC=180°﹣3∠BOD,∵∠COD+∠BOD=∠BOC,∴180°﹣3∠BOD=∠COD+∠BOD,∴∠COD+4∠BOD=180°,∵∠COD比∠BOD大m°(m<30),∴∠COD﹣∠BOD=m°,∴∠BOD=()°,∠COD=()°∴∠BOC=()°,∴∠AOB=180°﹣∠BOC=(108﹣)°,∴∠AOC=∠AOB﹣∠BOC=(108﹣)°﹣()°=(36﹣m)°.故答案为(36﹣m).21.解:(1)(1×3+2×3+1×2)×2=22(m2),(2)根据棱柱的展开与折叠,可得可以折叠成长方体的盒子,其长、宽、高分别为3cm,2cm,1cm,因此体积为:1×2×3=6(m3),22.解:(1)线段AB=20,BC=15,∴AC=AB﹣BC=20﹣15=5.又∵点M是AC的中点.∴AM=AC=×5=,即线段AM的长度是.(2)∵BC=15,CN:NB=2:3,∴CN=BC=×15=6.又∵点M是AC的中点,AC=5,∴MC=AC=,∴MN=MC+NC=,即MN的长度是.23.解:(1)因为点C为OP的中点,所以OC=2km,因为OA=2km,所以可得出距小明家距离相同的是学校和公园;(2)由图可知,学校在小明家东偏北45°方向2km处,商场在小明家西偏北60°方向3.5km处,停车场在东偏南30°方向4km处.24.解:∵OC平分∠AOB,∠BOC=26°,∴∠AOB=2∠BOC=52°.∴∠BOD=180°﹣52°=128°.∵OE平分∠DOB,∴∠BOE=∠DOB=×128°=64°.25.解:(1)设AB=xcm,根据题意可得:(x﹣5)﹣=3,解得:x=12,答:AB的长为12cm;(2)①由题意可得:3t=t+5,解得:t=,故点P与点Q重合时(未到达点B),t的值为;②当点P追上点Q前相距2cm,由题意可得:3t+2=t+5,解得:t=,当追上后相距2cm,由题意可得:3t﹣2=t+5,解得:t=,总上所述:t=或t=.26.解:(1)∵AC=15cm,CB=AC,∴CB=×15=10(cm),∴AB=15+10=25(cm).∵D,E分别为AC,AB的中点,∴AE=BE=AB=12.5cm,DC=AD=AC=7.5cm,∴DE=AE﹣AD=12.5﹣7.5=5(cm);(2)设∠AOC=2x,∠COD=3x,∠DOB=4x,则∠AOB=9x,∵OM平分∠AOC,ON平分∠DOB,∴∠MOC=x,∠NOD=2x,∴∠MON=x+3x+2x=6x,又∵∠MON=90°,∴6x=90°,∴x=15°,∴∠AOB=135°.。

2022-2023学年人教版七年级数学上册《第4章几何图形初步》单元达标测试题(附答案)

2022-2023学年人教版七年级数学上册《第4章几何图形初步》单元达标测试题(附答案)

2022-2023学年人教版七年级数学上册《第4章几何图形初步》单元达标测试题(附答案)一.选择题(共8小题,满分32分)1.下列四个几何体中,是棱柱的是()A.B.C.D.2.已知∠α=35°40′,则∠α的补角的度数为()A.55°60′B.55°20′C.144°60′D.144°20′3.下列日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③利用圆规可以比较两条线段的大小;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙.其中,可以用“两点确定一条直线”来解释的现象是()A.①④B.②③C.①②④D.①③④4.将一副常规的三角尺如图放置,则图中∠ACB的度数是()A.75°B.95°C.15°D.120°5.如图,若∠1=32°,则∠2的度数是()A.32°B.58°C.48°D.68°6.如图,若∠AOB=∠COD=∠EOF=90°,且∠DOF=45°,∠AOE=30°,求∠BOC 的度数为()A.15°B.20°C.25°D.30°7.若∠1与∠2互为余角,∠1与∠3互为补角,则下列结论:①∠3﹣∠2=90°;②∠3+∠2=270°﹣2∠1;③∠3﹣∠1=2∠2;④∠3<∠1+∠2.其中正确的是()A.①B.①②C.①②③D.①②③④8.如图,∠AOB与∠COB的度数分别记为m,n(m>n),OM,ON分别是∠COB,∠AOC 的平分线,则∠MON的度数为()A.B.C.D.二.填空题(共8小题,满分32分)9.如图,已知线段AB长度为x,CD长度为y,则图中所有线段的长度和为.10.点A,B,C是同一直线上的三个点,若AB=7cm,BC=5cm,则AC=cm.11.(1)钟表上的时间是3时30分,此时时针与分针所成的夹角是度.(2)计算:24°24′=°.(3)一个角是40°,则它的补角是度.12.如图是一个底面各边都相等的六棱柱,它的底面边长为2cm,高为5cm.这个棱柱共有条棱,个面,侧面积是cm2.13.在平整的地面上,有若干个完全相同的棱长为2cm的小正方体堆成一个几何体,如图所示:这个几何体露出的表面积是cm2.14.如图,将一个三角板60°角的顶点与另一个三角的直角顶点重合,∠1=28°,∠2=°.15.如图,已知点O是直线AB上的一点,∠COE=120°,∠AOF=∠AOE.(1)当∠BOE=15°时,∠COA的度数为;(2)当∠FOE比∠BOE的余角大40°,∠COF的度数为.16.某天卢老师在数学课上,利用多媒体展示如下内容:如图,C为直线AB上一点,∠DCE 为直角,CF平分∠ACD,CH平分∠BCD,CG平分∠BCE,各学习小组经过讨论后得到以下结论:①∠ACF与∠BCH互余;②∠HCG=45°;③∠ECF与∠GCH互补;④∠ACF﹣∠BCG=45°.聪明的你认为哪些结论是正确的,请写出正确结论的序号.三.解答题(共7小题,满分56分)17.如图所示的是一个正方体的平面展开图,若将该展开图折叠成正方体后,相对面上的两个数字互为相反数,求2x+y﹣z的值.18.如图是一个食品包装盒的表面展开图.(1)该包装盒的几何体名称是;(2)根据图中所标尺寸,用a,b表示这个几何体的表面积S,并计算当a=1,b=4时,S的值.19.如图,C为线段AD上一点,点B为CD的中点,且AD=9cm,BD=2cm.(1)图中共有条线段.(2)求AC的长.(3)若点E在直线AD上,且EA=3cm,求BE的长.20.如图,点C在线段AB上,点M,N分别为AC,BC的中点.(1)若AC=6cm,MB=10cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC=2acm,MB=bcm,其它条件不变,你能猜想MN的长度吗?并说明理由;(3)若C在线段AB的延长线上,且满足AC=xcm,BC=ycm,M,N分别是线段AC,BC的中点,请画出图形,并用含x,y的式子表示MN的长度.21.如图1,∠AOC和∠BOD都是直角.(1)如果∠DOC=35°,则∠AOB=;(2)找出图1中一组相等的锐角为:;(3)若∠DOC变小,∠AOB将;(填变大、变小、或不变)(4)在图2中,利用能够画直角的工具在图2上再画一个与∠BOC相等的角.22.直观想象,逻辑推理已知点O为直线AB上一点.(1)如图1,过点O作射线OC,使∠AOC:∠BOC=3:2,求∠AOC与∠BOC的度数;(2)如图2,射线OC为∠AOB内部任意一条射线,射线OD、OE分别是∠AOC、∠BOC 的角平分线,求∠DOE的度数,并写出简要的推理过程;(3)写出图2中所有互余的角和互补的角.23.如图,∠AOB=m°,OC是∠AOB内的一条射线,OD、OE分别平分∠BOC、∠AOC.(1)若∠BOC=90°,∠AOC=30°,求∠DOE的度数;(2)试用含m的代数式表示∠DOE;(3)在图中,将OC反向延长,得到OP,OM、ON分别平分∠BOP、∠AOP.请将图补充完整,并用含m的代数式表示∠MON.参考答案一.选择题(共8小题,满分32分)1.解:选项A中的几何体是圆柱,因此选项A不符合题意;选项B中的几何体是三棱柱,因此选项B符合题意;选项C中的几何体是三棱锥,因此选项C不符合题意;选项D中的几何体是四棱台,因此选项D不符合题意;故选:B.2.解:∵∠α=35°40′,∴∠α的补角的度数为180°﹣35°40′=144°20′.故选:D.3.解:①④可以用“两点确定一条直线”来解释;②可以用“两点之间线段最短”来解释;③根据“作一条线段等于已知线段”的方法进行解释;故选:A.4.解:由题意得:∠ACD=45°,∠BCD=30°,则∠ACB=∠ACD﹣∠BCD=15°.故选:C.5.解:由图可得∠1+∠2+90°=180°,∵∠1=32°,∴∠2=58°.故选:B.6.解:∵∠COD=90°,∠DOF=45°,∴∠COF=45°,∵∠EOF=90°,∴∠EOC=45°,∵∠AOB=90°,∴∠AOE+∠BOC=45°,∵∠AOE=30°,∴∠BOC=15°,故选:A.7.解:根据题意得:(1)∠1+∠2=90°,(2)∠1+∠3=180°,∴(2)﹣(1)得,∠3﹣∠2=90°,∴①正确;(1)+(2)得,∠1+∠2+∠1+∠3=270°,∴∠3+∠2=270°﹣2∠1,∴②正确;(2)﹣(1)×2得,∠3﹣∠1=2∠2,∴③正确;∵(1)∠1+∠2=90°,(2)∠1+∠3=180°,∴2(∠1+∠2)=180°,∴∠3=180°﹣∠1=2(∠1+∠2)﹣∠1=∠1+2∠2,∴∠3>∠1+∠2,∴④错误;故选:C.8.解:∵∠AOC=∠AOB+∠BOC=m+n,∵射线ON平分∠AOC,∴∠CON=∠AOC=(m+n),∵OM平分∠BOC,∴∠COM=∠BOC=n,∴∠MON=∠CON﹣∠COM=(m+n)﹣n=m;故选:A.二.填空题(共8小题,满分32分)9.解:∵线段AB长度为x,∴AB=AC+CD+DB=x,又∵CD长度为y,∴AD+CB=x+y,∴图中所有线段的长度和为:AB+AC+CD+DB+AD+CB=x+x+x+y=3x+y,故答案为:3x+y.10.解:①当点C在线段AB的延长线上时,AC=AB+BC=7+5=12cm.②当点C在线段AB上时.AC=AB﹣BC=7﹣5=2cm.故答案为:12或2.11.解:(1)3点30分时,时针与分针的较小夹角是2.5个大格,一个大格的度数是30°,所以30°×2.5=75°;故答案为:75;(2)24°24′=24.4°.故答案为:24.4;(3)由补角的性质,得40°角的补角是180°﹣40°=140°,故答案为:140.12.解:六棱柱有18条棱,8个面,侧面积是2×6×5=60cm2.故答案为:18,8,60.13.解:∵几何体露出的小正方体的面一共有32个,∴这个几何体露出的表面积为32×4=128(cm2),故答案为:128.14.解:∵∠BAC=60°,∠1=28°,∴∠EAC=∠BAC﹣∠1=32°,∵∠DAE=90°,∴∠2=∠DAE﹣∠EAC=58°.故答案为:58.15.解:(1)∵∠BOE=15°,∠COE=120°,∴∠COA=180°﹣120°﹣15°=45°.故答案为:45°.(2)由题意得,∠FOE=90°﹣∠BOE+40°=130°﹣∠BOE.∵∠AOF=∠AOE,∴180°﹣∠BOF=.∴180°﹣(∠EOF+∠BOE)=60°﹣.∴180°﹣130°=60°﹣.∴∠BOE=30°.∴∠EOF=90°﹣30°+40°=100°.∴∠COF=∠COE﹣∠EOF=120°﹣100°=20°.故答案为:20°.16.解:∵CF平分∠ACD,CH平分∠BCD,CG平分∠BCE,∴∠ACF=∠FCD=∠ACD,∠DCH=∠HCB=∠DCB,∠BCG=∠ECG=∠BCE,∵∠ACB=180°,∠DCE=90°,∴∠FCH=90°,∠HCG=45°,∠FCG=135°∴∠ACF+∠BCH=90°,故①②正确,∵∠ECF=∠DCE+∠FCD=90°+∠FCD,∠FCD+∠DCH=90°,∴∠ECF+∠DCH=180°,∵∠HCG≠∠DCH,∴∠ECF与∠GCH不互补,故③错误,∵∠ACD﹣∠BCE=180°﹣∠DCB﹣∠BCE=90°,∴∠ACF﹣∠BCG=45°.故④正确.故答案为:①②④.三.解答题(共7小题,满分56分)17.解:由题意得:2与y,3与z,x与﹣2分别是相对面上的两个数,所以y=﹣2,z=﹣3,x=2,则2x+y﹣z=4﹣2+3=5.18.解:(1)由展开图知,该包装盒的几何体为长方体,故答案为:长方体;(2)由题知,S=2×2a×a+2×2a×b+2×a×b=4a2+6ab,当a=1,b=4时,S=4+6×4=28.19.解:(1)以A为端点的线段为:AC,AB,AD;以C为端点的线段为:CB,CD;以B为端点的线段为:BD;共有3+2+1=6(条);故答案为:6.(2)∵点B为CD的中点,BD=2cm.∴CD=2BD=2×2=4(cm),∴AC=AD﹣CD=9﹣4=5(cm),答:AC的长是5cm.(3)AB=AC+BC=7cm,EA=3cm,当点E在线段AD上时,BE=AB﹣AE=7﹣3=4(cm),当点E在线段DA的延长线上时,BE=AB+AE=7+3=10(cm),答:BE的长是4或10cm.20.解:(1)∵M是AC的中点,∴MC=AC=3cm,∴BC=MB﹣MC=7cm,又∵N为BC的中点,∴CN=BC=3.5cm,∴MN=MC+NC=6.5cm;(2)∵点M、N分别是AC、BC的中点,AC=2acm,MB=bcm,∴AM=AC=a cm,AC+CB=(a+b)cm,∴CM=AC,CN=BC,∴MN=CM+CN=AC+BC=(AC+BC)=(a+b)cm,即线段MN的长是(a+b)cm;(3)如图:MN=(x﹣y)cm,理由是:∵点M、N分别是AC、BC的中点,AC﹣CB=(x﹣y)cm,∴CM=AC,CN=BC,∴MN=CM﹣CN=AC﹣BC=(AC﹣BC)=(x﹣y)cm,即线段MN的长是(x﹣y)cm.21.解:(1)∵∠AOC=∠DOB=90°,∠DOC=35°,∴∠COB=∠BOD﹣∠DOC=90°﹣35°=55°,∴∠AOB=∠AOC+∠COB=90°+55°=145°;故答案为:145°;(2)∵∠AOC=∠DOB=90°,∴∠AOD+∠COD=∠BOC+∠COD=90°,∴∠AOD=∠BOC;故答案为:∠AOD=∠BOC;(3)∵∠AOD+∠DOC+∠DOC+∠BOC=∠AOB+∠COD=∠AOC+∠BOD=180°,∴∠AOB=180°﹣∠DOC,∴∠DOC逐渐变小,∠AOB逐渐变大;故答案为:变大;(4)利用三角板画∠AOC=∠BOD=90°,则∠AOD=∠BOC,理由如下:∵∠AOC=∠DOB=90°,∴∠AOD+∠COD=∠BOC+∠COD=90°,∴∠AOD=∠BOC.22.解:(1)设∠AOC=3x,∠BOC=2x,∵∠AOC+∠BOC=180°,∴3x+2x=180°,∴x=36°,∴∠AOC=3×36°=108°,∠BOC=2×36°=72°;(2)∵OD、OE分别是∠AOC、∠BOC的角平分线,∴∠DOC=∠AOD=,∠COE=∠BOE=∠BOC,∵∠AOC+∠BOC=180°,∠DOE=∠DOC+∠COE,∴∠DOE====90°;(3)互余的角有,∠DOC与∠COE,∠AOD与∠COE,∠BOE与∠COD,∠BOE与∠AOD;互补的角有,∠AOD与∠BOD,∠AOC与∠BOC,∠AOE与∠BOE.23.解:(1)∵OD、OE分别平分∠BOC、∠AOC,∴∠DOE==60°;(2)由(1)知,∠DOE===;(3)补充图形如下:∵∠AOB=m°,∴∠BOP+∠AOP=360°﹣∠AOB=360°﹣m°,∵OM、ON分别平分∠BOP、∠AOP,∴∠MON=∠MOP+∠NOP==.。

数学七年级上册《几何图形初步》单元综合测试题(附答案)

数学七年级上册《几何图形初步》单元综合测试题(附答案)

人教版数学七年级上学期第四章单元测试满分:100分时间:90分钟一、选择题(本大题共8小题,每小题3分,共24分,每小题只有一个正确选项,把正确选项的代号填在题后的括号内).1.下列说法中错误的有( )(1)线段有两个端点,直线有一个端点;(2)角的大小与我们画出的角的两边的长短无关;(3)线段上有无数个点;(4)同角或等角的补角相等;(5)两个锐角的和一定大于直角.A.1个B.2个C.3个D.4个2.下列图中角的表示方法正确的个数有( )A.1个B.2个C.3个D.4个3.下面左边是用八块完全相同的小正方体搭成的几何体,从上面看该几何体得到的图是( )A. B. C. D.(第3题)4.经过同一平面内任意三点中的两点共可以画出( )A.一条直线B.两条直线C.一条或三条直线D.三条直线5.若∠A=20 o 18′, ∠B=20 o 15′30〞, ∠C=20.25 o,则 ( )A.∠A>∠B>∠CB.∠B>∠A>∠CC.∠A>∠C >∠BD.∠C >∠A >∠B6.如左图所示的正方体沿某些棱展开后,能得到的图形是( )(第6题)7.如图下列说法错误的是( )A.OA方向是北偏东40°B.OB方向是北偏西15 °C.OC方向是南偏西30°D.OD方向是东南方向.(第7题)8.如图,将一副三角尺按不同位置摆放,摆放方式中∠α与∠β互余的是( )二、填空题(本大题共7小题,每小题3分,共21分)9.要在墙上钉一根木条,至少要用两颗钉子,这是因为: .10.如图所示,小于平角的角有个.11.一个角余角是23°13′6″,则这个角的度数是 .12.如图将一副直角三角板叠在一起,使直角顶点重合于点O, 则∠AOB+∠DOC=°.13.在时刻8:30,时钟上的时针和分针的夹角是.14.如果某时刻灯塔位于一艘船的北偏东40度方向,那么这艘船位于这个灯塔的方向.15.天天宾馆在重新装修后,准备在大厅的主楼道上铺设某种红色地毯,已知这种地毯每平方米售价30元,主楼道宽2米,其侧面如图所示.问购买这种地毯至少需要 元.三、(本大题共3小题,第16题6分,第17,18题各5分,共16分)16.如图,平面上有四个点A 、B 、C 、D ,根据下列语句画图:(1)画直线AB ;(2)作射线BC ;(3) 连接AD ,作线段AD 的反向延长线AE ;(4) 在平面内找一点F ,使点F 到A 、B 、C 、D 四点距离和最短. 17.如图,已知线段a 、b ,画一条线段,使它等于2a -b .(保留作图痕迹,不写画法).18.计算:50°24′×3+98°12′25″÷5四、(本大题共2小题,每小题7分,共14分)19.已知C 为线段AB 的中点,AB =10cm ,D 是AB 上一点,若CD =2cm ,求BD 的长.20.一个角的余角比它的补角的31还少20°,求这个角.五、(本大题共3小题,第21,22小题各8分,第23小题9分,共25分)21.如图是一个正方体的平面展开图,标注了A 字母的是正方体的正面,如果正方体的左面 与右面标注的式子相等.⑴ 求x 的值.⑵ 求正方体的上面和底面的数字和.22.如图,从O 点引四条射线OA 、OB 、OC 、OD ,若∠AOB ,∠BOC ,∠COD ,∠DOA 度数之比为1∶2∶3∶4.(1)求∠BOC 的度数.36m(第10题) (第12题) (第15题)(第21题)(2)若OE平分∠BOC,OF、OG三等分∠COD,求∠EOG.(第22题)23.如图,点C在线段AB上,AC = 8 cm,CB = 6 cm,点M、N分别是AC、BC的中点.⑴求线段MN的长;⑵若C为线段AB上任一点,满足AC + CB = a cm,其它条件不变,你能猜想MN的长度吗?并说明理由.-=cm,M、N分别为AC、BC的中点,你能猜想MN ⑶若C在线段AB的延长线上,且满足AC CB b的长度吗?请画出图形,写出你的结论,并说明理由.⑷你能用一句简洁的话,描述你发现的结论吗?参考答案一、选择题:1.C2.B3.D4.C5.A6.B7.A8.C二、填空题:9.两点确定一条直线; 10.9 ; 11. 66°46′54″; 12.180; 13.75;14. 南偏西40 ; 15.540.三、16.略. 17.略. 18.170°50′29″四、19.解:(1)当D 在AC 上时,BD =7cm ;(2)当D 在CB 上时,BD =3cm.20.解:设这个角为x °,则可得:1(90)(180)203x x -=--,解得:x =75. 答:略.五、21.解:(1)32x x =-,解得:1x =.(2)1+3=4.22.解:(1)∠BOC =72°;(2)∠EOG =108°.23.解:(1) MN =7;(2)MN =12a ,11()22MN AC CB a =+=; (3)MN =12b ,11()22MN AC CB b =-=;画图略. (4)C 在线段AB 上,12MN AB =; C 在线段AB 延长(反向延长)线上,12MN AC BC =-.。

数学七年级上册 几何图形初步单元测试卷 (word版,含解析)

数学七年级上册 几何图形初步单元测试卷 (word版,含解析)

一、初一数学几何模型部分解答题压轴题精选(难)1.如图,已知:点不在同一条直线, .(1)求证: .(2)如图②,分别为的平分线所在直线,试探究与的数量关系;(3)如图③,在(2)的前提下,且有,直线交于点,,请直接写出 ________.【答案】(1)证明:过点C作,则,∵∴∴(2)解:过点Q作,则,∵,∴∵分别为的平分线所在直线∴∴∵∴(3):1:2:2【解析】【解答】解:(3)∵∴∴∵∴∵∴∴∴∴ .故答案为: .【分析】(1)过点C作,则,再利用平行线的性质求解即可;(2)过点Q作,则,再利用平行线的性质以及角平分线的性质得出,再结合(1)的结论即可得出答案;(3)由(2)的结论可得出,又因为,因此,联立即可求出两角的度数,再结合(1)的结论可得出的度数,再求答案即可.2.如图AB∥CD,点H在CD上,点E、F在AB上,点G在AB、CD之间,连接FG、GH、HE,HG⊥HE,垂足为H,FG⊥HG,垂足为G.(1)求证:∠EHC+∠GFE=180°.(2)如图2,HM平分∠CHG,交AB于点M,GK平分∠FGH,交HM于点K,求证:∠GHD=2∠EHM.(3)如图3,EP平分∠FEH,交HM于点N,交GK于点P,若∠BFG=50°,求∠NPK的度数. 【答案】(1)解:∵HG⊥HE,FG⊥HG∴FG∥EH,∴∠GFE+∠HEF=180°,∵AB∥CD∴∠BEH=∠CHE∴∠EHC+∠GFE=180°(2)解:设∠EHM=x,∵HG⊥HE,∴∠GHK=90°-x,∵MH平分∠CHG,∴∠EHC=90°-2x,∵AB∥CD∴∠HMB=90°-x,∴∠HMB=∠MHG=90°-x,∵AB∥CD,∴∠BMH+∠DHM=180°,即∠BMH+∠GHM+∠GHD =180°,∴90°-x+90°-x+∠GHD =180°,解得,∠GHD =2x,∴∠GHD=2∠EHM;(3)解:延长FG,GK,交CD于R,交HE于S,如图,∵AB∥CD,∠BFG=50°∴∠HRG=50°∵FG⊥HG,∴∠GHR=40°,∵HG⊥HE,∴∠EHG=90°,∴∠CHE=180°-90°-40°=50°,∵AB∥CD,∴∠FEH=∠CHE=50°,∵EP是∠HEF的平分线,∴∠SEP= ∠FEH=25°,∵GH平分∠HGF,∴∠HGS= ∠HGF=45°,∴∠HSG=45°,∵∠SEP+∠SPE=∠HSP=45°,∴∠EPS=20°,即∠NPK=20°.【解析】【分析】(1)根据HG⊥HE,FG⊥HG可证明FG∥EH,从而得∠GFE+∠HEF=180°,再根据AB∥CD可得∠BEH=∠CHE,进而可得结论;(2)设∠EHM=x,根据MH是∠CHG的平分线可得∠MHG=90°-x,∠EHC=90°-2x,根据平行线的性质得∠HMB=90°-x,从而得∠HMB=∠MHG,再由平行线的性质得∠BMH+∠DHM=180°,从而可得结论;(3)分别延长FG,GK,交CD于R,交HE于S,由AB∥CD得∠HRG=50°,由FG⊥HG得∠GHR=40°,由MH平分∠CHG得∠CHE=50°,由AB∥CD得∠MEH=∠CHE=50°,可得∠SEP=25°,最后由三角形的外角可得结论.3.如图,直线m与直线n互相垂直,垂足为O,A、B两点同时从点O出发,点A沿直线m向左运动,点B沿直线n向上运动.(1)若∠BAO和∠ABO的平分线相交于点P,在点A、B的运动过程中,∠APB的大小是否会发生变化?若不发生变化,请求出其值;若发生变化,请说明理由;(2)若△ABO的两个外角的平分线AQ、BQ相交于点Q,AP的延长线交QB的延长线于点C,在点A、B的运动过程中,∠Q和∠C的大小是否会发生变化?若不发生变化,请求出∠Q和∠C的度数;若发生变化,请说明理由.【答案】(1)解:不变化.理由:∵AP和BP分别是∠BAO和∠ABO的平分线,∠AOB=90°,∴∠APB=180°(∠OAB+∠ABO)=180° ×90°=135°(2)解:都不变.理由:∵AQ和BQ分别是∠BAO的邻补角和∠ABO的邻补角的平分线,AP和BP分别是∠BAO和∠ABO的平分线,∴∠CAQ=∠QBP=90°,又∠APB=135°,∴∠Q=45°,∴∠C=45°【解析】【分析】根据角平分线定义和三角形内角和定理得到∠APB=180° −(∠OAB+∠ABO);根据邻补角的平分线互相垂直,得到∠CAQ=∠QBP=90°,由∠APB的度数,求出∠Q和∠C的度数.4.如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.(1)试判断直线AB与直线CD的位置关系,并说明理由;(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.【答案】(1)解:AB∥CD.理由如下:如图1,∵∠1与∠2互补,∴∠1+∠2=180°.又∵∠1=∠AEF,∠2=∠CFE,∴∠AEF+∠CFE=180°,∴AB∥CD;(2)证明:如图2,由(1)知,AB∥CD,∴∠BEF+∠EFD=180°.又∵∠BEF与∠EFD的角平分线交于点P,∴∠FEP+∠EFP= (∠BEF+∠EFD)=90°,∴∠EPF=90°,即EG⊥PF.∵GH⊥EG,∴PF∥G H;(3)解:∠HPQ的大小不发生变化,理由如下:如图3,∵∠1=∠2,∴∠3=2∠2.又∵GH⊥EG,∴∠4=90°-∠3=90°-2∠2.∴∠EPK=180°-∠4=90°+2∠2.∵PQ平分∠EPK,∴∠QPK= ∠EPK=45°+∠2.∴∠HPQ=∠QPK-∠2=45°,∴∠HPQ的大小不发生变化,一直是45°.【解析】【分析】(1)利用对顶角相等、等量代换可以推知同旁内角∠AEF、∠CFE互补,所以易证AB∥CD;(2)利用(1)中平行线的性质推知°;然后根据角平分线的性质、三角形内角和定理证得∠EPF=90°,即EG⊥PF,故结合已知条件GH⊥EG,易证PF∥GH;(3)利用三角形外角定理、三角形内角和定理求得∠4=90°-∠3=90°-2∠2;然后由邻补角的定义、角平分线的定义推知∠QPK= ∠EPK=45°+∠2;最后根据图形中的角与角间的和差关系求得∠HPQ的大小不变,是定值45°.5.如图1,已知线段AB=16cm,点C为线段AB上的一个动点,点D、E分别是AC和BC 的中点.(1)若点C恰为AB的中点,求DE的长;(2)若AC=6cm,求DE的长;(3)试说明不论AC取何值(不超过16cm),DE的长不变;(4)知识迁移:如图2,已知∠AOB=130°,过角的内部任一点C画射线OC,若OD、OE 分别平分∠AOC和∠BOC,试说明∠DOE=65°与射线OC的位置无关.【答案】(1)解:∵点C恰为AB的中点,∴AC=BC= AB=8cm,∵点D、E分别是AC和BC的中点,∴DC= AC=4cm,CE= BC=4cm,∴DE=8cm(2)解:∵AB=16cm,AC=6cm,∴BC=10cm,由(1)得,DC= AC=3cm,CE= CB=5cm,∴DE=8cm(3)解:∵点D、E分别是AC和BC的中点,∴DC= AC,CE= BC,∴DE= (AC+BC)= AB,∴不论AC取何值(不超过16cm),DE的长不变(4)解:∵OD、OE分别平分∠AOC和∠BOC,∴∠DOC= ∠AOC,∠EOC= ∠BOC,∴∠DOE=∠DOC+∠EOC= (∠AOC+∠BOC)= ∠AOB=65°,∴∠DOE=65°与射线OC的位置无关【解析】【分析】(1)由点C恰为AB的中点,得到AC=BC的值,再由点D、E分别是AC和BC的中点,求出DE的值;(2)由(1)得,DC= AC的值,CE= CB的值,得到DE的值;(3)由点D、E分别是AC和BC的中点,得到不论AC取何值(不超过16cm),DE 的长不变;(4)由OD、OE分别平分∠AOC和∠BOC,根据角平分线定义,得到∠DOE=∠DOC+∠EOC=(∠AOC+∠BOC)=∠AOB,得到∠DOE=65°与射线OC的位置无关.6.如图,已知AB∥CD,∠A=40°.点P是射线AB上一动点(与点A不重合),CE、CF分别平分∠ACP和∠DCP交射线AB于点E、F.(1)求∠ECF的度数;(2)随着点P的运动,∠APC与∠AFC之间的数量关系是否改变?若不改变,请求出此数量关系;若改变,请说明理由;(3)当∠AEC=∠ACF时,求∠APC的度数.【答案】(1)解:∵AB∥CD,∴∠A+∠ACD=180°,∴∠ACD=180°-40°=140°∵CE平分∠ACP,CF平分∠DCP,∴∠ACP=2∠ECP,∠DCP=2∠PCF∴∠ECF= ∠ACD=70°(2)解:不变.数量关系为:∠APC=2∠AFC.∵AB∥CD,∴∠AFC=∠DCF,∠APC=∠DCP∵CF平分∠DCP,∴∠DCP=2∠DCF,∴∠APC=2∠AFC(3)解:∵AB∥CD,∴∠AEC=∠ECD当∠AEC=∠ACF时,则有∠ECD=∠ACF,∴∠ACE=∠DCF∴∠PCD=∠ACD=70°∴∠APC=∠PCD=70°【解析】【分析】(1)先根据平行线的性质,得出∠ACD=120°,再根据CE、CF分别平分∠ACP和∠DCP,即可得出∠ECF的度数;(2)根据平行线的性质得出∠APC=∠PCD,∠AFC=∠FCD,再根据CF平分∠PCD,即可得到∠PCD=2∠FCD进而得出∠APC=2∠AFC;(3)根据∠AEC=∠ECD,∠AEC=∠ACF,得出∠ECD=∠ACF,进而得到∠ACE=∠FCD,根据∠ECF=70°,∠ACD=140°,可求得∠APC的度数.7.如图,已知CD∥EF,A,B分别是CD和EF上一点,BC平分∠ABE,BD平分∠ABF(1)证明:BD⊥BC;(2)如图,若G是BF上一点,且∠BAG=50°,作∠DAG的平分线交BD于点P,求∠APD 的度数:(3)如图,过A作AN⊥EF于点N,作AQ∥BC交EF于Q,AP平分∠BAN交EF于P,直接写出∠PAQ=________.【答案】(1)证明:∵BC平分∠ABE,BD平分∠ABF ∴∠ABC= ∠ABE,∠ABD= ∠ABF∴∠ABC+∠ABD= (∠ABE+∠ABF)= ×180°=90°∴BD⊥BC(2)解:∵CD∥EFBD平分∠ABF∴∠ADP=∠DBF= ∠ABF,∠DAB+∠ABF=180°又AP平分∠DAG,∠BAG=50°∴∠DAP= ∠DAG∴∠APD=180°-∠DAP-∠ADP=180°-∠DAG-∠ABF=180°- (∠DAB-∠BAG)-∠ABF=180°-∠DAB+ ×50°-∠ABF=180°- (∠DAB+∠ABF)+25°=180°- ×180°+25°=115°(3)45°【解析】【解答】(3)解:如图,∵AQ∥BC∴∠1=∠4,∠2+∠3+∠4=180°,∵BC平分∠ABE,∴∠1=∠2=∠4,∴∠3+∠4=90°,又∵CD∥EF,AN⊥EF,AP平分∠BAN∴∠PAN= (90°-∠3),∠NAQ=90°-∠4,∴∠PAQ=∠PAN+∠NAQ= (90°-∠3)+(90°-∠4)=45°- ∠3+90°-∠4=135°-(∠3+∠4)=135°-90°=45°.【分析】(1)根据角平分线和平角的定义可得∠CBD=90°,即可得出结论;(2)根据平行线的性质以及角平分线的定义可得∠ADP=∠DBF= ∠ABF,∠DAB+∠ABF=180°,∠DAP= ∠DAG,然后根据出三角形内角和即可求出∠APD的度数;(3)根据平行线的性质以及角平分线的定义可得∠1=∠2=∠4,∠2+∠3+∠4=180°,即∠3+∠4=90°,根据垂直和平行线的性质以及角平分线的定义可得∠PAN= (90°-∠3),∠NAQ=90°-∠4,则∠PAQ=∠PAN+∠NAQ= (90°-∠3)+(90°-∠4),代入计算即可求解.8.如图①,已知AB//CD, AC//EF(1)若∠A=75°,∠E=45°,求∠C和∠CDE的度数;(2)探究:∠A、∠CDE与∠E之间有怎样的等量关系?并说明理由.(3)若将图①变为图②,题设的条件不变,此时∠A、∠CDE 与∠E之间又有怎样的等量关系,请直接写出你探究的结论.【答案】(1)解:在图①中,∵AB∥CD∴∠A+∠C=180°,∵∠A=75°,∴∠C=180°-∠A=180°-75°=105°,过点D作DG∥AC,∵AC∥EF,∴DG∥AC∥EF,∴∠C+∠CDG=180°,∠E=∠GDE,∵∠C=105°,∠E=45°,∴∠CDG=180°-105°=75°,∠GDE=45°,∵∠CDE=∠CDG+∠GDE,∴∠CDE=75°+45°=120°;(2)解:如图①,通过探究发现,∠CDE=∠A+∠E. 理由如下:∵AB∥CD,∴∠A+∠C=180°,过点D作DG∥AC,∵AC∥EF,∴DG∥AC∥EF,∴∠C+∠CDG=180°,∠GDE=∠E,∴∠CDG=∠A,∵∠CDE=∠CDG+∠GDE,∴∠CDE=∠A+∠E;(3)解:如图②,通过探究发现,∠CDE=∠A-∠E.∵AB∥CD,∴∠A+∠C=180°,∵AC∥EF,∴∠E=∠CHD,∵∠CHD+∠C+∠CDE=180°,∴∠E+∠C+∠CDE=180°,∴∠E+∠CDE=∠A,即∠CDE=∠A-∠E.【解析】【分析】(1)利用平行线的性质定理可得∠C,过点D作DG∥AC,可得DG∥AC∥EF,利用平行线的性质定理可得∠CDG,由∠CDE=∠CDG+∠GDE,代入数值可得结果;(2)利用平行线的性质和同角的补角相等得∠A=∠CDG,由角的和及等量代换可得;(3)利用平行线的性质定理和三角形的内角和定理可得结论.9.如图,直线CB和射线OA,CB//OA,点B在点C的右侧.且满足∠OCB=∠OAB=100°,连接线段OB,点E、F在直线CB上,且满足∠FOB=∠AOB,OE平分∠COF.(1)求∠BOE(2)当点E、F在线段CB上时(如图1),∠OEC与∠OBA的和是否是定值?若是,求出这个值;若不是,说明理由。

七年级上册数学 几何图形初步单元测试卷(解析版)

七年级上册数学 几何图形初步单元测试卷(解析版)

一、初一数学几何模型部分解答题压轴题精选(难)1.在数轴上、两点分别表示有理数和,我们用表示到之间的距离;例如表示7到3之间的距离.(1)当时,的值为________.(2)如何理解表示的含义?(3)若点、在0到3(含0和3)之间运动,求的最小值和最大值.【答案】(1)5或-3(2)解:∵ = ,∴表示到-2的距离(3)解:∵点、在0到3(含0和3)之间运动,∴0≤a≤3, 0≤b≤3,当时, =0+2=2,此时值最小,故最小值为2;当时, =2+5=7,此时值最大,故最大值为7【解析】【解答】(1)∵,∴a=5或-3;故答案为:5或-3;【分析】(1)此题就是求表示数a的点与表示数1的点之间的距离是4,根据表示数a的点在表示数1的点的右边与左边两种情况考虑即可得出答案;(2)此题就是求表示数b的点与表示数-2的点之间的距离;(3)此题就是求表示数a的点与表示数2的点之间的距离及表示数b的点与表示数-2的点之间的距离和,而0≤a≤3, 0≤b≤3, 借助数轴当时,的值最小;当时,的值最大.2.感知:如图①,∠ACD为△ABC的外角,易得∠ACD=∠A+∠B(不需证明) ;(1)探究:如图②,在四边形ABDC中,试探究∠BDC与∠A、∠B.、∠C之间的关系,并说明理由;(2)应用:如图③,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ 恰好经过点B、C,若∠A=50°,则∠ABX+∠ACX=________度;(直接填答案,不需证明) (3)拓展:如图④,BE平分∠ABD,CE平分∠ACD,若∠BAC=100°,∠BDC=150°,则∠BEC=________度. (直接填答案,不需证明)【答案】(1)解:如图5,连接AD并延长至点F.∵∠BDF为△ABD的外角,∴∠BDF=∠BAD+∠B,同理可得∠CDF=∠CAD+∠C,∴∠BDF+∠CDF=∠BAD+∠B+∠CAD+∠C,即∠BDC=∠BAC+∠B+∠C;(2)40°(3)125°【解析】【解答】解:(2)由题意可得∠BXC=90°,由(1)中结论可得∠BXC=∠A+∠ABX+∠ACX,∵∠A=50°,∴∠ABX+∠ACX=90°-50°=40°;(3)如图6,∵∠A=100°,∠BDC=150°,∠BDC=∠A+∠ABD+∠ACD,∴∠ABD+∠ACD=150°-100°=50°,∵BE平分∠ABD,CE平分∠ACD,∴∠ABE+∠ACE= (∠ABD+∠ACD)=25°,又∵∠BEC=∠A+∠ABE+∠ACE,∴∠BEC=100°+25°=125°.【分析】(1)如图5,连接AD并延长至F,然后利用三角形外角的性质进行分析证明即可得到∠BDC=∠BAC+∠B+∠C;(2)由题意可知∠BXC=90°,结合∠A=50°和(1)中所得结论即可得到∠ABX+∠ACX=90°-50°=40°;(3)如图6,利用(1)中所得结论结合已知条件进行分析解答即可.3.问题情境1:如图1,AB∥CD,P是ABCD内部一点,P在BD的右侧,探究∠B,∠P,∠D之间的关系?小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠B,∠P,∠D之间满足____关系。

人教版数学七年级上学期单元测试卷-第四章 几何图形初步【A卷】(解析版)

人教版数学七年级上学期单元测试卷-第四章 几何图形初步【A卷】(解析版)

第四章几何图形的初步单元A卷一、单选题(共10题;共30分)1. ( 3分) 下列平面图形经过折叠不能围成正方体的是( )A. B. C. D.【答案】C【考点】几何体的展开图【解析】【解答】解:根据正方体展开的图形可得:A、B、D选项可以折叠成正方体,C选项不能.故答案为:C.【分析】根据正方体的展开图,分别判断得到答案即可。

2. ( 3分) 如图,DE∥BC,CD平分∠ACB,∠AED=50°,则∠EDC的度数是()A. 50°B. 40°C. 30°D. 25°【答案】D【考点】平行线的性质,角平分线的定义【解析】【解答】解:∵DE∥BC,∠AED=50°,∴∠ACB=∠AED=50°,∵CD平分∠ACB,∠ACB=25°,∴∠BCD=12∴∠EDC=∠BCD=25°.故答案为:D.【分析】根据两直线平行,同位角相等,可得∠ACB=∠AED=50°,利用角平分线的定义可求出∠BCD 的度数,根据两直线平行,内错角相等,可求出∠EDC的度数.3. ( 3分) 下列说法中错误的是()A. 经过两点有且只有一条直线B. 垂直于弦的直径平分这条弦C. 角平分线上的点到角两边的距离相等D. 过直线l上的一点有且只有一条直线垂直于l【答案】D【考点】直线的性质:两点确定一条直线,垂线,角平分线的性质,垂径定理【解析】【解答】A、经过两点有且只有一条直线,是真命题;B、垂直于弦的直径平分这条弦,是真命题;C、角平分线上的点到角两边的距离相等,是真命题;D、在同一平面内,过一点有且只有一条直线垂直于l,是假命题,故答案为:D.【分析】(1)由直线公理可得:经过两点有且只有一条直线;(2)由垂径定理可得:垂直于弦的直径平分这条弦;(3)由角平分线的性质可得:角平分线上的点到角两边的距离相等;(4)由垂线的性质可得:在同一平面内,过一点有且只有一条直线垂直于l.4. ( 3分) 如图,一个人从A点出发沿北偏东30°方向走到B点,若这个人再从B点沿南偏东15°方向走到C点则∠ABC等于()A. 15∘B. 30∘C. 45∘D. 165∘【答案】C【考点】钟面角、方位角,角的运算,平行线的性质【解析】【解答】解:由题意可知∠ABC=30°+15°=45°故答案为:C.【分析】根据方位角的概念,画图正确表示出方位角,即可求解.5. ( 3分) 将一张长方形纸条折成如图所示的形状,BC为折痕.若∠DBA=70°,则∠ABC等于( )A. 45°B. 55°C. 70°D. 110°【答案】B【考点】角的运算,翻折变换(折叠问题)【解析】【解答】根据题意,得:2∠ABC+∠DBA=180°,∴∠ABC=(180°−70°)÷2=55°.故答案为:B.【分析】根据折叠的性质及邻补角的定义可直接解答.6. ( 3分) 一个正方体的平面展开图如图,每一个面都有一个汉字,则在该正方体中和“实”字相对的汉字是()A. 我B. 的C. 梦D. 想【答案】B【考点】几何体的展开图【解析】【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“实”与“的”是相对面,“现”与“想”是相对面,“我”与“梦”是相对面.故选B.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.7. ( 3分) 一个直棱柱有12个顶点,那么它的面的个数是()A. 10个B. 9个C. 8个D. 7个【答案】C【考点】立体图形的初步认识【解析】【分析】直棱柱有12个顶点,一定是六棱柱,所以它的面的个数是8个.故选C.【点评】本题要求熟练掌握n棱柱有2n个顶点,有(n+2)个面,有3n条棱.8. ( 3分) 如图,下列四个图形是由已知的四个立体图形展开得到的,则对应的序号是()①圆柱②正方体③三棱柱④四棱锥A. ①②③④B. ②①③④C. ③②①④D. ④②①③【答案】B【考点】几何体的展开图【解析】【解答】解:观察图形,由立体图形及其表面展开图的特点可知相应的立体图形顺次是正方体、圆柱、三棱柱、四棱锥.故答案为:B.【分析】本题主要考查了正方体、圆柱、三棱柱、四棱锥的表面展开图,记住这些立体图形的表面展开图是解题的关键.根据正方体、圆柱、三棱柱、四棱锥表面展开图的特点进行解题.9. ( 3分) 如图,三条直线相交于一点O,其中,AB⊥CO,则∠1与∠2()A. 互为补角B. 互为余角C. 相等D. 对顶角【答案】B【考点】余角、补角及其性质,垂线【解析】【分析】根据平角为180度,减去一个直角,则剩下的两角和为90度,即∠1与∠2互余.【解答】观察图形,得∠1+∠AOC+∠2=180°,∵AB⊥CO,∴∠AOC=90°,∴∠1+∠2=90°.故选B.【点评】本题主要考查了平角和余角的定义.10. ( 3分) 在矩形ABCD中,AB=1,AD=√3,AF平分∠DAB,过C点作CE BD于E,延长AF、EC交于点H,下列结论中:①AF=FH;②B0=BF;③CA=CH;④BE=3ED;正确的个数为( )A. 1个B. 2个C. 3个D. 4个【答案】C【考点】等边三角形的判定与性质,含30°角的直角三角形,勾股定理,矩形的性质,角平分线的定义【解析】【分析】根据矩形的性质可得OA=OB=OC=OD,由AD=√3,AB=1根据特殊角的锐角三角函数值可求出∠ADB=30°,即得∠ABO=60°,从而可证得△ABO是等边三角形,即得AB=BO=AO=OD=OC=DC,推出BF=AB,求出∠H=∠CAH=15°,求出DE=EO,再依次分析各小题即可作出判断.根据已知条件不能推出AF=FH,故①错误;【解答】∵四边形ABCD是矩形,∴∠BAD=90°,∵AD=√3,AB=1,∴tan∠ADB=√3=√33,∴∠ADB=30°,∴∠ABO=60°,∵四边形ABCD 是矩形,∴AD ∥BC ,AC=BD ,AC=2AO ,BD=2BO , ∴AO=BO ,∴△ABO 是等边三角形,∴AB=BO ,∠AOB=∠BAO=60°=∠COE , ∵AF 平分∠BAD , ∴∠BAF=∠DAF=45°, ∵AD ∥BC , ∴∠DAF=∠AFB , ∴∠BAF=∠AFB , ∴AB=BF , ∵AB=BO ,∴BF=BO ,故②正确; ∵∠BAO=60°,∠BAF=45°, ∴∠CAH=15°, ∵CE ⊥BD , ∴∠CEO=90°, ∵∠EOC=60°, ∴∠ECO=30°,∴∠H=∠ECO-∠CAH=30°-15°=15°=∠CAH , ∴AC=CH ,故③正确; ∵△AOB 是等边三角形, ∴AO=OB=AB , ∵四边形ABCD 是矩形, ∴OA=OC ,OB=OD ,AB=CD , ∴DC=OC=OD , ∵CE ⊥BD ,∴DE=EO=12DO=14BD , ∴BE=3ED ,故④正确;∴正确的有3个,故选C.【点评】本题知识点较多,综合性强,是中考常见题,一般是中考压轴题,难度较大,需特别注意.二、填空题(共6题;共33分)11. ( 3分) 已知点C是线段AB的中点,线段BC=5,则线段AB的长为________.【答案】10【考点】线段的中点【解析】【解答】解:∵C是线段AB的中点,线段BC=5,∴AB=2BC=10.故答案为:10.【分析】根据线段中点的定义知AB=2BC从而得出答案。

七年级上册几何图形初步单元测试卷 (word版,含解析)

七年级上册几何图形初步单元测试卷 (word版,含解析)

一、初一数学几何模型部分解答题压轴题精选(难)1.如图(1),在△ABC和△EDC中,D为△ABC边AC上一点,CA平分∠BCE,BC=CD,AC=CE.(1)求证:△ABC≌△EDC;(2)如图(2),若∠ACB=60°,连接BE交AC于F,G为边CE上一点,满足CG=CF,连接DG交BE于H.①求∠DHF的度数;②若EB平分∠DEC,试说明:BE平分∠ABC.【答案】(1)证明:∵CA平分∠BCE,∴∠ACB=∠ACE.在△ABC和△EDC中.∵BC=CD,∠ACB=∠ACE,AC=CE.∴△ABC≌△EDC(SAS).(2)解:①在△BCF和△DCG中∵BC=DC, ∠BCD=∠DCE,CF=CG,∴△BCF≌△DCG(SAS),∴∠CBF=∠CDG.∵∠CBF+∠BCF=∠CDG+∠DHF∴∠BCF=∠DHF=60°.②∵EB平分∠DEC,∴∠DEH=∠BEC.∵∠DHF=60°,∴∠HDE=60°-∠DEH.∵∠BCE=60°+60°=120°,∴∠CBE=180°-120°-∠BEC=60°-∠BEC.∴∠HDE=∠CBE. ∠A=∠DEG.∵△ABC≌△EDC, △BCF≌△DCG(已证)∴∠BFC=∠DGC,∵∠ABF=∠BFC-∠A, ∠HDE=∠DGC-∠DEG,∴∠ABF=∠HDE,∴∠ABF=∠CBE,∴BE平分∠ABC.【解析】【分析】(1)由角平分线定义得出∠ACB=∠ACE,由ASA证明△ABC≌△EDC即可.(2)①由ASA证明△BCF≌△DCG,得出∠CBF=∠CDG;在△BCF,△DHF中,由三角形内角和定理得出∠BCF=∠DHF=60°.②由全等三角形的性质得出∠A=∠DEG,∠ABF=∠BFC-∠A, ∠HDE=∠DGC-∠DEG,从而得出∠ABF=∠HDE,∠ABF=∠CBE,即BE平分∠ABC.2.如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°.将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O按每秒10°的速度沿逆时针方向旋转一周.在旋转的过程中,假如第t秒时,OA、OC、ON三条射线构成相等的角,求此时t的值为多少?(2)将图1中的三角板绕点O顺时针旋转图2,使ON在∠AOC的内部,请探究:∠AOM 与∠NOC之间的数量关系,并说明理由.【答案】(1)解:∵三角板绕点O按每秒10°的速度沿逆时针方向旋转,∴第t秒时,三角板转过的角度为10°t,当三角板转到如图①所示时,∠AON=∠CON∵∠AON=90°+10°t,∠CON=∠BOC+∠BON=120°+90°﹣10°t=210°﹣10°t∴90°+10°t=210°﹣10°t即t=6;当三角板转到如图②所示时,∠AOC=∠CON=180°﹣120°=60°∵∠CON=∠BOC﹣∠BON=120°﹣(10°t﹣90°)=210°﹣10°t∴210°﹣10°t=60°即t=15;当三角板转到如图③所示时,∠AON=∠CON= ,∵∠CON=∠BON﹣∠BOC=(10°t﹣90°)﹣120°=10°t﹣210°∴10°t﹣210°=30°即t=24;当三角板转到如图④所示时,∠AON=∠AOC=60°∵∠AON=10°t﹣180°﹣90°=10°t﹣270°∴10°t﹣270°=60°即t=33.故t的值为6、15、24、33.(2)解:∵∠MON=90°,∠AOC=60°,∴∠AOM=90°﹣∠AON,∠NOC=60°﹣∠AON,∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(60°﹣∠AON)=30°【解析】【分析】(1)根据已知条件可知,在第t秒时,三角板转过的角度为10°t,然后按照OA、OC、ON三条射线构成相等的角分四种情况讨论,即可求出t的值;(2)根据三角板∠MON=90°可求出∠AOM、∠NOC和∠AON的关系,然后两角相加即可求出二者之间的数量关系.3.如图(1)如图1,AB∥CD,∠AEP=40°,∠PFD=130°。

人教版数学七年级上学期单元测试卷-第四章 几何图形初步【B卷】(原卷版+解析版)

人教版数学七年级上学期单元测试卷-第四章 几何图形初步【B卷】(原卷版+解析版)

第四章几何图形的初步单元B卷一、单选题(共10题;共30分)1. ( 3分) 如图,将甲、乙、丙、丁四个小正方形中的一个剪掉,使余下的部分不能围成一个正方体,剪掉的这个小正方形是A. 甲B. 乙C. 丙D. 丁2. ( 3分) 如图,已知直线AB∥CD,∠C=125°,那么∠1的大小为()A. 125°B. 65°C. 55°D. 45°3. ( 3分) 点P是⊙O内一点,过点P的最长弦的长为10cm,最短弦的长为6cm,则OP的长为()A. 3cmB. 4cmC. 5cmD. 6cm4. ( 3分) 如图,直线AB∥EF,点C是直线AB上一点,点D是直线AB外一点,若∠BCD=95°,∠CDE=25°,则∠DEF的度数是()A. 110°B. 115°C. 120°D. 125°5. ( 3分) 在△ABC中,AB=12,AC=10,BC=9,AD是BC边上的高.将△ABC按如图所示的方式折叠,使点A与点D重合,折痕为EF,则△DEF的周长为()A. 9.5B. 10.5C. 11D. 15.56. ( 3分) 如图,点A,B是正方体上的两个顶点,将正方体按图中所示方式展开,则在展开图中B 点的位置为()A. B1B. B2C. B3D. B47. ( 3分) 如图是一个正方体,小敏同学经过研究得到如下5个结论,正确的结论有()个.①用剪刀沿着它的棱剪开这个纸盒,至少要剪7刀,才能展开成平面图形;②用一平面去截这个正方体得到的截面是三角形ABC,则∠ABC=45°;③一只蚂蚁在一个实心正方体木块P点处想沿着表面爬到C点最近的路只有4条;④用一平面去截这个正方体得到的截面可能是八边形;⑤正方体平面展开图有11种不同的图形.A. 1B. 2C. 3D. 48. ( 3分) 如图,它需再添一个面,折叠后才能围成一个正方体,下列选项中的黑色小正方形分别由四位同学补画,其中正确的是( )A. B. C. D.9. ( 3分) 如图,在一张透明的纸上画一条直线l,在l外任取一点Q并折出过点Q且与l垂直的直线.这样的直线能折出()A. 0条B. 1条C. 2条D. 3条10. ( 3分) 如图,在直角坐标系中,⊙A的半径为2,圆心坐标为(4,0),y轴上有点B(0,3)点C是⊙A 上的动点,点P是BC的中点,则OP的范围是()A. 32≤OP≤ 72B. 2≤OP≤4C. 52≤OP≤ 92D. 3≤OP≤4二、填空题(共6题;共33分)11. ( 3分) 如图,已知线段AB=10cm,点C是AB上任意一点,点M,N分别是AC和CB的中点,则MN的长度为________。

人教版2024新版七年级数学上册《第6章 几何图形初步》单元测试及答案

人教版2024新版七年级数学上册《第6章 几何图形初步》单元测试及答案

…○………………内………………○………………装………………○………………订………………○………………线………………○…………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________人教版2024新版七年级数学上册 《第6章几何图形初步》单元测试及答案(满分:120分 时间:60分钟)题号 一 二 三 总分 分数一、选择题(每题3分,共30分)1.下列各组图形中,都是平面图形的是( ) A.三角形、圆、球、圆锥 B.长方体、正方体、圆柱、球 C.长方形、三角形、正方形、圆 D.扇形、长方形、三棱柱、圆锥2.如图所示的正六棱柱的主视图是( )A.B.C.D.3.下列说法中,正确的是( )A.两点确定一条直线B.两条射线组成的图形叫做角C.两点之间直线最短D.若AB=BC ,则点B 为AC 的中点 4.与30︒的角互为余角的角的度数是( )A.30︒B.60︒C.70︒D.90︒ 5.如图,点A 在点B 的( )A.北偏东60°B.南偏东60°C.南偏西60°D.南偏西30° 6.已知线段AB =15cm ,点C 是直线AB 上一点,BC =5cm ,若M 是AC 的中点,N 是BC 的中点,则线段MN 的长度是()A.10cmB.5cmC.10cm 或5cmD.7.5cm7.已知∠1=2824'︒,∠2=28.24︒,∠3=28.4︒,则下列说法中,正确的是( ) A.∠1=∠2<∠3 B.∠1=∠3>∠2 C.∠1<∠2=∠3 D.∠1=∠2>∠3 8.钟表在8:25时,时针与分针夹角的度数是( ) A.101.5︒ B.102.5︒ C.120︒ D.125︒9.如图是一个正方体的表面展开图,则该正方体中与“梦”字所在面相对的面上的字是( )A.大B.伟C.国D.的10.如图,,C D 在线段BE 上,下列说法:直线CD 上以,,,B C D E 为端点的线段共有6条;②图中有2对互补的角;③若∠BAE=100︒,∠DAC=40︒,则以A 为顶点的所有小于平角的角的度数和为360︒;④若BC =2,CD DE ==3,点F 是线段BE 上任意一点,则点F 到点,,,B C D E 的距离之和的最大值为15,最小值为11.其中说法正确的有( ) A.1个 B.2个 C.3个 D.4个 二、填空题(每题3分,共30分)……○………………内………………○………………装………………○………………订………………○………………线………………○…此卷只装订不密封……○………………外………………○………………装………………○………………订………………○………………线………………○…1l.在校园中的一条大路两旁种植树木(树木种在一条直线上),确定了两棵树的位置就能确定一排树的位置,这利用了我们所学过的数学知识是____________.12.一个角的余角比这个角的补角的一半小40︒,则这个角为________.13.三条直线两两相交,最少有_______个交点,最多有_______个交点.14.笔尖在纸上快速滑动写出了一个又一个字,这说明了________;钟表的时针和分针旋转一周,均形成一个圆面,这说明了________.(从点线、面的角度作答)15.如图,点D是线段AB的中点,点C是线段AD的中点,若CD=1,则AB=________.16.如图,点,,A O B在一条直线上,且∠AOC=50°,OD平分∠AOC,则∠BOD=________.17.如图,某海域有,,A B O三个小岛,在小岛O处观测到小岛A在其北偏东62︒的方向上,观测到小岛B在其南偏东3812'︒的方向上,则∠AOB的补角等于________.18.往返于甲、乙两地的客车,中途停靠5个车站(来回票价一样),且任意两站之间的票价都不同,共有_______种不同的票价,需准备________种车票.19.小明将一张正方形纸片按如图所示的顺序折叠成纸飞机,当机翼展开在同一平面时(机翼间无缝隙),∠AOB的度数是________.20.用棱长是1cm的小正方体组成如图所示的几何体,把这个几何体放在桌子上,并把露在外面的面涂上颜色,那么涂颜色的面的面积之和是_______2cm.三、解答题(21,22题每题8分,23,24题每题10分,其余每题12分,共60分)21.计算:(1)324548212514''''''︒+︒;(2)1123363'''︒⨯.22.点,,,A B C D的位置如图,按下列要求画出图形:(1)画直线AB,直线CD,它们相交于点E;(2)连接AC,连接DB,它们相交于点O;(3)画射线AD,射线BC,它们相交于点F.…○………………内………………○………………装………………○………………订………………○………………线………………○…………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________23.如图,已知线段AB =4.8cm ,点M 为AB 的中点,点P 在MB 上,N 为PB 的中点,且NB =0.8cm ,求AP 的长.24.如图,射线OA 的方向是北偏东15︒,射线OB 的方向是北偏西40°,∠AOB=∠AOC ,射线OD 是OB 的反向延长线. (1)射线OC 的方向是_______;(2)若射线OE 平分∠COD ,求∠AOE 的度数.25.如图是某工件从正面、左面、上面看到的图形,判断该工件的形状,并求此工件的体积.(结果保留π)26.如图,OM 是∠AOC 的平分线,ON 是∠BOC 的平分线.(1)如图①,当∠AOB 是直角,∠BOC=60︒时,∠MON 的度数是多少? (2)如图②,当∠AOB=α,∠BOC=60︒时,猜想∠MON 与α的数量关系.(3)如图③,当∠AOB=α,∠BOC=β(0︒<αβ+<180︒)时,猜想∠MON 与,αβ的数量关系,并说明理由.参考答案一、1.答案:C 2.答案:B 3.答案:A 4.答案:B 5.答案:C 6.答案:D 7.答案:B 8.答案:B 9.答案:D 10.答案:B 解析:以,,,B C D E 为端点的线段有,,,,,BC BD BE CE CD ED 共6条,故①正确;图中互补的角就是分别以,C D 为顶点的两对角,即∠BCA 和∠ACD 互补,∠ADE 和∠ADC 互补,故②正确;根据图形,由∠BAE=100︒,∠CAD=40︒,可以求出∠BAC+∠CAE+∠BAE+∠BAD+∠DAE+∠DAC=100︒+100︒+100︒+40︒=340︒,故③错误;当点F 在线段CD 上时,点F 到点,,,B C D E 的距离之和最小,为FB FE FD FC +++=2+3+3+3=11,当点F和点E重合时,点F 到点,,,B C D E的距离之和最大,为803617FB FE FD FC +++=+++=,故④错误.故选B.……○………………内………………○………………装………………○………………订………………○………………线………………○… 此卷只装订不密封……○………………外………………○………………装………………○………………订………………○………………线………………○…二、11.答案:两点确定一条直线 12.答案:80︒ 13.答案:1;3 14.答案:点动成线;线动成面 15.答案:4 16.答案:155︒ 17.答案:10012'︒ 18.答案:21;42 19.答案:45︒ 20.答案:30 三、21.答案:见解析解析:(1)324548212514''''''︒+︒=53706254112''''''︒=︒. (2)1123363'''︒⨯=3369108'''︒=341048'''︒. 22.答案:见解析 解析:如图.23.答案:见解析解析:解法一:因为N 为PB 的中点,所以2PB NB =.又知NB =0.8cm ,所以PB =2×0.8=1.6(cm ).所以 4.8 1.6 3.2AP AB PB =-=-=(cm ). 解法二:因为N是PB的中点,所以2PB NB=.而NB=0.8cm ,所以PB =2×0.8=1.6(cm ).因为M 为AB 的中点,所以12AM MB AB ==. 而AB =4.8cm ,所以AM BM ==2.4cm.又因为MP MB PB =-=2.4-1.6=0.8(cm ),所以AP AM MP =+=2.4+0.8=3.2(cm ).点拨:(1)把一条线段分成两条相等线段的点,叫做这条线段的中点. (2)线段中点的表达形式有三种,若点C 是线段AB 的中点,则①AC =BC ;②AB =2AC =2BC ;③12AC BC AB ==.熟悉它的表达形式对以后学习几何的推理论证有帮助. 24.答案:见解析解析:(1)北偏东70︒(2)因为∠AOB=40︒+15︒=55︒,∠AOB=∠AOC ,所以∠BOC=110︒.又因为射线OD 是OB 的反向延长线,所以∠BOD=180︒. 所以∠COD=180︒-110︒=70︒.又因为OE 平分∠COD ,所以∠COE=35︒. 又因为∠AOC=55︒, 所以∠AOE=55︒+35︒=90︒. 25.答案:见解析解析:由题意得该工件的形状为圆锥,圆锥的底面直径为6cm ,高为4cm ,所以圆锥的体积为()231(62)412cm 3ππ⨯÷⨯=.故此工件的体积为312cm π. 26.答案:见解析解析:(1)∠MON=∠MOC-∠NOC=12∠AOC-12∠BOC=12(∠AOC-∠BOC )=12∠AOB=45°.(2)∠MON=∠MOC-∠NOC=12∠AOC-12∠BOC=12AOC-∠BOC )=12∠AOB=12α.(3)∠MON=12α.理由:∠MON=∠MOC-∠NOC=111()222αββα+-=.…○………………内………………○………………装………………○………………订………………○………………线………………○…………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________人教版2024新版七年级数学上册 《第6章几何图形初步》单元测试及答案(满分:100分 时间:60分钟)题号 一 二 三 总分 分数一、选择题(每小题3分,共30分)1.已知1∠和2∠互为余角,且2∠与3∠互补,160∠=︒,则3∠为( ) A.120︒ B.60︒ C.30︒ D.150︒2.工人师傅在给小明家安装晾衣架时,一般先在阳台天花板上选取两个点,然后再进行安装.这样做的数学原理是( ) A.过一点有且只有一条直线 B.两点之间,线段最短C.连接两点之间的线段叫两点间的距离D.两点确定一条直线3.如图所示,点B 在点O 的北偏东60︒,射线OB 与射线OC 所成的角是110︒,则射线OC 的方向是( )A.北偏西30︒B.北偏西40︒C.北偏西50︒D.西偏北50︒ 4.小军将一个直角三角板(如图)绕它的一条直角边所在的直线旋转一周形成一个几何体,将这个几何体的侧面展开得到的大致图形是( )A. B. C. D.5.11点40分,时钟的时针与分针的夹角为( )A.140︒B.130︒C.120︒D.110︒ 6.如图为一个正方体纸盒的展开图,若在其中的三个正方形,,A B C 内分别填入适当的数,使得它们折成正方体.若相对的面上的两个数互为相反数,则填入正方形,,A B C 内的三个数依次为( )A.1,2,0-B.0,2,1-C.2,0,1-D.2,1,0 7.如图,将一副直角三角尺叠放在一起,使直角顶点重合于点O ,若28DOC ∠=︒,则AOB ∠的度数为()A.62︒B.152︒C.118︒D.无法确定8.某正方体的平面展开图如图所示,这个正方体可能是下面四个选项中的( )……○………………内………………○………………装………………○………………订………………○………………线………………○… 此卷只装订不密封……○………………外………………○………………装………………○………………订………………○………………线………………○…A. B. C. D.9.已知160,3AOB AOC AOB ∠=︒∠=∠,射线OD 平分BOC ∠,则COD ∠的度数为()A.20︒B.40︒C.20︒或30︒D.20︒或40︒ 10.如图,C 为线段AD 上一点,点B 为CD 的中点,且9,2AD BD ==.若点E 在直线AD 上,且1EA =,则BE 的长为( )A.4B.6或8C.6D.8 二、填空题(每小题3分,满分24分)11.为全面实施乡村电气化提升工程,改造升级农村电网,今从A 地到B 地架设电线,为了节省成本,工人师傅总是尽可能的沿着线段AB 架设,这样做的理由是__________.12.我国“神舟”十号载人飞船的成功发射,标志着我国航空航天事业已步入世界的领先水平,如图是“神舟”十号顺利变轨后的飞行示意图,用数学的观点解释图中飞船飞行后留下的弧形彩带现象:__________.13.如图是从不同的方向看一个物体得到的平面图形,该物体的形状是________.14.如图为某几何体的展开图,该几何体的名称是_________.15.一副三角尺按如图方式摆放,且1∠的度数比2∠的度数大50︒,则2∠的大小为________度.16.如图所示,,,A O B三点在同一条直线上,AOC ∠与AOD ∠互余,已知110BOC ∠=︒,则AOD ∠=________°.…○………………内………………○………………装………………○………………订………………○………………线………………○…………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________17.如图是由几个大小相同的小立方块搭成的几何体,搭成这个几何体需要10个小立方块,在保持从正面看和从左面看到的形状图不变的情况下,最多可以拿掉_______个小立方块.18.2021年是中国共产党成立100周年,小花打算设计一个正方体装饰品,她在装饰品的平面展开图的六个面上分别写下了“一百周年党庆”几个字.把展开图折叠成正方体后,与“年”字一面相对的面上的字是_________.三、解答题(共46分)19.(8分)如图,已知四点,,,A B C D .请用尺规作图完成(保留痕迹). (1)画直线AB ; (2)画射线AC ;(3)连接BC 并反向延长BC 到E ,使得2CB CE =; (4)画点P ,使PA PB PC PD +++的值最小.20.(6分)如果一个锐角的补角比这个角的余角的2倍还多40︒,那么这个角的余角是多少度?21.(8分)计算: (1)131********︒'-︒'''; (2)583827474240︒'''+︒'''; (3)342533542︒'⨯+︒'; (4)22533107455︒'⨯+︒'÷.22.(8分)如图,已知O 为直线AD 上一点,AOC ∠与AOB ∠互补,,OM ON 分别是,AOC AOB ∠∠的平分线,72MOC ∠=︒.(1)COD ∠与AOB ∠相等吗?请说明理由; (2)求AON ∠的度数.23.(8分)将一张长方形纸片按如图所示的方式折叠,EF 为折痕,点A 落在点G 处,EH 平分FEB ∠.(1)如图1,若EG 与EH 重合,求FEH ∠的度数; (2)如图2,若34FEG ∠=︒,求GEH ∠的度数;(3)如图3,若()FEG 6090αα∠=︒<<︒,求GEH ∠的度数(用α的式子表示).……○………………内………………○………………装………………○………………订………………○………………线………………○…此卷只装订不密封……○………………外………………○………………装………………○………………订………………○………………线………………○…24.(8分)(2021・广东期中)如图,P是线段AB上任一点,12AB=厘米,,C D 两点分别从,P B同时向A点运动,且C点的运动速度为2厘米/秒,D点的运动速度为3厘米/秒,运动的时间为t秒.(1)若8AP=厘米.①运动1秒后,求CD的长;②当D在线段PB上运动时,试说明2AC CD=;(2)如果2t=秒时,1CD=厘米,直接写出AP的值是_____厘米.参考答案1.答案:D2.答案:D3.答案:C4.答案:D5.答案:D6.答案:A7.答案:B8.答案:A9.答案:D 10.答案:B 11.答案:两点之间,线段最短12.答案:点动成线13.答案:圆锥14.答案:五棱柱15.答案:20 16.答案:20 17.答案:118.答案:党19.答案:见解析解析:(1)如图,直线AB即为所求.(2)如图,射线AC即为所求.(3)如图,线段CE即为所求,(4)如图,点P即为所求.20.答案:见解析解析:设这个角为x︒,则其余角为(90)x-︒,补角为(180)x-︒,所以1802(90)40x x-=-+,所以40x=,所以9050x-=.答:这个角的余角是50度.21.答案:见解析解析:(1)13128513215795545︒'-︒'''=︒''';(2)583827474240106217︒'''+︒'''=︒''';(3)342533542103153542︒'⨯+︒'=︒'+︒'13857=︒';(4)2253310745568392133︒'⨯+︒'÷=︒'+︒'9012=︒'.22.答案:见解析解析:(1)COD AOB∠=∠.理由如下:因为点O在直线AD上,所以180AOC COD∠+∠=︒,又因为AOC∠与AOB∠互补,所以180AOC AOB∠+∠=︒,所以COD AOB∠=∠;(2)因为,OM ON分别是,AOC AOB∠∠的平分线,…○………………内………………○………………装………………○………………订………………○………………线………………○…………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________所以12,2AOC COM AON AOB ∠=∠∠=∠,因为72MOC ∠=︒,所以2144AOC COM ∠=∠=︒, 所以18036AOB COD AOC ∠=∠=︒-∠=︒, 所以136182AON ∠=⨯︒=︒.23.答案:见解析解析:(1)由折叠可知AEF FEH ∠=∠,因为EH 平分FEB ∠,所以FEH BEH ∠=∠, 所以AEF FEH BEH ∠=∠=∠, 因为180AEF FEH BEH ∠+∠+∠=︒, 所以60FEH ∠=︒;(2)由折叠可知AEF FEG ∠=∠, 因为34FEG ∠=︒,所以34,18034146AEF FEB ∠=︒∠=︒-︒=︒, 因为EH 平分FEB ∠,所以1732FEH BEH FEB ∠=∠=∠=︒,所以733439GEH FEH FEG ∠=∠-∠=︒-︒=︒; (3)由折叠可知AEF FEG ∠=∠,因为FEG α∠=, 所以,180AEF FEB αα∠=∠=︒-,因为EH 平分FEB ∠,所以119022FEH BEH FEB α∠=∠=∠=︒-,所以13909022GEH FEG FEH ααα⎛⎫∠=∠-∠=-︒-=-︒⎪⎝⎭. 24.答案:见解析 解析:(1)①由题意可知:212(cm),313(cm)CP DB =⨯==⨯=,因为8cm,12cm AP AB ==, 所以4(cm)PB AB AP =-=,所以2433(cm)CD CP PB DB =+-=+-=, ②因为8,12AP AB ==,所以4,82BP AC t ==-, 所以43DP t =-,所以4324CD DP CP t t t =+=-+=-, 所以2AC CD =;(2)当2t =时,224(cm)CP =⨯=,326(cm)DB =⨯=, 当点D 在C 的右边时,如图所示: 由于1cm CD =,所以CB CD DB 7(cm)=+=, 所以5(cm)AC AB CB =-=, 所以9(cm)AP AC CP =+=,当点D 在C 的左边时,如图所示:所以6(cm)AD AB DB =-=, 所以11(cm)AP AD CD CP =++=, 综上所述,9AP =或11.答案为9或11.。

七年级上册数学 几何图形初步单元测试卷 (word版,含解析)

七年级上册数学 几何图形初步单元测试卷 (word版,含解析)

一、初一数学几何模型部分解答题压轴题精选(难)1.如图,EF⊥AB于F,CD⊥AB于D,点在AC边上,且∠1=∠2= .(1)求证:EF∥CD;(2)若∠AGD=65°,试求∠DCG的度数.【答案】(1)证明:∵EF⊥AB于F,CD⊥AB于D,∴∠BFE=∠BDC=90°,∴EF∥CD.(2)解:∵EF∥CD,∴∠2=∠DCE=50°,∵∠1=∠2,∴∠1=∠DCE,∴DG∥BC,∴∠AGD=∠ACB=65°,∴∠DCG=【解析】【分析】(1)由垂直的定义,可求得∠BFE=∠CDF=90°,可证明EF∥CD;(2)利用(1)的结论,结合条件可证明DG∥BC,利用平行线的性质可得∠AGD=∠ACB= ,则∠DCG=∠ACB-∠2即可求得.2.如图①,△ABC的角平分线BD,CE相交于点P.(1)如果∠A=80∘,求∠BPC= ________.(2)如图②,过点P作直线MN∥BC,分别交AB和AC于点M和N,试求∠MPB+∠NPC的度数(用含∠A的代数式表示)________.(3)将直线MN绕点P旋转。

(i)当直线MN与AB,AC的交点仍分别在线段AB和AC上时,如图③,试探索∠MPB,∠NPC,∠A三者之间的数量关系,并说明你的理由。

(ii)当直线MN与AB的交点仍在线段AB上,而与AC的交点在AC的延长线上时,如图④,试问(i)中∠MPB,∠NPC,∠A三者之间的数量关系是否仍然成立?若成立,请说明你的理由;若不成立,请给出∠MPB,∠NPC,∠A三者之间的数量关系,并说明你的理由。

【答案】(1)130°(2)90°﹣∠A(3)解:(i)∠MPB+∠NPC= − ∠A.理由如下:∵∠BPC= +∠A,∴∠MPB+∠NPC= −∠BPC=180∘−( + ∠A)= −12 ∠A.(ii)不成立,有∠MPB−∠NPC= − ∠A.理由如下:由题图④可知∠MPB+∠BPC−∠NPC= ,由(1)知:∠BPC= + ∠A,∴∠MPB−∠NPC= −∠BPC= −( + ∠A)=− ∠A.【解析】【解答】(1)故答案为:( 2 )由 = 得∠MPB+∠NPC= −∠BPC= 1−( + ∠A)= − ∠A;故答案为:∠MPB+∠NPC= − ∠A【分析】(1)根据角平分线的定义得出∠PBC+∠PCB=(∠ABC+∠ACB),再根据三角形的内角和定理及∠A的度数,求出∠ABC+∠ACB的值,然后再利用三角形的内角和就可求出∠BPC的度数。

七年级数学上册《几何图形初步》单元测试卷(含答案解析)

七年级数学上册《几何图形初步》单元测试卷(含答案解析)

七年级数学上册《几何图形初步》单元测试卷(含答案解析)一、单选题(本大题共15小题,共45分)1.如图,将正方体的平面展开图重新折成正方体后,“奋”字对面的字是()A. 者B. 乐C. 的D. 园2.一枚六个面分别标有1−6个点的骰子,将它抛掷三次得到不同的结果,看到的情形如图所示,则图中写有“?”一面上的点数是()A. 6B. 2C. 3D. 13.已知图1的小正方形和图2中所有的小正方形都全等,将图1的小正方形安放在图2中的①、②、③、④的其中某一个位置,放置后所组成的图形是不能围成一个正方体的.那么安放的位置是()A. ①B. ②C. ③D. ④4.观察下图,把左边的图形绕着给定直线旋转一周后可能形成的几何体是()A. B.C. D.5.将一个直角三角形绕它的最长边(斜边)旋转一周得到的几何体为()A. B. C. D.6.已知A,B,C三点在同一条直线上,M,N分别为线段AB,BC的中点,且AB=80,BC=60,则MN的长为()A. 10B. 70C. 10或70D. 30或707.已知线段AB=8,延长线段AB至C,使得BC=12AB,延长线段BA至D,使得AD=14AB,则下列判断正确的是()A. BC=12AD B. BD=3BC C. BD=4AD D. AC=6AD8.下列作图语句中,正确的是()A. 画直线AB=6cmB. 延长线段AB到CC. 延长射线OA到BD. 作直线使之经过A,B,C三点9.如图给出的分别有射线,直线,线段,其中不能相交的图形是()A. B.C. D.10.如图,现实生活中有部分行人选择横穿马路而不走天桥或斑马线,用数学知识解释这一现象的原因,可以为()A. 过一点有无数条直线B. 两点之间线段的长度,叫做这两点之间的距离C. 两点确定一条直线D. 两点之间,线段最短11.若∠α=5.12°,则∠α用度、分、秒表示为()A. 5°12′B. 5°7′12′′C. 5°7′2′′D. 5°10′2′′12.下列图形中,能用∠α,∠O,∠AOB三种方式正确表示同一个角的图形是()A. B. C. D.13.按图1~图4的步骤作图,下列结论错误的是()∠AOB=∠AOP B. ∠AOP=∠BOPA. 12C. 2∠BOP=∠AOBD. ∠BOP=2∠AOP14.如图,OC是∠AOB的平分线,OD平分∠AOC,且∠COD=20°,则∠AOB=()A. 40°B. 50°C. 90°D. 80°15.如图,准确表示小岛A相对于灯塔O的位置是()A. 北偏东60°B. 距灯塔2km处C. 北偏东30°且距灯塔2km处D. 北偏东60°且距灯塔2km处二、填空题(本大题共5小题,共15分)16.如图,一个正方块的六个面分别标有A、B、C、D、E、F,从三个不同方向看到的情况如图所示,则A的对面应该是 ______.17.如图,已知点A、B、C、D、在同一条直线上,AB=5,AC=2,点D是线段BC的中点,则BD=______.18.时钟指示2点25分,它的时针与分针所成的锐角是 ______°.19.如图,点O在直线AE上,OC平分∠AOE,∠DOB是直角,若∠1=25°,那么∠AOB的度数是 ______°.20.在一次夏令营活动中,小明同学从营地A点出发,要到C地去,先沿北偏东70°方向走了500m到达B地,然后再沿北偏西20°方向走了500m到达目的地C,此时小明在营地A的______方向.三、解答题(本大题共5小题,共40分)21.如图所示的是一个长方体的表面展开图,每个面上都标注了字母(字母朝外),回答下列问题:(1)如果面A在长方体的底部放置,那么哪一个面会在它的上面?(2)如果面F在前面,从左面看是面B,那么哪一个面会在上面?(3)从右面看是面C,面E在左面,那么哪一个面会在上面?22.如图,已知线段AB=14,AP=8,P是OB的中点,求AO的长.AC,D,E分别为AC,AB的中点,求线段DE的23.如图,点C是线段AB上一点,AC=12,CB=23长.24.如图∠AOC为直角,OC是∠BOD的平分线,且∠AOB=28°,求∠BOD的度数.25.如图,点A、O、B在同一条直线上,∠AOD=∠EOC=90°,∠BOC:∠AOE=4:1,求∠COD的度数.参考答案和解析1.【答案】B;【解析】解:由题意,将正方体的平面展开图重新折成正方体后,“斗”字对面的是“的”字,“奋”字对面的字是“乐”字,“者”字对面的是“园”字,故选:B.正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.此题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.2.【答案】A;【解析】解:根据图形可知,与点数1相邻的面的点数有2、3、4、5,∴点数1与6是相对面,对比第一个和第三个图,可知写有“?”的面与点数1是相对面,故写有“?”一面上的点数是6.故选:A.根据与1个点数相邻的面的点数有2、3、4、5可知1个点数的对面是6个点数,再根据1与2、3相邻,从而得解.此题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相邻的面上找出一个与另外4个相邻的数是解答该题的关键.3.【答案】A;【解析】解:将图1的正方形放在图2中的①的位置出现重叠的面,所以不能围成正方体.故选:A.由平面图形的折叠及正方体的表面展开图的特点解题.此题主要考查了展开图折叠成几何体,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.注意:只要有“田”字格的展开图都不是正方体的表面展开图.4.【答案】D;【解析】根据面动成体的原理以及空间想象力即可解.考查学生立体图形的空间想象能力及分析问题,解决问题的能力.解:由图形可以看出,左边的长方形的竖直的两个边与已知的直线平行,因而这两条边旋转形成两个柱形表面,因而旋转一周后可能形成的立体图形是一个管状的物体.故选D.5.【答案】D;【解析】该题考查的是点线面的认识有关知识,根据面动成体的原理:一个直角三角形绕它的最长边旋转一周,得到的是两个同底且相连的圆锥.解:A.圆柱是由一长方形绕其一边长旋转而成的;B.圆锥是由一直角三角形绕其直角边旋转而成的;C.该几何体是由直角梯形绕其下底旋转而成的;D.该几何体是由直角三角形绕其斜边旋转而成的.故选D.6.【答案】C;【解析】解:(1)当C在线段AB延长线上时,如图1,∵M、N分别为AB、BC的中点,∴BM=12AB=40,BN=12BC=30;∴MN=BM+BN=40+30=70.(2)当C在AB上时,如图2,同理可知BM=40,BN=30,∴MN=BM−BN=40−30=10;所以MN=70或10,故选:C.根据题意画出图形,再根据图形求解即可.此题主要考查线段中点的定义,比较简单,注意有两种可能的情况;解答这类题目,应考虑周全,避免漏掉其中一种情况.【解析】解:如图所示:∵AB=8,BC=12AB,∴BC=4,∵AD=14AB,∴AD=2,∴AC=AB+BC=12,BD=AD+AB=10,∴BC=2AD,BD=2.5BC,BD=5AD,AC=6AD.故选:D.根据AB=8,由线段的倍分关系求出BC,AD的长,进一步得到AC,BD的长,依此即可求解.该题考查了两点之间的距离的应用,主要考查学生的理解能力和计算能力,解此题的关键是求出BC,AD,AC,BD的长.8.【答案】B;【解析】这道题主要考查的是直线、射线、线段的特点,掌握直线、射线、线段的特点是解答该题的关键.根据直线向两端无限延伸,两点确定一条直线,射线向一端无限延伸可判断A、C、D是否正确;根据线段的特点可判断B是否正确.解:A.直线向两端无限延伸,无限长,故A错误;B.正确;C. 因为射线无限长,故C错误;D.如果A、B、C三点不在同一直线上,不能作直线使之经过A,B,C三点,过D错误.故选B.9.【答案】B;【解析】解:A.由图中直线AB和射线CD的位置以及直线、射线的意义可得,直线AB与射线CD 能相交,因此A不符合题意;B. 由图中线段AB和线段CD的位置以及线段的意义可知,线段AB与线段CD不相交,故B符合题意;C. 由图中直线a和直线b的位置以及直线的意义可得,直线a与直线b能相交,因此C不符合题意;D. 由图中直线AB和直线CD的位置以及直线的意义可得,直线AB与直线CD能相交,因此D不符合题意;故选:B.根据直线、射线、线段的意义逐项进行判断即可.此题主要考查直线、射线、线段的意义,理解直线、射线、线段的意义是解决问题的关键.【解析】解:现实生活中有部分行人选择横穿马路而不走天桥或斑马线,用数学知识解释这一现象的原因,两点之间线段最短.故选:D.根据线段的性质,直线的性质,可得答案.此题主要考查了线段的性质,熟记性质并能灵活应用是解题关键.11.【答案】B;【解析】解:∠α=5.12°=5°+0.12×60′=5°+7′+0.2×60′′=5°7′12′′.故选:B.利用度分秒之间的换算关系进行计算即可求解.此题主要考查了度分秒的换算,关键是掌握1°=60′,1′=60′′.12.【答案】C;【解析】解:A、不能表示为∠O,故本选项错误;B、不能表示为∠O,故本选项错误;C、能用∠α,∠O,∠AOB三种方式表示,故本选项正确;D、不能表示为∠O,故本选项错误.故选:C.根据角的表示方法解答即可.此题主要考查了角的概念,主要考查了角的表示方法,同一个顶点处有不止一个角时,一定不能用一个大写字母表示角.13.【答案】D;【解析】解:∵OP是∠AOB的平分线,∴∠AOB=2∠AOP=2∠BOP,∠AOP=∠BOP=12∠AOB,∴选项A、B、C均正确,选项D错误.故选:D.根据角平分线的定义对各选项进行逐一分析即可.此题主要考查的是角平分线的定义.解答该题的关键是掌握角平分线的定义,即从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.14.【答案】D;【解析】解:∵OC是∠AOB的平分线,∴∠AOC=∠COB;∵OD是∠AOC的平分线,∴∠AOD=∠COD;∵∠COD=20°,∴∠AOC=40°,∴∠AOB=80°.故选D .两次利用角平分线的性质计算.本题是角的平分线与对顶角的性质的考查,角平分线的性质是将两个角分成相等的两个角.15.【答案】D;【解析】解:由方向角的定义以及平面内位置的确定方法可知,小岛A 在灯塔O 的北偏东60°且距灯塔2km 处,故选:D.根据平面内,位置的表示方法以及方向角的定义可得答案.此题主要考查方向角,理解方向角的定义以及平面内位置的确定方法是解决问题的关键.16.【答案】C;【解析】解:由图可知,A 相邻的字母有D 、E 、B 、F ,所以A 对面的字母是C.故答案为:C.观察三个正方体,与A 相邻的字母有D 、E 、B 、F ,从而确定出A 对面的字母是C.此题主要考查了正方体相对两个面上的文字,仔细观察图形从相邻面考虑求解是解答该题的关键.17.【答案】32;【解析】解:∵AB =5,AC =2,∴BC =AB −AC =3,∵点D 是线段AC 的中点, ∴BD =12AC =32.故答案为:32. 先求出线段BC 的长,再由中点得出BD 的长.此题主要考查了两点间的距离,能计算出BC 的长是解答该题的关键.18.【答案】77.5;【解析】解:2时25分的时候,分针指向5,时针在2−3之间,周角为360°,平均分成12份,每格的度数为360°÷12=30°,时针1个小时走30°,每分钟走0.5°,25分钟走0.5°×25=12.5°,∴此时它的时针和分针所成的锐角为90°−12.5°=77.5°,故答案为:77.5.先计算出每个大格的度数是30°,再用90°减去时针走过的度数,即为时针和分针所成的锐角的度数.此题主要考查了钟面角,角度的计算,求出时针所走的度数是解答该题的关键.19.【答案】25;【解析】解:∵点O 在直线AE 上,∴∠AOE =180°.∵OC 平分∠AOE ,∴∠AOC=1∠AOE=90°.2∴∠AOB+∠BOC=90°.∵∠DOB是直角,∴∠DOB=∠BOC+∠COD=90°.∴∠AOB=∠1=25°.故答案为:25.∠AOE=90°.由∠DOB 由点O在直线AE上,得∠AOE=180°.由OC平分∠AOE,得∠AOC=12是直角,根据同角的余角相等得∠AOB=∠COD,从而解决此题.此题主要考查平角的定义、余角的性质以及角平分线的定义,熟练掌握平角的定义、余角的性质以及角平分线的定义是解决本题的关键.20.【答案】北偏东25°;【解析】解:∵小明A点沿北偏东70°的方向走到B,∴∠BAD=70°,∵B点沿北偏西20°的方向走到C,∴∠EBC=20°,又∵∠BAF=90°−∠DAB=90°−70°=20°,∴∠1=90°−20°=70°,∴∠ABC=180°−∠1−∠CBE=180°−70°−20°=90°.∴ΔABC是等腰直角三角形,∵AB=500m,BC=500m,∴∠CAB=45°,∴∠DAC=∠DAB−∠CAB=70°−45°=25°,∴小明在营地A的北偏东25°方向.故答案为:北偏东25°.先根据∠DAB=70°,∠CBE=20°判断出ΔABC的形状,求出∠DAC的度数即可.此题主要考查的是方向角的概念,解答此类题需要从运动的角度,再结合三角函数的知识求解.21.【答案】解:(1)根据“相间、Z端是对面”可知,“A”与“F”相对,“B”与“D”相对,“C”与“E“相对,所以面A在长方体的底部,那么F个面会在它的上面;(2)若面F在前面,左面是面B,则“A”在后面,“D”在右面,此时“C”在上面,“E”在下面,或“E”在上面,“C”在下面,答:如果面F在前面,从左面看是面B,那么“C”面或“E”面会在上面;(3)从右面看是面C,面E在左面,则“B”面或“D”面在上面.;【解析】根据长方体表面展开图的特征进行判断即可.此题主要考查长方体的展开与折叠,掌握长方体表面展开图的特征是解决问题的关键.22.【答案】解:因为AB=14,AP=8,所以BP=AB-AP=6.因为P是OB的中点,所以OP=BP=6,所以AO=AP-OP=8-6=2.;【解析】由线段的和差可求解BP的长,结合中点的定义可求OP的长,进而可求解.此题主要考查两点间的距离,求解OP的长是解答该题的关键.23.【答案】解:∵AC=12,CB=23AC,∴CB=AC+CB=20,∵D,E分别为AC,AB的中点,∴AD=12AC=6,AE=12AB=10,∴DE=AE-AD=10-6=4.;【解析】根据题意AC=12,CB=23AC,可得CB=AC+CB,由已知条件D,E分别为AC,AB的中点,AD=12AC,AE=12AB,即DE=AE−AD,代入计算即可得出答案.此题主要考查了两点间的距离,熟练应用两点间的距离计算方法进行求解是解决本题的关键.24.【答案】解:∵∠AOB=28°,∠AOC为直角,∴∠BOC=∠AOC-∠AOB=90°-28°=62°,∵OC是∠BOD的平分线,∴∠BOD=2∠BOC=124°.;【解析】首先由∠AOB=28°,∠AOC为直角,即可推出∠BOC=62°,然后根据角平分线的性质即可推出∠BOD=2∠BOC=124°.这道题主要考查角平分线的性质,角的计算,直角的定义,关键在于推出∠BOC的度数.25.【答案】解:设∠AOE=x,则∠BOC=4x.∵∠EOC=90°,∠EOC+∠AOE+∠BOC=180°,∴90°+x+4x=180°,∴x=18°.∴∠BOC=4x=72°.又∵∠AOD=90°,∴∠COD=180°-∠AOD-∠BOC=180°-90°-72°=18°.;【解析】根据补角的定义以及角的和差关系解决此题.此题主要考查补角的定义以及角的和差关系,熟练掌握补角的定义以及角的和差关系是解决本题额关键.。

人教版七年级上册数学第四章 几何图形初步单元测试卷附解析

人教版七年级上册数学第四章 几何图形初步单元测试卷附解析

人教版七年级上册数学第四章几何图形初步单元测试卷附解析一、单选题(共10题;共30分)1.(3分)下列图形沿着某一直线旋转180°后,一定能形成圆锥的是()A.直角三角形B.等腰三角形C.矩形D.扇形2.(3分)以下哪个图形经过折叠可以得到正方体()A.B.C.D.3.(3分)下列各图中直线的表示法正确的是().A.B.C.D.4.(3分)下列说法正确的是()A.射线PA与射线AP是同一条射线B.射线OA的长度是12cmC.直线ab,cd相交于点MD.两点确定一条直线5.(3分)已知点A、B、C都是直线m上的点,且AB=5cm,BC=3cm,那么点A与点C之间的距离是()A.8cm B.2cm或6cm C.8cm或2cm D.4cm6.(3分)下列角中,能用∠1,∠ACB,∠C三种方法表示同一个角的是()A.B.C .D .7.(3分)下列图中的 ∠1 也可以用 ∠O 表示的是( )A .B .C .D .8.(3分)某测绘兴趣小组用测绘装置对一建筑的位置进行测量,测量前指针指向北偏东38°,测量后指针顺时针旋转了14周,则此时指针指向为( )A .北偏西52°B .南偏东52°C .西偏南42°D .东偏北42°9.(3分)已知∠1和∠2互为余角,且∠2与∠3互补,∠1=60°,则∠3为( )A .120°B .60°C .30°D .150°10.(3分)如图,从点O 出发的5条射线,可以组成的锐角的个数是( )A .8B .9C .10D .11二、填空题(共5题;共15分)11.(3分)如图,D 是AC 的中点,CB =4cm ,DB =7cm ,则AB 的长为 cm .12.(3分)已知线段AB=6cm ,点C 为直线AB 上一点,且BC=2cm ,则线段AC 的长是cm.13.(3分)将19.36°用度分秒表示为.14.(3分)钟表上显示8:30,时针与分针的夹角为。

人教版七年级上册数学第四章 几何图形初步 单元测试卷(含答案解析)

人教版七年级上册数学第四章 几何图形初步 单元测试卷(含答案解析)

人教版七年级上册数学第四章几何图形初步单元测试卷【满分:120】一、选择题:(本大题共10小题,每小题4分,共40分,给出的四个选项中,只有一项是符合题目要求的)1.如图是一个几何体的侧面展开图,这个几何体可以是( ).A.圆锥B.圆柱C.棱锥D.棱柱2.如图,含有曲面的几何体的编号为( )A.①②B.①③C.②③D.②④3.如图,从学校A到书店B有①、②、③、④四条路线,其中最短的路线是( )A.①B.②C.③D.④4.钟表上8时30分时,时针与分针的夹角为( )A.15︒B.30︒C.75︒D.60︒5.如图4-3-3-5,OA是北偏东30︒的一条射线,若90∠=︒,则射线OB的方向角是( )AOBA.北偏西60︒B.北偏西30︒C.东偏北60︒D.东偏北30︒6.圆柱是由长方形绕着它的一边所在直线旋转一周得到的,那么图是以下四个图形中的哪一个绕着直线旋转一周得到的( )A. B. C. D.7.下列图形中,正方体展开图错误的是( )A. B.C. D.8.如图,将一根绳子对折以后用线段AB 表示,现从P 处将绳子剪断,剪断后的各段绳子中最长的一段为60 cm ,若23AP PB =,则这条绳子的原长为( )A.100 cmB.150 cmC.100 cm 或150 cmD.120 cm 或150 cm9.如图所示,OB ,OC 是AOD ∠内的任意两条射线,OM 平分AOB ∠,ON 平分COD ∠,若MON α∠=,BOC β∠=,则表示AOD ∠的代数式是( )A.2αβ- B.αβ- C.αβ+ D.以上都不正确10.如图,C为线段AD上一点,点B为CD的中点,且9AD=,2BD=.若点E在直线AD 上,且1EA=,则BE的长为( )A.4B.6或8C.6D.8二、填空题(每小题4分,共20分)11.下列几何体属于柱体的有__________个.12.如图,C,D为线段AB上两点,6AC BD+=,且75AC BC AB+=,则CD等于__________.13.如图,OC是AOB∠的平分线,OD是AOC∠的平分线,且25COD∠=︒,则BOD∠等于_______.14.点A,B,C在直线l上,4cmAB=,6cmBC=,E是AB的中点,F是BC的中点,EF=___________.15.将如图所示的图形剪去一个小正方形,使余下的部分恰好能折成一个正方体,下列编号为1、2、3、6的小正方形中不能剪去的是_____(填编号).。

七年级数学上册《第四章几何图形初步》单元测试卷含答案(人教版)

七年级数学上册《第四章几何图形初步》单元测试卷含答案(人教版)

七年级数学上册《第四章几何图形初步》单元测试卷含答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题:1.下列几何图形中,不能一笔画成的是()A. B. C. D.2.已知∠AOB=30°,∠BOC=45°,则∠AOC等于()A.15°B.75°C.15°或75°D.不能确定3.在数轴上与表示-2的点距离等于3的点所表示的数是()A.1 B.-1或5 C.-5 D.-5或14.已知锐角α,那么∠α的补角与∠α的余角的差是()A.90°B.120°C.60°+αD.180°﹣α5.如图所示,OA是北偏东60︒方向的一条射线,若射线OB与射线OA垂直,则OB的方位角是()A.北偏西30︒B.北偏西60︒C.东偏北30︒D.东偏北60︒6.如图,OE⊥AB,直线CD经过点O,∠COA=35°,则∠BOD的余角度数为()A.35°B.45°C.55°D.60°7.如图是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面,与“迎”相对的面上的汉字是()A.文B.明C.全D.运8.如图,B是线段AD的中点,C是线段BD上一点,则下列结论中错误..的是()A .BC=AB-CDB .BC= 12 (AD-CD)C .BC= 12AD-CD D .BC=AC-BD 二、填空题:9.计算:902648︒-︒'= .10.将一副三角板如图放置,若 20AOD ∠= ,则 BOC ∠ 的大小为 .11.如图,点B 在线段AC 上,已知9cm AB =,4cm BC =点O 是线段AC 的中点,则线段OB = cm.12.如图,点O 是直线AD 上的点,∠AOB ,∠BOC ,∠COD 三个角从小到大依次相差25°,则这三个角的度数是 .13.如图,白纸上放有一个表面涂满染料的小正方体,在不脱离白纸的情况下,转动正方体,使其各面染料都能印在白纸上,且各面仅能接触白纸一次,则在白纸上可以形成的图形有 .(填序号)三、解答题:14.已知:如图,A ,B ,C 在同一条线段上,M 是线段AC 的中点,N 是线段BC 的中点,且 5AM cm = cm = 求线段AB 的长.15.如图是一个正方体的表面展开图,它的每一个面上都写有一个数,并且相对的两个面的数字互为相反数,求2a b c +-的值.16.如图,直线AB ,CD 相交于点O ,OE AB ⊥且OF 平分AOC ∠,且40BOD ∠=︒,求EOF ∠的度数.17.如图,OC AB ⊥于点O ,OD 平分BOC ∠,OE 平分AOD ∠(1)求BOD ∠的度数;(2)求COE ∠的度数.18.已知数轴上有A 、B 、C 三个点对应的数分别是a 、b 、c ,且满足|a+24|+|b+10|+(c-10)2=0;动点P 从A 出发,以每秒1个单位的速度向终点C 移动,设移动时间为t 秒.(1)求a 、b 、c 的值;(2)若点P 到A 点距离是到B 点距离的2倍,求点P 的对应的数;(3)当点P 运动到B 点时,点Q 从A 点出发,以每秒2个单位的速度向C 点运动,Q 点到达C 点后.再立即以同样的速度返回,运动到终点A ,在点Q 开始运动后第几秒时,P 、Q 两点之间的距离为8?请说明理由.参考答案:1.C 2.C 3.D 4.A 5.A 6.C 7.A 8.B9.6312︒'10.160°11.5212.35°,60°,85°13.①③14.解: M 是线段AC 的中点,N 是线段BC 的中点5MC AM cm ∴== 和 3BN CN cm ==16AB AM MC CN NB cm ∴=+++=15.解:因为相对的两个面的两个数字互为相反数所以80a +=,40b +=和50c +=所以845a b c =-=-=-,,所以()()2842584102a b c +-=-+--⨯-=--+=-16.解:∵40BOD ∠=︒∴40AOC BOD ∠=∠=︒∵OF 平分AOC ∠ ∴1202AOF AOC ∠=∠=︒ ∵OE AB ⊥∴90AOE ∠=︒∴9020110EOF AOE AOF ∠=∠+∠=︒+︒=︒.17.(1)解:∵OC AB ⊥∴90BOC AOC ∠=∠=︒∵OD 平分BOC ∠ ∴1452BOD COD BOC ∠=∠=∠=︒ (2)解:由(1)可得9045135AOD AOC COD ∠=∠+∠=︒+︒=︒∵OE 平分AOD ∠ ∴167.52AOE AOD ∠=∠=︒ ∴9067.522.5COE ∠=︒-︒=︒18.(1)解:∵|a+24|+|b+10|+(c-10)2=0∴a+24=0,b+10=0,c-10=0解得:a=-24,b=-10,c=10;(2)解:-10-(-24)=14①点P 在AB 之间,AP=14×221+ = 283 -24+ 283 =- 443点P的对应的数是- 443;②点P在AB的延长线上,AP=14×2=28-24+28=4点P的对应的数是4;(3)解:∵AB=14,BC=20,AC=34∴t P=20÷1=20(s),即点P运动时间0≤t≤20点Q到点C的时间t1=34÷2=17(s),点C回到终点A时间t2=68÷2=34(s)当P点在Q点的右侧,且Q点还没追上P点时,2t+8=14+t,解得t=6;当P在Q点左侧时,且Q点追上P点后,2t-8=14+t,解得t=22>17(舍去);当Q点到达C点后,当P点在Q点左侧时,14+t+8+2t-34=34,t= 463<17(舍去);当Q点到达C点后,当P点在Q点右侧时,14+t-8+2t-34=34,解得t= 623>20(舍去)当点P到达终点C时,点Q到达点D,点Q继续行驶(t-20)s后与点P的距离为8,此时2(t-20)+(2×20-34)=8解得t=21;综上所述:当Q点开始运动后第6、21秒时,P、Q两点之间的距离为8。

人教版七年级上学期数学《几何图形初步》单元测试题(带答案)

人教版七年级上学期数学《几何图形初步》单元测试题(带答案)

人教版七年级上册第四章单元测试卷满分:100分时间:90分钟一、选择题(每题3分,共30分)1.下列各图中,∠1与∠2互为补角的是( )学#科#网...学#科#网...A . AB . BC . CD . D2.下列语句错误的是( )A . 延长线段A BB . 延长射线A BC . 直线m和直线n相交于点PD . 在射线A B 上截取线段A C ,使A C =3 C m3.下列立体图形中,都是柱体的为( )A . AB . BC . CD . D4.如图,表示∠1的其他方法中,不正确的是( )A . ∠A CB B . ∠C C . ∠B C AD . ∠A C D5.如图所示的表面展开图所对应的几何体是( )A . 长方体B . 球C . 圆柱D . 圆锥6.如图所示的物体从上面看到的形状是( )A . AB . BC . CD . D7.下列各图中,经过折叠能围成一个正方体的是( )A .B .C .D .8.在直线上顺次取A ,B ,C 三点,使得A B =5 C m,B C =3 C m,如果O是线段B C 的中点,那么线段A O的长度是( )A . 8 C mB . 7.5C m C . 6.5 C mD . 2.5 C m9.如图,∠A OC =∠D OE=90°,如果∠A OE=65°,那么∠C OD 的度数是( )A . 90°B . 115°C . 120°D . 135°10.用折纸的方法,可以直接剪出一个正五边形(如图).方法是:拿一张长方形纸对折,折痕为A B ,以A B 的中点O为顶点将平角五等分,并沿五等分的线折叠,再沿C D 剪开,使展开后的图形为正五边形,则∠O C D 等于( )A . 108°B . 90°C . 72°D . 60°二、填空题(每题3分,共24分)11.如图,射线OA 表示____________方向,射线OB 表示____________方向.12.已知线段A B =8 C m,在直线A B 上画线段B C ,使它等于3 C m,则线段A C =__________.13.如图,图中线段有________条,射线有________条.14.计算:(1)90.5°-25°45′=__________;(2)5°17′23″×6=__________.15.如图,已知∠B OC =2∠A OB ,OD 平分∠A OC ,∠B OD =14°,则∠A OC 的度数是________.16.将线段A B 延长至点C ,使B C =A B ,延长B C 至点D ,使C D =B C ,延长C D 至点E,使D E=CD ,若C E=8 C m,则A B =________ C m.17.如图,将一副三角尺叠放在一起,使直角顶点重合于O,则∠A OC +∠D OB =________.18.如图是由一些小立方块所搭立体图形分别从正面、左面、上面看到的图形,若在所搭立体图形的基础上(不改变原立体图形中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要________个小立方块.三、解答题(19,21题每题6分,20,22,24题每题10分,其余每题12分,共66分)19.如图,A ,B 两个村庄在河m的两侧,连接A B ,与m交于点C ,点D 在m上,连接A D ,B D ,且A D =B D .若要在河上建一座桥,使A ,B 两村来往最便捷,则应该把桥建在点C 还是点D ?请说明理由.20.如图,已知线段A ,B ,画一条线段,使它等于3A -B (不要求写画法).21.如图所示的立体图形是由七块积木搭成的,这几块积木是大小相同的正方体,请画出这个立体图形分别从正面、左面、上面看到的图形.22.如图,点C 是A B 的中点,D ,E分别是线段A C ,C B 上的点,且A D =A C ,D E=A B ,若A B =24C m,求线段C E的长.23.如图,OD 平分∠B OC ,OE平分∠A OC ,∠B OC =60°,∠A OC =58°.(1)求出∠A OB 及其补角的度数;(2)①请求出∠D OC 和∠A OE的度数;②判断∠D OE与∠A OB 是否互补,并说明理由.24.如图,把一根绳子对折成线段A B ,从点P处把绳子剪断,已知A P:B P=2:3,若剪断后的各段绳子中最长的一段为60 C m,求绳子的原长.25.已知O为直线A B 上一点,∠C OE是直角,OF平分∠A OE.(1)如图①,若∠C OF=34°,则∠B OE=________;若∠C OF=n°,则∠B OE=________;∠B OE与∠C OF的数量关系为________________.(2)当射线OE绕点O逆时针旋转到如图②的位置时,(1)中∠B OE与∠C OF的数量关系是否仍然成立?请说明理由.(3)在图③中,若∠C OF=65°,在∠B OE的内部是否存在一条射线OD ,使得2∠B OD 与∠A OF的和等于∠B OE与∠B OD 的差的一半?若存在,请求出∠B OD 的度数;若不存在,请说明理由.参考答案一、选择题(每题3分,共30分)1.下列各图中,∠1与∠2互为补角的是( )学§科§网...学§科§网...学§科§网...学§科§网...学§科§网...学§科§网...学§科§网...A . AB . BC . CD . D[答案]D[解析][分析]根据互为补角的两个角的和等于180°对各选项分析判断即可得解.[详解]A 、∠1+∠2不一定等于180°,故不一定是互为补角关系,故本选项错误;B 、∠1+∠2=90°,是互为余角关系,故本选项错误;C 、∠1与∠2是对顶角,不一定互补,故本选项错误;D 、∠1与∠2互为补角关系,故本选项正确,故选D .[点睛]本题考查了余角和补角,熟练掌握补角的概念是解题的关键.2.下列语句错误的是( )A . 延长线段A BB . 延长射线A BC . 直线m和直线n相交于点PD . 在射线A B 上截取线段A C ,使A C =3 C m[答案]B[解析][分析]利用有关直线、射线、线段的知识逐项判定即可.[详解]A 、延长线段A B ,说法正确,故A 选项不符合题意;B 、射线只能反向延长,所以延长射线A B 说法错误,故B 选项符合题意;C . 直线m和直线n相交于点P,说法正确,故C 选项不符合题意;D 、在射线A B 上截取线段A C ,使A C =3 C m,说法正确,故D 选项不符合题意,故选B .[点睛]本题主要考查了直线、射线、线段,解题的关键是熟记有关直线、射线、线段的知识.3.下列立体图形中,都是柱体的为( )A . AB . BC . CD . D[答案]C[解析][分析]根据柱体是上下一样粗的几何体逐项进行分析可得答案.[详解]A 选项中有锥体,故A 选项不符合题意;B 选项中有锥体,故B 选项不符合题意;C 选项中全是柱体,故C 选项符合题意;D 选项中有台体,故D 选项不符合题意,故选C .[点睛]此题主要考查了认识立体图形,关键是掌握各种图形的特点.4.如图,表示∠1的其他方法中,不正确的是( )A . ∠A CB B . ∠C C . ∠B C AD . ∠A C D[答案]B[解析][分析]根据角的表示方法,一个顶点有多个角时,不能用单个大写字母表示,由此进行判断即可. [详解]A 选项符合角的表示方法,不符合题意;B 选项以C 点为顶点的角有多个,故∠C 不能表示∠1,符合题意;C 选项符合角的表示方法,不符合题意;D 选项符合角的表示方法,不符合题意;故选B .[点睛]此题主要考查角的表示方法,熟练掌握是解题关键.5.如图所示的表面展开图所对应的几何体是( )A . 长方体B . 球C . 圆柱D . 圆锥[答案]D[解析][分析]观察表面展开图有圆和扇形,由此即可确定.[详解]A 选项展开图中没有圆,不符合题意;B 选项展开图不是平面,不符合题意;C 选项展开图中没有扇形,不符合题意;D 选项展开图中有圆和扇形,符合题意,故选D .[点睛]此题主要考查立体图形的展开图,熟知常见几何体表面展开图是解题关键.6.如图所示的物体从上面看到的形状是( )A . AB . BC . CD . D[答案]D[解析][分析]从上面观察所给几何体,结合选项即可得出答案.[详解]从上面观察所给几何体可以看到是一个有直径的圆环,如图所示:故选D .[点睛]此题主要考查三视图的知识,熟练掌握是解题关键.7.下列各图中,经过折叠能围成一个正方体的是( )A .B .C .D .[答案]A[解析]由平面图形的折叠及正方体的展开图解题,注意只要有”田”、”凹”字格的展开图都不是正方体的表面展开图。

人教版七年级数学上册《第4章几何图形初步》单元测试含答案解析

人教版七年级数学上册《第4章几何图形初步》单元测试含答案解析

《第4章几何图形初步》一、选择题1.分别从正面、左面和上面这三个方向看下面的四个几何体,得到如图所示的平面图形,那么这个几何体是()A.B.C.D.2.从左面看图中四个几何体,得到的图形是四边形的几何体共有()A.1个B.2个C.3个D.4个3.如图,四个图形是由立体图形展开得到的,相应的立体图形顺次是()A.正方体、圆柱、三棱柱、圆锥B.正方体、圆锥、三棱柱、圆柱C.正方体、圆柱、三棱锥、圆锥D.正方体、圆柱、四棱柱、圆锥4.如图,对于直线AB,线段CD,射线EF,其中能相交的图是()A.B.C. D.5.下面等式成立的是()A.83.5°=83°50′B.37°12′36″=37.48°C.24°24′24″=24.44° D.41.25°=41°15′6.下列语句:①一条直线有且只有一条垂线;②不相等的两个角一定不是对顶角;③不在同一直线上的四个点可画6条直线;④如果两个角是邻补角,那么这两个角的平分线组成的图形是直角.其中错误的有()A.1个B.2个C.3个D.4个7.如图,已知直线AB、CD相交于点O,OA平分∠EOC,∠EOC=110°,则∠BOD的度数是()A.25° B.35° C.45° D.55°8.如图,∠1+∠2等于()A.60° B.90° C.110°D.180°9.C是线段AB上一点,D是BC的中点,若AB=12cm,AC=2cm,则BD的长为()A.3cm B.4cm C.5cm D.6cm10.甲乙两人各用一张正方形的纸片ABCD折出一个45°的角(如图),两人做法如下:甲:将纸片沿对角线AC折叠,使B点落在D点上,则∠1=45°;乙:将纸片沿AM、AN折叠,分别使B、D落在对角线AC上的一点P,则∠MAN=45°.对于两人的做法,下列判断正确的是()A.甲乙都对 B.甲对乙错 C.甲错乙对 D.甲乙都错二、填空题11.如图,各图中的阴影部分绕着直线l旋转360°,所形成的立体图形分别是.12.如图,以图中A,B,C,D,E为端点的线段共有条.13.如图所示:把两块完全相同的直角三角板的直角顶点重合,如果∠AOD=128°,那么∠BOC= .14.如图,直线AB,CD相交于点0,OE平分∠AOD,若∠BOC=80°,则∠AOE= °.15.如图是某几何体的平面展开图,则这个几何体是.16.如图绕着中心最小旋转能与自身重合.17.如图所示,一艘船从A点出发,沿东北方向航行至B,再从B点出发沿南偏东15°方向航行至C点,则∠ABC等于度.18.一个圆绕着它的直径只要旋转180度,就形成一个球体;半圆绕着直径旋转度,就可以形成一个球体.19.已知∠A=40°,则它的补角等于.20.两条直线相交有个交点,三条直线相交最多有个交点,最少有个交点.三、解答题(21、22、26、27小题各12分,23、24、25题各14分,共90分)21.如图,若CB=4cm,DB=7cm,且D是AC的中点,求线段DC和AB的长度.22.如图所示,直线AB、CD相交于O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.23.已知:如图,∠AOB是直角,∠AOC=40°,ON是∠AOC的平分线,OM是∠BOC的平分线.(1)求∠MON的大小;(2)当锐角∠AOC的大小发生改变时,∠MON的大小是否发生改变?为什么?24.如图是一个正方体的平面展开图,标注了A字母的是正方体的正面,如果正方体的左面与右面标注的式子相等.(1)求x的值.(2)求正方体的上面和底面的数字和.25.如图,将书页一角斜折过去,使角的顶点A落在A′处,BC为折痕,BD平分∠A′BE,求∠CBD 的度数.26.如图,已知C是AB的中点,D是AC的中点,E是BC的中点.(1)若DE=9cm,求AB的长;(2)若CE=5cm,求DB的长.27.一个角的余角比它的补角的还少20°,求这个角.《第4章几何图形初步》参考答案与试题解析一、选择题1.分别从正面、左面和上面这三个方向看下面的四个几何体,得到如图所示的平面图形,那么这个几何体是()A.B.C.D.【考点】由三视图判断几何体.【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是三角形可判断出此几何体为三棱柱.【解答】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个三角形,∴此几何体为三棱柱.故选C.【点评】本题主要考查了由三视图判断几何体,由主视图和左视图可得几何体是柱体,锥体还是球体,由俯视图可确定几何体的具体形状.2.从左面看图中四个几何体,得到的图形是四边形的几何体共有()A.1个B.2个C.3个D.4个【考点】简单几何体的三视图.【分析】四个几何体的左视图:圆柱是矩形,圆锥是等腰三角形,球是圆,正方体是正方形,由此可确定答案.【解答】解:因为圆柱的左视图是矩形,圆锥的左视图是等腰三角形,球的左视图是圆,正方体的左视图是正方形,所以,左视图是四边形的几何体是圆柱和正方体;故选B.【点评】本题主要考查三视图的左视图的知识;考查了学生的空间想象能力,属于基础题.3.如图,四个图形是由立体图形展开得到的,相应的立体图形顺次是()A.正方体、圆柱、三棱柱、圆锥B.正方体、圆锥、三棱柱、圆柱C.正方体、圆柱、三棱锥、圆锥D.正方体、圆柱、四棱柱、圆锥【考点】几何体的展开图.【分析】根据正方体、圆锥、三棱柱、圆柱及其表面展开图的特点解题.【解答】解:观察图形,由立体图形及其表面展开图的特点可知相应的立体图形顺次是正方体、圆柱、三棱柱、圆锥.故选A.【点评】可根据所给图形判断具体形状,也可根据所给几何体的面数进行判断.4.如图,对于直线AB,线段CD,射线EF,其中能相交的图是()A.B.C. D.【考点】直线、射线、线段.【分析】根据直线、射线、线段的定义对各选项分析判断利用排除法求解.【解答】解:A、直线AB与线段CD不能相交,故本选项错误;B、直线AB与射线EF能够相交,故本选项正确;C、射线EF与线段CD不能相交,故本选项错误;D、直线AB与射线EF不能相交,故本选项错误.故选B.【点评】本题考查了直线、射线、线段,熟记定义并准确识图是解题的关键.5.下面等式成立的是()A.83.5°=83°50′B.37°12′36″=37.48°C.24°24′24″=24.44° D.41.25°=41°15′【考点】度分秒的换算.【专题】计算题.【分析】进行度、分、秒的加法、减法计算,注意以60为进制.【解答】解:A、83.5°=83°50′,错误;B、37°12′=37.48°,错误;C、24°24′24″=24.44°,错误;D、41.25°=41°15′,正确.故选D.【点评】此类题是进行度、分、秒的加法、减法计算,相对比较简单,注意以60为进制即可.6.下列语句:①一条直线有且只有一条垂线;②不相等的两个角一定不是对顶角;③不在同一直线上的四个点可画6条直线;④如果两个角是邻补角,那么这两个角的平分线组成的图形是直角.其中错误的有()A.1个B.2个C.3个D.4个【考点】垂线;直线、射线、线段;对顶角、邻补角.【分析】根据垂线的性质可得①错误;根据对顶角的性质可得②正确;根据两点确定一条直线可得③错误;根据邻补角互补可得④正确.【解答】解:①一条直线有且只有一条垂线,说法错误;②不相等的两个角一定不是对顶角,说法正确;③不在同一直线上的四个点可画6条直线,说法错误,应为4或6条;④如果两个角是邻补角,那么这两个角的平分线组成的图形是直角,说法正确.故选:B.【点评】此题主要考查了垂线、邻补角、对顶角,关键是熟练掌握课本知识.7.如图,已知直线AB、CD相交于点O,OA平分∠EOC,∠EOC=110°,则∠BOD的度数是()A.25° B.35° C.45° D.55°【考点】角平分线的定义;对顶角、邻补角.【专题】计算题.【分析】根据角平分线的定义求出∠AOC的度数,再根据对顶角相等即可求解.【解答】解:∵OA平分∠EOC,∠EOC=110°,∴∠AOC=∠COE=55°,∴∠BOD=∠AOC=55°.故选D.【点评】本题主要考查了角平分线的定义以及对顶角相等的性质,认准图形是解题的关键.8.如图,∠1+∠2等于()A.60° B.90° C.110°D.180°【考点】余角和补角.【专题】计算题.【分析】根据平角的定义得到∠1+90°+∠2=180°,即有∠1+∠2=90°.【解答】解:∵∠1+90°+∠2=180°,∴∠1+∠2=90°.故选B.【点评】本题考查了平角的定义:180°的角叫平角.9.C是线段AB上一点,D是BC的中点,若AB=12cm,AC=2cm,则BD的长为()A.3cm B.4cm C.5cm D.6cm【考点】两点间的距离.【分析】先求出BC,再根据线段中点的定义解答.【解答】解:∵AB=12cm,AC=2cm,∴BC=AB﹣AC=12﹣2=10cm.∵D是BC的中点,∴BD=BC=×10=5cm.故选C.【点评】本题考查了两点间的距离,主要利用了线段中点的定义,熟记概念是解题的关键,作出图形更形象直观.10.甲乙两人各用一张正方形的纸片ABCD折出一个45°的角(如图),两人做法如下:甲:将纸片沿对角线AC折叠,使B点落在D点上,则∠1=45°;乙:将纸片沿AM、AN折叠,分别使B、D落在对角线AC上的一点P,则∠MAN=45°.对于两人的做法,下列判断正确的是()A.甲乙都对 B.甲对乙错 C.甲错乙对 D.甲乙都错【考点】翻折变换(折叠问题).【分析】甲沿正方形的对角线进行折叠,根据正方形对角线的性质,可得∠1=45°,故甲的做法是正确的;乙进行折叠后,可得两对等角,而四个角的和为90°,故∠MAN=45°是正确的,这样答案可得.【解答】解:∵AC为正方形的对角线,∴∠1=×90°=45°;∵AM、AN为折痕,∴∠2=∠3,4=∠5,又∵∠DAB=90°,∴∠3+∠4=×90°=45°.∴二者的做法都对.故选A.【点评】本题考查了图形的翻折问题;解答此类问题的关键是找着重合的角,结合直角进行求解.二、填空题11.如图,各图中的阴影部分绕着直线l旋转360°,所形成的立体图形分别是圆柱;圆锥;球.【考点】点、线、面、体.【分析】三角形旋转可得圆锥,长方形旋转得圆柱,半圆旋转得球,结合这些规律直接连线即可.【解答】解:根据分析可得:各图中的阴影图形绕着直线l旋转360°,各能形成圆柱、圆锥、球.故答案为:圆柱、圆锥、球.【点评】本题考查面动成体的知识,难度不大,熟记常见平面图形旋转可得到什么立体图形是解决本题的关键.12.如图,以图中A,B,C,D,E为端点的线段共有10 条.【考点】直线、射线、线段.【分析】分别写出各个线段即可得出答案.【解答】解:图中的线段有:线段AB,线段AC,线段AD,线段AE,线段BC,线段BD,线段BE,线段CD,线段CE,线段DE,线段共10条.故答案为:10.【点评】本题考查了直线上点与线段的数量关系,同学们可以记住公式:线段数=.13.如图所示:把两块完全相同的直角三角板的直角顶点重合,如果∠AOD=128°,那么∠BOC= 52°.【考点】角的计算.【专题】计算题.【分析】根据题意得到∠AOB=∠COD=90°,再计算∠BOD=∠AOD﹣90°=38°,然后根据∠BOC=∠COD ﹣∠BOD进行计算即可.【解答】解:∵∠AOB=∠COD=90°,而∠AOD=128°,∴∠BOD=∠AOD﹣90°=38°,∴∠BOC=∠COD﹣∠BOD=90°﹣38°=52°.故答案为52°.【点评】本题考查了角的计算:1直角=90°;1平角=180°.14.如图,直线AB,CD相交于点0,OE平分∠AOD,若∠BOC=80°,则∠AOE= 40 °.【考点】对顶角、邻补角;角平分线的定义.【分析】根据对顶角相等可得∠AOD=80°,再根据角平分线的性质可得∠AOE的度数.【解答】解:∵∠BOC=80°,∴∠AOD=80°,∵OE平分∠AOD,∴∠AOE=80°÷2=40°,故答案为:40.【点评】此题主要考查了角平分线定义,以及对顶角性质,关键是掌握对顶角相等,角平分线平分角.15.如图是某几何体的平面展开图,则这个几何体是三棱柱.【考点】几何体的展开图.【分析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱.【解答】解:由几何体展开图可知,该几何体是三棱柱,故答案为:三棱柱.【点评】本题考查的是三棱柱的展开图,对三棱柱有充分的理解是解题的关键.16.如图绕着中心最小旋转90°能与自身重合.【考点】旋转对称图形.【分析】该图形被平分成四部分,因而每部分被分成的圆心角是90°,并且圆具有旋转不变性,因而旋转90°的整数倍,就可以与自身重合.【解答】解:该图形围绕自己的旋转中心,最少顺时针旋转360°÷4=90°后,能与其自身重合.【点评】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.17.如图所示,一艘船从A点出发,沿东北方向航行至B,再从B点出发沿南偏东15°方向航行至C点,则∠ABC等于60 度.【考点】方向角.【分析】根据南北方向是平行的得出∠ABF=45°,再和∠CBF相加即可得出答案.【解答】解:∵AE∥BF,∴∠ABF=∁EAB=45°,∴∠ABC=∠ABF+∠CBF=45°+15°=60°,故答案为:60.【点评】本题考查了方向角和角的有关计算的应用,主要考查学生的计算能力.18.一个圆绕着它的直径只要旋转180度,就形成一个球体;半圆绕着直径旋转360 度,就可以形成一个球体.【考点】点、线、面、体.【分析】一个半圆围绕直径旋转一周,根据面动成体的原理即可解.【解答】解:半圆绕它的直径旋转360度形成球.【点评】本题考查了平面图形与立体图形的联系,培养学生的观察能力和空间想象能力.19.已知∠A=40°,则它的补角等于140°.【考点】余角和补角.【专题】计算题.【分析】根据补角的和等于180°计算即可.【解答】解:∵∠A=40°,∴它的补角=180°﹣40°=140°.故答案为:140°.【点评】本题考查了补角的知识,熟记互为补角的两个角的和等于180°是解题的关键.20.两条直线相交有 1 个交点,三条直线相交最多有 3 个交点,最少有 1 个交点.【考点】直线、射线、线段.【分析】解析:两条直线相交有且只有1个交点;三条直线两两相交且不交于一点时,有3个交点;当三条直线交于同一点时,有1个交点.【解答】解:两条直线相交有1个交点,三条直线相交最多有3个交点,最少有1个交点.故答案为:1;3;1.【点评】本题考查了直线、射线、线段,主要利用了相交线的交点,是基础题.三、解答题(21、22、26、27小题各12分,23、24、25题各14分,共90分)21.如图,若CB=4cm,DB=7cm,且D是AC的中点,求线段DC和AB的长度.【考点】两点间的距离.【分析】根据线段的和差,CB、DB的长,可得DC的长,根据线段中点的性质,可得AD与DC的关系,根据线段的和差,可得答案.【解答】解:DC=DB﹣CB=7﹣4=3(cm);D是AC的中点,AD=DC=3(cm),AB=AD+DB=3+7=10(cm).【点评】本题考查了两点间的距离,线段的和差,线段中点的性质是解题关键.22.如图所示,直线AB、CD相交于O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.【考点】对顶角、邻补角;角平分线的定义.【专题】计算题.【分析】由已知∠FOC=90°,∠1=40°结合平角的定义,可得∠3的度数,又因为∠3与∠AOD互为邻补角,可求出∠AOD的度数,又由OE平分∠AOD可求出∠2.【解答】解:∵∠FOC=90°,∠1=40°,AB为直线,∴∠3+∠FOC+∠1=180°,∴∠3=180°﹣90°﹣40°=50°.∠3与∠AOD互补,∴∠AOD=180°﹣∠3=130°,∵OE平分∠AOD,∴∠2=∠AOD=65°.【点评】本题主要考查邻补角的概念以及角平分线的定义.23.已知:如图,∠AOB是直角,∠AOC=40°,ON是∠AOC的平分线,OM是∠BOC的平分线.(1)求∠MON的大小;(2)当锐角∠AOC的大小发生改变时,∠MON的大小是否发生改变?为什么?【考点】角的计算;角平分线的定义.【专题】计算题.【分析】(1)根据∠AOB是直角,∠AOC=40°,可得∠AOB+∠AOC=90°+40°=130°,再利用OM是∠BOC的平分线,ON是∠AOC的平分线,即可求得答案.(2)根据∠MON=∠MOC﹣∠NOC,又利用∠AOB是直角,不改变,可得.【解答】解:(1)∵∠AOB是直角,∠AOC=40°,∴∠AOB+∠AOC=90°+40°=130°,∵OM是∠BOC的平分线,ON是∠AOC的平分线,∴,.∴∠MON=∠MOC﹣∠NOC=65°﹣20°=45°,(2)当锐角∠AOC的大小发生改变时,∠MON的大小不发生改变.∵=,又∠AOB是直角,不改变,∴.【点评】此题主要考查角的计算和角平分线的定义等知识点的理解和掌握,难度不大,属于基础题.24.如图是一个正方体的平面展开图,标注了A字母的是正方体的正面,如果正方体的左面与右面标注的式子相等.(1)求x的值.(2)求正方体的上面和底面的数字和.【考点】专题:正方体相对两个面上的文字.【分析】(1)正方体的表面展开图,相对的面之间一定相隔一个正方形确定出相对面,然后列出方程求解即可;(2)确定出上面和底面上的两个数字3和1,然后相加即可.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“A”与“﹣2”是相对面,“3”与“1”是相对面,“x”与“3x﹣2”是相对面,(1)∵正方体的左面与右面标注的式子相等,∴x=3x﹣2,解得x=1;(2)∵标注了A字母的是正方体的正面,左面与右面标注的式子相等,∴上面和底面上的两个数字3和1,∴3+1=4.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.25.如图,将书页一角斜折过去,使角的顶点A落在A′处,BC为折痕,BD平分∠A′BE,求∠CBD 的度数.【考点】角的计算;翻折变换(折叠问题).【分析】根据翻折变换的性质可得∠ABC=∠A′BC,再根据角平分线的定义可得∠A′BD=∠EBD,再根据平角等于180°列式计算即可得解.【解答】解:由翻折的性质得,∠ABC=∠A′BC,∵BD平分∠A′BE,∴∠A′B D=∠EBD,∵∠ABC+∠A′BC+∠A′BD+∠EBD=180°,∴∠A′BC+∠A′BD=90°,即∠CBD=90°.【点评】本题考查了角的计算,主要利用了翻折变换的性质,角平分线的定义,熟记概念与性质是解题的关键.26.如图,已知C是AB的中点,D是AC的中点,E是BC的中点.(1)若DE=9cm,求AB的长;(2)若CE=5cm,求DB的长.【考点】比较线段的长短.【专题】计算题.【分析】(1)根据中点的概念,可以证明:AB=2DE,故AB的长可求;(2)由CE的长先求得BC的长,再根据C是AB的中点,D是AC的中点求得CD的长,最后即可求得BD的长.【解答】解:(1)∵D是AC的中点,E是BC的中点,∴AC=2CD,BC=2CE,∴AB=AC+BC=2DE=18cm;(2)∵E是BC的中点,∴BC=2CE=10cm,∵C是AB的中点,D是AC的中点,∴DC=AC=BC=5cm,∴DB=DC+CB=10+5=15cm.【点评】考查了线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.27.一个角的余角比它的补角的还少20°,求这个角.【考点】余角和补角.【专题】计算题.【分析】首先根据余角与补角的定义,设这个角为x,则它的余角为(90°﹣x),补角为(180°﹣x),再根据题中给出的等量关系列方程即可求解.【解答】解:设这个角为x,则它的余角为(90°﹣x),补角为(180°﹣x),根据题意可,得90°﹣x=(180°﹣x)﹣20°,解得x=75°.故答案为75°.【点评】此题综合考查余角与补角,属于基础题中较难的题,解答此类题一般先用未知数表示所求角的度数,再根据一个角的余角和补角列出代数式和方程求解.。

人教版七年级上第四章《几何图形初步》单元测试(含答案解析)

人教版七年级上第四章《几何图形初步》单元测试(含答案解析)

人教版七年级上册《几何图形初步》单元测试一、选择题1、如图所示几何体的左视图是()2、下列平面图形经过折叠不能围成正方体的是()3、图为某个几何体的三视图,则该几何体是()A. B. C. D.4、汽车车灯发出的光线可以看成是( )A.线段B.射线C.直线D.弧线5、如果A、B、C三点在同一直线上,且线段AB=6 cm,BC=4 cm,若M,N分别为AB,BC的中点,那么M,N两点之间的距离为( )A.5 cm B.1 cm C.5或1 cm D.无法确定6、下列说法正确的有( )①两点确定一条直线;②两点之间线段最短;③∠α+∠β=90°,则∠α和∠β互余;④一条直线把一个角分成两个相等的角,这条直线叫做角的平分线.A.1个 B.2个 C.3个 D.4个7、如图所示,B、C是线段AD上任意两点,M是AB的中点,N是CD中点,若MN=a,BC=b,则线段AD 的长是( )A.2(a﹣b) B.2a﹣b C.a+b D.a﹣b8、如果线段AB=13cm,MA+MB=17 cm,那么下面说法中正确的是 ( ).A.M点在线段AB上 B.M点在直线AB上C.M点在直线AB外 D.M点可能在直线AB上,也可能在直线AB外9、点C在线段AB上,不能判定点C是线段中点的是()A.AC=BC B.AB=2AC C.AC+BC=AB D.AC=AB10、3点30分时,时钟的时针与分针所夹的锐角是( )A.70° B.75° C.80° D.90°11、已知:∠A=25°12′,∠B=25.12°,∠C=25.2°,下列结论正确的是( )A.∠A=∠B B.∠B=∠C C.∠A=∠C D.三个角互不相等12、如图,已知OC是∠AOB内部的一条射线,∠AOC=30°,OE是∠COB的平分线.当∠BOE=40°时,∠AOB的度数是A. 70°B. 80°C. 100°D. 110°13、如图,OC是∠AOB的平分线,OD是∠AOC的平分线,且∠COD=25°,则∠AOB等于()A.50° B.75° C.100° D.120°14、用一副三角板不能画出的角为( )A.15° B.85° C.120° D.135°15、如图所示的四条射线中,表示南偏西60°的是()A.射线OA B.射线OB C.射线OC D.射线OD二、填空题16、计算33°52′+21°54′= .17、将18.25°换算成度、分、秒的结果是__________.18、上午6点45分时,时针与分针的夹角是__________度.19、如图是由一些大小相同的小正方体搭成的几何体的主视图和俯视图,则搭成该几何体的小正方体最多是___个.20、A,B,C三点在同一条直线上,若BC=2AB且AB=m,则AC=__________.21、如图,若CB=3cm,DB=7cm,且D是AC的中点,则AC= cm.22、如图,点C是线段AB上一点,AC<CB,M、N分别是AB和CB的中点,AC=8,NB=5,则线段MN= .23、已知线段AB=10cm,直线AB上有一点C,且BC=4cm,M是线段BC的中点,则AM的长是 cm.24、已知线段AB=4cm,延长线段AB至点C,使BC=2AB,若D点为线段AC的中点,则线段BD长为cm.25、已知 A、B、C 三点在同一条直线上,M、N 分别为线段 AB、BC 的中点,且 AB=60,BC=40,则 MN 的长为26、已知∠AOC=2∠BOC, 若∠BOC=30°,则∠AOB=27、如图,下列图形是将正三角形按一定规律排列,则第5个图形中所有正三角形的个数有.三、简答题28、按要求作图(1)如图,已知线段a,b,用尺规作一条线段CD=2a+b.(2)如图,在平面上有A、B、C三点.①画直线AC,线段BC,射线AB;②在线段BC上任取一点D(不同于B、C),连接线段AD.29、如图,B是线段AD上一动点,沿A→D→A以2cm/s的速度往返运动1次,C是线段BD的中点,AD=10cm,设点B运动时间为t秒(0≤t≤10).(1)当t=2时,①AB= cm.②求线段CD的长度.(2)用含t的代数式表示运动过程中AB的长.(3)在运动过程中,若AB中点为E,则EC的长是否变化?若不变,求出EC的长;若发生变化,请说明理由.30、已知,如图,B,C两点把线段AD分成2:5:3三部分,M为AD的中点,BM=6cm,求CM和AD的长.31、如图,已知数轴上的点A对应的数为6,B是数轴上的一点,且AB=10,动点P从点A出发,以每秒6个单位长度的速度沿着数轴向左匀速运动,设运动时间为t秒(t>0).(1)数轴上点B对应的数是_______,点P对应的数是_______(用t的式子表示);(2)动点Q从点B与点P同时出发,以每秒4个单位长度的速度沿着数轴向左匀速运动,试问:运动多少时间点P可以追上点Q?(3)M是AP的中点,N是PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若有变化,说明理由;若没有变化,请你画出图形,并求出MN的长.32、(1)已知:如图,点C在线段AB上,线段AC=12,BC=4,点M、N分别是AC、BC的中点,求MN 的长度.(2)根据(1)的计算过程与结果,设AC+BC=a,其它条件不变,你能猜出MN的长度吗?请用一句简洁的语言表达你发现的规律.33、如图,已知∠AOC=∠BOD=100°,且∠AOB:∠AOD=2:7,试求∠BOC的大小.34、如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.(1)写出图中小于平角的角.(2)求出∠BOD的度数.(3)小明发现OE平分∠BOC,请你通过计算说明道理.35、如图,直线AB上有一点O,∠DOB=90°,另有一顶点在O点的直∠EOC.(1)如果∠DOE=50°,则∠AOC的度数为;(2)直接写出图中相等的锐角,如果∠DOC≠50°,它们还会相等吗?(3)若∠DOE变大,则∠AOC会如何变化?(不必说明理由)36、如图所示,OM平分∠BOC,ON平分∠AOC,(1)若∠AOB=90°,∠AOC=30°,求∠MON的度数;(2)若(1)中改成∠AOB=60°,其他条件不变,求∠MON的度数;(3)若(1)中改成∠AOC=60°,其他条件不变,求∠MON的度数;(4)从上面结果中看出有什么规律?参考答案一、选择题1、A.【解析】分析:找到从左面看所得到的图形即可.解答:解:从左面看可得到上下两个相邻的正方形,故选A2、D3、D【考点】由三视图判断几何体.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【解答】解:由主视图和左视图为矩形判断出是柱体,由俯视图是正方形可判断出这个几何体应该是长方体.故选D.【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.4、B5、C6、C【考点】直线的性质:两点确定一条直线;线段的性质:两点之间线段最短;角平分线的定义;余角和补角.【分析】根据直线的性质可得①正确;根据线段的性质可得②正确;根据余角定义可得③正确;根据角平分线定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线可得④错误.【解答】解:①两点确定一条直线,说法正确;②两点之间线段最短,说法正确;③∠α+∠β=90°,则∠α和∠β互余,说法正确;④一条直线把一个角分成两个相等的角,这条直线叫做角的平分线,说法错误;正确的共有3个,故选:C.【点评】此题主要考查了直线和线段的性质,以及余角和角平分线的定义,关键是熟练掌握课本基础知识.7、B【考点】比较线段的长短.【专题】计算题.【分析】由已知条件可知,MN=MB+CN+BC,又因为M是AB的中点,N是CD中点,则AB+CD=2(MB+CN),故AD=AB+CD+BC可求.【解答】解:∵MN=MB+CN+BC=a,BC=b,∴MB+CN=a﹣b,∵M是AB的中点,N是CD中点∴AB+CD=2(MB+CN)=2(a﹣b),∴AD=2(a﹣b)+b=2a﹣b.故选B.【点评】本题考查了比较线段长短的知识,利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.8、D9、C10、B11、C【考点】度分秒的换算.【分析】根据小单位华大单位除以进率,可得答案.【解答】解:∠A=35°12′=25.2°=∠C>∠B,故选:C.【点评】本题考查了度分秒的换算,小单位华大单位除以进率是解题关键.12、D13、C【考点】角的计算;角平分线的定义.【专题】计算题.【分析】根据角的平分线定义得出∠AOD=∠COD,∠AOB=2∠AOC=2∠BOC,求出∠AOD、∠AOC的度数,即可求出答案.【解答】解:∵OC是∠AOB的平分线,OD是∠AOC的平分线,∠COD=25°,∴∠AOD=∠COD=25°,∠AOB=2∠AOC,∴∠AOB=2∠AOC=2(∠AOD+∠COD)=2×(25°+25°)=100°,故选:C.【点评】本题考查了对角平分线定义和角的计算等知识点的应用,主要考查学生运用角平分线定义进行推理的能力和计算能力,题目较好,难度不大.14、B15、C【考点】方向角.【分析】根据方向角的概念进行解答即可.【解答】解:由图可知,射线OC表示南偏西60°.故选C.【点评】本题考查的是方向角,熟知用方位角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方位角时,一般先叙述北或南,再叙述偏东或偏西是解答此题的关键.二、填空题16、55°46′.【考点】度分秒的换算.【分析】相同单位相加,分满60,向前进1即可.【解答】解:33°52′+21°54′=54°106′=55°46′.【点评】计算方法为:度与度,分与分对应相加,分的结果若满60,则转化为1度.17、18°15′0″.【考点】度分秒的换算.【分析】根据大单位化小单位乘以进率,可得答案.【解答】解:18.25°=18°+0.25×60=18°15′0″,故答案为:18°15′0″.【点评】本题考查了度分秒的换算,利用大单位化小单位乘以进率是解题关键.18、67.5度.19、_720、m或3m.【考点】两点间的距离.【分析】A、B、C三点在同一条直线上,则A可能在线段BC上,也可能A在CB的延长线上,应分两种情况进行讨论.【解答】解:如图①,当点A在线段BC上时,AC=BC﹣AB=2m﹣m=m;如图②,当点A在线段CB的延长线上时,AC=BC+AB=2m+m=3m.故答案为:m或3m.【点评】本题是求线段的长度,能分清是有两种情况,正确进行讨论是解决本题的关键.21、8【考点】两点间的距离.【分析】根据题意求出CD的长,根据线段中点的定义解答即可.【解答】解:∵CB=3cm,DB=7cm,∴CD=4cm,∵D是AC的中点,∴AC=2CD=8cm,故答案为:8.【点评】本题考查的是两点间的距离的计算,掌握线段中点的定义、灵活运用数形结合思想是解题的关键.22、4 .【考点】两点间的距离.【专题】推理填空题.【分析】根据点C是线段AB上一点,AC<CB,M、N分别是AB和CB的中点,AC=8,NB=5,可以得到线段AB的长,从而可得BM的长,进而得到MN的长,本题得以解决.【解答】解:∵点C是线段AB上一点,AC<CB,M、N分别是AB和CB的中点,AC=8,NB=5,∴BC=2NB=10,∴AB=AC+BC=8+10=18,∴BM=9,∴MN=BM﹣NB=9﹣5=4,故答案为:4.【点评】本题考查两点间的距离,解题的关键是找出各线段之间的关系,然后得到所求问题需要的条件.23、8或1224、2 cm.【考点】两点间的距离.【分析】先根据AB=4cm,BC=2AB得出BC的长,故可得出AC的长,再根据D是AC的中点求出AD的长,根据BD=AD﹣AB即可得出结论.【解答】解:∵AB=4cm,BC=2AB=8cm,∴AC=AB+BC=4+8=12cm,∵D是AC的中点,∴AD=AC=×12=6cm,∴BD=AD﹣AB=6﹣4=2cm.故答案为:2.【点评】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.25、10 或 50 .【考点】比较线段的长短.【专题】压轴题;分类讨论.【分析】画出图形后结合图形求解.【解答】解:(1)当 C 在线段 AB 延长线上时,∵M、N 分别为 AB、BC 的中点,∴BM= AB=30,BN= BC=20;∴MN=50.当 C 在 AB 上时,同理可知 BM=30,BN=20,∴MN=10;所以 MN=50 或 10.【点评】本题考查线段中点的定义,比较简单,注意有两种可能的情况;解答这类题目,应考虑周全,避免漏掉其中一种情况.26、30 º或90 º;27、485.三、简答题28、【解答】解:(1)如图1,CD为所作;(2)①如图2,直线AC,线段BC,射线AB为所作;②线段AD为所作.29、【解答】解:(1)①∵B是线段AD上一动点,沿A→D→A以2cm/s的速度往返运动,∴当t=2时,AB=2×2=4cm.故答案为:4;②∵AD=10cm,AB=4cm,∴BD=10﹣4=6cm,∵C是线段BD的中点,∴CD=BD=×6=3cm;(2)∵B是线段AD上一动点,沿A→D→A以2cm/s的速度往返运动,∴当0≤t≤5时,AB=2t;当5<t≤10时,AB=10﹣(2t﹣10)=20﹣2t;(3)不变.∵AB中点为E,C是线段BD的中点,∴EC=5cm.30、【考点】两点间的距离.【专题】方程思想.【分析】由已知B,C两点把线段AD分成2:5:3三部分,所以设AB=2xcm,BC=5xcm,CD=3xcm,根据已知分别用x表示出AD,MD,从而得出BM,继而求出x,则求出CM和AD的长.【解答】解:设AB=2xcm,BC=5xcm,CD=3xcm所以AD=AB+BC+CD=10xcm因为M是AD的中点所以AM=MD=5xcm所以BM=AM﹣AB=5x﹣2x=3xcm因为BM=6 cm,所以3x=6,x=2故CM=MD﹣CD=5x﹣3x=2x=2×2=4cm,AD=10x=10×2=20 cm.【点评】本题考查了两点间的距离,利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.31、(1)-4,6-6t; (2)5秒; (3)线段MN的长度不发生变化,MN=5;32、【考点】两点间的距离.【分析】(1)根据线段中点的性质,可得CM的长,CN的长,根据线段中点的性质,可得答案;(2)根据线段中点的性质,可得CM的长,CN的长,根据线段中点的性质,可得答案;33、【考点】角的计算.【分析】根据∠AOB:∠AOD=2:7,设∠AOB=2x°,可得∠BOD的大小,根据角的和差,可得∠BOC的大小,根据∠AOC、∠AOB和∠BOC的关系,可得答案.【解答】解:设∠AOB=2x°,∵∠AOB:∠AOD=2:7,∴∠BOD=5x°,∵∠AOC=∠BOD,∴∠COD=∠AOB=2x°,∴∠BOC=5x﹣2x=3x°∵∠AOC=∠AOB+∠BOC=2x+3x=5x=100°,∴x=20°,∠BOC=3x=60°.【点评】本题考查了角的计算,先用x表示出∠BOD,在表示出∠BOC,由∠AOC的大小,求出x,最后求出答案.34、【考点】角的计算;角平分线的定义.【专题】计算题.【分析】(1)根据角的定义即可解决;(2)根据∠BOD=∠DOC+∠BOC,首先利用角平分线的定义和邻补角的定义求得∠DOC和∠BOC即可;(3)根据∠COE=∠DOE﹣∠DOC和∠BOE=∠BOD﹣∠DOE分别求得∠COE与∠BOE的度数即可说明.【解答】解:(1)图中小于平角的角∠AOD,∠AOC,∠AOE,∠DOC,∠DOE,∠DOB,∠COE,∠COB,∠EOB.(2)因为∠AOC=50°,OD平分∠AOC,所以∠DOC=25°,∠BOC=180°﹣∠AOC=180°﹣50°=130°,所以∠BOD=∠DOC+∠BOC=155°.(3)因为∠DOE=90°,∠DOC=25°,所以∠COE=∠DOE﹣∠DOC=90°﹣25°=65°.又因为∠BOE=∠BOD﹣∠DOE=155°﹣90°=65°,所以∠COE=∠BOE,所以OE平分∠BOC.【点评】本题主要考查了角的度数的计算,正确理解角平分线的定义,以及邻补角的定义是解题的关键.35、【考点】余角和补角.【分析】(1)根据∠DOB=90°可得∠AOD=90°,再由∠DOE=50°,∠EOD=90°,可得∠DOC=40°,然后再根据角的和差关系可得∠AOC的度数;(2)根据同角的余角相等可得∠AOE=∠DOC,∠EOD=∠COB;(3)首先根据余角定义可得∠DOE+∠DOC=90°,由∠DOE变大可得∠DOC变小,再由∠AOC=90°+∠DOC 可得∠AOC变小.【解答】解:(1)∵∠DOB=90°,∴∠AOD=90°,∵∠DOE=50°,∠EOD=90°,∴∠DOC=40°,∴∠AOC=90°+40°=130°,故答案为:130°.(2)∠AOE=∠DOC,∠DOE=∠BOC,如果∠DOC≠50°,它们还会相等,∵∠AOD=90°,∴∠AOE+∠EOD=90°,∵∠EOC=90°,∴∠EOD+∠DOC=90°,∴∠AOE=∠DOC,∵∠DOB=90°,∴∠DOC+∠COB=90°,∴∠EOD=∠COB.(3)若∠DOE变大,则∠AOC变小.∵∠EOC=90°,∴∠DOE+∠DOC=90°,∵∠DOE变大,∴∠DOC变小,∵∠AOC=∠AOD+∠DOC=90°+∠DOC,∴∠AOC变小.36、【考点】角平分线的定义.【分析】(1)由∠AOB=90°,∠AOC=30°,易得∠BOC,可得∠MOC,由角平分线的定义可得∠CON,可得结果;(2)同理(1)可得结果;(3)同理(1)可得结果;(4)根据结果与∠AOB,∠AOC的度数归纳规律.【解答】解:(1)∵∠AOB=90°,∠AOC=30°,∴∠BOC=120°,∴∠MOC=60°,∵∠AOC=30°,∴∠CON=15°,∴∠MON=∠MOC﹣∠NOC=60°﹣15°=45°;(2)∵∠AOB=60°,∠AOC=30°,∴∠BOC=90°,∴∠MOC=45°,∵∠AOC=30°,∴∠CON=15°,∴∠MON=∠MOC﹣∠NOC=45°﹣15°=30°;(3)∵∠AOB=90°,∠AOC=60°,∴∠BOC=150°,∴∠MOC=75°,∵∠AOC=60°,∴∠CON=30°,∴∠MON=∠MOC﹣∠NOC=75°﹣30°=45°;(4)从上面结果中看出∠MON的大小是∠AOB的一半,与∠AOC无关.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、初一数学几何模型部分解答题压轴题精选(难)1.如图 1,CE 平分∠ACD,AE 平分∠BAC,且∠EAC+∠ACE=90°.(1)请判断 AB 与 CD 的位置关系,并说明理由;(2)如图2,若∠E=90°且AB 与CD 的位置关系保持不变,当直角顶点E 移动时,写出∠BAE 与∠ECD 的数量关系,并说明理由;(3)如图 3,P 为线段 AC 上一定点,点 Q 为直线 CD 上一动点,且 AB 与 CD 的位置关系保持不变,当点 Q 在射线 CD 上运动时(不与点 C 重合),∠PQD,∠APQ 与∠ BAC 有何数量关系?写出结论,并说明理由.【答案】(1),理由如下:CE 平分,AE 平分,;(2),理由如下:如图,延长AE交CD于点F,则由三角形的外角性质得:;(3),理由如下:,即由三角形的外角性质得:又,即即.【解析】【分析】(1)根据角平分线的定义、平行线的判定即可得;(2)根据平行线的性质(两直线平行,内错角相等)、三角形的外角性质即可得;(3)根据平行线的性质(两直线平行,同旁内角互补)、三角形的外角性质、邻补角的定义即可得.2.将一副三角板中的两个直角顶点叠放在一起(如图①),其中,, .(1)猜想与的数量关系,并说明理由;(2)若,求的度数;(3)若按住三角板不动,绕顶点转动三角,试探究等于多少度时,并简要说明理由.【答案】(1)解:,理由如下:,(2)解:如图①,设,则,由(1)可得,,,(3)解:分两种情况:①如图1所示,当时,,又,;②如图2所示,当时,,又,.综上所述,等于或时, .【解析】【分析】(1)由∠BCD=∠ACB+∠ACD=90°+∠ACD,即可求出∠BCD+∠ACE的度数.(2)如图①,设∠ACE=a,可得∠BCD=3a,结合(1)可得3a+a=180°,求出a的度数,即得∠BCD的度数.(3)分两种情况讨论,①如图1所示,当AB∥CE时,∠BCE=180°-∠B=120°,②如图2所示,当AB∥CE时,∠BCE=∠B=60°,分别求出∠BCD的度数即可.3.如图(1),将两块直角三角尺的直角顶点C叠放在一起,(1)若∠DCE=25°,∠ACB=?;若∠ACB=150°,则∠DCE=?;(2)猜想∠ACB与∠DCE的大小有何特殊关系,并说明理由;(3)如图(2),若是两个同样的直角三角尺60°锐角的顶点A重合在一起,则∠DAB与∠CAE的大小又有何关系,请说明理由.【答案】(1)【解答】∵∠ECB=90°,∠DCE=25°∴∠DCB=90°﹣25°=65°∵∠ACD=90°∴∠ACB=∠ACD+∠DCB=155°.∵∠ACB=150°,∠ACD=90°∴∠DCB=150°﹣90°=60°∵∠ECB=90°∴∠DCE=90°﹣60°=30°.故答案为:155°,30°(2)【解答】猜想得:∠ACB+∠DCE=180°(或∠ACB与∠DCE互补)理由:∵∠ECB=90°,∠ACD=90°∴∠ACB=∠ACD+∠DCB=90°+∠DCB∠DCE=∠ECB﹣∠DCB=90°﹣∠DCB∴∠ACB+∠DCE=180°(3)【解答】∠DAB+∠CAE=120°理由如下:∵∠DAB=∠DAE+∠CAE+∠CAB故∠DAB+∠CAE=∠DAE+∠CAE+∠CAB+∠CAE=∠DAC+∠BAE=120°.【解析】【分析】(1)本题已知两块直角三角尺实际就是已知三角板的各个角的度数,根据角的和差就可以求出∠ACB,∠DCE的度数;(2)根据前个小问题的结论猜想∠ACB与∠DCE的大小关系,结合前问的解决思路得出证明.(3)根据(1)(2)解决思路确定∠DAB与∠CAE的大小并证明.4.(1)思考探究:如图①,的内角的平分线与外角的平分线相交于点,请探究与的关系是________.(2)类比探究:如图②,四边形中,设,,,四边形的内角与外角的平分线相交于点 .求的度数.(用,的代数式表示)(3)拓展迁移:如图③,将(2)中改为,其它条件不变,请在图③中画出,并直接写出 ________.(用,的代数式表示)【答案】(1)(2)解:延长、,交于点 .,由(1)知:∴ .(3)【解析】【解答】解:(1)∵平分,平分,∴,∵是的外角∴∵是的外角∴( 3 )延长,交于点 . 作与外角的平分线相交于点 . 如图:,【分析】(1)利用角平分线求出∠PCD= ∠ACD,∠PBD= ∠ABC,再利用三角形的一个外角定理即可求出.(2)延长BA、CD交于点F,然后根据(1)的结题可得到∠P的表达式.(3)延长AB、DC交于F,然后根据(1)的结题可得到∠P的表达式.5.将一副三角板中的两块直角三角尺的直角顶点O按如图方式叠放在一起.(1)如图(1)若∠BOD=35°,则∠AOC=________ .如图(2)若∠BOD=35°,则∠AOC=________ .(2)猜想∠AOC与∠BOD的数量关系,并结合图(1)说明理由.(3)三角尺AOB不动,将三角尺COD的OD边与OA边重合,然后绕点O按顺时针或逆时针方向任意转动一个角度,当∠AOD(0°<∠AOD<90°)等于多少度时,这两块三角尺各有一条边互相垂直.(填空)当________ ⊥ ________时,∠AOD = ________ .当________ ⊥ ________时,∠AOD = ________ .当________ ⊥ ________时,∠AOD = ________ .当________ ⊥ ________时,∠AOD = ________ .【答案】(1)145°;145°(2)解:∠AOC与∠BOD互补.∵∠AOB=∠COD=90°,∴∠AOD+∠BOD+∠BOD+∠BOC=180°.∵∠AOD+∠BOD+∠BOC=∠AOC,∴∠AOC+∠BOD=180°,即∠AOC与∠BOD互补.(3)AB;OD;30°;CD;OA;45°;OC;AB;60°;AB;CD;75°【解析】【解答】解:(1)若∠BOD=35°,∵∠AOB=∠COD=90°,∴∠AOC=∠AOB+∠COD-∠BOD=90°+90°-35°=145°;如图2,若∠BOD=35°,则∠AOC=360°-∠BOD-∠AOB-∠COD=360°-35°-90°-90°=145°;(3)解:当 AB ⊥ OD 时,∠AOD = 30°.当 CD ⊥ OA 时,∠AOD = 45°.当 OC ⊥ AB 时,∠AOD = 60°.当 AB ⊥ CD 时,∠AOD = 75°.即∠AOD角度所有可能的值为:30°、45°、60°、75°.【分析】(1)由于是两直角三角形板重叠,根据∠AOC=∠AOB+∠COD-∠BOD可计算出∠AOC的度数;根据∠AOC=360°-∠BOD-∠AOB-∠COD可计算出∠AOC的度数;(2)由∠AOD+∠BOD+∠BOD+∠BOC=180°且∠AOD+∠BOD+∠BOC=∠AOC可知两角互补;(3)分别利用OD⊥AB、CD⊥OB、CD⊥AB、OC⊥AB分别求出即可.6.如图,四边形ABCD的内角∠DCB与外角∠ABE的平分线相交于点F.(1)若BF∥CD,∠ABC=80°,求∠DCB的度数;(2)已知四边形ABCD中,∠A=105º,∠D=125º,求∠F的度数;(3)猜想∠F、∠A、∠D之间的数量关系,并说明理由.【答案】(1)解:∵∠ABC=80°,∴∠ABE=180°-∠ABC=100°,∵BF平分∠ABE,∴∠EBF= ∠ABE=50°,∵BF∥CD∴∠BCD=∠EBF=50°(2)解:∵∠FBE是△EBC的外角,∴∠F=∠EBF-∠ECF∵BF平分∠ABE、CF平分∠BCD,∴∠EBF= ∠ABE=,∠ECF= ∠BCD,∵∠ABE=180°-∠ABC,∴∠F= (180°-∠ABC)- ∠BCD= [180°-(∠ABC+∠BCD)],∵在四边形ABCD中,∠ABC+∠BCD=360°-∠A-∠D,∴∠F= [180°-(360°-∠A-∠D)],∴∠F= (∠A+∠D-180°),∵∠A=105º,∠D=125º,∴∠F= (105º +125º -180°)=25°(3)解:结论:∠F= (∠A+∠D-180°)理由如下:∵∠FBE是△EBC的外角,∴∠F=∠EBF-∠ECF∵BF平分∠ABE、CF平分∠BCD,∴∠EBF= ∠ABE=,∠ECF= ∠BCD,∵∠ABE=180°-∠ABC,∴∠F= (180°-∠ABC)- ∠BCD= [180°-(∠ABC+∠BCD)],∵在四边形ABCD中,∠ABC+∠BCD=360°-∠A-∠D,∴∠F= [180°-(360°-∠A-∠D)],∴∠F= (∠A+∠D-180°)【解析】【分析】(1)由角平分线的性质和邻补角的定义可得:∠FBE=∠FBA= ∠ABE=(180°-∠ABC);由平行线的性质可得∠BCD=∠FBE可求解;(2)由平行线的性质可得:∠ABC+∠A=180°;∠BCD+∠D=180°;由已知条件可得:∠ABC=180°-∠A;∠BCD=180°-∠D;由角平分线的性质和邻补角的定义可得:∠FBE=∠FBA= ∠ABE=(180°-∠ABC);∠BCF=∠BCD,由三角形外角的性质可得∠FBE=∠F+∠BCF,于是∠F=∠FBE-∠BCF,把求得的∠FBE和∠BCF的度数代入计算即可求解;(3)结合(1)和(2)的结论可求解:∠F=(∠A+∠D-180°)。

相关文档
最新文档