材料热力学及动力学复习题答案

合集下载

热力学与动力学往年考试整理

热力学与动力学往年考试整理

判断题:1.由亚稳相向稳定相转变不需要推动力。

X2.压力可以改变材料的结构,导致材料发生相变。

V3.对于凝聚态材料,随着压力升高,熔点提高。

V4.热力学第三定律指出:在0K时任何纯物质的熵值等于零。

X5.在高温下各种物质显示相同的比热。

V6.溶体的性质主要取决于组元间的相互作用参数。

V7.金属和合金在平衡态下都存在一定数量的空位,因此空位是热力学稳定的缺陷。

V8.固溶体中原子定向迁移的驱动力是浓度梯度。

X9.溶体中析出第二相初期,第二相一般与母相保持非共格以降低应变能。

X10.相变过程中如果稳定相的相变驱动力大于亚稳相,一定优先析出。

X1.根据理查德规则,所有纯固体物质具有大致相同的熔化熵。

2.合金的任何结构转变都可以通过应力驱动来实现。

3.在马氏体相变中,界面能和应变能构成正相变的阻力,但也是逆相变的驱动力。

4.在高温下各种纯单质固体显示相同的等容热容。

5.二元溶体的混合熵只和溶体的成分有关,与组元的种类无关。

6.材料相变形核时,过冷度越大,临界核心尺寸越大。

7.二元合金在扩散时,两组元的扩散系数总是相同。

8.焓具有能量单位,但它不是能量,也不遵守能量守恒定律;但是系统的焓变可由能量表达。

9.对于凝聚态材料,随着压力升高,熔点提高,BCC—FCC转变温度也升高。

10.由于马氏体相变属于无扩散切变过程,因此应力可以促发形核和相变。

简答题:1.一般具有同素异构转变的金属从高温冷却至低温时,其转变具有怎样的体积特征?试根据高温和低温下自由能与温度的关系解释此现象。

有一种具有同素异构转变的常用金属和一般金属所具有的普遍规律不同,请指出是那种金属?简要解释其原因?(8分)答:在一定温度下元素的焓和熵随着体积的增加而增大,因此疏排结构的焓和熵大于密排结构。

G=H-TS,低温下,TS项贡献很小,G主要取决于H。

而疏排结构的H大于密排结构,疏排结构的自由能G也大于密排结构。

所以低温下密排结构是稳定相。

高温下,G主要取决于TS项,而疏排结构的熵大于密排结构,其自由能G则小于密排结构。

材料热力学与动力学复习资料+课后习题

材料热力学与动力学复习资料+课后习题

材料热力学与动力学(复习资料)一、 概念•热力学基本概念和基本定律1. 热0:一切互为热平衡的物体,具有相同的温度。

2. 热1: - 焓:恒压体系→吸收的热量=焓的增加→焓变等于等压热效应 - 变化的可能性→过程的方向;限度→平衡3. 热2:任何不受外界影响体系总是单向地趋向平衡状态→熵+自发过程+可逆过程→隔绝体系的熵值在平衡时为最大→熵增原理(隔离体系)→Gibbs 自由能:dG<0,自发进行(同T ,p : )4. 热3:- (H.W.Nernst ,1906): - (M .Plank ,1912):假定在绝对零度时,任何纯物质凝聚态的熵值为零S*(0K)=0 - (Lewis ,Gibson ,1920):对于过冷溶体或内部运动未达平衡的纯物质,即使在0K 时,其熵值也不等于零,而是存在所谓的“残余熵” - Final :在OK 时任何纯物质的完美晶体的熵值等于零• 单组元材料热力学1. 纯金属固态相变的体积效应- 除非特殊理由,所有纯金属加热固态相变都是由密排结构(fcc )向疏排结构(bcc )的转变→加热过程发生的相变要引起体积的膨胀→BCC 结构相在高温将变得比其他典型金属结构(如FCC 和HCP 结构)更稳定(除了Fe )- 热力学解释1→G :温度相同时,疏排结构的熵大于密排结构;疏排结构的焓大于密排结构→低温:H ;高温:TS - 热力学解释2→ Maxwell 方程: - α-Fe →γ-Fe :磁性转变自由能- Richard 规则:熔化熵-Trouton 规则:蒸发熵 (估算熔沸点)2. 晶体中平衡状态下的热空位- 实际金属晶体中空位随着温度升高浓度增加,大多数常用金属(Cu 、Al 、Pb 、W 、Ag …)在接近熔点时,其空位平衡浓度约为10-4;把高温时金属中存在的平衡空位通过淬火固定下来,形成过饱和空位状态,对金属中的许多物理过程(例如扩散、时效、回复、位错攀移等)产生重要影响3. 晶体的热容- Dulong-Petit :线性谐振动子+能量均分定律→适应于较高温度及室温附近,低温时与实验不符U Q W∆=-dH PV U d Q =+=)(δRd Q S Tδ=()d dH TdS G H d TS =--=00lim()lim()0p T T T GS T→→∂∆-=∆=∂()()V T T P V V S ∂∂=∂∂//()()()T T T V P V V S T V H ∂∂+∂∂=∂∂///RK mol J T H S mm m ≈⋅≈∆=∆/3.8/K mol J T H S b v v ⋅≈∆=∆/9.87/3V V VQ dU C RdT dT δ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭-Einstein(固体振动热容理论):晶体总共吸收了n 个声子,被分配到3N 个谐振子中;不适用于极低温度,无法说明在极低温度时定容热容的实验值与绝对温度的3次方成比例。

材料热力学与动力学:热力学定律习题

材料热力学与动力学:热力学定律习题

p2 p1
vapHm R
(1 T2
1) T1
(定积分式)
ln p vapH m / RT C (不定积分式)
第一章 热力学定律 习题课
13. Gibbs-Helmholtz方程
( A / T )
T
V
U T2
(G /Tபைடு நூலகம்)
T
p
H T2
第一章 热力学定律 习题课
1.判断下列说法是否正确: ① 状态给定后,状态函数就有一定的值,反之亦然。
② 状态函数改变后,状态一定改变。
③ 状态改变后,状态函数一定都改变。
解释:若外界条件不变,即状态给定后,所有的状态函数都有定 值。当某一个或某几个状态函数发生变化时,状态一定改变;反 之,当状态发生改变时,状态函数中,一定有某一个或几个发生 变化,而不一定全部的状态函数都发生变化。 如:气体节流膨胀过程,焓不变。
第一章 热力学定律 习题课
10.热力学基本关系式
dU TdS pdV dH TdS Vdp
dA SdT pdV dG SdT Vdp
11.克拉佩龙方程
dT dp
TVm Hm
第一章 热力学定律 习题课
12.克劳修斯—克拉佩龙方程
d ln p dT
Vap H m RT 2
(微分式)
ln
第一章 热力学定律 习题课
⑤ 恒温过程一定是可逆过程。
解释:恒温过程是指系统与环境的温度始终保持相 等且恒定,是一个自始至终保持热平衡的过程,即 为可逆过程。数学表达式dT = 0; ✓若对于一个ΔT = 0的过程,则说明该过程始终态温 度相等,并不一定是恒温过程。 ✓等温可逆过程一定是恒温过程。
可以这么看,一个思想封闭的人遇到烦恼时就 会焦躁不按或者抑郁忧愁,也就是内心混乱度增 加。但是当这个人向他人敞开心扉获得安慰之后 ,他就会趋于平静。所以,同学们都要学会向他 人倾诉,同他人交流,不要把自己封闭在一个狭 小的世界里。

高考物理力学知识点之热力学定律知识点总复习附答案解析(4)

高考物理力学知识点之热力学定律知识点总复习附答案解析(4)

高考物理力学知识点之热力学定律知识点总复习附答案解析(4)一、选择题1.在下列叙述中,正确的是A.物体里所有分子动能的总和叫做物体的内能B.—定质量的气体,体积不变时,温度越高,气体的压强就越大C.对一定质量的气体加热,其内能一定增加D.随着分子间的距离增大分子间引力和斥力的合力一定减小2.如图所示导热性良好的汽缸内密封的气体(可视为理想气体),在等压膨胀过程中,下列关于气体说法正确的是()A.气体内能可能减少B.气体会向外界放热C.气体吸收的热量大于对外界所做的功D.气体平均动能将减小3.图为某种椅子与其升降部分的结构示意图,M、N两筒间密闭了一定质量的气体,M可沿N的内壁上下滑动,设筒内气体不与外界发生热交换,当人从椅子上离开,M向上滑动的过程中()A.外界对气体做功,气体内能增大B.外界对气体做功,气体内能减小C.气体对外界做功,气体内能增大D.气体对外界做功,气体内能减小4.一定质量的理想气体在某一过程中,气体对外界做功1.6×104J,从外界吸收热量3.8×104J,则该理想气体的()A.温度降低,密度减小B.温度降低,密度增大C.温度升高,密度减小D.温度升高,密度增大5.如图所示为一定质量的理想气体压强随热力学温度变化的图象,气体经历了ab、bc、cd、da四个过程。

其中bc的延长线经过原点,ab与竖直轴平行,cd与水平轴平行,ad与bc平行。

则气体在A.ab过程中对外界做功B.bc过程中从外界吸收热量C.cd过程中内能保持不变D.da过程中体积保持不变6.下列说法正确的是A.物体吸收热量,其内能一定增加B.不可能从单一热库吸收热量,使之完全变成功,而不产生其他影响C.第二类永动机不能制成是因为违背了能量守恒定律D.热量能够自发地从低温物体传递到高温物体7.一定质量的理想气体由状态A变化到状态B,气体的压强随热力学温度变化如图所示,则此过程()A.气体的密度减小B.外界对气体做功C.气体从外界吸收了热量D.气体分子的平均动能增大8.下列说法正确的是()A.布朗运动就是液体分子的热运动B.在实验室中可以得到-273.15℃的低温C.一定质量的气体被压缩时,气体压强不一定增大D.热量一定是从内能大的物体传递到内能小的物体9.带有活塞的汽缸内封闭一定量的理想气体.气体开始处于状态a;然后经过过程ab到达状态b或经过过程ac到状态c,b、c状态温度相同,如V﹣T图所示.设气体在状态b 和状态c的压强分别为P b和P c,在过程ab和ac中吸收的热量分别为Q ab和Q ac,则()A.p b>p c,Q ab>Q ac B.p b>p c,Q ab<Q acC.p b<p c,Q ab<Q ac D.p b<p c,Q ab>Q ac10.一定质量的理想气体的状态变化过程如图所示,MN为一条直线,则气体从状态M到状态N的过程中A.温度保持不变B.温度先升高,后又减小到初始温度C.整个过程中气体对外不做功,气体要吸热D.气体的密度在不断增大11.如图所示,一定质量的理想气体密封在绝热(即与外界不发生热交换)容器中,容器内装有一可以活动的绝热活塞.今对活塞施以一竖直向下的压力F,使活塞缓慢向下移动一段距离后,气体的体积减小.若忽略活塞与容器壁间的摩擦力,则被密封的气体( )图13-2-4A.温度升高,压强增大,内能减少B.温度降低,压强增大,内能减少C.温度升高,压强增大,内能增加D.温度降低,压强减小,内能增加12.一定量的理想气体,从状态a开始,经历ab、bc、ca三个过程,其图象如图所示,下列判断正确的是()A .a b →过程气体吸收的热量大于内能的增加B .b c →过程气体吸收的热量全部用于对外做功C .c a →过程外界对气体做的功大于放出的热量D .b c →过程的体积变化量大于c a →过程的体积变化量13.下列说法正确的是_________.A .布朗运动是液体分子的无规则运动B .只有外界对物体做功才能增加物体的内能C .功转变为热的实际宏观过程是可逆过程D .一定量的气体,在压强不变时,分子每秒对器壁单位面积平均碰撞次数随着温度降低而增加14.关于物体内能的变化,以下说法中正确的是( )A .物体吸收热量,内能一定增大B .物体对外做功,内能一定减少C .物体吸收热量,同时对外做功,内能可能不变D .物体放出热量,同时对外做功,内能可能不变15.一个气泡从恒温水槽的底部缓慢向上浮起,(若不计气泡内空气分子势能的变化)则( )A .气泡对外做功,内能不变,同时放热B .气泡对外做功,内能不变,同时吸热C .气泡内能减少,同时放热D .气泡内能不变,不吸热也不放热16.一定质量的理想气体,从状态M 开始,经状态N 、Q 回到原状态M ,其p-V 图象如图所示,其中QM 平行于横轴,NQ 平行于纵轴.则( )A .M →N 过程气体温度不变B .N →Q 过程气体对外做功C .N →Q 过程气体内能减小D .Q →M 过程气体放出热量17.关于热力学定律,下列说法中正确的是( )A .可以从单一热源吸收热量,使之完全变为功B .理想气体的等压膨胀过程一定放热C .热量不可能从低温物体传递到高温物体D .压缩气体做功,该气体的内能一定增加18.如图所示,水平放置的封闭绝热气缸,被一锁定的绝热活塞分为体积相等的a 、b 两部分。

材料热力学习题答案1

材料热力学习题答案1

The problems of the first law1. a lead bullet is fired at a frigid surface. At what speed must it travel to melt on impact, if its initial temperature is 25℃ and heating of the rigid surface of the rigid surface is neglected? The melting point of lead is 327℃. The molar heat of fusion of the lead is 4.8kJ/mol. The molar heat capacity C P of lead may be taken as 29.3J/(mol K) (1.1)Solution: )/(5.112.20721]108.4)25327(3.29[2121)(2322s m V v n n WQ nMv mv W H T C n Q Q Q absorb melting p melt increase absorb ==⨯+-⨯===∆+∆=+=2. what is the average power production in watts of a person who burns 2500 kcal of food in a day? Estimate the average additional powder production of 75Kg man who is climbing a mountain at eh rate of 20 m/min (1.2)Solution )/(24560208.975)/(12160602410467000//)(104670001868.4102500sin 3S J t h mg P S J t Q t W P J Q gincrea Burning Burning =⨯⨯=∆==⨯⨯====⨯⨯=3 One cubic decimeter (1 dm 3) of water is broken into droplets having a diameter of one micrometer (1 um) at 20℃. (1.3)(a) what is the total area of the droplets?(b) Calculate the minimum work required to produce the droplets. Assume that the droplets arerest (have zero velocity)Water have a surface tension of 72.75 dyn/cm at 20℃ (NOTES: the term surface energy (ene/cm 2) is also used for surface tension dyn/cm)Solution)(25.218)106103(1075.72)(103)101(4)101(34)101(232523263631J S W m nS S Single total =⨯-⨯⨯⨯=∆=⨯=⨯⨯⨯⨯⨯⨯⨯⨯==-+----σππ4.Gaseous helium is to be used to quench a hot piece of metal. The helium is in storage in aninsulated tank with a volume of 50 L and a temperature of 25℃, the pressure is 10 atm. Assume that helium is an ideal gas.(a) when the valve is opened and the gas escapes into the quench chamber (pressure=1 atm), whatwill be the temperature of the first gas to hit the specimen?(b) As the helium flows, the pressure in the tank drops. What will be the temperature of thehelium entering the quench chamber when the pressure in the tank has fallen to 1 atm? (1.4)Solution: )(180118298)(1185.229810101325501010101325)5500(1)()(118)101(298)()(0334.0/00K T T T K RR nC W T b K T P PT T Adiabatic a p C R P=-=∆-==⨯⨯⨯⨯⨯⨯⨯-⨯==∆=⨯==--5 An evacuated (P=0), insulted tank is surrounded by a very large volume (assume infinite volume) of an ideal gas at a temperature T 0. The valve on the tank is opened and the surrounding gas is allowed to flow quickly into the tank until the pressure inside the tank is equals the pressure outside. Assume that no heat flow takes place. What is the final tempeture of the gas in the tank? The heat capacity of the gas, C p and C v each may be assumed to be constant over the temperature rang spanned by the experiment. You answer may be left in terms of C p and C vhint: one way to approach the problem is to define the system as the gas ends up in the tank. (1.5)solution 0/000/00)0()(T P P T T P PT T Adiabatic PPC R C R ≈-==6. Calculate the heat of reaction of methane with oxygen at 298K, assuming that the products of reaction are CO 2 and CH 4 (gas)[This heat of reaction is also called the low calorific power of methane] convert the answer into unites of Btu/1000 SCF of methane. SCF means standard cubic feet, taken at 298 and 1atmNOTE: this value is a good approximation for the low calorific powder of natural gas (1.6)DA TA:)()()(224g O H g CO g CH FOR80.5705.9489.17]/[0298---•∆mol g Kcal Hsolution)1000/(9.2610252103048.01101076.191)/(76.191)89.1780.57205.94()2(22333332982982224422SCF Btu mol g Kcal H H H H H OH CO O CH CH O H CO =⨯⨯⨯⨯⨯=•=∆+⨯---=∆-∆+∆-=∆+=+-7. Methane is delivered at 298 K to a glass factory, which operates a melting furnace at 1600 K. The fuel is mixed with a quantity of air, also at 298 K, which is 10% in excess of the amount theoretically needed for complete combustion (air is approximately 21% O 2 and 79% N 2) (1.7) (a) Assuming complete combustion, what is the composition of the flue gas (the gas followingcombustion)?(b) What is the temperature of the gas, assuming no heat loss?(c) The furnace processes 2000kg of glass hourly, and its heat losses to the surroundings average400000 kJ/h. calculate the fuel consumption at STP (in m 3/h) assuming that for gas H 1600-H 298=1200KJ/KG(d) A heat exchanger is installed to transfer some of the sensible heat of the flue gas to thecombustion air. Calculate the decrease in fuel consumption if the combustion air is heated to 800KDA TA STP means T=298K, P=1atm22224O N O H CO CH for 2.82.89.117.1316)/(C mol cal C P •Solution)(210448.1125.9100076.191298)/(25.9)]87.012.72(2.843.179.1171.87.13[01.0)(%87.0%%12.72%%43.17%2%%71.8)11.1(221791.1231%22)(0,,222222224K T T T C mol cal X C C b O N CO O H CO O H CO O CH a i i p p p =⨯⨯+=∆+=•=+⨯+⨯+⨯=======-⨯+⨯⨯+=+=+∑)/(1644)0224.011868.448.11)8001600(48.1125.9189570(102800000)/(189570)298800)](48.1187.8)48.1125.9[(100076.191)()/(87.848.11/]211002.22.816[)()/(3214)0224.011868.448.11)2981600(48.1125.9100076.191(102800000)/(280000040000020001200)(33min ,,,,298,,33min h m V mol g cal dTn C n C H H C mol cal X C C d h m V h KJ P C gConsu i i r p i i p p i i p r p g Consu =⨯⨯-⨯-⨯=•=-⨯-⨯-⨯=--∆=∆•=⨯⨯+===⨯⨯-⨯-⨯⨯==+⨯=⎰∑∑∑8.In an investigation of the thermodynamic properties of a-manganese, the following heat contents were determined:H 700-H 298=12113 J/(g atom) H 1000-H 298=22803 J/(g atom)Find a suitable equation for H T -H 298 and also for C P as a function of temperature in the form (a+bT) Assume that no structure transformation takes place in the given tempeture rang. (1.8)Solution )298(0055.0)298(62.35011.062.35011.062.3522803)2981000(2)2981000(12113)298700(2)298700(]2[2229822222982---=∆-=-===-+-=-+-+=+==∆⎰⎰T T H TC b a ba ba T baT bTdT a dT C H TP T P9.A fuel gas containing 40% CO, 10% CO 2, and the rest N 2 (by volume) is burnt completely with air in a furnace. The incoming and ongoing temperatures of the gases in the furnace are 773K and 1250K,respectively. Calculate (a) the maximum flame temperature and (b) heat supplied to the furnace per cu. ft of exhaust gas (1.9)molJ Hmol J H CO f CO f /393296/1104580,298,0,298,2-=∆-=∆)/(10184.403.29)/(1067.11010.492.19)/(1037.81020.935.44)/(1042.01097.345.283,253,253,253,222molK J T C molK J T T C molK J T T C molK J T T C N P O P CO P CO P -------⨯+=⨯-⨯+=⨯-⨯+=⨯-⨯+=Solution?0)499.0321.018.1()1067.01019.277.28(28.282831067.01038.477.289.0)1019.01058.528.33(2.0282838)()/(1019.01058.528.33722.0278.0)/(1067.01038.477.281.065.005.02.0)()/(282838110458393296%2.72%8.27%10%65%5%20)4/(1122298127332981523733253253298,,,,298,253,,,,,253,,,,,,,0,298,0,298,298,22222222222222==+--⨯+⨯++⨯=⨯-⨯++⨯⨯-⨯+-⨯=--∆=∆⨯-⨯+=+==⨯-⨯+=+++===-=∆-∆=∆========+-----------⎰⎰⎰∑∑⎰∑∑∑∑T T T T T T T dTT T dTT T dT n C n C n H H molK J T T C C n C C molK J T T C C C C n C C a mol J n H n H H N CO production O N CO CO reation then O N air mole need fuel mole when CO O CO T TT i i r p i i p p i i N P CO P i i p p r p O P N P CO P CO P i i p p r p i p f i r f idTT T Q dT T T Q b T T T T T T T dT T T dTT T dT n C n C n H H T TT i i r p i i p p i i 9.0)1019.01058.528.33(2.02828389.0)1019.01058.528.33(2.0282838)(0)499.0321.018.1()1067.01019.277.28(28.282831067.01038.477.289.0)1019.01058.528.33(2.0282838)(253125029812502982531250298125029829812125029815231250253253298,,,,298,⨯⨯-⨯++⨯-=⨯⨯-⨯++⨯-===+--⨯+⨯++⨯=⨯-⨯++⨯⨯-⨯+-⨯=--∆=∆-----------⎰⎰⎰⎰⎰∑∑⎰10. (a) for the reaction 2221CO O CO →+,what is the enthalpy of reaction (0H ∆) at 298 K ? (b) a fuel gas, with composition 50% CO, 50% N 2 is burned using the stoichiometric amount of air. What is the composition of the flue gas?(c) If the fuel gas and the air enter there burner at 298 K, what is the highest temperature theflame may attain (adiabatic flame temperature)? DA TA :standard heats of formation f H ∆ at 298 K (1.10))/(393000)/(1100002mol J CO mol J CO -=-=Heat capacities [J/(mol K)] to be used for this problem N 2=33, O 2=33, CO=34, CO 2=57 Solution)(21100)298)(39889.0(222.02830000)/(3975.03325.057)/(33111.034222.033666.033)(%,75%%,251.111002.22%%1.11%%,6.66%%,2.222.0/25.015.0%)()/(283000393000110000)(,0,,,,,,22220,298,0,298,0K T T dT C n H H K mol J X C C K mol J X C C C N CO product O N CO fuel b mol J n H n H H a P p p i P r i P r i P p i P p i P f i r f ==-⨯-⨯=-∆=∆•=⨯+⨯==•=⨯+⨯+⨯====-====+==+-=∆-∆=∆⎰∑∑∑∑11.a particular blast furnace gas has the following composition by (volume): N 2=60%, H 2=4, CO=12%, CO 2=24%(a) if the gas at 298K is burned with the stochiometric amount of dry air at 298 K, what is the composition of the flue gas? What is the adiabatic flame temperature? (b) repeat the calculation for 30% excess combustion air at 298K(C)what is the adiabatic flame temperature when the blast furnace gas is preheated to 700K (the dry air is at 298K)(d) suppose the combustion air is not dry ( has partial pressure of water 15 mm Hg and a total pressure of 760 mm Hg) how will the flame temperature be affected? DA TA(k J/mol) (1.11)2CO CO FOR513.393523.110)/(--∆mol kJ H f 2222,)(O N g O H CO CO FOR34505733]/[K mol J C P •Solution)(1052)(75438286370])295.03450(241604[026.0])335.03457(110523393513[079.0])([%8.66%%,8.6%%,6.2%%,8.15%%,9.72.0/83.110012%)()(1122)(82538313430])295.03450(241604[029.0])335.03457(110523393513[086.0])([%7.65%%,7.5%%,9.2%%,1.17%%,6.82.0/810012%2121)(,,,,,,,02222,,,,,,,0222222222K T K T T n C T T X C dT n C n C H x H N O H CO CO b K T K T T n C T T X C dT n C n C H x H N O H CO CO OH O H CO O CO a i i r P ii P i i r P i i p P i i i i r P ii P i i r P i i p P i i ===∆=∆-∆-⨯--+∆-⨯---=+--∆=∆=====⨯+====∆=∆-∆-⨯--+∆-⨯---=+--∆=∆=====+=→+→+∑∑∑⎰∑∑∑∑∑⎰∑∑)(1419),(11213842594034286.0)402(2.39714.0])295.03450(241604[029.0])335.03457(110523393513[086.0)3(K T K T T T T T H ===∆=∆⨯--∆⨯-∆-⨯--+∆-⨯---=∆12.A bath of molten copper is super cooled to 5℃ below its true melting point. Nucleation of solid copper then takes place, and the solidification proceeds under adiabatic conditions. What percentage of the bath solidifies?DA TA: Heat of fusion for copper is 3100 cal/mol at 1803℃(the melting point of copper) C P,L =7.5(cal/mol ℃), C P,S =5.41+(1.5*10-3T )(cal/mol ℃) (1.12) Solution)/(310355.75.0)17981803(105.1541.5310002231798,1798,17981803,18031798,1803,mol cal H H dT C dT C H L S SL L P S P L S =⨯-⨯-⨯+⨯+==+++-⎰⎰13.Cuprous oxide (Cu 2O) is being reduced by hydrogen in a furnace at 1000K, (a)write the chemical reaction for the reduced one mole of Cu 2O(b)how much heat is release or absorbed per mole reacted? Given the quantity of heat and state whether heat is evolved (exothermic reaction) or absorbed (endothermic reaction)DA TA: heat of formation of 1000K in cal/mol Cu 2O=-41900 H 2O=-59210 (1.13) solution)/(173104190059210222mol cal H OH Cu H O Cu =-=∆+=+,exothermic reaction14. (a) what is the enthalpy of pure, liquid aluminum at 1000K?(b) an electric resistance furnace is used to melt pure aluminum at the rate of 100kg/h. the furnace is fed with solid aluminum at 298K. The liquid aluminum leaves the furnace at 1000K. what is the minimum electric powder rating (kW) of furnace.DA TA : For aluminum : atomic weight=27g/mol, C p,s =26(J/molK), C p,L =29(J/molK), Melting point=932K, Heat of fusion=10700J/mol (1.14)Solution )(28.0)(7.2793600110002727184)/(2718410700)9321000(29)298932(261000932,932298,1000,kW W P mol J H dT C dT C H SLL P S P l ==⨯⨯==+-⨯+-⨯=++=⎰⎰15 A waste material (dross from the melting of aluminum) is found to contain 1 wt% metallic aluminum. The rest may be assumed to aluminum oxide. The aluminum is finely divided and dispersed in the aluminum oxide; that is the two material are thermally connected.If the waster material is stored at 298K. what is the maximum temperature to which it may rise if all the metallic aluminum is oxidized by air/ the entire mass may be assumed to rise to the same temperature. Data : atomic weight Al=27g/mol, O=16g/mol, C p,s,Al =26(J/molK), C p,s,Al2O3=104J/mol, heat formation of Al 2O 3=-1676000J/mol (1.15)Solution;)(600)(3021041029927275.116122711676000K T K T T ==∆∆⨯⨯++⨯⨯=⨯⨯16 Metals exhibit some interesting properties when they are rapidly solidified from the liquid state. An apparatus for the rapid solidification of copper is cooled by water. In the apparatus, liquid copper at its melting point (1356K) is sprayed on a cooling surface, where it solidified and cools to 400K. The copper is supplied to the apparatus at the rate of one kilogram per minute. Cooling water is available at 20℃, and is not allowed to raise above 80℃. What is the minimum flow rate of water in the apparatus, in cubic meters per minute?DA TA; for water: C p =4.184J/g k, Density=1g/cm 3; for copper: molecular weight=63.54g/mol C p =7cal/mol k, heat of fusion=3120 cal/mol (1.16)Solution:min)/(10573.2)2080(1min /min54.631000)]4001356(73120[min /33m V VQ Q Water Copper -⨯=-=⨯⨯-⨯+=17 water flowing through an insulated pipe at the rate of 5L/min is to be heated from 20℃ to 60℃ b an electrical resistance heater. Calculate the minimum power rating of the resistance heater in watts. Specify the system and basis for you calculation. DA TA; For water C p =4.184J/g k, Density=1g/cm 3 (1.17)Solution: )(139476010005)2060(184.4W W =⨯⨯-⨯=18 The heat of evaporation of water at 100℃ and 1 atm is 2261J/mol (a) what percentage of that energy is used as work done by the vapor?(b)if the density of water vapor at 100℃ and 1 atm is 0.597kg/m 3 what is the internal energy change for the evaporation of water? (1.18)Solution: )/(375971822613101%6.71822613101%)/(31010224.0273373101325mol J Q W U mol J V P =⨯+-=+=∆=⨯==⨯⨯=∆19 water is the minimum amount of steam (at 100℃ and 1 atm pressure) required to melt a kilogram of ice (at 0℃)? Use data for problem 1.20 (1.19) Solution )(125,3341000)10018.42261(g m m =⨯=⨯+20 in certain parts of the world pressurized water from beneath the surface of the earth is available as a source of thermal energy. To make steam, the geothermal water at 180℃is passed through a flash evaporator that operates at 1atm pressure. Two streams come out of the evaporator, liquid water and water vapor. How much water vapor is formed per kilogram of geothermal water? Is the process reversible? Assume that water is incompressible. The vapor pressure of water at 180℃is1.0021 Mpa( about 10 atm) Data: C P,L=4.18J/(g k), C P,v=2.00J/(g k), △H V=2261J/g, △H m=334 J/g (1.20)Solution:leirreversibgxxx)(138),1000(8018.4)8018.48022261(=-⨯⨯=⨯-⨯+。

材料热力学与动力学_2

材料热力学与动力学_2

C 2 C1
Fick’s first law in Cylinder-System
C C1 C2 r
If (r2-r1) << r1 (thin walled), ln(r2/r1)=ln(1+(r2-r1)/r1)=(r2-r1)/r1
dm dt 2 Lr1 D C 2 C1 r2 r1
Chapter 2. Diffusion
Prof. Dr. X.B. Zhao
Department of Materials Science and Engineering Zhejiang University
Diffusion Process
1 B A 2
G
@ T0
mA1
G1
G3
G4
G2
mB2
Chapter 2 : Diffusion
2-13
2.2 Steady-State Diffusion
2.2.1 Diffusion through the cylinder wall
For steady-state diffusion the flux through a cylinder wall with radius of r (r1 < r < r2) is a constant.
This means y 2 ( t ) will increase d 2 if the atoms jump one time. If the jump frequency of the atoms is n, an atom will jump nt times from t = 0 to t = t, and then we have: y 2 ( t ) d 2 n t Einstein has demonstrated that d 2n equals to 2D for one dimensional and to 4D and 6D for two- and three-dimensional case respectively.

材料热力学复习题

材料热力学复习题

《材料热力学》复习题一、在定压热容C p 的经验表达式中,若使用T 2项来代替T -2项,试导出这时的焓(H)、熵(S)和Gibbs 自由能(G)的表达式。

二、已知液体锌的()l p C 为()K mol J C T C l p •︒-⨯+=-/()8505.419(1081.466.293) 固体密排六方锌的()l p C 为())/(1005.1113.223K mol TJ C s p •⨯+=-,锌的熔点为692.6K ,熔化热mol J H /80.6589=∆,求固、液相之间随温度变化的自由能差值()T G ∆。

三、某化合物A m B 的两种晶体结构分别是α、β,相变稳定为在0.1MPa 压力下为400K ,相变潜热为5.02J·mol -1,相变温度随压力的变化为0.005K·MPa -1,400K 时的密度为1.25g·cm-3,A m B 的相对分子量为120,试求该温度下β相的密度。

四、已知纯Sn 在压力为P MPa 时的熔点T sn 为:T sn =238.1+0.0033(P-0.1)℃ 纯Sn 的熔化潜热为58.8J·g -1,0.1MPa 压力下液体的密度为6.988g·cm-3,试求固体的密度。

五、试用G m-X图解法说明,为什么fcc结构的金属加入铁中后,大多会扩展Fe 的fcc结构相区?而Al(fcc结构)为什么却会封闭Fe的fcc相区?六、根据相图,绘出T1、T2、T3温度下各相(L、α)摩尔自由能-成分曲线的位置关系。

七、根据相图,绘出T1、T2、T3、T4温度下各相(L、α、β)摩尔自由能-成分曲线的位置关系。

八、试用G m-X图中化学势的图解法,解释为什么有的固溶体中会发生上坡扩散?九、试用G m-X图解法说明,为什么fcc结构的金属加入铁中后,大多会扩展Fe 的fcc结构相区?而Al(fcc结构)为什么却会封闭Fe的fcc相区?第六题第七题十、试根据Einstein热容理论,证明Dulong-Petit经验定律的正确性。

材料热力学习题解答

材料热力学习题解答

《材料热力学》复习思考题解答3. 在1560℃时,C 在液态铁中的活度系数和偏摩尔超额焓由下列式表示: 2l n 0.37711.7c C C X X γ=-++25.415.017.25E C C C H X X =++(K Cal) 其标准态为纯石墨,计算1560℃时液相与石墨平衡的相线的斜率。

解:以石墨为标准态时,C 在液态铁中的化学位为:l n (1)LC CC R T a μμ=+ 石墨 当液相与石墨平衡时,L C Cμμ=石墨。

即ln 0C α=。

又ln ln ln C C C X αγ=+ln ln 0(2)C C X γ∴+=由(2)式得:平衡时0.2067C X =两边取微分得:(ln )(ln )1[](1/)[]0(1/)C C C X T C C C C d T dX dX T X X γγ∂∂++=∂∂ (ln )[](1/)ln ln 1(1/)[()]1()CC X EC C C C C T C TC C CdX H X T d T R X X X X γγγ∂-∂∴==⋅∂∂-++∂∂2(5.415.017.25) 4.1810000.20678.311(723.4)278.6C C CC X X X X ++⨯⨯=-⋅++=- 2C dX T dT=-CdX 又d(1/T)5221278.68.310(1560273)C dX dT T -∴=-==⨯+C dX d(1/T) 1()K - 4. 在1000K 时,A-B 二元溶液中,当0.01B X =时,0.1B a =。

在盛有大量A 的量热计中加入少量的B 组元时,测得吸热7000Cal/mol ,假定2ln ln B A B X γγ=。

求1500K 时,当0.02B X =时,B 组元的活度。

解:在1000K 时,当0.01B X =时,0.1B a =0.1100.01B γ∴== 又022ln ln10ln 2.3490.99B B A X γγ=== 又ln [](1/)ii P H R T γ∂∆=∂15001500010001000l n (1/)BBH d d T Rγ∆∴=⎰⎰1500100011[ln ][ln ]()15001000B B B H R γγ∆∴=+-7000 4.18112.349()8.31150010001.175⨯=+-= 202l n (l n )0.981.175B A B X γγ∴==⨯ 1.128= l n 3.09B γ∴= 3.090.020.0B B B a X γ==⨯=7. 若A-B 二元合金系在液、固态两组元均能无限互溶,且均为理想溶液。

材料热力学与动力学复习试题答案

材料热力学与动力学复习试题答案

一、常压时纯Al 的密度为ρ=2.7g/cm 3,熔点T m =660.28℃,熔化时体积增加5%。

用理查得规则和克-克方程估计一下,当压力增加1Gpa 时其熔点大约是多少? 解:由理查德规则RTm Hm R Tm HmSm ≈∆⇒≈∆=∆ …①由克-克方程VT H dTdP ∆∆=…②温度变化对ΔH m 影响较小,可以忽略,①代入②得 V T H dT dP ∆∆=dT T1V Tm R dp V T Tm R ∆≈⇒∆≈…③ 对③积分 dT T1V T Tm R p d T Tm Tm pp p⎰⎰∆+∆+∆=整理 ⎪⎭⎫ ⎝⎛∆+∆=∆Tm T 1ln V Tm R p V T R V Tm R Tm T ∆∆=∆⨯∆≈Al 的摩尔体积 V m =m/ρ=10cm 3=1×10-5m 3Al 体积增加 ΔV=5%V m =0.05×10-5m3K 14.60314.810510R V p T 79=⨯⨯=∆∆=∆-Tm’=Tm+T ∆=660.28+273.15+60.14=993.57K二、热力学平衡包含哪些内容,如何判断热力学平衡。

内容:(1)热平衡,体系的各部分温度相等;(2)质平衡:体系与环境所含有的质量不变;(3)力平衡:体系各部分所受的力平衡,即在不考虑重力的前提下,体系内部各处所受的压力相等;(4)化学平衡:体系的组成不随时间而改变。

热力学平衡的判据:(1)熵判据:由熵的定义知dS Q Tδ≥不可逆可逆对于孤立体系,有0Q =δ,因此有dS 可逆不可逆≥,由于可逆过程由无限多个平衡态组成,因此对于孤立体系有dS 可逆不可逆0≥,对于封闭体系,可将体系和环境一并作为整个孤立体系来考虑熵的变化,即平衡自发环境体系总0S S S ≥∆+∆=∆(2)自由能判据 若当体系不作非体积功时,在等温等容下,有()0d ,≤V T F 平衡状态自发过程上式表明,体系在等温等容不作非体积功时,任其自然,自发变化总是向自由能减小的方向进行,直至自由能减小到最低值,体系达到平衡为止。

2012硕士《材料热力学与动力学》复习练习题

2012硕士《材料热力学与动力学》复习练习题

Question 16
1) 指出各水平线的三相平衡反应 2) w(SiO2)=0.40 的系统(图中 R 点)从 1700C 冷却到 1000C 时的冷却曲线示意图。 注明每一阶段系统有哪些相?发生哪些 变化?指出各阶段的自由度数? 3) w(SiO2)=0.10 的系统 12 kg,冷却到 1400C 时,液相中含 MnO 多少 kg? 4) w(SiO2)=0.60 的系统 1500C 以哪些相存在?计算其相对 量。
4
2012 研究生《材料热力学与动力学》复习练习题(10 月 8 日交,手写完成)
Question 1 进行下述过程时,系统的ΔU、ΔH、ΔS和ΔG何者为零? 1.1 非理想气体的卡诺循环; 1.2 隔离系统中的任意过程; 1.3 在100C,1大气压下1mol水蒸发成水蒸汽; 1.4 绝热可逆过程。 Question 2 1mol 理想气体等容升温到状态 3,求 Q,W,ΔU,ΔH。 若将理想气体先等压膨胀到状态 2,然后再等温(可 逆)压缩到状态 3,求 Q,W,ΔU,ΔH,并与直接从 1 到 3 的途径相比较。
Question 11 导出液相中 Bi 的活度系数的估算公式。
H m T a Bi exp ( 1) RT Tm
其中,熔化热为 H m 纯 Bi 的熔点为 Tm,R 为气体常数。
Question 12 对下列二元相图,指出其中的错误 (用相律说明原因)
2
Question 13
Trouton's定律为表示为:
1 (V1,T1) 2 (V2,T2) V
H vap 90Tb
单位J/mol, 其中Tb为沸点(K), 汞的沸点为630 K. 计算在
298K液态汞的分压. 用Troutons定律估算汞的汽化热.

材料热力学 习题答案

材料热力学 习题答案

The problems of the first law1. a lead bullet is fired at a frigid surface. At what speed must it travel to melt on impact, if its initial temperature is 25℃ and heating of the rigid surface of the rigid surface is neglected? The melting point of lead is 327℃. The molar heat of fusion of the lead is 4.8kJ/mol. The molar heat capacity C P of lead may be taken as 29.3J/(mol K) (1.1)Solution: )/(5.112.20721]108.4)25327(3.29[2121)(2322s m V v n n WQ nMv mv W H T C n Q Q Q absorb melting p melt increase absorb ==⨯+-⨯===∆+∆=+=2. what is the average power production in watts of a person who burns 2500 kcal of food in a day? Estimate the average additional powder production of 75Kg man who is climbing a mountain at eh rate of 20 m/min (1.2)Solution )/(24560208.975)/(12160602410467000//)(104670001868.4102500sin 3S J t h mg P S J t Q t W P J Q gincrea Burning Burning =⨯⨯=∆==⨯⨯====⨯⨯=3 One cubic decimeter (1 dm 3) of water is broken into droplets having a diameter of onemicrometer (1 um) at 20℃. (1.3)(a) what is the total area of the droplets?(b) Calculate the minimum work required to produce the droplets. Assume that the dropletsare rest (have zero velocity)Water have a surface tension of 72.75 dyn/cm at 20℃ (NOTES: the term surface energy (ene/cm 2) is also used for surface tension dyn/cm)Solution)(25.218)106103(1075.72)(103)101(4)101(34)101(232523263631J S W m nS S Single total =⨯-⨯⨯⨯=∆=⨯=⨯⨯⨯⨯⨯⨯⨯⨯==-+----σππ4.Gaseous helium is to be used to quench a hot piece of metal. The helium is in storage in an insulated tank with a volume of 50 L and a temperature of 25℃, the pressure is 10 atm. Assume that helium is an ideal gas.(a) when the valve is opened and the gas escapes into the quench chamber (pressure=1 atm),what will be the temperature of the first gas to hit the specimen?(b) As the helium flows, the pressure in the tank drops. What will be the temperature of thehelium entering the quench chamber when the pressure in the tank has fallen to 1 atm? (1.4)Solution: )(180118298)(1185.229810101325501010101325)5500(1)()(118)101(298)()(0334.0/00K T T T K RR nC W T b K T P PT T Adiabatic a p C R P=-=∆-==⨯⨯⨯⨯⨯⨯⨯-⨯==∆=⨯==--5 An evacuated (P=0), insulted tank is surrounded by a very large volume (assume infinite volume) of an ideal gas at a temperature T 0. The valve on the tank is opened and the surrounding gas is allowed to flow quickly into the tank until the pressure inside the tank is equals the pressure outside. Assume that no heat flow takes place. What is the final tempeture of the gas in the tank? The heat capacity of the gas, C p and C v each may be assumed to be constant over the temperature rang spanned by the experiment. You answer may be left in terms of C p and C vhint: one way to approach the problem is to define the system as the gas ends up in the tank. (1.5)solution 0/000/00)()(T P P T T P PT T Adiabatic PPC R C R ≈-==6. Calculate the heat of reaction of methane with oxygen at 298K, assuming that the products of reaction are CO 2 and CH 4 (gas)[This heat of reaction is also called the low calorific power of methane] convert the answer into unites of Btu/1000 SCF of methane. SCF means standard cubic feet, taken at 298 and 1atmNOTE: this value is a good approximation for the low calorific powder of natural gas (1.6)DA TA:)()()(224g O H g CO g CH FOR80.5705.9489.17]/[0298---∙∆mol g Kcal Hsolution)1000/(9.2610252103048.01101076.191)/(76.191)89.1780.57205.94()2(22333332982982224422SCF Btu mol g Kcal H H H H H OH CO O CH CH O H CO =⨯⨯⨯⨯⨯=∙=∆+⨯---=∆-∆+∆-=∆+=+-7. Methane is delivered at 298 K to a glass factory, which operates a melting furnace at 1600 K. The fuel is mixed with a quantity of air, also at 298 K, which is 10% in excess of the amount theoretically needed for complete combustion (air is approximately 21% O 2 and 79% N 2) (1.7)(a) Assuming complete combustion, what is the composition of the flue gas (the gasfollowing combustion)?(b) What is the temperature of the gas, assuming no heat loss?(c) The furnace processes 2000kg of glass hourly, and its heat losses to the surroundingsaverage 400000 kJ/h. calculate the fuel consumption at STP (in m 3/h) assuming that for gas H 1600-H 298=1200KJ/KG(d) A heat exchanger is installed to transfer some of the sensible heat of the flue gas to thecombustion air. Calculate the decrease in fuel consumption if the combustion air is heated to 800KDA TA STP means T=298K, P=1atm22224O N O H CO CH for 2.82.89.117.1316)/(C mol cal C P ∙Solution)(210448.1125.9100076.191298)/(25.9)]87.012.72(2.843.179.1171.87.13[01.0)(%87.0%%12.72%%43.17%2%%71.8)11.1(221791.1231%22)(0,,222222224K T T T C mol cal X C C b O N CO O H CO O H CO O CH a i i p p p =⨯⨯+=∆+=∙=+⨯+⨯+⨯=======-⨯+⨯⨯+=+=+∑)/(1644)0224.011868.448.11)8001600(48.1125.9189570(102800000)/(189570)298800)](48.1187.8)48.1125.9[(100076.191)()/(87.848.11/]211002.22.816[)()/(3214)0224.011868.448.11)2981600(48.1125.9100076.191(102800000)/(280000040000020001200)(33min ,,,,298,,33min h m V mol g cal dTn C n C H H C mol cal X C C d h m V h KJ P C gConsu i i r p i i p p i i p r p g Consu =⨯⨯-⨯-⨯=∙=-⨯-⨯-⨯=--∆=∆∙=⨯⨯+===⨯⨯-⨯-⨯⨯==+⨯=⎰∑∑∑8.In an investigation of the thermodynamic properties of a-manganese, the following heat contents were determined: H 700-H 298=12113 J/(g atom) H 1000-H 298=22803 J/(g atom)Find a suitable equation for H T -H 298 and also for C P as a function of temperature in the form (a+bT) Assume that no structure transformation takes place in the given tempeture rang. (1.8)Solution )298(0055.0)298(62.35011.062.35011.062.3522803)2981000(2)2981000(12113)298700(2)298700(]2[2229822222982---=∆-=-===-+-=-+-+=+==∆⎰⎰T T H TC b a ba ba T baT bTdT a dT C H TP T P9.A fuel gas containing 40% CO, 10% CO 2, and the rest N 2 (by volume) is burnt completely with air in a furnace. The incoming and ongoing temperatures of the gases in the furnace are 773K and 1250K,respectively. Calculate (a) the maximum flame temperature and (b) heat supplied to the furnace per cu. ft of exhaust gas (1.9)molJ Hmol J H CO f CO f /393296/1104580,298,0,298,2-=∆-=∆)/(10184.403.29)/(1067.11010.492.19)/(1037.81020.935.44)/(1042.01097.345.283,253,253,253,222molK J T C molK J T T C molK J T T C molK J T T C N P O P CO P CO P -------⨯+=⨯-⨯+=⨯-⨯+=⨯-⨯+=Solution?0)499.0321.018.1()1067.01019.277.28(28.282831067.01038.477.289.0)1019.01058.528.33(2.0282838)()/(1019.01058.528.33722.0278.0)/(1067.01038.477.281.065.005.02.0)()/(282838110458393296%2.72%8.27%10%65%5%20)4/(1122298127332981523733253253298,,,,298,253,,,,,253,,,,,,,0,298,0,298,298,22222222222222==+--⨯+⨯++⨯=⨯-⨯++⨯⨯-⨯+-⨯=--∆=∆⨯-⨯+=+==⨯-⨯+=+++===-=∆-∆=∆========+-----------⎰⎰⎰∑∑⎰∑∑∑∑T T T T T T T dT T T dTT T dT n C n C n H H molK J T T C C n C C molK J T T C C C C n C C a mol J n Hn H H N CO production O N CO CO reation then O N air mole need fuel mole when CO O CO T TT i i r p i i p p i i N P CO P i i p p r p O P N P CO P CO P i i p p r p i pf i rf idTT T Q dT T T Q b T T T T T T T dT T T dTT T dT n C n C n H H T TT i i r p i i p p i i 9.0)1019.01058.528.33(2.02828389.0)1019.01058.528.33(2.0282838)(0)499.0321.018.1()1067.01019.277.28(28.282831067.01038.477.289.0)1019.01058.528.33(2.0282838)(253125029812502982531250298125029829812125029815231250253253298,,,,298,⨯⨯-⨯++⨯-=⨯⨯-⨯++⨯-===+--⨯+⨯++⨯=⨯-⨯++⨯⨯-⨯+-⨯=--∆=∆-----------⎰⎰⎰⎰⎰∑∑⎰10. (a) for the reaction 2221CO O CO →+,what is the enthalpy of reaction (0H ∆) at 298 K ?(b) a fuel gas, with composition 50% CO, 50% N 2 is burned using the stoichiometric amount of air. What is the composition of the flue gas?(c) If the fuel gas and the air enter there burner at 298 K, what is the highest temperaturethe flame may attain (adiabatic flame temperature)? DA TA :standard heats of formation f H ∆ at 298 K (1.10))/(393000)/(1100002mol J CO mol J CO -=-=Heat capacities [J/(mol K)] to be used for this problem N 2=33, O 2=33, CO=34, CO 2=57 Solution)(21100)298)(39889.0(222.02830000)/(3975.03325.057)/(33111.034222.033666.033)(%,75%%,251.111002.22%%1.11%%,6.66%%,2.222.0/25.015.0%)()/(283000393000110000)(,0,,,,,,22220,298,0,298,0K T T dT C n H H K mol J X C C K mol J X C C C N CO product O N CO fuel b mol J n H n H H a P p p i P r i P r i P p i P p i P f i r f ==-⨯-⨯=-∆=∆∙=⨯+⨯==∙=⨯+⨯+⨯====-====+==+-=∆-∆=∆⎰∑∑∑∑11.a particular blast furnace gas has the following composition by (volume): N 2=60%, H 2=4, CO=12%, CO 2=24%(a) if the gas at 298K is burned with the stochiometric amount of dry air at 298 K, what is the composition of the flue gas? What is the adiabatic flame temperature? (b) repeat the calculation for 30% excess combustion air at 298K(C)what is the adiabatic flame temperature when the blast furnace gas is preheated to 700K (the dry air is at 298K)(d) suppose the combustion air is not dry ( has partial pressure of water 15 mm Hg and a total pressure of 760 mm Hg) how will the flame temperature be affected? DA TA(k J/mol) (1.11)2CO CO FOR513.393523.110)/(--∆m o lkJ H f 2222,)(O N g O H CO CO FOR34505733]/[K mol J C P ∙Solution)(1052)(75438286370])295.03450(241604[026.0])335.03457(110523393513[079.0])([%8.66%%,8.6%%,6.2%%,8.15%%,9.72.0/83.110012%)()(1122)(82538313430])295.03450(241604[029.0])335.03457(110523393513[086.0])([%7.65%%,7.5%%,9.2%%,1.17%%,6.82.0/810012%2121)(,,,,,,,02222,,,,,,,0222222222K T K T T n C T T X C dT n C n C H x H N O H CO CO b K T K T T n C T T X C dT n C n C H x H N O H CO CO OH O H CO O CO a i i r P ii P i i r P i i p P i i i i r P ii P i i r P i i p P i i ===∆=∆-∆-⨯--+∆-⨯---=+--∆=∆=====⨯+====∆=∆-∆-⨯--+∆-⨯---=+--∆=∆=====+=→+→+∑∑∑⎰∑∑∑∑∑⎰∑∑)(1419),(11213842594034286.0)402(2.39714.0])295.03450(241604[029.0])335.03457(110523393513[086.0)3(K T K T T T T T H ===∆=∆⨯--∆⨯-∆-⨯--+∆-⨯---=∆12.A bath of molten copper is super cooled to 5℃ below its true melting point. Nucleation of solid copper then takes place, and the solidification proceeds under adiabatic conditions. What percentage of the bath solidifies?DATA: Heat of fusion for copper is 3100 cal/mol at 1803℃(the melting point of copper) C P,L =7.5(cal/mol ℃), C P,S =5.41+(1.5*10-3T )(cal/mol ℃) (1.12) Solution)/(310355.75.0)17981803(105.1541.5310002231798,1798,17981803,18031798,1803,mol cal H H dT C dT C HL S SL L P S P LS =⨯-⨯-⨯+⨯+==+++-⎰⎰13.Cuprous oxide (Cu 2O) is being reduced by hydrogen in a furnace at 1000K, (a)write the chemical reaction for the reduced one mole of Cu 2O(b)how much heat is release or absorbed per mole reacted? Given the quantity of heat and state whether heat is evolved (exothermic reaction) or absorbed (endothermic reaction) DATA: heat of formation of 1000K in cal/mol Cu 2O=-41900 H 2O=-59210 (1.13) solution)/(173104190059210222mol cal H OH Cu H O Cu =-=∆+=+,exothermic reaction14. (a) what is the enthalpy of pure, liquid aluminum at 1000K?(b) an electric resistance furnace is used to melt pure aluminum at the rate of 100kg/h. the furnace is fed with solid aluminum at 298K. The liquid aluminum leaves the furnace at 1000K. what is the minimum electric powder rating (kW) of furnace.DATA : For aluminum : atomic weight=27g/mol, C p,s =26(J/molK), C p,L =29(J/molK), Melting point=932K, Heat of fusion=10700J/mol (1.14)Solution )(28.0)(7.2793600110002727184)/(2718410700)9321000(29)298932(261000932,932298,1000,kW W P mol J H dT C dT C H SLL P S P l ==⨯⨯==+-⨯+-⨯=++=⎰⎰15 A waste material (dross from the melting of aluminum) is found to contain 1 wt% metallic aluminum. The rest may be assumed to aluminum oxide. The aluminum is finely divided and dispersed in the aluminum oxide; that is the two material are thermally connected.If the waster material is stored at 298K. what is the maximum temperature to which it may rise if all the metallic aluminum is oxidized by air/ the entire mass may be assumed to rise to the same temperature. Data : atomic weight Al=27g/mol, O=16g/mol, C p,s,Al =26(J/molK), C p,s,Al2O3=104J/mol, heat formation of Al 2O 3=-1676000J/mol(1.15)Solution;)(600)(3021041029927275.116122711676000K T K T T ==∆∆⨯⨯++⨯⨯=⨯⨯16 Metals exhibit some interesting properties when they are rapidly solidified from the liquid state. An apparatus for the rapid solidification of copper is cooled by water. In the apparatus, liquid copper at its melting point (1356K) is sprayed on a cooling surface, where it solidified and cools to 400K. The copper is supplied to the apparatus at the rate of one kilogram per minute. Cooling water is available at 20℃, and is not allowed to raise above 80℃. What is the minimum flow rate of water in the apparatus, in cubic meters per minute? DATA; for water: C p =4.184J/g k, Density=1g/cm 3; for copper: molecular weight=63.54g/mol C p =7cal/mol k, heat of fusion=3120 cal/mol (1.16)Solution:min)/(10573.2)2080(1min /min54.631000)]4001356(73120[min /33m V VQ Q Water Copper -⨯=-=⨯⨯-⨯+=17 water flowing through an insulated pipe at the rate of 5L/min is to be heated from 20℃ to 60℃ b an electrical resistance heater. Calculate the minimum power rating of the resistance heater in watts. Specify the system and basis for you calculation. DATA; For water C p =4.184J/g k, Density=1g/cm 3 (1.17) Solution: )(139476010005)2060(184.4W W =⨯⨯-⨯=18 The heat of evaporation of water at 100℃ and 1 atm is 2261J/mol (a) what percentage of that energy is used as work done by the vapor?(b)if the density of water vapor at 100℃ and 1 atm is 0.597kg/m 3 what is the internal energy change for the evaporation of water? (1.18)Solution: )/(375971822613101%6.71822613101%)/(31010224.0273373101325mol J Q W U mol J V P =⨯+-=+=∆=⨯==⨯⨯=∆19 water is the minimum amount of steam (at 100℃ and 1 atm pressure) required to melt a kilogram of ice (at 0℃)? Use data for problem 1.20 (1.19) Solution )(125,3341000)10018.42261(g m m =⨯=⨯+20 in certain parts of the world pressurized water from beneath the surface of the earth is available as a source of thermal energy. To make steam, the geothermal water at 180℃ is passed through a flash evaporator that operates at 1atm pressure. Two streams come out of the evaporator, liquid water and water vapor. How much water vapor is formed per kilogram of geothermal water? Is the process reversible? Assume that water is incompressible. The vapor pressure of water at 180℃ is 1.0021 Mpa( about 10 atm) Data: C P,L =4.18J/(g k), C P,v =2.00J/(g k), △H V =2261J/g, △H m =334 J/g (1.20) Solution:leirreversib g x x x )(138),1000(8018.4)8018.48022261(=-⨯⨯=⨯-⨯+The problems of the second law1 The solar energy flux is about 4J cm 2/min. in no focusing collector the surface temperature can reach a value of about 900℃. If we operate a heat engine using the collector as the heat source and a low temperature reservoir at 25℃, calculate the area of collector needed if the heat engine is to produce 1 horse power. Assume the engine operates at maximum efficiency. (2.1)Solution )(664.0)(74660104273900)25900(24m S W tWP StQ T T T W H H L H ===⨯⨯+-=-=2 A refrigerator is operated by 0.25 hp motor. If the interior of the box is to be maintained at -20℃ ganister a maximum exterior temperature of 35℃, what the maximum heat leak (in watts) into the box that can be tolerated if the motor runs continuously? Assume the coefficient of performance is 75% of the value for a reversible engine. (2.2)Solution:)(114474625.02035202733475.0%75W P P T T T P Q T T T W L LLLH HHLH =⨯⨯+-⨯=-=-=3 suppose an electrical motor supplies the work to operate a Carnot refrigerator. The interior of the refrigerator is at 0℃. Liquid water is taken in at 0℃ and converted to ice at 0℃. To convert 1 g of ice to 1 g liquid. △H=334J/g is required. If the temperature outside the box is 20℃, what mass of ice can be produced in one minute by a 0.25 hp motor runningcontinuously? Assume that the refrigerator is perfectly insulated and that the efficiencies involved have their largest possible value. (2.3)Solution: )(4576033474625.020273g m M m P P T T T P L LLLH ===⨯⨯=-=4 under 1 atm pressure, helium boils at 4.126K. The heat of vaporization is 84 J/mol what size motor (in hp) is needed to run a refrigerator that must condense 2 mol of gaseous helium at 4.126k to liquid at the same temperature in one minute? Assume that the ambient temperature is 300K and that the coefficient of performance of the refrigerator is 50% of the maximum possible. (2.4)Solution: )(52.0)(393'60284216.4216.4300'5.0%50hp W P P T T T P P Q T T T W L L L H LLLH ==⨯⨯-=-==-= 5 if a fossil fuel power plant operating between 540 and 50℃ provides the electrical powerto run a heat pump that works between 25 and 5℃, what is the amount of heat pumped into the house per unit amount of heat extracted from the power plant boiler. (a) assume that the efficiencies are equal to the theoretical maximum values(b) assume the power plant efficiency is 70% of maximum and that coefficient ofperformance of the heat pump is 10% of maximum(c) if a furnace can use 80% of the energy in fossil foe to heat the house would it be moreeconomical in terms of overall fissile fuel consumption to use a heat pump or a furnace ? do the calculations for cases a and b (2.5)solution:1,2,2,1,212,2,2,2,21,1,1,1,198.82527352527354050540)(H H H H H H L H H H L H P P P P P P P T T T P P T T T P a =+-=+-=-=-=.,)(6286.0)(1,2,not is b ok is a c P P b H H =6 calculate △U and △S when 0.5 mole of liquid water at 273 K is mixed with 0.5 mol of liquid water at 373 K and the system is allowed to reach equilibrium in an adiabaticenclosure. Assume that C p is 77J /(mol K) from 273K to 373K (2.6) Solution:)/(933.0)273323ln(5.0)373323ln(5.0)ln()ln()(02211K J C C T T C n T T C n S J U P P E P E P =+=+=∆=∆ 7 A modern coal burning power plant operates with a steam out let from the boiler at 540℃and a condensate temperature of 30℃.(a) what is the maximum electrical work that can be produced by the plant per joule of heatprovided to the boiler?(b) How many metric tons (1000kg) of coal per hour is required if the plant out put is to be500MW (megawatts). Assume the maximum efficiency for the plant. The heat of combustion of coal is 29.0 MJ/k g(c) Electricity is used to heat a home at 25℃ when the out door temperature is 10℃ bypassing a current through resistors. What is the maximum amount of heat that can be added to the home per kilowatt-hour of electrical energy supplied? (2.7)Solution:)(3.69)(6937136005000.29)()(89.013054030540)(ton kg m T T T mb J Q T T T W a LH LH H L H ==⨯=-=+-=-=)(9.191102525273)(J Q Q T T T W c H HHLH =-+=-=8 an electrical resistor is immersed in water at the boiling temperature of water (100℃) the electrical energy input into the resistor is at the rate of one kilowatt(a) calculate the rate of evaporation of the water in grams per second if the water containeris insulated that is no heat is allowed to flow to or from the water except for that provided by the resistor(b) at what rate could water could be evaporated if electrical energy were supplied at therate of 1 kw to a heat pump operating between 25 and 100℃data for water enthalpy of evaporation is 40000 J/mol at 100℃; molecular weight is 18g/mol; density is 1g/cm 3 (2.8)solution:)(23.2,2510027310010004000018)()(45.0,10004000018)(g m m b g m ma =-+===9 some aluminum parts are being quenched (cooled rapidly ) from 480℃ to -20℃ byimmersing them in a brine , which is maintained at -20℃ by a refrigerator. The aluminum is being fed into the brine at a rate of one kilogram per minute. The refrigerator operates in an environment at 30℃; that is the refrigerator may reject heat at 30℃. what is them minuspower rating in kilowatts, of motor required to operate the refrigerator? Data for aluminum heat capacity is 28J/mol K; Molecular weight 27g/mol (2.9)Solution:)(5.102)(102474202732030)20480(28271000kW W P P T T T P P L L L L H W L ==---=-=--⨯=10 an electric power generating plant has a rated output of 100MW. The boiler of the plantoperates at 300℃. The condenser operates at 40℃(a) at what rate (joules per hour) must heat be supplied to the boiler?(b) The condenser is cooled by water, which may under go a temperature rise of no morethan 10℃. What volume of cooling water in cubic meters per hour, is require to operate the plant?(c) The boiler tempeture is to be raised to 540℃,but the condensed temperature and electricoutput will remain the same. Will the cooling water requirement be increased, decreased, or remain the same?Data heat capacity 4.184, density 1g/cm 3 (2.10)Solution: )(109.7)(102.21040300273300)(1188J t P Q W P T T T P a H H L H H H ⨯==⨯=-+=-=)(1003.1184.41010)(103.4)(34611m V Q V J Q b L L ⨯==⨯⨯⨯⨯=noW P T T T P c L H H H )(10626.11040540273540)(88⨯=-+=-=11 (a) Heat engines convert heat that is available at different temperature to work. Theyhave been several proposals to generate electricity y using a heat engine that operate on the temperature differences available at different depths in the oceans. Assume that surface water is at 20℃, that water at a great depth is at 4℃, and that both may be considered to be infinite in extent. How many joules of electrical energy may be generated for each joule of energy absorbed from surface water? (b) the hydroelectric generation of electricity use the drop height of water as the energy source. in a particular region the level of river drops from 100m above sea level to 70m above the sea level . what fraction of the potential energy change between those two levels may be converted into electrical energy? how much electrical energy ,in kilowatt-hours, may be generated per cubic meter of water that undergoes such a drop? (2.11)Solution:)/(1006.136001000)()(055.0127320420)(6h kW hmg P b J Q T T T W a H H L H ⨯=⨯∆==+-=-=12 a sports facility has both an ice rink and a swimming pool. to keep the ice frozen during the summer requires the removal form the rink of 105 KJ of thermal energy per hour. It has been suggested that this task be performed by a thermodynamic machine, which would be use the swimming pool as the high temperature reservoir. The ice in the rink is to be maintain at a temperature of –15℃, and the swimming pool operates at 20℃, (a) what is the theoretical minimum power, in kilowatts, required to run the machine? (b) how much heat , in joule per hour , would be supplied t the pool by this machine? (2.12)Solution:)(1014.1101527320273)()(77.33600/10152731520)(555kJ Q b kW P T T T P a H L L L H ⨯=-+==-+=-=13solution:)/(81.6810ln 314.877.45277.6282.4)/(152940)()/(67.4977.45277.6282.4)()/(152940)(22)(2molK cal S mol cal H d molK cal S c mol cal H b AlNN Al a -=+-⨯-⨯=∆=∆-=-⨯-⨯=∆=∆=+14solution:)/(2257412000)27340273ln 184.4273336263273ln1.2()(40,010,K J dT T C T H dT T C m S WATER P m mICE P =+++=+∆+=∆⎰⎰- 15)(70428)(2896100077773002J W J Q T T T W L L L H ==-=-=16)(4.3719))2.4300(314.85.13.83(3002.4300)(7.58663.832.42.4300J Q T T T W J Q T T T W H H L H L L L H =-⨯+-=-==-=-=17yesd Q c K J PPnR S b J pdV n W Q OU T a )(0)()/(1.1910ln 314.81ln )()(570410ln 298314.810)(0==⨯⨯==∆=⨯⨯=-=-==∆=∆⎰18)(122233527302033560500g m m m T T T L L H =-=-=⨯教材各章习题参考答案 (魏)3.2 ΔG = -108.9 J/mol; ΔS = -21.42 J/(mol.K)3.6 (a ) 22.09/(.)S J mol K ∆=;(b) At 0︒C, ∆G =0; (c) ∆H = 5841.9 J;(d) ∆S =21.39J /(mol.K),∆G = 109.38 J/mol4.1 (a ) 2898.28J/mol; ( b ) No; ( c ) 345 J/mol; ( d ) 14939 atm; ( e )4921 J/mol4.2 ( a ) 272.8K; ( b ) Pa P 610345⨯≈∆ ; ( c ) 249.46K 4.3 1202K4.4 P=5.73⨯10-6 atm 4.5 0.16P4.7 08.10430685ln +-=TP 4.8 ( a ) 1180K; ( b ) 695.3K; ( c ) 114.4kJ/mol; ( d ) 7123 J/mol; ( e )4.2J/mol4.9 In the initial state: 4.06 mol %; in the final state:5.3 mol% 4.10 ( a )348 kJ; ( b ) 2.3×10-3Pa ;( c ) “ solution not possible ”; (d ) “solution not possible ”5.1 atm p H 0005.0= 5.2、atmp o 1221007.1-⨯=If the error in enthalpy is 500cal, the uncertainty in the pressure calculated is 28.6%, and if the error in enthalpy is -500cal, the uncertainty is -22.1%5.3、(a) T =462K; (b) T = 420K5.4 (a) atm P O 2621014.1-⨯=, (b) P O2 =2.28⨯10-10 atm., (c) The equilibriumoxygen pressure remains the same when the total pressure increases, which means a higher purity level of N 2 .5.5 (a) 略; (b) Pa atm P H 8.181013056.1800019.0)('2=⨯==; (c) 21.5L Ar isneeded to be bubbled into the melt.5.6(a )l n K a1/T, 10-31/K=∆-=∆o o G kJ H 1000;50- 66.6kJ(b) Ja = 3 < Ka, the reaction will proceed from left to right, and theatmosphere will not oxidize Ni. 5.7 略5.8. (a) P SiO = 8.1⨯10-8 (atm) (b) ∆H o = 639500J; ∆So =334.9J/K (c ) PO2 =10-30 atm 5.9 5.10.J H o72250=∆,the reaction is an endothermic one.5.11. (a),166528J H o =∆ the reaction is an endothermic one.; (b) At 1168K, the equilibrium pressure of CO2 equals one atmosphere.)(106.08)(atm Pg u -⨯=5.12 (a) 略 , (b) Mg CO P P =; (c) T = 2037 K 5.13 (a) 略; (b) 13109.2⨯=K ; (c) ppm 186.0 5.14 (a) 略; (b) kJ H 52.267=∆; (c) K T 1592= 5.15 (a) )(106.13atm -⨯≈; (b) )(1028.210)(2atm P g O H -⨯=5.16 (a) 97.9=K ; (b) atm x 14.4=; (c) if the temperature is increased, the fraction of water reacted will increase since the equilibria constant increases with increasing temperature.6.2 (a )1.287V;(b) When the water impure, the voltage will go higher; (c) 1.219V 6.4 (a) 145.3kJ;(b) The maximum work that could be derived is 702.36kJ; (c) In this case, the maximum work that could be derived is696.56kJ.6.5 (a) -6252J/mol; (b) 370.0)(=II Cd a ; (c) )(42.3mmHg P Cd =; 6.67.87⨯10-4 V 6.7 (a))(22g Cl Mg MgCl +=(b) Pa P Cl 21'1086.82-⨯=;(c) 2.485V6.8 (a) Pa P O 11'2105.5-⨯=;(b) Anode: e Ni Ni 2+→Cathode: -→+2222/1O e O ;(c) 0.757V; (d) 0.261V6.10 (a) )(509.3V E o=;(b) 0.074kJ;(c) 4.1⨯106J;(d) Yes. In this case, the open circuit voltage is 3.648V;(e) In this case, to keep the temperature constant, 3.92⨯106J heatshould be removed from the battery per hour. 6.11(a) TG CO Al C O Al o 26.3211008.12/322/36232-⨯=+=+Δ(b) The minimum voltage at which the electrolysis may be carriedout at 1250K is 1.172V .7.1 0.117 atm 7.5 ( a ) ,82.5 2.5 2.5B A BA BB T PV V V x x x x x ⎛⎫∂=+=--⎪∂⎝⎭ ,102.5 2.5 2.5A B A A B A T PV V V x x x x x ⎛⎫∂=+=-- ⎪∂⎝⎭( b) B A M x x V 5.2=7.7 2)1(736.0ln Sn Sn x --=γ7.8 The maximum solubility of MgF2 in liquid MgCl at 900︒C is 19。

热力学习题与答案(原件)讲解

热力学习题与答案(原件)讲解

材料热力学习题1、阐述焓H 、内能U 、自由能F 以及吉布斯自由能G 之间的关系,并推导麦克斯韦方程之一:T P PST V )()(∂∂-=∂∂。

答: H=U+PV F=U-TS G=H-TS U=Q+W dU=δQ+δWdS=δQ/T, δW=-PdV dU=TdS-PdVdH=dU+PdV+VdP=TdS+VdP dG=VdP-SdTdG 是全微分,因此有:TP P TP ST V ,PT G T P G ,T V P G T P T G P S T G P T P G )()()()()()(2222∂∂-=∂∂∂∂∂=∂∂∂∂∂=∂∂∂∂=∂∂∂∂∂-=∂∂∂∂=∂∂∂因此有又而2、论述: 试绘出由吉布斯自由能—成分曲线建立匀晶相图的过程示意图,并加以说明。

(假设两固相具有相同的晶体结构)。

由吉布斯自由能曲线建立匀晶相图如上所示,在高温T 1时,对于所有成分,液相的自由能都是最低;在温度T 2时,α和L 两相的自由能曲线有公切线,切点成分为x1和x2,由温度T 2线和两个切点成分在相图上可以确定一个液相线点和一个固相线点。

根据不同温度下自由能成分曲线,可以确定多个液相线点和固相线点,这些点连接起来就成为了液相线和固相线。

在低温T 3,固相α的自由能总是比液相L 的低,因此意味着此时相图上进入了固相区间。

3、论述:通过吉布斯自由能成分曲线阐述脱溶分解中由母相析出第二相的过程。

第二相析出:从过饱和固溶体α中(x0)析出另一种结构的β相(xβ),母相的浓度变为xα. 即:α→β+ α1α→β+ α1 的相变驱动力ΔGm的计算为ΔGm=Gm(D)-Gm(C),即图b中的CD段。

图b中EF是指在母相中出现较大为xβ的成分起伏时,由母相α析出第二相的驱动力。

4、根据Boltzman方程S=kLnW,计算高熵合金FeCoNiCuCrAl和FeCoNiCuCrAlTi0.1(即FeCoNiCuCrAl各为1mol,Ti为0.1mol)的摩尔组态熵。

材料热力学习题答案2

材料热力学习题答案2

The problems of the second law1 The solar energy flux is about 4J cm 2/min. in no focusing collector the surface temperature can reach a value of about 900℃. If we operate a heat engine using the collector as the heat source and a low temperature reservoir at 25℃, calculate the area of collector needed if the heat engine is to produce 1 horse power. Assume the engine operates at maximum efficiency. (2.1)Solution )(664.0)(74660104273900)25900(24m S W tWP StQ T T T W H H L H ===⨯⨯+-=-=2 A refrigerator is operated by 0.25 hp motor. If the interior of the box is to be maintained at -20℃ ganister a maximum exterior temperature of 35℃, what the maximum heat leak (in watts) into the box that can be tolerated if the motor runs continuously? Assume the coefficient of performance is 75% of the value for a reversible engine. (2.2)Solution:)(114474625.02035202733475.0%75W P P T T T P Q T T T W L LLLH HHLH =⨯⨯+-⨯=-=-=3 suppose an electrical motor supplies the work to operate a Carnot refrigerator. The interior of the refrigerator is at 0℃. Liquid water is taken in at 0℃ and converted to ice at 0℃. To convert 1 g of ice to 1 g liquid. △H=334J/g is required. If the temperature outside the box is 20℃, what mass of ice can be produced in one minute by a 0.25 hp motor running continuously? Assume that the refrigerator is perfectly insulated and that the efficiencies involved have their largest possible value. (2.3)Solution: )(4576033474625.020273g m M m P P T T T P L LLLH ===⨯⨯=-=4 under 1 atm pressure, helium boils at 4.126K. The heat of vaporization is 84 J/mol what sizemotor (in hp) is needed to run a refrigerator that must condense 2 mol of gaseous helium at 4.126k to liquid at the same temperature in one minute? Assume that the ambient temperature is 300K and that the coefficient of performance of the refrigerator is 50% of the maximum possible. (2.4)Solution: )(52.0)(393'60284216.4216.4300'5.0%50hp W P P T T T P P Q T T T W L L L H LLLH ==⨯⨯-=-==-= 5 if a fossil fuel power plant operating between 540 and 50℃ provides the electrical power torun a heat pump that works between 25 and 5℃, what is the amount of heat pumped into the house per unit amount of heat extracted from the power plant boiler.(a) assume that the efficiencies are equal to the theoretical maximum values(b) assume the power plant efficiency is 70% of maximum and that coefficient of performance ofthe heat pump is 10% of maximum(c) if a furnace can use 80% of the energy in fossil foe to heat the house would it be moreeconomical in terms of overall fissile fuel consumption to use a heat pump or a furnace ? do the calculations for cases a and b (2.5)solution:1,2,2,1,212,2,2,2,21,1,1,1,198.82527352527354050540)(H H H H H H L H H H L H P P P P P P P T T T P P T T T P a =+-=+-=-=-=.,)(6286.0)(1,2,not is b ok is a c P P b H H =6 calculate △U and △S when 0.5 mole of liquid water at 273 K is mixed with 0.5 mol of liquid water at 373 K and the system is allowed to reach equilibrium in an adiabatic enclosure. Assume that C p is 77J /(mol K) from 273K to 373K (2.6) Solution:)/(933.0)273323ln(5.0)373323ln(5.0)ln()ln()(02211K J C C T T C n T T C n S J U P P E P E P =+=+=∆=∆ 7 A modern coal burning power plant operates with a steam out let from the boiler at 540℃ and acondensate temperature of 30℃.(a) what is the maximum electrical work that can be produced by the plant per joule of heatprovided to the boiler?(b) How many metric tons (1000kg) of coal per hour is required if the plant out put is to be500MW (megawatts). Assume the maximum efficiency for the plant. The heat of combustionof coal is 29.0 MJ/k g(c) Electricity is used to heat a home at 25℃ when the out door temperature is 10℃ by passinga current through resistors. What is the maximum amount of heat that can be added to the home per kilowatt-hour of electrical energy supplied? (2.7)Solution:)(3.69)(6937136005000.29)()(89.013054030540)(ton kg m T T T mb J Q T T T W a LH LH H L H ==⨯=-=+-=-=)(9.191102525273)(J Q Q T T T W c H HHLH =-+=-=8 an electrical resistor is immersed in water at the boiling temperature of water (100℃) the electrical energy input into the resistor is at the rate of one kilowatt(a) calculate the rate of evaporation of the water in grams per second if the water container isinsulated that is no heat is allowed to flow to or from the water except for that provided by the resistor(b) at what rate could water could be evaporated if electrical energy were supplied at the rate of 1kw to a heat pump operating between 25 and 100℃data for water enthalpy of evaporation is 40000 J/mol at 100℃; molecular weight is 18g/mol; density is 1g/cm 3 (2.8)solution:)(23.2,2510027310010004000018)()(45.0,10004000018)(g m m b g m ma =-+===9 some aluminum parts are being quenched (cooled rapidly ) from 480℃ to -20℃ by immersingthem in a brine , which is maintained at -20℃ by a refrigerator. The aluminum is being fed into the brine at a rate of one kilogram per minute. The refrigerator operates in an environment at 30℃; that is the refrigerator may reject heat at 30℃. what is them minus power rating in kilowatts, of motor required to operate the refrigerator?Data for aluminum heat capacity is 28J/mol K; Molecular weight 27g/mol (2.9)Solution:)(5.102)(102474202732030)20480(28271000kW W P P T T T P P L L L L H W L ==---=-=--⨯=10 an electric power generating plant has a rated output of 100MW. The boiler of the plantoperates at 300℃. The condenser operates at 40℃(a) at what rate (joules per hour) must heat be supplied to the boiler?(b) The condenser is cooled by water, which may under go a temperature rise of no more than10℃. What volume of cooling water in cubic meters per hour, is require to operate the plant?(c) The boiler tempeture is to be raised to 540℃,but the condensed temperature and electricoutput will remain the same. Will the cooling water requirement be increased, decreased, or remain the same?Data heat capacity 4.184, density 1g/cm 3 (2.10)Solution: )(109.7)(102.21040300273300)(1188J t P Q W P T T T P a H H L H H H ⨯==⨯=-+=-=)(1003.1184.41010)(103.4)(34611m V Q V J Q b L L ⨯==⨯⨯⨯⨯=noW P T T T P c L H H H )(10626.11040540273540)(88⨯=-+=-=11 (a) Heat engines convert heat that is available at different temperature to work. They have beenseveral proposals to generate electricity y using a heat engine that operate on the temperature differences available at different depths in the oceans. Assume that surface water is at 20℃, that water at a great depth is at 4℃, and that both may be considered to be infinite in extent. How many joules of electrical energy may be generated for each joule of energy absorbed from surface water? (b) the hydroelectric generation of electricity use the drop height of water as the energy source. in a particular region the level of river drops from 100m above sea level to 70m above the sea level . what fraction of the potential energy change between those two levels may be converted into electrical energy? how much electrical energy ,in kilowatt-hours, may be generated per cubic meter of water that undergoes such a drop? (2.11)Solution:)/(1006.136001000)()(055.0127320420)(6h kW hmg P b J Q T T T W a H H L H ⨯=⨯∆==+-=-=12 a sports facility has both an ice rink and a swimming pool. to keep the ice frozen during the summer requires the removal form the rink of 105 KJ of thermal energy per hour. It has been suggested that this task be performed by a thermodynamic machine, which would be use the swimming pool as the high temperature reservoir. The ice in the rink is to be maintain at a temperature of –15℃, and the swimming pool operates at 20℃, (a) what is the theoretical minimum power, in kilowatts, required to run the machine? (b) how much heat , in joule per hour , would be supplied t the pool by this machine? (2.12)Solution:)(1014.1101527320273)()(77.33600/10152731520)(555kJ Q b kW P T T T P a H L L L H ⨯=-+==-+=-=13solution:)/(81.6810ln 314.877.45277.6282.4)/(152940)()/(67.4977.45277.6282.4)()/(152940)(22)(2molK cal S mol cal H d molK cal S c mol cal H b AlNN Al a -=+-⨯-⨯=∆=∆-=-⨯-⨯=∆=∆=+14solution:)/(2257412000)27340273ln 184.4273336263273ln1.2()(40,010,K J dT T C T H dT T C m S WATER P m mICE P =+++=+∆+=∆⎰⎰- 15)(70428)(2896100077773002J W J Q T T T W L L L H ==-=-=16)(4.3719))2.4300(314.85.13.83(3002.4300)(7.58663.832.42.4300J Q T T T W J Q T T T W H H L H L L L H =-⨯+-=-==-=-=17yesd Q c K J PPnR S b J pdV n W Q OU T a )(0)()/(1.1910ln 314.81ln )()(570410ln 298314.810)(0==⨯⨯==∆=⨯⨯=-=-==∆=∆⎰)(122233527302033560500g m m m T T T L L H =-=-=⨯。

材料热力学与动力学复习题答案word版本

材料热力学与动力学复习题答案word版本

材料热力学与动力学复习题答案一、常压时纯Al 的密度为ρ=2.7g/cm 3,熔点T m =660.28℃,熔化时体积增加5%。

用理查得规则和克-克方程估计一下,当压力增加1Gpa 时其熔点大约是多少? 解:由理查德规则RTm Hm R Tm Hm Sm ≈∆⇒≈∆=∆ …①由克-克方程VT H dT dP ∆∆=…② 温度变化对ΔH m 影响较小,可以忽略,①代入②得 V T H dT dP ∆∆=dT T1V Tm R dp V T Tm R ∆≈⇒∆≈…③ 对③积分 dT T1V T Tm R p d T Tm Tm pp p ⎰⎰∆+∆+∆= 整理 ⎪⎭⎫ ⎝⎛∆+∆=∆Tm T 1ln V Tm R p V T R V Tm R Tm T ∆∆=∆⨯∆≈ Al 的摩尔体积 V m =m/ρ=10cm 3=1×10-5m 3Al 体积增加 ΔV=5%V m =0.05×10-5m 3K 14.60314.810510R V p T 79=⨯⨯=∆∆=∆- Tm’=Tm+T ∆=660.28+273.15+60.14=993.57K二、热力学平衡包含哪些内容,如何判断热力学平衡。

内容:(1)热平衡,体系的各部分温度相等;(2)质平衡:体系与环境所含有的质量不变;(3)力平衡:体系各部分所受的力平衡,即在不考虑重力的前提下,体系内部各处所受的压力相等;(4)化学平衡:体系的组成不随时间而改变。

热力学平衡的判据:(1)熵判据:由熵的定义知dS Q T δ≥不可逆可逆对于孤立体系,有0Q =δ,因此有dS 可逆不可逆0≥,由于可逆过程由无限多个平衡态组成,因此对于孤立体系有dS 可逆不可逆0≥,对于封闭体系,可将体系和环境一并作为整个孤立体系来考虑熵的变化,即平衡自发环境体系总0S S S ≥∆+∆=∆ (2)自由能判据 若当体系不作非体积功时,在等温等容下,有()0d ,≤V T F 平衡状态自发过程上式表明,体系在等温等容不作非体积功时,任其自然,自发变化总是向自由能减小的方向进行,直至自由能减小到最低值,体系达到平衡为止。

材料热力学与动力学005相变热力学与动力学2

材料热力学与动力学005相变热力学与动力学2
经过t时间,球状新相体积
4 4 V r 3 ( t ) 3 3 3
所以新相总体积
4 dV 3t 3 I vVa dt 3
相变开始阶段ห้องสมุดไป่ตู้
V V
4 dV 3t 3 I vV dt 3
所以
将V作为1,经过t时间产生新相的 体积分数为x, dx=dVß:
4 t x I v 3t 3dt 3 0
对于曲面晶界,R可由下式求得
P
8R 4R 2

2 R
1 1 1 1 ( ) R 2 R1 R2
R1,R2为曲面晶界的最大及最小半径
上式表明,由界面能提供的作用于单位面积晶界的驱动 力与界面能成正比,与界面曲率半径成反比,力的方向 指向曲率中心。对于平直界面, R 驱动力为零。 在三个不同的晶粒交点处(如A点),为保持界 面张力平衡,即保持三个交角均为1200,晶界必将 凸向大晶粒一方,出现曲面晶界,在驱动力作用下, 小晶粒中原子越过界面向大晶粒迁移。
2 3 DV C a ( ) r 3 r03 t kt 2 RT
r 0 为粗化开始时颗粒的平均半径;r 为经过t时间粗化后颗粒的平均半径
3
3
考虑颗粒尺寸分布,Wagner公式: 2 9 DV C a ( ) 3 3
r r0 8 RT
t
五、晶粒长大 1.晶粒正常长大:在界面曲率驱动力下,晶粒发生均匀 长大的过程。 母相全部转变成新相后,还将通过晶界的迁移发 生晶粒的粗化。推动晶界迁移的驱动力来自界面能的 降低。50nm晶粒系统晶界能为104J/m3。
根据Gibbs-Thomson方程
Ca (r ) 2VB ln Ca () RTr

材料科学基础复习题

材料科学基础复习题

有关动力学与热力学填空:描述反应动力学的阿累尼乌斯方程(P21)表明:反应速率对与温度和()的变化是极为敏感的。

判断:含有少量位错的晶体的滑移开动容易,体现出实际强度低于理想晶体(P120),因此在热力学上是稳定的。

有关晶体结构:名称解释:原子堆垛因子(P65),配位数(P65),面密度(P63),线密度(P61)填空:布拉菲点阵共有种,归纳为个晶系。

面心立方结构单个晶胞中的原子数为,密排六方结构单个晶胞中的原子数为。

选择:NaCl和金刚石(P71~72)的晶体结构相差很大,但它们都属于()点阵。

(A)简单立方(B)体心立方(C)面心立方选择:体心立方结构最密排的晶向族(P64)为()。

(A)<110> (B)<100> (C)<111>填空:体心立方BCC材料中沿[110]方向的线密度是()。

名称解释:空间点阵(P48)晶胞(P48)点阵常数(P48)滑移系(P129)密勒指数(P56)问答:在面心立方晶胞中画出(101)和[110],并分析它们能否构成滑移系?填空:面心立方(fcc)晶体的滑移面是,滑移方向是,共有个滑移系。

填空:每个体心立方晶胞中的原子数为,配位数(P33)为;每个面心立方晶胞中的原子数为,配位数为。

填空:离子晶体中的配位数主要受()决定的(P33~34),而在共价建结合的材料中,最近邻的数目是有每个原子的()决定的。

简答:体心立方、面心立方、密排六方晶胞中的原子数、配位数、致密度分别是多少?选择:BCC的角上的原子彼此()。

(A)接触(B)不接触(C)无法判断判断:面心立方、体心立方和密排六方(P54)是金属的三种常见晶体结构,它们都属于空间点阵。

问答:分别计算fcc晶体中[100]、[110]和[111]晶向上的线密度(用点阵常数a 表示),并说明哪个晶向是密排方向。

1)、(421)、[111]。

问答:画出立方晶系的晶面和晶向:(11填空:氯化钠(NaCl)的晶体结构属于空间点阵。

材料中的热力学与动力学12-1

材料中的热力学与动力学12-1
������ ������ − =k ������������
{k is in [moles/(liter sec)]}
0
������ = −������������ + ������
II) First Order Reactions A → products
������ ������ − = k ������ ������������ ������ = ������ 0 ������ −������������
II) Analyzing the data A) Reactions with one reactant: A → products
a) Plot or analyze
[A] vs. t ln[A] vs. t 1/[A] vs. t … and find which gives a straight line.
take [A]0 << [B]0 , [C]0 e.g. flood system with B and C
Then [B] ~ [B]0 and [C] ~ [C]0
So that Where
������ ������ − ������������
≈ ������ ′ ������
������ 0
������0 ′ ������0 ������0 ′ ������0 ������0 ′ ������0 ������0 ′ ������0
=1
⇒ ������ = 1
= 2 ⇒ ������ = 1/2 =2 =4 ⇒ ������ = 1 ⇒ ������ = 2
etc… b) Flooding or Isolation (goal is to try to make problem look like a onereactant system)

材料热力学和动力学答案

材料热力学和动力学答案

Gibbs-Thomson effect:1.The Gibbs–Thomson Effect, in common physics usage, refers to variations in vaporpressure or chemical potential across a curved surface or interface. The existence of a positive interfacial energy will increase the energy required to form small particles with high curvature, and these particles will exhibit an increased vapor pressure.See Ostwald–Freundlich equation.2.More specifically, the Gibbs–Thomson effect refers to the observation that small crystalsare in equilibrium with their liquid melt at a lower temperature than large crystals. In cases of confined geometry, such as liquids contained within porous media, this leads to a depression in the freezing point / melting point that is inversely proportional to the pore size, as given by the Gibbs–Thomson equation.Why at a relatively lower temperature solute transport tends to become more effective via grain boundary than through the lattice or through dislocation? Please have an example material to clear.(为什么在一个相对较低的温度,溶质趋向于通过晶界的运输比晶格和位错运输更有效?请举一种材料作为例子详述)答:在多晶体中的扩散除了再晶粒点阵内部进行之外,还会沿表面、晶界、位错等缺陷部位进行。

材料热力学与动力学动力学部分复习

材料热力学与动力学动力学部分复习

3、速率方程的积分形式
A:一级反应 反应速率与反应物浓度一次方成正比的反应称一级反应(first order reaction)。如: AB
dc A kcA dt
dcA c A k dt
dc A kcA dt
t dc A k dt C A,0 c 0 A CA
2、化学反应的速率方程 表示反应速率与参加反应的各种物质浓度及影响反应的各种因 素之间的关系,也称为化学反应的动力学方程。 元反应:
aA bB lL mM
V ∝ caAcbB 或 V=KcaAcbB
(质量作用定律) 反应速率
K:反应速率常数(rate constant of reaction)或反应比速。 K 物理意义:各反应物质皆为单位浓度时的反应速率。 影响K值因素:反应类型、温度、溶剂、催化剂等。
(1)计算此反应的活化能? (2)欲使A在10min内转化率达到90%,反应温 度应控制在多少?
二、相变过程动力学
1、形核率 单位时间单位体积母相中形成的新相晶核数,用 I表示 (1)均匀形核
G * Q I B exp( ) exp( ) kT kT
(2)成核速率随温度变化的关系
2 3 T 64 1 * * m G As 3 (H m ) 2 (T ) 2 3
c
A,0
dy kdt yc B,0 y

c A,0
dy 1 d y kdt c B,0 c B,0 y c A,0 y
由t = 0到t = t积分上式,得
c A0
c B,0 c A,0 y 1 ln kt c B,0 c A,0 c B,0 y
活化能Ea: 为了能发生化学反应,普通分子(具有平均能量的分子)必须吸 收足够能量先变成活化分子 ,在此变化过程中所要吸收的最小
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、常压时纯Al 的密度为ρ=2.7g/cm 3,熔点T m =660.28℃,熔化时体积增加5%。

用理查得规则和克-克方程估计一下,当压力增加1Gpa 时其熔点大约是多少? 解:由理查德规则RTm Hm R Tm HmSm ≈∆⇒≈∆=∆…①由克-克方程VT H dTdP ∆∆=…②温度变化对ΔH m 影响较小,可以忽略,①代入②得V T H dT dP ∆∆=dT T1V Tm R dp V T Tm R ∆≈⇒∆≈…③ 对③积分dT T1V T Tm R p d T Tm Tm p p p⎰⎰∆+∆+∆=整理⎪⎭⎫ ⎝⎛∆+∆=∆Tm T 1ln V Tm R p V T R V Tm R Tm T ∆∆=∆⨯∆≈Al 的摩尔体积V m =m/ρ=10cm 3=1×10-5m 3Al 体积增加ΔV=5%V m =0.05×10-5m3K 14.60314.810510R V p T 79=⨯⨯=∆∆=∆-Tm ’=Tm+T ∆=660.28+273.15+60.14=993.57K二、热力学平衡包含哪些内容,如何判断热力学平衡。

内容:(1)热平衡,体系的各部分温度相等;(2)质平衡:体系与环境所含有的质量不变;(3)力平衡:体系各部分所受的力平衡,即在不考虑重力的前提下,体系内部各处所受的压力相等;(4)化学平衡:体系的组成不随时间而改变。

热力学平衡的判据:(1)熵判据:由熵的定义知dS Q Tδ≥不可逆可逆对于孤立体系,有0Q =δ,因此有dS 可逆不可逆≥,由于可逆过程由无限多个平衡态组成,因此对于孤立体系有dS 可逆不可逆0≥,对于封闭体系,可将体系和环境一并作为整个孤立体系来考虑熵的变化,即平衡自发环境体系总0S S S ≥∆+∆=∆(2)自由能判据 若当体系不作非体积功时,在等温等容下,有()0d ,≤V T F 平衡状态自发过程上式表明,体系在等温等容不作非体积功时,任其自然,自发变化总是向自由能减小的方向进行,直至自由能减小到最低值,体系达到平衡为止。

(3)自由焓判据 若当体系不作非体积功时,在等温等压下,有d ≤G 平衡状态自发过程所以体系在等温等容不作非体积功时,任其自然,自发变化总是向自由能减小的方向进 行,直至自由能减小到最低值,体系达到平衡为止。

三、试比较理想熔体模型与规则熔体模型的异同点。

(1)理想熔体模型:在整个成分范围内每个组元都符合拉乌尔定律,这样的溶体称为理想溶体,其特征为混合热为零,混合体积变化为零,混合熵不为零。

从微观上看,组元间粒子为相互独立的,无相互作用。

(2)符合下列方程的溶体称为规则溶体:(形成(混合)热不为零,混合熵等于理想的混合熵)⎪⎪⎭⎪⎪⎬⎫=='='=2A B 2BA 2AB 2BA ln ln ln ln x x x RT x RT αγαγαγαγ其中,α’为常数,而α为(1/T)的函数,即α =α’/RT相同点:混合熵相等。

不同点:(1)理想熔体模型混合热为零,规则混合热不为零;(2)理想假设组元间粒子为相互独立的,无相互作用,规则考虑粒子间的相互作用。

四、固溶体的亚规则溶体模型中,自由能表示为m ii i ii i m G x x RT G x G E 0 ln ++=∑∑其中过剩自由能表示为∑=-=0B A AB B A E )(ννx x L x x G m实际测得某相中0L AB 和1L AB ,请分别给出组元A 和B 的化学位表达式。

解:该模型有A ,B 两相。

00(ln ln )Em A A B B A A B B m G x G x G RT x x x x G =++++过剩自由能表示为∑=-=0B A AB B A E )(ννx x L x x G mE01m A B AB A B AB A B G =x x L +x x L x -x () 代入Gm 中00(ln ln )m A A B B A A B B G x G x G RT x x x x =+++01A B AB A B AB A B x x L x x L x -x ++()化学位m m BA G G x x μ∂==+∂AA G mB B m A BGG G x x μ∂==+∂解得:020ln (3)A A A B AB A B AB G RT x x L x x L μ⎡⎤=+++-⎣⎦ 020ln (3)B B B A AB A B AB G RT x x L x x L μ⎡⎤=+++-⎣⎦五、向Fe 中加入α形成元素会使γ区缩小,但无论加入什么元素也不能使两相区缩小到0.6at%以内,请说明原因。

解:当1,γB αB <<x x 时γαF e0γαA 0αB γB 11→→∆=∆≈-G RT G RT x x加入一种合金元素后,0B x γ≈,此时01ααγB Fe x G RT→-=∆在1400K (x γB 最大值点)时,0αγFeG →∆有最小值71.7J 此时B x γ≈0.6at%则:%1001400314.87.71⨯⨯-=γB x =0.6at%六、今有Fe-18Cr-9Ni 和Ni80-Cr20两种合金,设其中含碳量为0.1wt%,求T=1273︒C 时碳在这两种合金中活度。

解:对于Fe-20Cr-10Ni 合金,由x i 与y i 的关系可得00462.01C CC =-=x x y 21330.0Cr =y 09447.0Ni =y 69223.0Fe =y从表9-1查得J γCr = -100964J/mol ,J γNi = 46000J/mol 而molJ 21701178.1946115])21([C C grC 0Fe 0FeC 0=-=-+--T I y G G G γγγmolJ 35788555.1121079C -=--=T I γ58.1)]2(1ex p[C C gr C 0C C F e 0F eC 0C =∑+--+-=M M v v y J I y G I G G RTf γγγγ因此在Fe-20Cr-10Ni 合金%727.000727.0C C C ===x f a γ 对于 Ni80-Cr20合金,有%465.0Ni γC =-a七、假如白口铁中含有3.96%C 及2.2%Si ,计算在900︒C 时发生石墨化的驱动力,以铸铁分别处于γ+渗碳体两相状态与γ+石墨两相状态时碳的活度差来表示此驱动力。

由于Si 不进入Fe 3C 中,所以有K SiCem/γ= 0。

在Fe-C 二元合金中,已知900︒C 时γ+渗碳体两相状态碳的活度为二a γC = 1.04;当γ与石墨平衡时a γC = 1。

解:要计算Fe-Si-C 三元合金中石墨化驱动力,首先要求出三元合金中x γC ,u γC ,x γSi 和u γSi 四个参数。

188.009.28/0.285.55/04.94011.12/96.31Si Fe C C C alloy C =+=+=-=x x x x x u0406.009.28/0.285.55/04.9409.28/0.21Si Fe Si C Si alloySi =+=+=-=x x x x x u假定γ中的碳含量与二元系中相同,根据Fe-C 相图,900℃与渗碳体相平衡时奥氏体碳含量为1.23%。

因此有0579.085.55/77.98011.12/23.1γC ==u渗碳体的分子式为Fe 3C ,因此x C Cem=0.25或u C Cem =0.333,利用杠杆定律计算γ相的摩尔分数528.00579.0333.0188.0333.0=--=γf 472.0Cem =f 因为K SiCem/γ=0,由硅的质量平衡可得alloySiCem Si 0u f f u =⋅+γγ0769.0528.0/0406.0Si ==γu279.01)()(lnCCem CCem Si BC TC =--=γγγγu u K a aa γC = 1.375二元合金中石墨化驱动力为 ()()04.0104.1Gr C Fe 3=-=-γγγγC Ca a 三元合金中石墨化驱动力为()()375.01375.1Gr C Fe 3=-=-γγγγC Ca a八、通过相图如何计算溶体的热力学量如熔化热、组元活度。

解:熔化热以Bi-Cd 相图为例计算如含0.1摩尔分数的Cd 时,合金的熔点要降低T=22.8K ,已知Bi 的熔点为T A * = 43.5K ,于是Bi 的熔化热H Bi 可由以下方法计算得到:l s G G BiBi =l l s sa RT G a RT G Bi Bi 0Bi Bi0ln ln +=+ sl l s G G a a RT Bi0Bi 0BiBi ln -=Bi 0Bi 0Bi 0Bi 0Bi 0S T H G G G s l ∆-∆=∆=-在纯Bi 的熔点温度T Bi *时,熔化自由能Δ0G Bi = 0,于是由式(10-4)可得纯Bi 的熔化熵为*∆=∆BiBi 0Bi 0T H S)1(Bi Bi 0Bi 0Bi 0Bi 0*-∆=-=∆T T H G G G s l由于Bi-Cd 为稀溶体,可近似取1Bi Bi ==ss x a l l l x x a CdBi Bi 1-==ll x x CdCd )1ln(-≈-于是得lx T R T H Cd2Bi Bi 0)(1*∆=∆将具体数据T=22.8K ,T Bi *=543.5K ,R=8.314J/K*mol ,x Cd l=0.1 mol 代入得Δ0H Bi = 10.77kJ/mol组元活度:设已知相图如图所示。

在温度为T 1时,a 点组成的α相与b 点组成的l 相平衡共存,所以l A αA μμ=αA αA 0l A l A 0ln ln a RT a RT +=+μμl A αA αA0l Aln a a RT =-μμRT G a a *∆=A0l A αA lnαA 0l A 0A 0 μμ-=∆*G 为A 组分的摩尔熔化吉布斯自由能当固溶体α中A 浓度x A α 接近1时,可近似假定A 组元遵从拉乌尔定律,即用x A α代替a A α,则RTG x a *∆-=A 0αAl Alnln⎰⎰********∆-∆+∆-∆=∆TT p TT p TTC TT C T H T H G AAd d A,A ,AA0A0A 0A ,A ,A ,≈-=∆*s p l p p C C C ***-∆+=AA A 0αAA][lnlnRTT T T H x a l***-∆=AA A 0A][ln RTT T T H a l (当固溶体α为极稀溶体,x A α→1)九、请说明相图要满足那些基本原理和规则。

相关文档
最新文档