《计算机电路及电子技术基础》实验报告
计算机电路课程教学总结报告

《计算机电路》课程教学总结报告《计算机电路》教学组共承担了本学院2019级计算机应用技术,软件技术,计算机网络技术三个专业6个班的教学任务,学生总人数为228人.由于暑假在大学城举办全国大学生运动会,本学期的教学时间有所调整,针对这一特殊情况,《计算机电路》教学组一开学就本学期的课程教学的相关事宜开了几次研讨会,大家经过认真讨论,并汲取往年的教学经验和教训,进行了如下的调整,改革和尝试.2.我们已就本学期的期末考试出卷进行了几次讨论,在保证基础知识与理论40~50%,基础知识与理论应用50~60%不变的前提下,就考试难度做适当调整.因为该课程是coursestudy,而不是leveltest,平时成绩加期末考试才是学生的最后成绩,但纵观以往的考题,卷面成绩略偏低(考题偏难,参考往年的卷面分析材料),卷面成绩的不及格率总是徘徊在20%左右,90分以上往往低于5%,综合平时成绩后的总成绩基本满足正态分布,但还是应当调整考卷难度,尽量保证期末考试成绩也接近正态分布,这也是符合赏识教育的理念.3.调整课外实践.往年的课外实践都是在学生掌握了一定硬件知识后,才开始组织课外实践,由于本学期教学时间短,一开学我们就统计学生课外实践的意愿,兴趣爱好确定电子设备,加快购置,目前学生已有50%同学完成作品,特别是组装单片机的学生,在完成组装后,教师有时间指导他们利用单片机开发一些技巧,使许多学生对计算机的学习发生了浓厚的兴趣,这也给我们指明了在今后教学中可以较早的操作课外实践,会取得更好的教学效果.由于部分学生急于利用单片机进行控制设计(如温度控制,小车自动寻迹等),我们也破例吸收正在学习的学生进入了创新基地.这充分说明了这一调整的优势.本学期课程教学中还存在一些问题,由于教学时间缩短,原教学计划调整不一定很科学,有些知识难点大部分同学已理解,但还是有个别学生存在理解问题,在恢复正常教学计划后,这问题会好一些.。
电子技术基础》数字电路教案(张兴龙主编教材)

《电子技术基础》数字电路教案(张兴龙主编教材)一、教学目标1. 理解数字电路的基本概念、特点和分类。
2. 掌握逻辑门、逻辑函数及其转换方法。
3. 熟悉常用的逻辑门电路及其应用。
4. 能够分析简单的数字电路系统。
二、教学内容1. 数字电路的基本概念数字信号与模拟信号的区别数字电路的组成与特点数字电路的分类2. 逻辑门与门、或门、非门、异或门、同或门等基本逻辑门的功能和真值表逻辑门的符号表示方法逻辑门的电路实现方法3. 逻辑函数及其转换方法逻辑函数的定义和表示方法逻辑函数的代数化简方法逻辑函数的卡诺图化简方法4. 常用的逻辑门电路及其应用与非门、或非门、与门、或门等电路的原理和应用缓冲器、反相器、多路选择器、编码器等电路的原理和应用5. 数字电路系统分析数字电路系统的组成和特点数字电路系统的设计方法数字电路系统的仿真与测试方法三、教学方法1. 采用讲授法,讲解数字电路的基本概念、逻辑门的功能和应用。
2. 采用案例分析法,分析具体的逻辑函数和逻辑门电路。
3. 采用实践操作法,让学生动手搭建简单的数字电路系统,提高实际操作能力。
四、教学准备1. 教学课件:制作相关的教学课件,图文并茂地展示教学内容。
2. 实验器材:准备数字电路实验板、逻辑门电路芯片等实验器材。
3. 教学软件:准备数字电路仿真软件,用于电路仿真和测试。
五、教学评价1. 课堂参与度:观察学生在课堂上的发言和提问情况,评估学生的参与度。
2. 作业完成情况:评估学生完成作业的质量和速度。
3. 实验报告:评估学生在实验中的操作能力和对实验结果的分析能力。
4. 期末考试:设置相关的试题,评估学生对数字电路知识的掌握程度。
六、教学难点与解决策略1. 教学难点:逻辑函数的化简方法及数字电路系统的设计。
2. 解决策略:通过案例分析和实践操作,让学生反复练习逻辑函数的化简方法,以及数字电路系统的设计步骤。
提供辅导资料和在线解答,帮助学生解决疑难问题。
七、教学进度安排1. 课时:共计40课时,每课时45分钟。
数字电子技术基础实验指导书(1)

《电子技术基础》实验指导书电子技术课组编信息与通信工程学院实验三基本门电路逻辑功能的测试一 . 实验类型——验证性 +设计二 . 实验目的1. 熟悉主要门电路的逻辑功能;2. 掌握基本门电路逻辑功能的测试方法;3. 会用小规模集成电路设计组合逻辑电路。
三 . 实验原理1. 集成电路芯片介绍数字电路实验中所用到的集成芯片多为双列直插式, 其引脚排列规则如图 1-1。
其识别方法是:正对集成电路型号或看标记 (左边的缺口或小圆点标记 , 从左下角开始按逆时针方向以1, 2, 3…依次排列到最后一脚。
在标准形 TTL 集成电路中,电源端 Vcc 一般排在左上端,接地端(GND 一般排在右下端, 如 74LS00。
若集成芯片引脚上的功能标号为 NC ,则表示该引脚为空脚,与内部电路不连接。
本实验采用的芯片是 74LS00二输入四与非门、 74LS20四输入二与非门、 74LS02二输入四或非门、 74LS04六非门,逻辑图及外引线排列图见图 1-1。
图 1-1 逻辑图及外引线排列2.逻辑表达式 : 非门1-12输入端与非门1-24输入端与非门1-3或非门1-4对于与非门 , 其输入中任一个为低电平“ 0”时,输出便为高电平“ 1”。
只有当所有输入都为高电平“ 1”时,输出才为低电平“ 0”。
对于 TTL 逻辑电路,输入端如果悬空可看做;逻辑 1,但为防止干扰信号引入,一般不悬空, 可将多余的输入端接高电平或者和一个有用输入端连在一起。
对 MOS 电路输入端不允许悬空。
对于或非门,闲置输入端应接地或低电平。
四 . 实验内容及步骤 1. 逻辑功能测试①与非门逻辑功能的测试:* 将 74LS20插入实验台 14P 插座,注意集成块上的标记,不要插错。
* 将集成块Vcc 端与电源 +5V相连, GND 与电源“地”相连。
* 选择其中一个与非门,将其 4个输入端 A 、 B 、 C 、 D 分别与四个逻辑开关相连,输出端 Y 与逻辑笔或逻辑电平显示器相连,如图 1-2。
《电子技术基础》课程教案

《电子技术基础》课程教案一、课程概述1. 课程定位:《电子技术基础》是工科电类相关专业的一门核心专业基础课程,旨在培养学生掌握电子技术的基本理论、基本知识和基本技能。
2. 课程目标:通过本课程的学习,使学生了解电子技术的基本概念、基本原理,掌握基本电子元件的工作原理及应用,具备分析和解决电子技术问题的能力。
二、教学内容1. 第一章:电子技术概述教学内容:电子技术的定义、发展历程、应用领域及发展趋势。
2. 第二章:常用电子元件教学内容:电阻、电容、电感、二极管、三极管等基本电子元件的原理、特性及应用。
3. 第三章:基本电路分析教学内容:电路的基本概念、基本定律,直流电路、交流电路和模拟电路的分析方法。
4. 第四章:放大电路教学内容:放大器的基本原理、分类及应用,常见放大电路的设计与分析。
5. 第五章:数字电路基础教学内容:数字电路的基本概念、数字逻辑运算、逻辑门电路、组合逻辑电路和时序逻辑电路。
三、教学方法1. 讲授法:通过讲解、案例分析等方式,使学生掌握电子技术的基本概念、原理和方法。
2. 实践法:安排实验课程,让学生动手操作,加深对理论知识的理解和应用。
3. 讨论法:组织学生进行小组讨论,培养学生的团队合作能力和解决问题的能力。
四、教学评价1. 平时成绩:包括课堂表现、作业完成情况、实验报告等,占总评的40%。
2. 期末考试:包括理论考试和实际操作考试,占总评的60%。
五、教学资源1. 教材:《电子技术基础》教材及相关辅导资料。
2. 实验设备:电子实验台、示波器、信号发生器、万用表等。
3. 网络资源:电子技术相关网站、论坛、教学视频等。
六、第四章:放大电路1. 教学内容:本章主要介绍放大器的基本原理、分类及应用,包括常见放大电路的设计与分析。
具体内容包括:放大器的静态工作点与动态工作点调整放大器的类型:共射放大器、共基放大器、共集放大器放大器的频率特性放大器的级联与多级放大器设计放大器的实用电路设计实例2. 教学方法:结合理论知识讲解放大电路的原理与设计方法。
《电子技术基础》逻辑测试笔实验报告

《电子技术基础》逻辑测试笔实验报告一、实验目的1、掌握半导体器件二极管、三极管的工作原理,学会集成逻辑芯片的使用。
2、掌握逻辑与非门的输入输出逻辑关系。
3、掌握电路设计的基本方法、培养电路的综合设计与调试能力。
4、培养实践技能,提高分析问题和解决问题的能力。
二、实验仪器1、焊接工具:电烙铁、焊锡、斜口钳。
2、调试仪器:直流稳压电源,万用表。
3、元器件:三、实验原理1、电路原理图:2、工作原理:当被测点为高电平时,D1导通,Q1发射极输出高电平,经U2B反相后,输出低电平,红色发光二极管导通而发光。
此时,D2截止,U1A输出低电平,U3C 输出高电平。
使绿色发光二极管截止而不发光。
当被测点为低电平时,D2导通,从而使U1A输出高电平。
U3C输出低电平。
绿色发光二极管导通发光,此时,D1截止,Q1发射极输出低电平,经U2B反相后,输出高电平,红色发光二极管截止而不发光。
四、实验内容及步骤1、实验内容:1)熟悉有关电子元器件的使用及焊接技术;2)学习逻辑测试笔电路原理图的分析方法;3)完成逻辑测试笔电路的制作。
2、实验步骤:1)识别器件,测试器件性能的好坏;2)对PCB板进行合理布局;3)焊接制作电路板;4)调试电路板;5)测试相关参数。
五、实验原始数据记录与数据处理1、当测试点为高电平时,分别测试U1A、U2B、U3C输出端的电压值?U1A:0VU2B:0VU3C:5V2、当测试点为低电平时,分别测试U1A、U2B、U3C输出端的电压值?U1A:5VU2B:5VU3C:0V六、实验结果与分析讨论实验结果:当被测点为高电平时,红色发光二极管导通发光。
绿色发光二极管截止而不发光。
当被测点为低电平时,绿色发光二极管导通发光,红色发光二极管截止而不发光。
七、结论数字电路是最基本的逻辑关系有3种,即与逻辑或逻辑和非逻辑,它们可由相应的与门,或门和非门来实现与或非三种基本逻辑门电路是数字电路的基本单元。
八、实验心得体会。
《电子技术基础》实验指导书

《电子技术基础》实验指导书勘查专业适用信息学院实验中心2014年9月目录第一部分《模拟电子技术》实验................................................................ - 1 -实验一电子仪器使用及常用元件的识别与测试 ..................................... - 3 -实验二晶体管共射极放大电路.................................................................. - 6 -实验三多级放大电路中的负反馈(仿真) ........................................... - 10 -实验四由集成运算放大器组成的文氏电桥振荡器(仿真) ............... - 12 -实验五集成运算放大器.................................................... 错误!未定义书签。
第二部分《数字电子技术》实验.............................................................. - 17 -实验一组合逻辑电路................................................................................ - 17 -实验二触发器............................................................................................ - 19 -实验三计数器设计.................................................................................... - 22 -实验四计数、译码和显示电路设计(仿真) ......................................... - 23 -第一部分《模拟电子技术》实验实验一电子仪器使用及常用元件的识别与测试一、实验目的1.掌握常用电子仪器的基本功能并学习其正确使用方法;2.学习掌握用双踪示波器观察和测量波形的幅值、频率及相位的方法;3.掌握常用元器件的识别与简单测试方法。
电子技术基础实验报告一

电子技术基础实验报告班级:姓名:学号:指导教师:撰写日期:目录实验一基尔霍夫定律的验证 (4)1 实验目的 (4)2 实验原理 (4)3 实验设备 (4)4 实验内容 (4)5 实验注意事项 (6)6 实验报告 (7)实验二叠加原理的验证 (9)1 实验目的 (9)2 实验原理 (9)3 实验设备 (9)4 实验内容 (9)5 实验注意事项 (13)6 实验报告 (14)实验三电压源与电流源的等效变换 (15)1 实验目的 (15)2 实验原理 (15)3 实验设备 (15)4 实验内容 (16)5 实验注意事项 (16)实验四戴维南定理........................ (17)1 实验目的 (17)2 实验原理 (17)3 实验设备 (17)4 实验内容 (17)5 实验注意事项 (19)实验一基尔霍夫定律的验证1.1实验目的(1)验证基尔霍夫定律的正确性,加深对基尔霍夫定律的理解。
(2)进一步学会使用电压表、电流表。
1.2实验原理基尔霍夫定律是电路的基本定律。
1)基尔霍夫电流定律对电路中任意节点,流入、流出该节点的代数和为零。
即∑I=0 2)基尔霍夫电压定律在电路中任一闭合回路,电压降的代数和为零。
即∑U=01.3实验设备(1)直流电压表(2)直流毫安表(3)稳压电源(4)可变电阻箱1.4实验内容1、实验前先任意设定三条支路的电流参考方向,2、按原理的要求,分别将两路直流稳压电源接入电路。
3、将电流插头的两端接至直流数字毫安表的“+,-”两端。
4、将电流插头分别插入三条支路的三个电流插座中,记录电流值于下表。
5、用直流数字电压表分别测量两路电源及电元件上的电压值,记录于下表。
被测量I1(mA ) I2(mA ) I3(mA )E1(V)E2 (V)UFA (V)UAB (V)UAD (V)UCD (V)UDE (V)计算值 1.93 5.99 7.92 6.00 12.00 0.98 -5.99 4.04 -1.97 0.98测量值 2.08 6.38 8.43 6.00 12.00 0.93 -6.24 4.02 -2.08 0.97相对误差7.77% 6.51% 6.43% 0% 0% -5.10%4.17% -0.50%-5.58%-1.02%2、实验箱实验内容(1)实验前先任意设定三条支路的电流参考方向,如果中的I1、I2、I3所示。
《电子技术基础》教学总结

《电子技术基础》教学总结《电子技术基础》教学总结1针对《电子技术基础》课程“入门难,发展快,学时少,实践性强”的`特点,我们积极进行该课程的教学改革,实行理论实习一体化。
按照企业生产流程,以工作过程为导向,对课程结构进行项目化改造,形成相应的项目教学任务。
并以真实项目任务为载体,以任务为中心,学生为主体,教师为主导,实现“学习的内容就是工作,通过工作实现学习”体现“教、学、做合一”的思想。
1.构建“一条主线、三个结合”的课程体系,对教学内容进行了优化根据职业教育实用型人才培养计划和人才培养规格,结合课程教学改革思路,按照加强针对性、突出实用性、体现先进型的原则,系统规划课程的教学方案、教学内容。
为此,我们全面科学地修订和重新制定了课程教学大纲、课程标准等教学方案的框架体系,强调了以应用能力培养为主线,将知识、能力、素质的具体要求规范化,并且落实和体现在每一个教学环节的实施中。
由于优化了教学方案与教学内容,突出了重点,同进合理地采用了多媒体教学,保证学生较好地掌握电子技术必备知识及电子技术应用能力,为学生从业后的可持续发展奠定了良好的基础。
教学中,我们考虑到《电子技术基础》是电子技术应用专业的基础与核心课程,从课程设置整体优化的角度出发,在设计项目教学内容时,恰当地解决好了“基础与发展”、“基础与应用”、“理论与实践”、“重点内容与知识面”等矛盾,使项目课程内容具有系统性、科学性、先进性、启发性、实用性。
同时我们加强针对性,突出适用性,教学内容遵循循序渐进,由浅入深,从理论到实践,从点到面的教学规律。
2.加强了实践教学,注重学生的能力培养电子技术课程的学习对学生来说,是逐步实现理论学习向实践应用方向转变的过程。
因此,电子技术课程的改革应该为培养学生的综合应用能力和实践应用能力打下坚实的基础。
在课程体系与教学内容的改革过程中,加大了对实践性教学环节的改革力度。
我们淘汰了过去的验证性实验,增加了检测性、综合性的实验,精选了一些典型的课程实训教学项目,例如超外差收音机装配与调试项目,让学生从元器件性能的测试、电路的焊接、电路的静态调试、动态调试和统调各个环节都亲自动手,使每个学生既掌握了常用电子元器件的测试方法、电路的焊接技术,同时对电子电路的调试有了更进一步的认识和亲身的经历,也初步掌握了电子电路的调试方法。
《电子技术基础与技能》教案逻辑门电路

一、教学目标1. 知识与技能:(1)理解逻辑门电路的基本概念和原理;(2)掌握与门、或门、非门、异或门等逻辑门电路的组成、符号及其功能;(3)学会使用逻辑门电路进行简单的逻辑运算。
2. 过程与方法:(1)通过实验观察和分析逻辑门电路的工作原理;(2)运用逻辑门电路设计简单的数字电路系统。
3. 情感态度与价值观:(1)培养学生的创新意识和动手能力;(2)培养学生对电子技术的兴趣和爱好。
二、教学内容1. 逻辑门电路的基本概念和原理2. 与门(AND gate)的组成、符号及其功能3. 或门(OR gate)的组成、符号及其功能4. 非门(NOT gate)的组成、符号及其功能5. 异或门(XOR gate)的组成、符号及其功能6. 逻辑门电路的应用实例三、教学重点与难点1. 教学重点:(1)逻辑门电路的基本概念和原理;(2)与门、或门、非门、异或门等逻辑门电路的组成、符号及其功能;(3)逻辑门电路的应用实例。
2. 教学难点:(1)逻辑门电路的工作原理;(2)逻辑门电路在实际应用中的设计方法。
四、教学方法1. 采用实验演示法,让学生通过观察实验现象,理解逻辑门电路的工作原理;2. 采用讲授法,讲解逻辑门电路的基本概念、原理和功能;3. 采用案例分析法,分析逻辑门电路在实际应用中的设计方法;4. 采用小组讨论法,引导学生探讨逻辑门电路的组成和应用。
五、教学过程1. 导入:通过生活中的实例,引导学生了解逻辑门电路在现代科技领域的重要应用,激发学生的学习兴趣。
2. 新课讲解:(1)讲解逻辑门电路的基本概念和原理;(2)讲解与门、或门、非门、异或门等逻辑门电路的组成、符号及其功能;(3)分析逻辑门电路的工作原理。
3. 实验演示:进行逻辑门电路的实验演示,让学生观察和分析实验现象,加深对逻辑门电路的理解。
4. 案例分析:分析逻辑门电路在实际应用中的设计方法,让学生学会运用逻辑门电路解决实际问题。
5. 小组讨论:引导学生探讨逻辑门电路的组成和应用,培养学生的创新意识和团队合作精神。
电子技术基础B中规模集成电路的应用(一)实验报告

接一个反相器还可级联扩展成32 线译码器。
若将选通端中的一个作为数据输入端时,74LS138 还可作数据分配器3.3 线-8 线译码器74LS138的逻辑图与功能表无论从逻辑图还是功能表我们都可以看到74LS138的八个输出引脚,任何时刻要么全为高电平1—芯片处于不工作状态,要么只有一个为低电平0,其余7 个输出引脚全为高电平1。
如果出现两个输出引脚同时为0 的情况,说明该芯片已经损坏。
当附加控制门的输出为高电平(S=1)时,可由逻辑图写出(2)74LS139基本功能当选通端(G1)为高电平,可将地址端(A、B)的二进制编码在一个对应的输出端以低电平译出。
若将选通端(G1)作为数据输入端时,139 还可作数据分配器。
管脚图内部逻辑引脚功能引出端符号:A、B:译码地址输入端G1、G2 :选通端(低电平有效)Y0~Y3:译码输出端(低电平有效)真值表(3)74LS148基本功能74LS148是8 线-3 线优先编码器,共有54/74148 和54/74LS148两种线路结构型式,将8 条数据线(0-7)进行3 线(4-2-1)二进制(八进制)优先编码,即对最高位数据线进行译码。
利用选通端(EI)和输出选通端(EO)可进行八进制扩展。
管脚图管脚介绍0-7 编码输入端(低电平有效)EI 选通输入端(低电平有效)A0、A1、A2 三位二进制编码输出信号即编码输出端(低电平有效)GS 片优先编码输出端即宽展端(低电平有效)EO 选通输出端,即使能输出端逻辑图真值表由74ls148真值表可列输出逻辑方程为:A2 = (I4+I5+I6+I7)IEA1 = (I2I4I5+I3I4I5+I6+7)·IEA0 = (I1I2I4I6+I3I4I6+I5I6+I7)·IE工作原理该编码器有8个信号输入端,3个二进制码输出端。
此外,电路还设置了输入使能端EI,输出使能端EO和优先编码工作状态标志GS。
电子技术基础实验

出波形的变化原因。
(3) 实验中遇到了什么问题, 如何解决? (4) 功率放大器与电压放大电路比较有何异同点? (5) 查阅其他集成功率放大器的相关资料手册。
表 S2.3
第三篇 电子技术基础实验 S2.5 实验报告
(1) 整理实验测量数据。 (2) 分析静态工作点对放大器性能的影响。 (3) 分析空载和带载情况下, 放大倍数的改变原因。 (4) 初步确定输出电压达到饱和失真(或截止失真)时, 静态工作点的大致范围。
第三篇 电子技术基础实验
实验 3 多级放大器
第三篇 电子技术基础实验 表S1.1
第三篇 电子技术基础实验
(2) 用双踪示波器Y轴任一输入通道探头测量示波器 “校正电压”, 读出荧屏显示波形的UP-P值和频率f。
(3) 用交流毫伏表及双踪示波器测量信号发生器的输出 电压及周期的数值, 记入表S1.2。
第三篇 电子技术基础实验 表S1.2
第三篇 电子技术基础实验
第三篇 电子技术基础实验
(3) 双踪示波器的电压测量有“CH1”、“CH2”、 “CH1+CH2”、“断续”和“交替”五种方式。 其中“断续” 和“交替”是双踪信号测量方式。 “断续”适用于频率较高 的信号测量, “交替”用于频率较低的信号的测量。
当被测信号频率较低时, 波形会有些闪烁,但被测信号 波形只要不左右移动, 仍属于稳定显示。
第三篇 电子技术基础实验 S3.4 实验内容及步骤 (1) 按图S3.1连接好电路, 检查无误。
图 S3.1 多级放大器
第三篇 电子技术基础实验
(2) 闭合开关S,将直流电源UCC调到12V,接入电路输入 端,分别调节Rp1和Rp2,使UC1、UC2调至8~10V(建立各级合 适的静态工作点), 测量UC1Q、UC2Q, 填入表S3.1中。
电子技术基础实验报告

电子技术基础实验报告电子技术基础实验报告近年来,随着科技的迅猛发展,电子技术在我们的日常生活中扮演着越来越重要的角色。
电子技术基础实验作为电子工程专业学习的重要组成部分,对于我们深入了解电子技术的原理和应用具有重要意义。
在本次实验中,我们将学习和掌握一些基础的电子技术实验。
实验一:电路基础实验在电子技术的学习中,电路是最基础也是最重要的一环。
通过本次实验,我们将学习到电路的基本组成和工作原理。
首先,我们使用电阻、电容和电感等元件搭建了一个简单的RC电路。
通过观察电压和电流的变化,我们发现电容器在充电和放电过程中会产生不同的电压曲线。
这说明电容器具有存储电能的特性。
接下来,我们搭建了一个简单的RL电路。
通过测量电感器两端的电压和电流,我们发现电感器会产生电压和电流的相位差,这是由于电感器对电流变化的延迟导致的。
实验二:半导体器件实验半导体器件是现代电子技术的核心组成部分。
通过本次实验,我们将学习到半导体器件的基本原理和应用。
首先,我们实验了二极管的特性。
通过改变二极管的正向电压,我们观察到了二极管的导通和截止状态。
这说明二极管具有单向导电性。
接下来,我们实验了晶体管的特性。
通过改变晶体管的基极电压和发射极电压,我们观察到了晶体管的放大效果。
这说明晶体管具有放大信号的功能。
实验三:数字电路实验随着数字技术的快速发展,数字电路在现代电子设备中扮演着重要角色。
通过本次实验,我们将学习到数字电路的基本原理和应用。
首先,我们实验了逻辑门电路。
通过搭建与门、或门和非门电路,我们观察到了逻辑门的输入和输出关系。
这说明逻辑门可以实现不同的逻辑运算。
接下来,我们实验了触发器电路。
通过改变触发器的输入信号,我们观察到了触发器的状态变化。
这说明触发器可以实现存储和传输信息的功能。
通过以上实验,我们对电子技术的基础知识有了更深入的了解。
电路、半导体器件和数字电路是电子技术的重要组成部分,掌握它们的原理和应用对于我们日后的学习和工作具有重要意义。
和电子技术有关的实验报告

和电子技术有关的实验报告实验名称:电子技术基础实验实验目的:1. 理解电子元件的基本特性和工作原理。
2. 掌握电路设计和搭建的基本方法。
3. 学习使用电子测量仪器进行电路参数测试。
实验原理:电子技术是研究电子器件及其电路的科学。
本次实验主要涉及电阻、电容、电感等基本电子元件的特性,以及它们在电路中的作用。
通过实验,学生将了解这些元件的工作原理,并学会如何将它们应用于实际电路设计中。
实验设备与材料:1. 多用电表2. 电阻、电容、电感元件3. 面包板及连接线4. 信号发生器5. 示波器实验步骤:1. 电阻特性测试:使用多用电表测量不同电阻值的电阻器,记录测量结果,并分析电阻对电流的影响。
2. 电容充放电特性测试:搭建RC电路,使用信号发生器提供周期性信号,通过示波器观察电容的充放电过程。
3. 电感特性测试:构建含有电感的电路,测量电感对交流信号的阻抗,并分析电感对电路的影响。
4. 电路设计:根据给定的电路图,使用面包板和连接线搭建电路,并进行实际测试,验证电路设计的正确性。
实验结果:1. 电阻测试结果表明,电阻值与通过电阻的电流成反比,符合欧姆定律。
2. 电容测试结果展示了电容在充放电过程中的电压变化,符合电容的充放电公式。
3. 电感测试结果表明,电感对交流信号的阻抗与频率成正比,验证了电感的特性。
4. 电路设计测试结果符合预期,电路能够正常工作,达到了设计要求。
实验结论:通过本次实验,我们验证了电阻、电容、电感等基本电子元件的特性,并通过实际电路搭建和测试,加深了对电子技术原理的理解。
实验过程中,学生学会了使用电子测量仪器,提高了电路设计和分析的能力。
实验心得:在本次实验中,我深刻体会到了理论与实践相结合的重要性。
通过亲自动手搭建电路,我对电子元件的工作机制有了更加直观的认识。
同时,实验过程中遇到的各种问题也锻炼了我的问题解决能力。
希望在未来的学习中,能够将这些知识应用到更复杂的电子系统中。
注:本实验报告为示例文本,实验数据和结果需要根据实际实验情况进行调整和补充。
电子技术基础实训实验报告

实训项目一常用电工电子仪器仪表的使用一、实验目地1、了解双踪示波器、低频信号发生器、稳压电源、晶体管毫伏表及万用表的原理框图和主要技术指标。
2、掌握用双踪示波器测量信号的幅度和频率。
3、掌握晶体管毫伏表的使用方法。
4、掌握万用表的正确使用方法。
二、实验仪器1、双踪示波器;2、低频信号发生器;3、直流稳压电流;4、晶体管毫伏表;5、数字式(或指针式)万用表。
三、电测量指示仪表简介1、磁电系测量机构磁电系测量机构的固定部分由永久磁铁和处在磁极中间的圆柱形铁心组成。
具有准确度高、刻度均匀、阻尼强与消耗能量小等优点。
2、电磁系仪表电磁系测量属于推斥式类型。
推斥式测量结构的固定部分是由圆形线圈和装在线圈内部的磁电系测量机构形铁片组成的。
具有结构简单、过载能力强与交直流两用等优点。
3、电动系仪表电动系测量机构的固定部分是两个平行排列的固定线圈;可动部分由转轴、固定在转轴上的可动线圈、指针、阻尼翼片以及游丝组成。
具有准确度高、使用范围广等优点。
四、常用电子仪器的使用1、直流稳压电源:把交流电源转换成直流电源的装置。
2、示波器:用来观察电路中各测试点的波形,监测电路的工作情况,也可用于测量小信号的周期、幅度、相位差以及观察电路的特性曲线等。
3、低频信号发生器:为测量电路提供各种频率、幅度、及波形的输入信号。
4、晶体毫伏表:用于测量电路输入、输出信号的有效值。
5、数字式或指针式万用表:用于测量电路的静态工作点和直流信号。
6、晶体管特征分析仪:用于对晶体管的特征及参数的测量。
五、万用表的基本原理与使用1、万用表基本组成主要包括指示部分、测量电路、转换装置三部分。
2、指针式万用表指针式万用表的型号和种类很多,不同型号的万用表,功能也不尽相同。
3、数字式万用表数字式万用表的用途与指针万用表类似,它直接显示测量结果,读数具有直观性和唯一性。
且体积小,测量精度高、应用十分广泛。
4、DT-830型数字万用表DT-830型数字万用表原理框图COS5020型示波器使用说明示波器的控制操作旋钮一般都分布在前面板上。
电子技术基础实验报告

电子技术基础实验报告姓名:学号:实验一:两级放大电路的设计、测试与调试一.实验名称:两级放大电路的设计、测试与调试二.实验目的:1.进一步掌握放大电路各项性能指标的测试方法2.掌握二级放大电路的设计原理、各性能指标的调试原理三.仿真电路四.实验内容1.测试静态工作点令Vcc=+12V,调节Rw,使放大器第一级工作点VE1=1.6VVB1 VC1 VE1VB2 VC2 VE22.放大倍数的测量Ui=5mV,f=1KHz输入Ui 输出Uo 增益Av72.82 3.输入电阻和输出电阻的测量取样电阻均为1000Ω⑴输入电阻的测量Us’ Ui Ri4952.4Ω⑵输出电阻的测量Uo Uo’Ro1091.7Ω4.测量两级放大器的频率特性,并绘出频率特性曲线频率值(Hz) fL/2 fL fo/2 fo 2fo fH 10fH 总带宽10 20 500 1000 2000 2M 20MUo(V) 0.159 0.261 0.370 0.370 0.370 0.261 0.032 2MHz实验二:负反馈放大电路的设计、测试与调试一.实验名称:负反馈放大电路的设计、测试与调试二.实验目的:1.掌握负反馈电路的设计原理,各项指标的调试原理。
2.加深理解负反馈对电路性能指标的影响。
3.掌握用正弦测试方法对负反馈放大器性能的测量。
三.仿真电路四.实验内容1.测试静态工作点令Vcc=+12V,调节Rw,使放大器第一级工作点VE1=1.6VVB1 VC1 VE1VB2 VC2 VE22.放大倍数及反馈深度的测量Uif=5mV Uof=94.82mV Avf=18.96 反馈深度F=3.843.输出电阻的测量Uof Uof’ Rof280.6Ω4.幅频特性及带宽的测量频率值(Hz)fL/2 fL fo/2 fo 2fo fH 10fH 总带宽11 23 500 1000 2000 9M 90MUo(V) 0 0.066 0.094 0.094 0.094 0.066 0 9MHz。
电子技术基础实验报告

电子技术实验报告学号: 2220姓名:刘娟专业:教育技术学实验三单级交流放大器(二)一、实验目的1. 深入理解放大器的工作原理。
2. 学习测量输入电阻、输出电阻及最大不失真输出电压幅值的方法。
3. 观察电路参数对失真的影响.4. 学习毫伏表、示波器及信号发生器的使用方法。
二. 实验设备:—1、实验台2、示波器3、数字万用表三、预习要求1、熟悉单管放大电路。
2、了解饱和失真、截止失真和固有失真的形成及波形。
3、掌握消除失真方法。
四、实验内容及步骤实验前校准示波器,检查信号源。
按图3-1接线。
图3-11、测量电压参数,计算输入电阻和输出电阻。
调整RP2,使V C=Ec/2(取6~7伏),测试V B、V E、V b1的值,填入表3-1中。
~表3-1…输入端接入f=1KHz、V i=20mV的正弦信号。
分别测出电阻R1两端对地信号电压Vi 及Vi′按下式计算出输入电阻Ri:测出负载电阻R L开路时的输出电压V∞,和接入R L(2K)时的输出电压V0 , 然后按下式计算出输出电阻R;将测量数据及实验结果填入表3-2中。
V i (mV)Vi′(mV)Ri()V∞(V)V(V)R()调整 R P2测量VC(V)Ve(V)Vb(V)Vb1(V)[输入信号不变,用示波器观察正常工作时输出电压V o 的波形并描画下来。
逐渐减小R P2的阻值,观察输出电压的变化,在输出电压波形出现明显失真时,把失真的波形描画下来,并说明是哪种失真。
( 如果R P2=0Ω后,仍不出现失真,可以加大输入信号V i ,或将R b1由100K Ω改为10K Ω,直到出现明显失真波形。
)逐渐增大R P2的阻值,观察输出电压的变化,在输出电压波形出现明显失真时,把失真波形描画下来,并说明是哪种失真。
如果R P2=1M 后,仍不出现失真,可以加大输入信号V i ,直到出现明显失真波形。
表 3-3调节R P2使输出电压波形不失真且幅值为最大(这时的电压放大倍数最大),测量此时的静态工作点V c 、V B 、V b1和V O 。
电脑模拟电路实验报告(3篇)

第1篇一、实验目的1. 理解电脑模拟电路的基本原理和组成;2. 掌握电脑模拟电路的仿真方法和技巧;3. 分析电脑模拟电路的性能指标,提高电路设计能力。
二、实验原理电脑模拟电路是指使用计算机软件对实际电路进行模拟和分析的一种方法。
通过搭建电路模型,可以预测电路的性能,优化电路设计。
实验中主要使用到的软件是Multisim。
三、实验内容及步骤1. 电路搭建以一个简单的RC低通滤波器为例,搭建电路模型。
首先,在Multisim软件中创建一个新的电路,然后按照电路图添加电阻、电容和电源等元件。
将电阻和电容的参数设置为实验所需的值。
2. 仿真设置在仿真设置中,选择合适的仿真类型。
本实验选择瞬态分析,观察电路在时间域内的响应。
设置仿真时间,本实验设置时间为0-100ms。
设置仿真步长,本实验设置步长为1μs。
3. 仿真运行点击运行按钮,观察仿真结果。
在Multisim软件的波形窗口中,可以看到电路的输入信号和输出信号随时间变化的曲线。
4. 数据分析分析仿真结果,观察电路的频率响应、幅度响应和相位响应。
本实验中,观察RC 低通滤波器的截止频率、通带增益和阻带衰减等性能指标。
5. 结果优化根据仿真结果,对电路参数进行调整,优化电路性能。
例如,可以通过调整电容值来改变截止频率,通过调整电阻值来改变通带增益。
四、实验结果与分析1. 频率响应通过仿真结果可以看出,RC低通滤波器的截止频率约为3.18kHz。
在截止频率以下,电路具有良好的滤波效果;在截止频率以上,电路的幅度衰减明显。
2. 幅度响应在通带内,RC低通滤波器的增益约为-20dB。
在阻带内,增益约为-40dB。
3. 相位响应在截止频率以下,电路的相位变化约为-90°;在截止频率以上,相位变化约为-180°。
五、实验结论1. 通过本实验,加深了对电脑模拟电路基本原理的理解;2. 掌握了Multisim软件在电路仿真中的应用;3. 分析了电路性能指标,提高了电路设计能力。
《计算机电路基础》电子教案

《计算机电路基础》电子教案一、教案概述1.1 课程定位《计算机电路基础》是计算机科学与技术专业的入门课程,旨在帮助学生了解计算机电路的基本原理和基本组成,为后续专业课程打下基础。
1.2 教学目标通过本课程的学习,使学生掌握计算机电路的基本概念、基本原理和基本分析方法,具备分析和设计简单计算机电路的能力。
1.3 教学内容本课程主要内容包括:计算机电路的基本概念、数字逻辑电路、模拟电路、计算机电路的设计与分析等。
二、教学方法2.1 授课方式采用讲授、实验、讨论相结合的方式进行教学。
2.2 教学工具使用多媒体课件进行授课,配合实验设备进行实验教学。
2.3 学习评价采取平时成绩和考试成绩相结合的方式进行评价。
三、教学安排3.1 课时安排共计48课时,其中理论课32课时,实验课16课时。
3.2 教学进度安排第1-8周:计算机电路的基本概念、数字逻辑电路;第9-16周:模拟电路、计算机电路的设计与分析。
四、教学资源4.1 教材《计算机电路基础》,作者:,出版社:清华大学出版社,出版时间:2024年。
4.2 实验设备数字逻辑电路实验箱、模拟电路实验箱、示波器、信号发生器等。
五、教学实践5.1 实验安排实验内容包括:数字逻辑电路实验、模拟电路实验等。
5.2 实践要求5.3 实践评价实验成绩将根据学生实验报告的质量、实验操作的正确性等进行评价。
六、教学辅助材料6.1 课件提供包含图文并茂、生动活泼的课件,以便学生更好地理解和掌握课程内容。
6.2 习题库为学生提供丰富的习题库,包括选择题、填空题、判断题和计算题等,以便学生进行自我测试和学习效果的评估。
六、学习指导与辅导7.1 学习指南为学生提供详细的学习指南,包括学习目标、学习内容、学习方法等,以便学生进行有目的的学习。
7.2 辅导安排安排定期辅导时间,为学生提供面对面的辅导机会,解答学生在学习中遇到的问题。
八、课程考核8.1 考核方式课程考核采取期末考试和实验报告相结合的方式进行。
《计算机电路与电子技术基础》实验报告.

7. 电阻
三、实验原理及实验电路
如图4-1所示的电路。
由电路理论可知, 串联电路的阻抗为:
, ω=2πf
故:
该阻抗角即为电路中电压与电流的相位差。当电路元件的参数不变时,阻抗的模和阻抗角均为频率的函数。(如6KHz时稳定时的值 0.020mV,0.186μA。Z=U/I=107.5Ω。计算时为Z=100+37.41j=107∠89.4°)
2 掌握集成放大器的积分运算应用原理及计算。
3熟悉Multisim中信号发生器及示波器的调整及测量方法。
二、实验器材(如图)
1. 信号发生器
实验图2-1节点电压法电路图
节点电压法电路的计算式:
表2-1实验2.1物理量和实验结果记录表
节点电压法电路 物理量数据
U1
U2
实验值
计算值
实验值
计算值
Is1
0.5
Us2
7.5
Us5
10
Us3
10
R5
2
6.218
6.218
1.641
1.642
R1
5
R2
4
14
3
6.292
6.293
2.839
2.840
R3
4.一阶动态电路分析
5.串联交流电路的阻抗及波形
6.三极管放大电路静态、动态分析实验
7.集成运算放大积分电路
8.整流滤波电路
1. 实验 2.1节点电压法电路计算及分析
一、实验目的
1.掌握Multisim常用仪器的使用方法。
2.会用Multisim用节点电压法分析和计算电路。
二、实验原理与实验步骤
电路原理图如实验图2-1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算机电路基础实验报告指导老师_____刘凤声____ 班级_____软件工程114__ 学号___119074258________ 姓名_______黄芳恺_______安徽工业大学计算机学院2012年11月目录1. 节点电压法电路计算及分析2. 含有受控源电路的设计与分析3. 戴维南定理和诺顿定理的应用4. 一阶动态电路分析5. 串联交流电路的阻抗及波形6. 三极管放大电路静态、动态分析实验7. 集成运算放大积分电路8. 整流滤波电路1. 实验2.1 节点电压法电路计算及分析一、实验目的1.掌握Multisim常用仪器的使用方法。
2.会用Multisim用节点电压法分析和计算电路。
二、实验原理与实验步骤电路原理图如实验图2-1。
实验图2-1 节点电压法电路图节点电压法电路的计算式:表2-1 实验2.1 物理量和实验结果记录表节点电压法电路物理量数据U1U2实验值计算值实验值计算值I s10.5U s27.5U s510U s310R52 6.218 6.218 1.641 1.642R 1 5 R 2 4 14 3 6.292 6.293 2.839 2.840R 3 12 R 4 6 21520102 12.948 12.947 3.024 3.024R 6 214 3 12.743 12.743 4.725 4.725节点电压法的实验步骤与分析:1、按实验 图2-1 连接图形并测试。
2、将物理量和实验结果记录填写到表2-1中。
3、也可进行网络实验,打开网址:jszx-web/jddyf.html (见如下图)。
2. 实验 2.2 含有受控源电路的设计与分析一、实验目的1.掌握Multisim 常用仪器的使用方法。
2.会用Multisim 分析含有受控源的电阻电路。
二、实验原理与实验步骤在电路分析课程中,对于含有受控源电路的分析一直是困扰学生的一个问题,对于受控源的受控量与控制量之间的关系总是在实际解题时产生混淆,实验中我们着重通过感性认识来了解受控源的特性。
实验电路如图2-2和图2-3所示,可以看到V1=V2。
实验 图2.-2 VCVS 电路1. 受电压控制的电压源(VCVS)电路分析(1) 改变可调电阻R L 的数值,观察受控源被控制支路的电压变化。
(2) 改变电压源方向和数值,观察受控源被控制支路的电压变化。
(3) 改变受控源电压比,观察受控源被控制支路的电压变化。
(4) 将实验结果记录在表2-2中。
表2-2 实验2.2结果记录表(一)电阻值/k Ω 电压源数值受控源电压比 4 6 1220 8 10 V1读数/V 4.601 5.862 4.601 5.862 4.601 5.862 V3读数/V36.81058.61736.81058.61736.81058.6172.受电流控制电压源(CCVS)电路分析 实验电路如图2-3所示。
电路 参数 测 量 值实验 图2-3 CCVS 电路(1) 改变可调电阻及的数值,观察受控源被控制支路的电压变化。
(2) 改变电源方向,观察受控源被控制支路的电压变化。
(3) 改变受控源电压比,观察受控源被控制支路的电压变化。
(4) 将实验结果记录在表2-3中。
表2-3 实验2.2结果记录表(二)电阻值/k Ω 电压源数值受控源电压比3 8 1615 68 A 读数/A -2.000 -1.154 -2.000 -1.154 -2.000 -1.154 V3读数/V -0.012-9.231-0.012-9.231-0.012-9.231电 路 参数 测 量 值3. 实验2.3 戴维南定理和诺顿定理的应用一、实验目的(1) 掌握戴维南定理和诺顿定理。
(2) 会用戴维南定理和诺顿定理分析含有受控源的电路。
(3) 理解电路分解和等效的概念。
二、实验原理与实验步骤1. 关于电路的分解及等效对于实际网络的分析,一个重要的分析手段就是网络的分解,对于分解之后的网络的研究就需要对等效的概念有一个充分的理解和认识。
对于两个单口网络,如果它们端口的电压电流关系完全相同,则两个网络就是等效的。
那么等效的对象到底是什么呢? 通过实验,我们可以对它有一个比较清晰的认识。
实验电路如图2-4所示。
(1)图2-4中(a)、(b)两个电路从ab端口向左看两个单口网络N和N1是等效的,在两个电路中分别接上一个1kΩ的负载电阻。
(2) 改变电阻阻值,观察两个电路的电压变化,将结果记录在表2-4中。
表2-4 实验2.3结果记录表(一)RL/k 1 1 2 3v 12 10 14 10万用表读数v 3.999 3.332 5.598 4.284实验图2-4 单口网络等效2.戴维南等效电路及诺顿等效电路戴维南和诺顿等效电路是含源单口网络的两种最简单的单口网络等效模型,在电路分析的很多应用中都要用到它们的概念。
下面我们通过实验的方法来找到网络的这两种等效模型。
实验电路如图2-5所示。
(1) 分别按图2-5所示完成电路连接。
(2)测量单口网络的开路电压、短路电流以及等效电阻,设计表格记录测量数据o开路电压U(V) 短路电流I(A) 等效电阻R(KΩ) 24.195 0.011 2.098(a)测开口电压,(b)测短路电流,(c)测内阻R0实验图2-5 实验电路图4. 实验3.1一阶动态电路分析一、实验目的1、熟悉电子工作平台(Multisim)软件的使用。
2、掌握一阶动态电路的分析、计算和测量;3、了解动态元件的充放电过程,观察输出波形。
4、熟悉Multisim中示波器的调整及测量方法。
二、预习要求1、熟悉电子工作平台(Multisim)软件的使用。
2、一阶动态电路的分析、计算和测量。
参照试验指导书中内容,熟悉一阶动态电路的分析、计算和测量。
三、电路和内容一阶动态电路如图3-1所示,用示波器观察其零输入响应和零状态响应的曲线,并测出时间常数τ。
图3-1四、电路基本原理在电路图3-1中(元件物理量见图3-1),当开关置于下边触点(接地)一段时间,电路已经处于稳态,此时的电容上端的电压Uc=0V 。
此时将开关由下边拨到上边触点(接10V直流电源),电容两端电压不会发生跃变,电容从电压为0V开始进行充电过程。
电路经过一段瞬态过程后,电路又处于稳定状态,此时电容上端的电压Uc=10V 。
再次将开关由上边拨到下边触点,电容两端电压不会发生跃变,电容从电压为10V开始进行放电过程。
电路经过一段瞬态过程后,电路又处于稳定状态,此时电容上端的电压Uc=0V。
电容充放电过程既对应于电路的零状态响应和零输入响应,如图3-2 a,b所示。
图3-2 电路时间常数的计算如下:由图3-2 a,根据一阶微分方程的求解得知:Uc =E(1-RCte-)=E(1-τ-te)当t=τ= R×C时,Uc = E(1-1e-)≈0.632 E=6.32V由图3-2 b,根据一阶微分方程的求解得知:Uc =ERCte-=Eτ-te当t=τ= R×C时,Uc = E1e-≈0.368 E=3.68V五、操作1.按实验内容连接好测试电路如图3-1所示。
开关K的操作相当于键盘中的空格键(也可以设置为其它的键值),当按下空格键键时,即可拨动开关。
激活电路(打开启动按钮),操作开关K,可通过示波器观察到电路的过渡过程(电压波形)如图3-3和3-4所示(示波器刻度参数见图3-3、3-4)。
将游标1置于充电(或放电)的起点,游标2置于电压(图中的y2)为6.32V(对于充电过程)和3.68V(对于放电过程),则游标1和2之间的时间间隔即为时间常数τ(在图3-3、3-4中为T2-T1)。
图3-3图3-42. 数据及分析记录一阶动态电路的零状态响应和零输入响应的波形,并测量出时间常数τ将理论计算与实验结果对比,进行分析。
元件参数Uc 波形τ(μs ) 测量 计算R=100K C=0.033μ零 状 态 (充电) 响 应3354 3300零 输 入 (放电) 响 应3345 3300六、思考题:三要素法分析电路网络实验图如下(jszx-web/sysfx .html),试比较计算数据和实验数据。
5. 实验4.1串联交流电路的阻抗及波形一、实验目的1.测量RLC串联电路的阻抗,并比较测量值与计算值。
2.测量RLC串联电路的阻抗角(选),并比较测量值与计算值。
3.熟悉Multisim中信号发生器及示波器的调整及测量方法。
二、实验器材(如图)1. 信号发生器2. 示波器3. 电流表4. 电压表5. 1mH电感6. 0.1mF电容7. ΩΩ10001、电阻 三、实验原理及实验电路如图4-1所示的电路。
由电路理论可知,RLC 串联电路的阻抗为:ϕωω∠=-+=Z CL j R Z )1( , ω=2πf 故:R C L ArctgC L R Z )1()1(22ωωϕωω-=-+= 该阻抗角即为电路中电压与电流的相位差。
当电路元件的参数不变时,阻抗的模和阻抗角均为频率的函数。
(如6KHz 时稳定时的值 0.020mV ,0.186μA 。
Z=U/I=107.5Ω。
计算时为Z=100+37.41j=107∠89.4°)R L C100Ω1mH 0.1mFab图4-1 RLC 串联电路四、实验步骤图4-2 RLC 串联阻抗实验电路1. 建立图4-2所示的RLC串联实验电路。
2. 因为Ω1电阻上的电压与回路电流相等,所以由示波器可以测得电压与电流的相位差。
由电压表和电流表测出的数值可以求出阻抗的模。
根据表4-1中的频率,分别改变信号源的频率并激活电路,将测到的电压和电流的相位差,以及电压表和电流表的结果填入表4-1中,并将所计算的电路阻抗的模填入表4-1中。
6000Hz时的示波器刻度参数如图4-3表4-1 阻抗测试实验数据信号源)(VV)(mAA︱Z︱(Ω)度)(Zϕoffset 振幅(V)占空比频率(Hz)0 10 50 1 -10.000 0.281 -35.5870 10 50 10 -9.992 -0.010 999.20 10 50 100 -99.937 -0.103 970.2620 10 50 500 -499.670 0.479 -1043.1520 10 50 1000 -999.292 0.984 -1015.5410 10 50 2000 -1998 2.107 -948.268 0 10 50 4000 -3998 4.766 -838.859 0 10 50 6000 -5997 7.149 -838.859图4-3 6000Hz时的示波器参考刻度参数五、思考题1.理论计算所得的阻抗大小与用电压和电流测量值算出的阻抗大小比较,情况如何?答:当频率分别为1和10时,计算值不符,其他实验值与计算值较接近2.理论计算出的相位差与通过示波器测得的相位差比较情况如何?答:实验值没有相位的正负,实验值与计算值数值较接近3.当频率为多大时,电路阻抗最小?答:当频率为500HZ时阻抗最小6. 实验7.1三极管放大电路静态、动态分析实验一、实验目的1.学习晶体管放大电路静态工作点的测试方法,进一步理解电路元件参数对静态工作点的影响,以及调整静态工作点的方法。