电容容量及电抗率选取总结

合集下载

如何正确选择电容器的参数

如何正确选择电容器的参数

如何正确选择电容器的参数电容器是电子元件中常见的一种,广泛应用于各种电路中。

正确选择电容器的参数对于保证电路的性能和稳定性至关重要。

本文将介绍如何正确选择电容器的参数。

一、了解电容器的基本参数电容器的基本参数包括容值、额定电压、精度和温度系数等。

容值表示电容器可以储存的电荷量,单位为法拉(F)或微法(F);额定电压表示电容器能够承受的最大电压,超过该电压容易损坏;精度表示电容器的容值与额定值之间的误差范围,一般用百分比表示;温度系数表示电容器容值的变化与温度变化之间的关系。

二、考虑电路的需求在选择电容器参数时,需要根据电路的需求进行合理的选择。

首先确定电路所需要的容值范围,可以根据电容器的容值表找到合适的容值选项。

其次,考虑电路的工作电压范围,选择能够承受该电压范围的电容器。

此外,还需考虑电容器的精度和温度系数,选择能够满足电路要求的电容器。

三、选择适当的电容器类型根据实际需要,选择适当的电容器类型也是十分重要的。

目前常见的电容器类型包括固定电容器、可变电容器、陶瓷电容器、铝电解电容器等。

固定电容器容值稳定,适合在稳定的电路中使用;可变电容器可以根据需要调节其容值,适用于需要频繁调整容值的电路;陶瓷电容器具有良好的高频特性,适合在高频电路中使用;铝电解电容器容值大,适用于大容量需求的电路。

根据电路的特点和要求选择合适的电容器类型。

四、考虑电容器的尺寸和成本除了基本参数和电容器类型外,还需要考虑电容器的尺寸和成本。

电容器的尺寸直接影响到电路的布局和结构设计,需根据实际情况选择合适的尺寸。

同时,也需要考虑电容器的成本,选择符合预算和性能要求的电容器。

五、参考相关标准和规范在选择电容器参数时,可以参考相关的标准和规范。

电容器的制造和质量标准可以帮助我们了解电容器的性能和可靠性。

此外,一些应用场景会有特定的规范和要求,需要在选择电容器参数时加以考虑。

六、结合实际测试和验证最后,在选择电容器参数之后,需要进行实际测试和验证。

数据中心如何考虑电容补偿的电抗器选择

数据中心如何考虑电容补偿的电抗器选择

如何考虑电容补偿的电抗器选择
定义:
电抗率K,一个电工学名词,是指一个电感器和电容器的串联回路中,感抗XL 和容抗XC的比值,单位是%。

即,K=XL/XC。

K=14% ,意思是XL/XC=14%;
K=7% ,意思是XL/XC=7%;
K=11% ,意思是XL/XC=11%;
K=6%,意思是XL/XC=6%;
K=1%,意思是XL/XC=1%;
电抗作用:
电容补偿回路中,一般要串联电抗器,其作用一般有两个:抑制合闸浪涌,抑制谐波电流。

电抗K取值:
如果单纯是抑制合闸浪涌,选用电抗率为0.1-1%的电抗器足矣。

抑制电网5次谐波时,K取值范围4.5%~7%,一般选用电抗率为6%的电抗器。

抑制电网3次谐波时,应选用电抗率为12%的电抗器。

从材料的价格上看,在电压电流相同情况下,K值越高,其端电压也越高,电抗器的电抗和电感值也大,即K值越高,价格越高。

所以,如果3次、5次、7次及以上谐波含量都超标需要治理时,建议用一部分K为7%的电抗器,用一部分K为12%的电抗器
电抗器的电抗率是根据所要抑制的谐波来的,设谐波次数是n,则电抗率是要大于1/n2。

5次谐波是1/25,就是4%,3次谐波是1/9,差不多11%吧,所以串12%就什么谐波都能抑制了,当然最好,但是一般3次谐波在平衡负载下都很少,至于为什么不用12%,你看看7%和12%电抗器的价钱就知道了.。

并联补偿装置电容电抗选择PPT课件

并联补偿装置电容电抗选择PPT课件
串联电抗器的参数选取原则有以下几种。 (1)当仅需要限制合闸涌流时,宜选用电抗率为0.1%—1%的电抗器。 (2)当母线短路容量不大于80倍电容器组额定容量时,涌流将不超过10倍电容器额定电流,由于10 倍以内的涌流不致对回路设备造成损害,因此可以不装设限制涌流的串联电抗器。 (3)根据GB-50027-2008,当并联电容器装置接入电网处的背景谐波为5次及以上时,宜取电抗率 4.5%—6%的串联电抗器。当并联电容器装置接入电网的背景谐波为3次及以上,宜取电抗率为12%的串 联电抗器,宜可采取4.5%—6%与12%2种电抗率组合。配电网一般考虑5次谐波,因此配电网大多采用 串联4.5%—6%电抗器的电容器组。
2021/3/18
2021/3/18
3、串联电抗器的参数选取原则 配电网的补偿电容器的主要作用是补偿基波无功电流,不承担滤波作用,电容器组只要不出现谐波谐
振和谐波严重放大,就可以基本保证电能质量及电网的安全运行,而串联电抗器是抑制谐波电流放大的 有效措施,但是由于串联电抗器其本质上是将系统整个的容性降低,影响到无功补偿的效果,所以串联 电抗器的参数应根据实际谐波进行选择。
并联电容器总容量确定以后,通常将电容器分成若干组再进行安装,分组原则主要是根据电压波动、负荷 变化 、电网背景谐波含量及设备技术条件等因素来确定。各分组电容器组投切时,不能发生谐振,同时要防 止谐波的严重放大。为了避开谐振点,电容器组设计之前,应测量或分析系统主要谐波含量,根据设计确定的 电抗率配置,按照谐振容量计算公式计算谐振容量,在设计分组容量时,避开谐振容量;电容器组在各种容量 组合投切时,均应能躲开谐振点。加大分组容量,减少组数是躲开谐振点的措施之一。分组电容器在不同组合 下投切,变压器各侧母线的任何一次谐波电压含量,均不应超过现行国家标准【电能质量-公用电网谐波】 GB/T 14549的规定。标准中规定的谐波电压限值详见表1。

并联电容器和电抗器选取注意事项

并联电容器和电抗器选取注意事项

并联电容器和电抗器选取注意事项01并联电容器的选取并联电容器是无功功率补偿装置的主体, 其质量的好坏, 运行的可靠性, 将直接影响整套装置的使用效果和寿命。

要选择一种优质的电容器应从以下几个方面考虑:(1)电容器额定电压的确定由于并联电容器需要长期、全额在电网中工作, 而电容器的实际工作电压与其使用寿命又有直接的关系, 根据可靠性试验理论可知:当电容器的工作电压每提高10%, 其寿命将减少一半。

所以, 确定电容器的额定电压是非常重要的。

电容器额定电压的选取由下列因素决定:a. 供电网的电压水平;b. 谐波背景, 当电容器在含有谐波的环境下工作时, 谐波电压将叠加到电容器的基波电压上, 会使电容器的实际工作电压升高(Uc=U+SUi);c. 是否加装串联电抗器。

为限制投切电容器时的合闸涌流, 为抑制谐波避免谐振或为消除(吸收)谐波, 都需要在电容器支路中串联电抗器。

由电工学原理可知, 当电容器与电抗器组成串联回路再接入电网时, 电容器两端的电压将高于电网电压, 其升高幅度由所串联电抗器的电抗率(P)来决定:Uc=U/(1-P) 。

综合以上因素, 笔者认为在低压0.4kV电网中(变压器实际输出电压会高于0.4kV)设置的无功功率补偿装置中安装的电容器, 在一般情况下应选择额定电压为0.45kV系列的产品, 而用于谐波抑制或滤波装置中的电容器, 根据串联电抗器的电抗率不同, 其额定电压应选择0.48kV或0.525kV系列的产品。

(2)电容器额定温度等级的确定电容器工作时其周围的温度(略高于环境温度), 对电容器使用寿命的影响是很大的, 因为, 根据绝缘材料的寿命理论:当电容器的工作温度每升高7-10℃时, 其寿命将缩短一半。

但由于温度对电容器寿命的影响是缓慢的, 所以经常被忽视。

在电容器产品国家及行业标准中仅列出A、B、C、D四个温度等级, 而实际应用中, 有许多场合(如箱变、高温地区等)的环境温度已高于D级(+55℃)。

电容器组电抗率的选择

电容器组电抗率的选择

电容器组电抗率的选择机械工业第四设计研究院陈才俊摘要: 文章阐述如何根据背景谐波选择电容器组的电抗率关键词: 谐波电抗率串联谐波并联谐波一、什么叫电抗率非线性元件是产生谐波的根源,非正弦波的周期可利用傅里叶级数予以展开,谐波的危害人人皆知,这些就不在这里叙述。

治理谐波的方法是采用滤波器,滤波器大量吸收系统里由谐波源发生的谐波,抑制了谐波对系统的骚扰。

电容器是提高功率因数的,带电抗器的电容器组在汽车厂广泛应用,所以要串联电抗器,其目的之一是减少电容器组的合闸涌流,另一个目的是将电容器组作为滤波器来治理谐波。

目的不同,所串联电抗器的电抗率(又称相对电抗率),也是不同的。

前者电抗率一般为0.1%~1%,由制造厂选配,后者电抗率应由用户根据背景谐波的不同,从制造厂产品样本所示的标准规格选择。

所谓电抗率K ,就是所串联电抗器的感抗(ωL )和电容器容抗(Cω1)的百分比,即K=ω2LC 。

此处ω=2πf=314,f 即基波频率50Hz 。

对某次谐波,如n 次,感抗是n ωL ,或称nX L ,容抗是cn ω1或称nX c。

二、利用串联谐振激活谐波如果略去很多分支回路,某次谐波从谐波源出发,面临2个并联回路,其中一个回路是电网系统,另一个回路是串联电抗器的电容器组。

假设系统基波电抗是Xs ,串联电抗器的电容器组的基波电抗是X L —X c 。

既然CLX X K =,那么X L —X C =KX C —X C =X C (K —1)。

系统谐波电抗是nX S ,串联组谐波电抗是nX L —nX c=nKX c -nnK X n X c c 1(-=)。

设谐波源流出的n 次谐波电流为I n ,I n =I ns +I nc ,I ns 为流入系统的n 次谐波电流,I nc 为流入电容器组的n 次谐波电流。

根据定压原理和分流原理可分别得出:n Sc cnsI nX X n nK X n nK I ⋅+--=)1()1( n Sc SncI nX X nnK nX I ⋅+-=)1(作为滤波器,当然希望谐波电流I n 全部流入电容器组,即希望nK n1-=0,即K=21n。

如何选择合适的电容值

如何选择合适的电容值

如何选择合适的电容值在电子电路设计中,电容是一种重要的电子元件,它具有储存电荷和滤波的功能。

电容器所能储存的电荷量取决于其电容值的大小。

因此,在电子电路中选择合适的电容值非常重要。

本文将探讨如何选择合适的电容值,并介绍一些常见的选择方法。

一、了解电容值的基础知识电容的单位是法拉(F)。

常用的电容值通常以微法(F)为单位,即10的负六次方法拉。

我们常见的电容值包括皮法(PF)、纳法(NF)、微法(μF)和毫法(mF)。

在电子电路中,一般使用微法或毫法级别的电容。

二、根据需求选择电容值选择合适的电容值应根据实际需求来确定。

以下是一些常见的选择方法:1. 容量大小与电压跌落关系在直流电源滤波电路中,电容器主要用于平滑输出电压,减小电压的波动。

电容的容量大小与电压跌落之间有一定的关系。

如果电流变化较大或者需要较小的电压跌落时,应选择较大容量的电容。

2. 应用频率电容器具有阻挡直流信号通过、允许交流信号通过的特性。

当电路中有高频分量时,电容的阻抗会变小。

因此,在高频电路中,需要选择具备较小电容值的电容。

3. 特殊电路要求不同的电子电路对电容值的要求也不同。

例如定时电路中需要使用电容器充放电来实现时间延迟,此时需要根据设计要求选择合适的电容值。

三、参考现有电路设计在电子电路设计中,可以参考现有的电路设计来确定合适的电容值。

可以通过查阅相关的电子电路手册、参考书籍或者在电子论坛上寻求帮助,了解电路设计中常用的电容值。

四、试验法确定电容值在一些特殊情况下,可以通过试验法来确定合适的电容值。

通过在电路中逐步增加或减小电容值,并测试电路性能,来找到最合适的电容值。

五、总结与建议在选择合适的电容值时,我们需要根据电路需求来确定容量大小。

考虑电压跌落、频率特性以及特殊电路要求。

同时,参考现有电路设计和试验法也是选取合适电容值的有效方法。

最终,我们应根据具体情况进行选择,并通过实际测试验证电容值的适用性。

电容作为电子电路中重要的元件之一,选择合适的电容值对于电路性能的稳定性和工作效果具有重要意义。

电抗率选择的一般原则

电抗率选择的一般原则

电抗率选择的一般原则一、电容器装置接入处的背景谐波为3次(当接入电网处的背景谐波为3次及以上时,一般为12%;也可采用4.5%~6%与12%两种电抗率。

)(1) 3次谐波含量较小,可选择0.1%~1%的串联电抗器,但应验算电容器装置投入后3次谐波放大是否超过或接近国标限值,并且有一定的裕度。

(2) 3次谐波含量较大,已经超过或接近国标限值,选择12%或12%与4.5%~6%的串联电抗器混合装设。

二、电容器装置接入处的背景谐波为3次、5次(1) 3次谐波含量很小, 5次谐波含量较大(包括已经超过或接近国标限值),选择4.5%~6%的串联电抗器,忌用0.1%~1%的串联电抗器。

(2) 3次谐波含量略大, 5次谐波含量较小,选择0.1%~1%的串联电抗器,但应验算电容器装置投入后3次谐波放大是否超过或接近国标限值,并且有一定的裕度。

(3) 3次谐波含量较大,已经超过或接近国标限值,选择12%或12%与4.5%~6%的串联电抗器混合装设。

三、电容器装置接入处的背景谐波为5次及以上(1)5次谐波含量较小,应选择4.5%~6%的串联电抗器。

(2)5次谐波含量较大,应选择4.5%的串联电抗器。

(3)对于采用0.1%~1%的串联电抗器,要防止对5次、7次谐波的严重放大或谐振;对于采用4.5%~6%的串联电抗器,要防止对3次谐波的严重放大或谐振。

电容器回路的谐波阻抗特征:=X*(nk-1/n) n=谐波次数 k=电抗率(nk-1/n)>0时,即k>1/n2 电容器流入谐波小(nk-1/n)=0时,即k=1/n2 电容器滤波串联谐振k=1/n2-Xs1/Xc1时,电路发生并联谐振应避免 Xs1=电源系统基波电流3次谐波时 11%时,串联谐振,起滤波作用10.5%时,并联谐振,应避免5次谐波时 4%时,串联谐振3.5%时,并联谐振7次谐波时 2%时,串联谐振1.5时,并联谐振含有谐波源和电力电容器的回路的电力系统,发生n次谐波串联谐振条个k=1/n2 不发生n次谐波放大的条件是k>1/n2发生n次谐波并联谐振条件k=1/n2-Xs1/Xc15次中心点5.67% 3次中心点12.78%因实际运行中会出现K值逐步下降,为避免K值减小而进入谐波放大区,甚至导致并联谐振,实际K=1/n2+0.02 或K=1/n2+0.01 为好。

电子电路中的电容选取与使用技巧

电子电路中的电容选取与使用技巧

电子电路中的电容选取与使用技巧在电子电路设计和制作中,电容是一种重要的元件,它在各种电路中起着储存、过滤、隔离和耦合等作用。

正确的电容选取和使用技巧对电路的性能和稳定性具有重要的影响。

本文将介绍电子电路中电容选取与使用的一些技巧和注意事项。

一、电容的基本特性及参数电容是由两个导体板之间的电介质隔离而成的,它具有储存电荷的能力。

电容的主要参数有容量、电压、温度系数和功率损耗等。

容量单位为法拉(F),兆法拉(MF)和皮法拉(PF)是常见的单位。

二、电容的选取要点1. 容量选择在选择电容时,首先需要根据电路的需求确定所需容量的范围。

较小的电容常用于高频信号的耦合和去耦,较大的电容常用于低频信号的耦合和滤波。

一般来说,容量越大,电容器的体积也就越大。

2. 电压选择电容的工作电压需小于或等于电路中的电压值。

在电路设计时,需要考虑电压的峰值和稳态电压,选择适当的电容器来满足电路的工作要求。

3. 尺寸和封装选择电容尺寸和封装形式也是选取时需要考虑的重要因素。

根据电路板上的空间布局和尺寸限制,选择适合的电容器型号和外形封装。

4. 频率特性选择电容的频率特性也是需要考虑的因素之一。

对于高频应用,需要选择具有低阻抗和低的ESR(等效串联电阻)的电容器,以确保信号传递的准确性。

5. 环境适应性选择在一些特殊环境中,例如高温、低温、潮湿等,需要选择适应性更强的电容器。

有些电容器具有超高温度工作能力,适合在高温环境下使用。

三、电容使用的技巧和注意事项1. 使用陶瓷电容器陶瓷电容器是常见的电容器类型之一,具有尺寸小、稳定性好和频率特性优良的特点,适合用于高频和精密电路中。

2. 去耦电容的使用在电源和地之间并联一个适当容值的电容器,可以起到去除电源杂散干扰的作用,提高电路的稳定性。

3. 工作电压留余在选取电容时,应保留一定的电压余量。

工作电压过高或接近电容器额定电压,会导致电容器的寿命缩短。

4. 防止电容短路安全措施当使用大容量电容时,应注意电路中电容两端产生瞬时大电流的问题。

电力电容器的容量选择与配置

电力电容器的容量选择与配置

电力电容器的容量选择与配置电力电容器在电力系统中起着重要的作用,用于提高电能质量、提高功率因数和稳定电压。

正确选择和配置电力电容器的容量对于确保电力系统的正常运行至关重要。

本文将介绍电力电容器容量选择和配置的相关要点。

一、容量选择的基本原则在选择电力电容器容量时,应综合考虑电力系统的功率因数、负载情况和电容器的使用目的。

具体而言,应注意以下几个方面:1. 考虑功率因数改进目标:根据电力系统的功率因数改进目标确定所需的无功功率补偿量,进而决定电容器的容量大小。

通常,功率因数改进目标为0.95以上。

2. 考虑负载类型:根据电力系统的负载类型确定电容器的容量分配方式。

对于变化较小的负载,采用集中式配置方式;对于变化较大的负载,采用分散式配置方式。

3. 考虑负载变动率:根据负载的变动率确定电容器的容量冗余量。

通常,变动率较大的负载需要配置较大的容量冗余量以保证系统的稳定运行。

二、容量配置的具体步骤1. 确定总体容量:根据电力系统的负载容量和功率因数改进目标,计算出所需的总体容量。

该容量通常为负载容量的一定比例,如零点几倍至十几倍。

2. 分配电容器容量:根据负载类型和变动率,将总体容量按比例分配到各个电容器单元上。

对于变化较小的负载,可将大部分容量集中到一个或少数几个电容器单元上;对于变化较大的负载,应将容量分散到多个电容器单元上。

3. 考虑容量冗余:根据负载的变动率和可靠性要求,确定电容器的容量冗余量。

容量冗余量的大小应能够满足系统负载变动和异常情况下的需求。

4. 考虑电容器投入方式:根据电容器的使用目的,确定电容器的投入方式。

常用的投入方式有手动投入、自动投入和远程投入等。

三、配置注意事项1. 检查电容器的技术参数:在配置电容器时,需检查电容器的技术参数是否符合系统要求,包括容量、电压等级、温度范围和损耗等。

2. 避免容量过小或过大:如果容量选择过小,可能无法满足系统需求;如果容量选择过大,可能会导致无功功率补偿过剩,浪费电能。

电容容量及电抗率选取(总结)

电容容量及电抗率选取(总结)

电容容量及电抗率选取(总结)电容分组方式及电容容量计算一、电容分组方式及投切模式补偿电容器多采用电力电容器,运行中电容器的容性电流抵消系统中的感性电流,使传输元件,如变压器、线路中的无功功率相应减少,因而,不仅降低了由于无功的流动而引起的有功损耗,还减少了电压损耗,提高了功率因数。

补偿电容器是TSC系统的关键部件,通过投入或切除电容器的方法可动态平衡电感性负载与电容性负载,从而将功率因数维持在较高的理想水准。

1)分组方式。

在很多工业生产实践中,除了就地补偿的大电机外,大量分散的感性负载需要在低压配电室进行集中补偿,这时由于补偿容量是随时间变化的,为不出现过补偿或欠补偿,需要将电容器分成若干组,采用自动投切的方式。

电容器分组的具体方法比较灵活,常见的有以下几种:①等容量制,即把所需补偿的电容平均分为若干份;②1:2:4:8制,即每单元电容器值按大小倍增式设置,这样可获得15级补偿值;③二进制,即采用N —1个电容值均为C的电容和一个电容值为C/2的电容,这样补偿量的调节就有2N级。

对比上述方法可知,方法① 的控制方式最简单,但相对较大的补偿级差限制了精度,而方法②与③虽采用多级差补偿的方法提高了效果,但均为繁琐,不便于自动化控制。

相比之下,方法③不乏为一种有益的折中式方案。

2)投切模式。

由于动态无功补偿需要频繁投切电容器,因此为确保电容器的寿命和质量,需要考虑补偿电容的投切模式。

常见有下列2种模式:①循环投切模式,即将各组电容器按组号排成一个环形列队,然后按序号依次投入电容。

如需切除电容,则从已投入的电容队列的尾部切除。

这样,随功率因数的变化,已投入的电容队列在环形队列中逆时针移动,各组电容的使用几率均匀,可有效减少电容组的故障率。

通常这种方法用于等容量分组。

②温度计式投切模式,即将各组电容器按组号排成一个直线队列,投入或切除电容器使已投入的电容队列在直线队列中升高或下降,类似于温度计水银柱的升降。

电抗率的选择

电抗率的选择

串联电抗器抑制谐波的作用及电抗率的选择src="/neteaseivp/include/zzzList.jsp?channel=3&zzzdataIds=147934," type="text/javascript">1 前言随着电力电子技术的广泛应用与发展,供电系统中增加了大量的非线性负载,如低压小容量家用电器和高压大容量的工业用交、直流变换装置,特别是静止变流器的采用,由于它是以开关方式工作的,会引起电网电流、电压波形发生畸变,从而引起电网的谐波“污染”。

产生电网谐波“污染”的另一个重要原因是电网接有冲击性、波动性负荷,如电弧炉、大型轧钢机、电力机车等,它们在运行中不仅会产生大量的高次谐波,而且会使电压波动、闪变、三相不平衡日趋严重。

这不仅会导致供用电设备本身的安全性降低,而且会严重削弱和干扰电网的经济运行,形成了对电网的“公害”。

电能质量的综合治理应遵循谁污染谁治理,多层治理、分级协调的原则。

在地区的配电和变电系统中,选择主要电能质量污染源和对电能质量敏感的负荷中心设立电能质量控制枢纽点,在这些点进行在线电能质量监测、采取相应的电能质量改善措施显得格外重要。

在并联电容器装置接入母线处的谐波“污染”暂未得到根本整治之前,如果不采取必要的措施,将会产生一定的谐波放大。

在并联电容器的回路中串联电抗器是非常有效和可行的方法。

串联电抗器的主要作用是抑制高次谐波和限制合闸涌流[1],防止谐波对电容器造成危害,避免电容器装置的接入对电网谐波的过度放大和谐振发生。

但是串联电抗器绝不能与电容器组任意组合,更不能不考虑电容器组接入母线处的谐波背景。

文章着重就串联电抗器抑制谐波的作用展开分析,并提出电抗率的选择方法。

2 电抗器选择不当的后果2.1 基本情况介绍某110kV变电所新装两组容量2400kvar的电容器组,由生产厂家提供成套无功补偿装置,其中配置了电抗率为6%的串联电抗器,容量为144kvar。

电容器组的电抗器电抗率

电容器组的电抗器电抗率

电容器组的电抗器电抗率在电力系统(包括配电),这种连接的电抗器根据电抗率(%)的大小,一般起两种作用:(1)滤波用,电容器与电抗器组成串联谐振支路,滤除某特定频率的谐波;例如12%的电抗器主要用于滤除3次谐波,4%~6%的电抗器主要用于滤除5、7次谐波。

(2)限流用,保护电容免受投、切是的涌流。

一般电抗率为1%。

单独一组电容器在第一次合闸投运的瞬间,即未被充电状态,流入电容器组的电流,只受其回路阻抗的限制。

由于回路阻抗很小,与短路状态相似,将产生很大的冲击合闸电流,流人电容器组。

涌流的最大值Im发生在电容器组合闸瞬间,刚好系统电压处于最大值Um 时。

实测经验证明:单独一组电容器的合闸涌流约为电容器组额定电流的5~15倍,持续时间很短,在几ms内,就可降到无害程度。

其振荡频率约为250Hz--4000Hz。

电容器组合闸产生的过电压约为相电压的3倍。

电容器组切除运行后,如果未经放电,在再次合闸前的瞬间仍处于带电状态。

如果这时把电容器组合闸投运,又处于系统电压与充电电压大小相等方向相反时,则合闸产生的涌流为未充电状态合闸涌流的2倍。

为避免带电荷合闸,电容器组每次断开后,必须充分放电,才能再重新合闸运行。

已经有一组或多组电容器运行时,再投入一电容器的合闸瞬间,将产生追加合闸涌流。

追加电容器组与运行电容器组之间的距离很近,它们之间的电感很小,几乎等于零。

追加的电容器组与短路状态相似,所以运行的电容器组将向它大量充电,全部冲击合闸涌流,都将流人追加电容器组,这时的合闸涌流将达到很危险的程度。

特别是在系统电压处于最大值的瞬间合闸时,追加且为最末一组电容器投入时,已经投入的各组电容器都向它放电;追加涌流将达到最大值。

实测经验证明:电容器多组并联运行中追加合闸涌流可达到电容器组额定电流的20—250倍,其振荡频率可达到1500Hz。

追加合闸产生的过电压较单组合闸时低,约为相电压,假如几组并联运行电容器的容量相同时。

电容器串联电抗率的选择

电容器串联电抗率的选择

电容器串联电抗率的选择中国航空工业规划设计研究院刘屏周抑制谐波采用无源滤波器,或为了降低供电设备容量,减少供电电压偏差,采用并联电容器提高负载的功率因数。

在电容器回路中串联适当电抗率的电抗器,防止谐波电流被放大,保护电容器过负荷。

若电容器回路中串联电抗器的电抗率不适当,发生电容器回路的串联谐振或电容器回路与电源系统的并联谐振,影响系统的安全运行。

以下提出电容器回路中串联电抗器的电抗率计算方法,仅供参考。

串联电抗器的电容器回路与谐波源并联主电路如图1所示。

图1的等值电路如图2所示。

根据图2谐波电流分流的等值电路,谐波电流I n流入供电系统电流I sn和电容器支路电流I cn 计算公式如下:图1 谐波源、串联电抗器的电容器主电路图2 计算谐波电流分流的等值电路nC1L1S11L1snInXnnnXnI)(-+-=XXX C(1)nC1L1S1S1cnInXnnnI)(-+=XXX(2)式中I sn-谐波电流流入供电系统电流;I cn-谐波电流流入电容器支路电流;I n-谐波电流;X S1-供电系统基波电抗;X C1-电容器基波容抗;X L1-电抗器基波电抗;n-谐波次数。

设S11L1nnXnXX C-=β,β称谐波电流的分流系数。

上述(1)、(2)式改为如下:nsnI1Iββ+=(3)n cn I 11I β+=(4) n sn I I 、ncn I I与β的关系曲线如图3所示。

图3n sn I I 、ncn I I与β的关系曲线 电容器支路与供电系统并联谐振发生在β=-1处,谐振谐波次数S1L1C10X X X +=n ,电容器支路串联电抗器的电感越大,谐振谐波次数越低。

当β=-2时,谐波次数S1L1C11X 2X X +=n ,2I I n sn =,1I I n cn =;当β=-0.5时,谐波次数S1L1C12X 5.0X X +=n ,1I I n sn =,2I I n cn =。

谐波源的谐波次数n ,在n 1与n 2范围内,即n 1≤n ≤n 2,同时有1I I n sn ≥和1I Incn ≥,谐波电流被放大。

电抗器选择

电抗器选择

在高低压无功补偿装置中,一般都装有串联电抗器,它的作用主要有两点:1)限制合闸涌流,使其不超过20倍;2)抑制供电系统的高次谐波,用来保护电容器。

因此,电抗器在无功补偿装置中的作用非常重要。

然而,串抗与电容器不能随意组合,若不考虑电容装置接入处电网的实际情况,采用“一刀切”的配置方式(如电容器一律配用电抗率为5%~6%的串抗),往往适得其反,招致某次谐波的严重放大甚至发生谐振,危及装置与系统的安全。

由于电力谐波存在的普遍性,复杂性和随机性,以及电容装置所在电网结构与特性的差异,使得电容装置的谐波响应及其串抗电抗率的选择成为疑难的问题,也是人们着力研究的课题。

精品文档,超值下载电容器组投入串抗后改变了电路的特性,串抗既有其抑制涌流和谐波的优点,又有其额外增加的电能损耗和建设投资与运行费用的缺点。

所以对于新扩建的电容装置,或者已经投运的电容装置中的串抗选用方案,进行技术经济比较是很有必要的。

虽然现有的成果尚不足为电容装置工程设计中串抗的选用作出量化的规定,但是随着研究工作的深入,实际运行经验的积累,业已提出许多为人共识的见解,或行之有效的措施,或可供借鉴的教训。

下面总结电容器串联电抗器时,电抗率选择的一般规律。

1,电网谐波中以3次为主根据《并联电容器装置设计规范》,当电网谐波以3次及以上为主时,一般为12%;也可根据实际情况采用4.5%~6%与12%两种电抗器:(1)3次谐波含量较小,可选择0.5%~1%的串联电抗器,但应验算电容器投入后3次谐波放大量是否超过或接近限值,并有一定裕度。

(2)3次谐波含量较大,已经超过或接近限值,可以选用12%或4.5%~6%串联电抗器混合装设。

2,电网谐波中以3、5次为主(1)3次谐波含量较小,5次谐波含量较大,选择4.5%~6%的串联电抗器,尽量不使用0.1%~1%的串联电抗器;(2)3次谐波含量略大,5次谐波含量较小,选择0.1%~1%的串联电抗器,但应验算电容器投入后3次谐波放大是否超过或接近限值,并有一定裕度。

如何计算并选择电容器的合适容量

如何计算并选择电容器的合适容量

如何计算并选择电容器的合适容量电容器是一种电子元件,具有存储电荷和改变电压的功能。

在电路设计和应用中,选择合适容量的电容器至关重要。

本文将介绍如何计算并选择电容器的合适容量,以满足电路设计的需求。

一、电容器的基本知识在开始计算和选择电容器容量之前,我们需要了解一些基本的电容器知识。

电容器的容量常用单位为法拉(F),较常见的电容器容量单位有微法(μF)和皮法(pF)。

二、计算电容器的合适容量1. 确定所需的电容量在选择电容器容量之前,首先需确定所需要的电容量大小。

这取决于电路中所需的电荷储存量以及对电压的响应速度要求。

2. 考虑电容器的电压额定值在选择电容器容量时,还需要考虑电容器的电压额定值。

电容器的电压额定值应大于电路中的最大工作电压,以避免因电压过高造成电容器损坏或运行不稳定。

3. 需要注意的细节在实际选择电容器时,还需考虑其他一些细节:(1)电容器的尺寸和重量:根据电路的空间和重量限制,选择适当大小和重量的电容器。

(2)电容器的温度特性:某些电容器在高温环境下容量有可能下降,因此需根据具体应用环境选择适用的电容器。

(3)电容器的成本:根据实际预算考虑电容器的成本因素。

三、选择合适的电容器容量1. 参考常用值在电路设计中,有一些常用的电容器容量值可以作为参考。

例如,微法级(μF)电容器适用于一般电路设计;纳法级(nF)电容器适用于高频电路和较小的电荷储存;皮法级(pF)电容器适用于射频电路和较小的电容量要求。

2. 根据实际需求选择除了参考常用值外,还需根据具体电路设计需求进行选择。

可以通过以下几种方式进行计算:(1)根据电荷量计算:Q = C × V,其中Q为所需的电荷量,C为电容器容量,V为电压。

(2)根据时间常数计算:时间常数(τ)表示电容器充放电的时间,可根据实际需求计算得到,然后选择合适的电容器容量。

3. 实际验证和调整在选择电容器容量后,建议进行实际验证和调整。

通过测试和测量,确保所选电容器能够满足电路设计的要求和性能指标。

(整理)补偿电容器电抗率选择

(整理)补偿电容器电抗率选择

抑制谐波串联电抗器的选用天津市同德兴电气技术有限公司黄缉熙补偿用并联电容器对谐波电压最为敏感,谐波电压加速电容器老化,缩短使用寿命。

谐波电流将使电容器过负荷、出现不允许的温升,特别严重的是当电容器组与系统产生并联谐振时电流急速增加,开关跳闸、熔断器熔断、电容器无法运行。

为避免并联谐振的发生,电容器串联电抗器。

它的电抗率按背景谐波次数选取。

电网的背景谐波为5次及以上时,宜选取4.5% ~ 6%;电网的背景谐波为3次及以上时,宜选取12%一、电抗率K值的确定1. 系统中谐波很少,只是限制合闸涌流时则选K=0.5~1%即可满足要求。

它对5次谐波电流放大严重,对3次谐波放大轻微。

2. 系统中谐波不可忽视时,应查明供电系统的背景谐波含量,在合理确定K值。

电抗率的配置应使电容器接入处谐波阻抗呈感性。

电网背景谐波为5次及以上时,应配置K=4.5~6%。

通常5次谐波最大,7次谐波次之,3次较小。

国内外通常采用K=4.5~6%。

配置K=6%的电抗器抑制5次谐波效果好,但明显的放大3次谐波及谐振点为204Hz,与5次谐波的频率250Hz,裕量大。

配置4.5%的电抗器对3次谐波轻微放大,因此在抑制5次及以上谐波,同时又要兼顾减小对3次谐波的放大是适宜的。

它的谐振点235Hz与5次谐波间距较小。

电网背景谐波为3次及以上时应串联K=12%的电抗器。

在电抗器电容器串联回路中,电抗器的感抗X LN与谐波次数虚正比;电容器容抗X CN与谐波次数成反比。

为了抑制5次及以上谐波。

则要使5次及以上谐波器串联回路的谐振次数小于5次。

这样,对于5次及以上谐波,电杭器电容器串联回路呈感性,消除了并联谐振的产生条件;对于基波,电抗器电容器串联回路呈容性,保持无功补偿作用。

如电抗器电容器串联回路在n次谐波下谐振,则:式中X CN/X LN为电抗率的倒数,不同的电抗率对应不同的谐振次数或不同的谐振频率,如表1所示。

电抗器的电抗率以取6%为宜,可避免因电抗器、电容器的制造误差或运行中参数变化而造成对5次谐波的谐振。

电容容量及电抗率选取(总结)

电容容量及电抗率选取(总结)

电容分组方式及电容容量计算1、电容分组方式及投切模式补偿电容器多采用电力电容器,运行中电容器的容性电流抵消系统中的感性电流,使传输元件,如变压器、线路中的无功功率相应减少,因而,不仅降低了由于无功的流动而引起的有功损耗,还减少了电压损耗,提高了功率因数。

补偿电容器是TSC 系统的关键部件,通过投入或切除电容器的方法可动态平衡电感性负载与电容性负载,从而将功率因数维持在较高的理想水准。

1) 分组方式。

在很多工业生产实践中,除了就地补偿的大电机外,大量分散的感性负载需要在低压配电室进行集中补偿,这时由于补偿容量是随时间变化的,为不出现过补偿或欠补偿,需要将电容器分成若干组,采用自动投切的方式。

电容器分组的具体方法比较灵活,常见的有以下几种:①等容量制,即把所需补偿的电容平均分为若干份;②1:2:4:8制,即每单元电容器值按大小倍增式设置,这样可获得15 级补偿值;③二进制,即采用 N—1 个电容值均为 C 的电容和一个电容值为 C/2 的电容,这样补偿量的调节就有2N 级。

对比上述方法可知,方法①的控制方式最简单,但相对较大的补偿级差限制了精度,而方法②与③虽采用多级差补偿的方法提高了效果,但均为繁琐,不便于自动化控制。

相比之下,方法③不乏为一种有益的折中式方案。

2) 投切模式。

由于动态无功补偿需要频繁投切电容器,因此为确保电容器的寿命和质量,需要考虑补偿电容的投切模式。

常见有下列 2 种模式:①循环投切模式,即将各组电容器按组号排成一个环形列队,然后按序号依次投入电容。

如需切除电容,则从已投入的电容队列的尾部切除。

这样,随功率因数的变化,已投入的电容队列在环形队列中逆时针移动,各组电容的使用几率均匀,可有效减少电容组的故障率。

通常这种方法用于等容量分组。

②温度计式投切模式,即将各组电容器按组号排成一个直线队列,投入或切除电容器使已投入的电容队列在直线队列中升高或下降,类似于温度计水银柱的升降。

这种方法常用于变容量分组。

电容的主要参数与选用

电容的主要参数与选用

电容器选用一、 概述电容器是由两个金属电极中间夹一层电解质构成的电子元件。

在两个电极上加电压时,电极尚就储存电荷,所以说电容器是充放电荷的电子元件。

电容器储存电荷量的多少,取决于电容器的电容量,电容量在数值上是等于一个导电极上的电荷量与两块极板之间的电位差之比。

即C=Q/U其中Q 为一个极板上的电荷量,单位为C (库伦);U 为两块极板之间的电位差,单位为V (伏特);C 为电容量,单位为F (法拉)。

电容量是电容器的基本参数之一,它与电容器极板得有效面积、绝缘介质的介电常数、极板之间的距离有关。

电介质的介电常数越大,电容器两个极板得有效面积越大,电容量就越大。

当电容器的两个极板间的距离越远,电容量就越小。

d A C r ⨯⨯=εε0 C:电容器的电容量,可以由电极面积A [m 2],介质厚度d [m]以及相对介电常数εr 来表示ε0:介质在真空状态下的介电常数(=8.85×10-12 F/M)电容器能够被充电和放电,也就是存储电能和释放电能,其两端的电压不能突变。

正因如此,如果把电容器接在直流电路中,则只有在电源开启和接通时,电容器充放电两个短暂过程中,电路上存在电流。

就稳态而言,直流电流不能通过电容器,相当于开路。

如果把电容器接在交流或脉冲直流电路中,由于不停的充电放电,便使电流能够通过电容器,并且具有类似电阻那样阻碍电流(由电荷的变率、容量和工作频率决定)的作用。

所以,电容器被广泛应用于各种耦合、旁路、滤波、调谐以及脉冲电路中。

二、 电容器的种类电容器通常叫做电容。

因电容的用途、结构及材料不同,电容的种类很多。

根据电容的结构和容量是否可调,可将电容分为3大类:固定电容、半可变(微调)电容、可变电容。

电容器的性能、结构用途等在很大程度上取决于电容器的介质,因此,电解质常以电解质来分类。

可大致分为:有机介质(包括复合介质)电容器,如纸介电容器、塑料薄膜电容器、纸膜复合介质电容器、薄膜复合介质电容器等;无机介质电容器,如云母电容器、玻璃釉电容器、陶瓷电容器等;气体介质电容器,如空气电容器、真空电容器、充气式电容器等;电解电容器,如铝电解电容器、铌电解电容器等。

并联电容器组及电抗率的取选

并联电容器组及电抗率的取选

并联电容器组及电抗率的取选摘要:本文主要探讨并联电容器组中的串联电抗器具有限制涌流的作用,同时也有抑制谐波的功能,但并联电容器不能随意与电抗器串联,只有电抗率配置合理,才能避免并联谐振,控制系统谐波电流的放大。

关键词:并联电容器组;串联电抗器;电抗率;谐波0前言目前,随着电力电子技术的广泛应用与发展,电力系统中的非线性负载大量增加,由于它们多以开关方式工作,会很容易引起电网内电流、电压的波形发生畸变,从而引起电网谐波“污染”;另外,随着各级各类用户的不断增加,为了提高电压质量,减少无功损耗,提高电网的安全、经济运行,从而需要增加大量的无功电源来提高电网的功率因数,因此,通过加装并联电容器组来进行无功补偿,这是最为经济和有效的措施。

由于电容器组是容性负荷,其很容易与系统中的感性负荷形成一个振荡回路,从而在电容器组投入时会产生一个高倍的合闸涌流,对电容器组造成很大的冲击;另外,由于电容器组的容抗与频率成反比,其谐波容抗和系统的谐波感抗配合,将造成并联谐振和谐波成倍放大,从而严重损坏电网中的电气设备,破坏电网的正常运行。

因此,在并联电容器组的设计中应考虑限制涌流和抑制谐波的问题,而合理地配置串联电抗器就能较好地解决这些问题。

1 限制涌流电网是一个很复杂的系统,其由很多设备元件组成,但我们可以通过等效电路的方法,将其简化为如下图的回路。

图1 并联电容器组与串联电抗回路图如图1所示,Ls可忽略不计,Ls、L分别为系统的感抗和串联电抗器的电抗。

1.1 根据国标GB/11024.1-2001“附录D”中的规定,电容器合闸涌流的计算方法为:Is=In√(2S/Q)式中:Is---电容器组涌流的峰值,单位(A)In---电容器组的额定电流(方均根值,A)S----电容器安装处短路容量,单位(MV A)Q----电容器组的容量,单位(Mvar)将电容器组中已投入运行的电容器并联:Is=(U√Z)/( √Xc*Xl)其中Xc=3U2(1/Q1+Q2)*10-6按上面的计算办法是在没有串联电抗器的情况下,如补偿装置的接入处短路容量很大,而电容器组的容量很小,那么电容器的合闸涌流可达几十倍的额定电流都有可能的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电容容量及电抗率选取总结公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]电容分组方式及电容容量计算一、 电容分组方式及投切模式补偿电容器多采用电力电容器,运行中电容器的容性电流抵消系统中的感性电流,使传输元件,如变压器、线路中的无功功率相应减少,因而,不仅降低了由于无功的流动而引起的有功损耗,还减少了电压损耗,提高了功率因数。

补偿电容器是 TSC 系统的关键部件,通过投入或切除电容器的方法可动态平衡电感性负载与电容性负载,从而将功率因数维持在较高的理想水准。

1) 分组方式。

在很多工业生产实践中,除了就地补偿的大电机外,大量分散的感性负载需要在低压配电室进行集中补偿,这时由于补偿容量是随时间变化的,为不出现过补偿或欠补偿,需要将电容器分成若干组,采用自动投切的方式。

电容器分组的具体方法比较灵活,常见的有以下几种: ①等容量制,即把所需补偿的电容平均分为若干份;②1:2:4:8 制,即每单元电容器值按大小倍增式设置,这样可获得 15 级补偿值;③二进制,即采用 N —1 个电容值均为 C 的电容和一个电容值为 C/2 的电容,这样补偿量的调节就有 2N 级。

对比上述方法可知,方法①的控制方式最简单,但相对较大的补偿级差限制了精度,而方法②与③虽采用多级差补偿的方法提高了效果,但均为繁琐,不便于自动化控制。

相比之下,方法③不乏为一种有益的折中式方案。

2) 投切模式。

由于动态无功补偿需要频繁投切电容器,因此为确保电容器的寿命和质量,需要考虑补偿电容的投切模式。

常见有下列 2 种模式:①循环投切模式,即将各组电容器按组号排成一个环形列队,然后按序号依次投入电容。

如需切除电容,则从已投入的电容队列的尾部切除。

这样,随功率因数的变化,已投入的电容队列在环形队列中逆时针移动,各组电容的使用几率均匀,可有效减少电容组的故障率。

通常这种方法用于等容量分组。

②温度计式投切模式,即将各组电容器按组号排成一个直线队列,投入或切除电容器使已投入的电容队列在直线队列中升高或下降,类似于温度计水银柱的升降。

这种方法常用于变容量分组。

3) 接线方式。

Tsc 的主电路按照晶闸管和电容器的连接方式,大致可以分为4种类型:星形有中线、星形无中线;角外接法、角内接法。

其中前两者统称为星形接法,具体见图。

并联电容器与电力网的连接,其额定电压应与电网相符。

在三相供电系统中,相电容器的额定电压与电网的电压相同时,在正常情况下,将其接成三角形,可以获得较大的补偿效果。

这是因为:如果改用星形接1倍,又因2C U Q X ,所以其无功出将为三角形接法的13倍。

综合考虑成本因数,本项目使用三角形接法。

按照晶闸管所处的位置,三角形接法又分为角外接法、角内接法。

①角外接法晶闸管处于电容器三角形的外部。

按照电工理论中的“△一Y ”变换原理,在电容器总容量相等的情况下,角外接法和星形无中线对外电路所表现的特性都是一样的。

与角内接法相比,体积小,但不易控制,投切时暂态过程较长。

适合于三相平衡负载。

②角内接法晶闸管处于电容器三角形的内部。

该接法对系统无污染,相对另外3种接法,晶闸管电流定额电流小,只有相电流的58%,但晶闸管额定电压定额较大。

当有较大不平衡负载时,三角形接法的电容器组也可令各相电容值不等,根据各相负荷大小作分相补偿。

三相不平衡负荷的补偿装置就是使用角内接法的TSC与TCR组合形式。

二、电容容量计算采用集中补偿方式和分组补偿方式时,总的补偿容量由下式决定::式中: Pc —由变配电所供电的月最大有功计算负载(kW) ;βav —月平均负载率,一般可取0. 7~0. 8;φ1 —补偿前的功率因数角,cosφ1可取最大负载时的值;φ2 —补偿后的功率因数角,参照电力部门的要求确定,一般可取0. 9~0. 95;qc —电容器补偿率(kVar/ kW) ,即每千瓦有功负载需要补偿的无功功率, qc =tgφ1- tgφ2。

电容器接法不同时,每相电容器所需容量也是不一样的。

1、电容器组为星形联结时式中: U - 装设地点电网线电压(V) ;Ic- 电容器组的线电流(A) ;Cφ- 每相电容器组的电容量(F) 。

考虑到电网线电压的单位常用kV, Qc 的单位为kVar,则星形联结时每相电容器组的容量为式中Cy的单位为μF。

2、电容器为三角形联结时若线电压U的单位为kV,则每相电容器的容量(单位为μF)为需要注意:若实际运行电压与电容器额定电压不一致,则电容器的实际补偿容量为Qc1:式中:UNC —电容器的额定电压;QNC —电容器的额定补偿容量;UW —电容器实际工作电压。

例:如果已经计算好不要补偿的无功值,如何选择电容器的容量如果你计算出的总补偿量是169kvar,接下来要决定分几段投切,例如,你想分成4段投切,则169/4约等于40kvar/每段,则你选择的电容器"输出容量"必须为40kvar。

请注意,我强调了“输出容量”,千万不要直接选用了“额定容量(一般是铭牌上标示的容量)”为40kvar的电容器,因为一般选用电容器时,电容器的额定电压要比系统电压为高,否则电容器会因过电压而烧毁,而电容器的输出容量又和电压的平方成正比,因此,如果你的输出容量要为40kvar,则电容器的额定容量要比40kvar高的多。

举例,400V的系统,如果你选的电容器额定电压是480V,如果你要确保每段电容器要输出40kvar,则你选的电容器额定容量必须为:40kvar*(480/400)^2=,所以你要选择的电容器规格至少480V/58kvar,才能确保每段输出的容量为40kvar,而4段的总输出容量就是160kvar(接近169kvar)。

电抗率的选取一、电抗率K值的确定(TSC中)电抗率是指串联电抗器的相感抗XLN占电容器相容抗的XCN的百分比,1.系统中谐波很少,只是限制合闸涌流时则选K=~1%即可满足要求。

它对5次谐波电流放大严重,对3次谐波放大轻微。

2.系统中谐波不可忽视时,应查明供电系统的背景谐波含量,在合理确定K值。

电抗率的配置应使电容器接入处谐波阻抗呈感性。

电网背景谐波为5次及以上时,应配置K=~6%。

通常5次谐波最大,7次谐波次之,3次较小。

国内外通常采用K=~6%。

配置K=6%的电抗器抑制5次谐波效果好,但明显的放大3次谐波及谐振点为204Hz,与5次谐波的频率250Hz,裕量大。

配置%的电抗器对3次谐波轻微放大,因此在抑制5次及以上谐波,同时又要兼顾减小对3次谐波的放大是适宜的。

它的谐振点235Hz与5次谐波间距较小。

电网背景谐波为3次及以上时应串联K=12%的电抗器。

在电抗器电容器串联回路中,电抗器的感抗XLN与谐波次数正比;电容器容抗XCN与谐波次数成反比。

为了抑制5次及以上谐波。

则要使5次及以上谐波器串联回路的谐振次数小于5次。

这样,对于5次及以上谐波,电杭器电容器串联回路呈感性,消除了并联谐振的产生条件;对于基波,电抗器电容器串联回路呈容性,保持无功补偿作用。

二、串联电抗器的选择在实际电网中,谐波电流对电容器的破坏影响是不容忽视的。

在负载电路中,谐波主要来自两个方面:变压器的磁性畸变,可以引起以5次谐波为主的电压;其次是电网系统中越来越多的非线性负载引起的各次谐波。

假设价为电源侧电抗,Xc为电容器电抗,几为电源侧5次电抗,几为电容器5次电抗,凡为电源侧5次谐波电压值,则此谐波电流和基波电流相叠加,会引起异常的过电流。

通常工程上采用串联电抗器来抑制过大的谐波电流。

如果令5次谐波电压为2%,电源测电抗为5%的电抗,这时投入阻抗为100%的电容器,5次谐波电流为:当串入6%的电抗器时,可见使用电抗器限制谐波电流效果非常明显。

串联电抗器前后电流波形的对比。

可见当不串联电抗器时,电流波形畸变非常严重。

当串联6%的电抗器时,电流波形恢复正常。

可见使用电抗器可以限制电流畸变。

串联电抗器后电容器电压升高的情况有串联电抗器后电容器端电压会升高,其升高的幅值与串联电抗器的百分数有关;百分数高,电容器端电压高,按下表计算。

n % % % 5% 6% 12% 13% 1+n1/1-n三、对于变电站电抗器选择(固定的电容组)可以得出电抗率选择的一般原则:(一)、电网谐波中以3次为主的根据《并联电容器装置设计规范》,当电网谐波以3次及以上为主时,一般为12%;也可采用%~6%与12%两种电抗器。

根据实际情况而定:1.3次谐波含量较小,可选择%~1%的串联电抗器,但应验算电容器投入后3次谐波放大器是否超过或接近限值,并有一定裕度。

2.3次谐波含量较大,已经超过或接近限值,可以选择以12%或%~6%串联电抗器混合装设。

(二)、电网谐波中以3、5次为主1.3次谐波含量很小,5次谐波含量很大,选择%~6%的串联电抗器,尽量不使用%~1%的串联电抗器;2.3次谐波含量略大,5次谐波含量较小,选择%~1%的串联电抗器,但应验算电容器投入后3次谐波放大器是否超过或接近限值,并有一定裕度。

(三)、电网谐波为5次及以上的1.5次谐波含量较小,应选择%~6%的串联电抗器;2.5次谐波含量较大,应选择%的串联电抗器。

对采用%~1%的串联电抗器,要防止对5次、7次谐波的严重放大或谐振;对于采用%~6%的串联电抗器,要防止对3次谐波的严重放大或谐振。

当系统中无谐波源时,为防止电容器组投切时产生的过电压和对电容器组正常运行时的静态过电压、无功过补时电容器的电压升高的情况分析计算,可适用%~1%的电抗器。

相关文档
最新文档